
Mashups for Data Integration: An Analysis

Giusy Di Lorenzo1 Hakim Hacid2 Hye-young Paik2 Boualem Benatallah2

1 Dipartimento di Informatica e Sistemistica

Via Claudio, 21

80125 Napoli, Italy

giusy.dilorenzo@unina.it
2 School of Computer Science Engineering

University of new south wales

Sydney, NSW 2052, Australia

{hakimh, hpaik, boualem}@cse.unsw.edu.au

Technical Report

UNSW-CSE-TR-0810

April 2008

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering

The University of New South Wales

Sydney 2052, Australia

Abstract

Mashup is a new application development approach that allows users aggregate
multiple services, each serving its own purpose, to create a service that serves a
new purpose. Even if the Mashup approach opens new and broader opportuni-
ties for data/service consumers, the development process still requires the users
to know, not only understand how to write code using languages, but also how
to use the different Web APIs from all services.

The objective of this study is to analyze the richnesses and weaknesses of
the Mashup tools. In particular, we identify the behaviors and characteristics
of general Mashup applications and analyze the tools with respect to the key
aspects from the Mashup applications. We believe that this kind of study is
important to drive future contributions in this emerging area where a lot of
research and application fields, such as databases, user machine interaction,
etc., can meet.

1 Introduction

One of the goals of the Web 2.0 is to make it easy to create, use, describe,
share, and reuse resources on the Web. To achieve that, a lot of technologies
have flourished around this concept, e.g. blogs, social networks, etc. As a con-
sequence and in order to follow the rapid development, a lot of service providers
are exposing their applications functionalities via Web APIs such Google Map1,
Amazon.com, and Youtube in one hand. In another hand, a lot of data feeds,
such as RSS and ATOM, is is creating a flourish of potential data sources that
various applications can tap into. This opened up new and exciting possibili-
ties for service consumers and providers as it enabled the notion of using these
services2 as ”ingredients” that can be mixed-and-matched to create new appli-
cations.

To achieve this goal, and may be to anticipate future needs in the Web 2.0, a
new framework, called Mashup, is surfacing. Mashup is then a new application
development approach that allows users aggregate multiple services, each serv-
ing its own purpose, to create a service that serves a new purpose. Applications
built using the Mashup technique are referred to as Mashups or Mashup appli-
cations, which are built on the idea of reusing and combining existing services,
i.e. existing search engines and query services, data, etc.

The interest of the Mashup framework can be noticed in the recent prolifer-
ation of Mashup applications showing that the needs for integrating these rich
data and service sources are rapidly increasing. Examples of Mashup applica-
tions can include Mashups with maps where the objective is to plot various data
on a map like Google Map of Yahoo Map3; Mashups using multimedia content
imported from YouTube, Flickr, etc.; Mashups using e-commerce services such
as Amazon.com or Yahoo shopping are also flourishing. Finally, The surging
popularity of data feeds (such as RSS or ATOM), the most popular example of
Mashups is the feeds Mashups, which subscribe to regular data feeds, typically
in RSS or ATOM format, to access data such as news, blogs content, catalog
updates, etc.

Although the Mashup approach opens new and broader opportunities for
data/service consumers, the development process still requires the users to know,
not only understand how to write code using languages (e.g., Java Scripts,
XML/HTML, Web services), but also how to use the different Web APIs4 from
all services. In order to solve this problem, there is increasing effort put into
developing tools which are designed to support users with little programming
knowledge in Mashup application development.

The objective of this study is to analyze the richnesses and weaknesses of
the Mashup tools. In particular, we identify the behaviors and characteristics
of general Mashup applications and analyze the tools with respect to the key
aspects from the Mashup applications. Through this analysis, we will be asking
questions such as how the tools handle data, what kind of processes is made,
what is the result of Mashups, etc. We believe that this kind of study is impor-
tant to drive future contributions in this emerging area where a lot of research

1http://maps.google.com/
2These services can be a data service, such as news, or a process/operation service such as

placing an order to Amazon.com.
3http://maps.yahoo.com/
4A lot of APIs are available on the Web: http://www.programmableweb.com/apis/directory/

1

and application fields, such as databases, user machine interaction, etc., can
meet.

Focusing on the data integration part of the Mashups, we organize the re-
minder of this paper as follows: Section 2 introduces the different levels of
Mashups. After presenting and illustrating, using examples, the different di-
mensions that we consider for this study in Section 3, Section 4 discusses the
analysis of some Mashup tools. We have selected only some tools since our ob-
jective is not to analyze all the tools but to give a view on the current state of
these tools. We finish by a discussion and a conclusion in Section 5 summarizing
our study.

2 A Study of Mashup Applications

To characterize a Mashup application, let’s consider the following example. Sup-
pose that a user wants to build a Mashup application that lets her select news
from news provider, like CNN International, and display both the list of the
news and a map that highlights the location of that news. To implement this
example, three types of component services are used: (i) Map Services, (ii)
News Services and (iii) Rss-GeoRss Converter Service. In particular CNN RSS
or Repubblica RSS News services for News Component, GeoName Web Services
for RSS-GeoRSS Component, and Yahoo or Google Map for Map Component.
The GeoName service is needed only if the news feed does not contain infor-
mation about latitude and longitude, necessary for showing the news on the
map. Each service exposes its data in various way: GeoName Web Services and
Yahoo Map use REST-based APIs, Google Map uses Javascript API and CNN
and Repubblica RSS use RSS feed.

In addition, the exchanged data can be represented using different format
such as XML, CSV, RSS/Atom, HTML, JSON, plain text and so on. The
Mashup application needs to manage: (i) the integration between the different
types of data (data flow); (ii) the communication with the components and
interaction among them and finally(iii) the displaying of the content to the
end-user. According to Maximilien et all., [4], the three major components
of a Mashup application are (1) Data Mediation Level, (2) Process Mediation
Level, (3) Presentation Level. Moreover, each data source needs to be first
analyzed and modeled in order to perform the required actions of retrieval and
preprocessing. In the following, we briefly describe the different components of
a Mashup application.

2.1 Data Mediation Level

The Data Mediation challenges involve accessing and integrating data residing in
multiple and heterogeneous sources such as web data, enterprise data, etc. [16].
Generally, these resources are accessible though REST or SOAP web services,
HTTP protocol and XML RPC. Regarding the data mediation, the basic prob-
lem to be dealt with when integrating data from heterogeneous sources, come
from structural and semantics diversities of the schema to be merged[16][7].
Structural diversity should rise problems like: (1) the same schema element,
in two different schema are given different names (e.g. latitude or geo:lat) or
use two different data types (e.g. integer or double); (2) same elements in two

2

different schema are grouped in different ways; (3) one schema can cover some
aspect of the domain that are not considered in the others (domain definition).

In addition, sometimes the format of the data can be different, e.g. one is
XML-based and another is object-based. For example, if one wants to show some
news exposed in RSS format on Google map, first the data needs to be parsed
and converted in geo W3C1 format. Second, a data format transformation is
needed since the news data needs to be transformed to a Java object, which is
the expected input of Google Map API.

Besides, from the semantic point of view, the integration between the data
schema should be made in order to consider and preserve the meaning of the
data[16]. For instance, two different schema elements in two different data
sources can have the same name but the meaning is different and vice-versa.
For example, two different schema could have both the < Location > field, but
one includes name of city and street and another includes the country name.

Finally, data sources can be either structured for which a well defined data
model is available, e.g. XML-based document or RSS/Atom feed, or unstruc-
tured data, e.g. audio, video, e-mail text, office documents, etc. In the latter
case, the unstructured data needs to be processed in order to extract meaning
and create structured data. So, Data Mediation consists of all possible data
manipulations (conversion, filtering, format transformation, combination, etc.)
needed to integrate different data sources, i.e. data flow. Each manipulation
could be done by analyzing both syntax and semantics requirements.

2.2 Process Mediation Level

The integration at the application level has been fully studied specially in the
workflow and service oriented composition areas[12]. A lot of related problems
have been investigated such as the definition of models and languages to describe
either the component services and the composition process, e.g. WS-BPEL[3].
The Process Mediation Level defines the choreography between the involved
applications. The integration is done at the application layer and the composed
process is developed by combining functions, generally exposed by the services
through APIs.

In the Service Oriented Architecture (SOA) area, the composition focuses on
the behavioral aggregation of services and the interaction is considered between
the resources only[10]. In contrast, since the Mashup applications do not only
focus on the data integration but also the connection to different remote data
services, for instance REST resources or functions available through Java or Java
Script methods, the interaction with the clients browsers needs to be handled.
So, the models and languages from the SOA approach must to be adapted in
order to model and describe interactive and asynchronous processes.

Currently, languages like Bite[10] or Swashup[4] have been proposed to de-
scribe the interaction and the composition model for the Mashup applications.
In particular, Bite extends the BPEL’s composition model to satisfy the devel-
opment of the interactive process and the interaction between REST services.
Besides, Swashup is a domain specific language based on Ruby2 that allows func-
tionalities such as the description of the interaction model and the invocation of

1http://www.w3.org/2003/01/geo/ (visited on 28/04/2008)
2http://www.ruby-lang.org/en/ Visited on 28/04/2008

3

synchronous and asynchronous methods. That is, from process mediation point
of view, further research needs to be done to fully take of these challenges in
the Mashup area.

2.3 Presentation Level

Every application needs an interface to interact with users and Mashup applica-
tion is not an exception. Presentation Mediation (or User Interface) in Mashup
application is used to elicit user information as well as to display intermittent
and final process information to the user. In our News Mashup application ex-
ample, user initiates the application by choosing a news provider by typing url
of their RSS feed service. Then, as an output for users, the map with location
for the events in the news will be displayed on the Mashup application.

The technologies used to display the result to the user can be as simple as
an HTML page, or a more complex web page developed with Ajax, Java Script,
etc. The languages used to implement the integration of components UI and the
front-ends visualization support server side or client-side Mashup[1][2]. If we use
a server-side Mashup in the News Mashup application example, the composition
of the components for news and maps takes place in the server, which means
that the sever does the parsing from the data type from Mashup application
to the data type required for the display on the clients web browser. On the
other hand, in a client-side Mashup, Ajax application on client-side will do the
required composition and parse it into clients web browser. Sometimes client-
side approach cannot provide Mashup for certain components because of the
so-called cross-domain problem. The cross-domain problem occurs when client-
side, e.g. Ajax application, tries to access data in a different domain name. To
avoid this problem, using server-side approach such as ASP or JSP is inevitable.

This area is an emerging area and a lot of efforts are done in this direction[11][20].
From the Mashup point of view, there is still a lot of effort to be done.

3 Tools Analysis

In this the section we provide an in-depth analysis of how the Mashup tools can
help the user to fetch and integrate heterogeneous data. To understand why
some automatic support is needed to create a Mashup application, we give an
example. Let us suppose that a user wants to implement the News Mashup;
he/she typically needs to do a lot of programming which invokes fetching and
integrating heterogeneous data. In fact the user needs to know not only how
to write the code but also (1) to understand the available API services in order
to invoke them and fetch the data output; (2) to implement screen scraping
techniques for the services that do not provide APIs, and (3) to know the data
structure of the input and output of each service in order to implement data
mediation solution.

The Mashup tools provide facilities to help the user to solve some of the above
mentioned problems. The analysis provided in this section aims at analyzing
how the tools address the data mediation problems discussed in the previous
section, we will be asking questions like which facilities do they provide for
searching data sources or existing Mashups? which operators do they provide

4

for data transformation and for creating the data flow? or, which are the types
of data supported by the available operators?

The approach used for the comparison of the Mashup tools is based on
the analysis of the following eight dimensions, which allow addressing the data
mediation problems:

3.1 APIs

Murugesan [19] defines an API as an interface provided by an application that
lets users interact with or respond to data or service requests from other pro-
grams, applications, or web sites. Thus, APIs facilitate the integration between
several applications by allowing data retrieval and data exchange from/between
applications. APIs help to access and consume resources without focusing on in-
ternal organization of them; simple and known examples of APIs include ODBC1

and JDBC2. These APIs allow programmers to access data in databases by only
sending a query and getting results. The APIs offer then a mean to handle the
data by allowing accessing particular items, updating items, removing items,
etc.

On the Web, providers like Microsoft3, Google4, eBay5 and Yahoo6 allow to
retrieve content from their web sites by providing web APIs that are generally
accessible through standard protocols such as REST/SOAP web services, AJAX
(Asynchronous Javascript + XML) or XML Remote Procedure Call.

APIs can also be used to access resources which are not URL addressable
such as private or enterprise data. These data are often exposed in many other
formats such as office documents, e-mail, database query results, etc. [18]. Using
different types of APIs, it is possible to implement an application that combines
information from a user’s own file and data coming from web APIs. For exam-
ple, a user may implement an application that combines information regarding
insurance policies contained in his own Excel spreadsheet with the web weather
service alerts provided by a website [5].

3.2 Internal Data Model

As stated before, the objective of a Mashup application is to combine different
resources, data in our case, to produce a new application. These resources come
generally from different sources, are in different formats, and vehicle different
semantics. To support this, each Mashup tool uses an internal data model. An
internal data model is a single global schema that represents a unified view of
the data [7]. A Mashup tool’s internal data model can be either XML-based or
Object-based.

• XML-based model : most of the Mashup applications use an XML-based
model as an internal data model. This is certainly motivated by the fact
that most of todays data, mainly on the Web such as RSS feeds, are avail-
able in this format and also, most of the Mashup tools are available via the

1Open DataBase Connectivity: http://support.microsoft.com/kb/110093
2Java DataBase Connectivity: http://java.sun.com/docs/books/tutorial/jdbc/overview/index.html
3http://www.microsoft.com/
4http;//www.google.com/
5http;//www.ebay.com/
6http;//www.yahoo.com/

5

Web. This model is a graph-based data model used for managing semi-
structured data and for integrating heterogeneous data sources. That is,
all the data that are used by the Mashup tools, in this category, transform
the input data into an XML representation before processing it. For ex-
ample, DAMIA translates the data into tuples of sequences of XML data
[5].

• Object-based model : in this case, the internal data is in the form of objects
(in the classical sense of the object-oriented programming). An object is
an instance of class which defines the features of an element, including
the element’s characteristics (its attributes, fields or properties) and the
element’s behaviors (methods, operations). It should be noted that in
this case, there is no explicit transformation, performed by the tool, like
in the case of the XML-based model, but the programmer needs to define
the structure of the object according to his/her data. Popfly is an example
of a tool operating using an object-based data model.

To illustrate the differences in the internal data models, let us consider the
example of Figure 3.1 which shows an extract of an excel(or csv) file containing
the information of the national parks in the world7.

title link description pubDate

Grand Canyon National
Park www.grand.canyon.national -park.com/ Grand Canyon

National Park... 19/03/2008

Big Bend National Park http://www.big.bend.national -park.com/ Big Bend National
Park... 19/03/2008

Gulf Islands National
Seashore http://www.hikercentral.com /parks/guis/ Gulf Islands National

Seashore...... 19/03/2008

Figure 3.1: National Parks Data Source

The illustrated data in Figure 3.1 is given as an input to two different tools,
namely Damia and Popfly and the obtained result is shown Figure 3.2. Figure
3.2(a)shows the translation operated by Damia on the input data. That is,
each row in the csv file is transformed to an XML representation contained in
the element < damia : entry >. Each entry is composed of some elements
containing general information regarding the data source such as file name (i.e.
< default : id >), last updating (i.e. < default : update >) and by the
< default : content > element in which the national parks information is stored.
Figure 3.2(b) as for it how the data could be represented using an object based
notation is the case of Popfly.

3.3 Data Mapping

To instantiate an internal data model from an external data source, the Mashup
tools must provide strategies to specify the correspondences between their in-
ternal data model and the desired data sources. This is achieved by the mean
of data mapping. Data mapping is the process needed to identify the corre-
spondences between the elements of the source data model and the internal

7Some elements are omitted for readability

6

DAMIA - National Parks Internal Data Model Popfly - National Parks Internal Data Model

NationalPark

title:Type = title
link: Type=url
description: Type= description
pubDate :Type = string

toString():return String

class

Gran_Canyon : NationalPark

title = Grand Canyon National Park
link= www.grand.canyon.national -park.com /
description = Grand Canyon National Park ...
pubDate =19/03/2008

Object

Figure 3.2: Representation of the National Park csv file in DAMIA and Popfly

data model [15]. Generally speaking, a data mapping can be manual, semi-
automatic, or automatic.

1. Manual : in this case, all the correspondences between the internal data
model and the source data model are manually specified, one by one, by
the application designer. The tool should then provide some facilities for
the user to design the transformation as it’s the case in Damia which
provides a transformation operator in which a mapping can be performed.

2. Semi-Automatic: in the semi-automatic mapping, the system exploits
some metadata (e.g., fields names and types) to propose some possible
mapping configurations. However, the user needs to confirm these propo-
sitions and, usually, correct some of them. Yahoo Pipe is an example of a
Mashup tool supporting the semi-automatic mapping, offering some hints
for the user about possible mapping.

3. Automatic: in this case, all the correspondences between the two data
models are automatically generated, without user intervention [15]. This
is a challenging issue in the data integration area. Since the Mashup area is
in its ”early stage”, this type of mapping is not supported by any Mashup
tool.

It is also interesting to point out that the mapping in the currently available
Mashup tools is only done at schema level, while no semantic information is
being considered so far.

7

3.4 Data Flow Operators

The data flow operators allow to perform operations either on the structure
of the data (similar to the data definition language/operators in the relational
model), or on the data (content) itself (similar to the data manipulation lan-
guage/operator in the relational model). Here we consider the operators and
the expression languages provided by the tools for processing and integrating
data.

More concretely, data flow operators allow: (i)to restructure the schema of
the incoming data, e.g. adding new elements, adding new attributes to elements;
(ii) to perform elaboration on a data set such as extracting a particular piece
of information, combining specific elements that meet a given condition, change
the value of some elements; (iii) to build a new data set from other data sets
such as merging, joining or aggregating data (similar to the concept of views in
databases).

To illustrate the data flow operators, consider the example where a user
wants to implement, in Damia, a Mashup that merges two RSS feeds – one
containing the weather information for cities in Australia and the other one
containing information about the events in the different Australia’s cities – on
the city name. After getting the necessary data, the following operators need
to be applied, as illustrated in Figure 3.3:

1. Transform operator to change the structure of the event schema which is
done by adding the city field (data transformation). In addition, another
operation is needed to populate this filed consisting in extracting the name
of the city from the title of items(Data Manipulation).

2. Filter operator to select the weather information of the chosen city (Data
Manipulation);

3. Merge operator to join the previous data sequences – output of filter and
transform operator – on the name of the city (Data Manipulation);

4. Sorting operator to sort the obtained feeds on the value of date.

Figure 3.3: Illustration of four data flow operators in Damia

8

3.5 Data source refresh

In some cases, e.g. stock market, data are generally generated and updated
continuously. A lot of strategic decisions, especially in enterprises, are generally
made according to the last status/values of the data. It is then important that
a system propagates the updates of the data sources to the concerned user(s).
There are generally two strategies dealing with the status of the data in the
data source, depending on the objective of the user: the pull strategy and push
strategy [8].

• pull strategy : this strategy is based on frequent and repetitive requests
from the client, based on a pulling frequency. This pulling frequency is
generally chosen to be lower than the average update frequency of the data
in the source. The freshness of the data depends mainly on the pulling
frequency, i.e. higher is the pulling frequency, fresher will be the data and
vice-versa. One of the main disadvantages of a high refresh frequency is
that unnecessary requests may be generated to the server;

• push strategy : in this case, the client does not send requests but needs to
register to the server. The registration is necessary to specify/identify the
data of interest. Consequently, the server broadcasts data to the client
when a change occurs on the server side. The main disadvantage of this
model is that the client can be busy performing other tasks when the
information is sent which implies a delay in it’s processing.

Currently, the Mashup tools implement only the pull strategy. The majority
of tools have a static value of the pulling frequency that can be set by either
the tool designer or the user. Besides, only few tools allow the user to define
different pulling frequencies.

Another important parameter to point on here is the way the tool manages
the pull interval. There can be two possible strategies to handle this issue: a
global strategy and a local strategy.

1. Global strategy : here, the pull interval is set for the whole application. This
supposes that the data sources have the same updating interval. That is,
the data sources are requested at the same time interval, corresponding to
the one of the Mashup tool. As a result, the user keeps better the trace of
some sources (the ones having low refresh interval) than the others (the
ones having high refresh interval).

2. Local strategy : in the local strategy, for each data source is affected it’s
own refresh interval. This pull interval is supposed to correspond to the
one of the data source refresh itself. As A better trace is then kept of each
data source.

For example, Damia adopts a Local strategy, associating at each source a
Refresh Interval that defines the time that the feed from the URL is cached.
After the time has exceeded, the feed from the specified URL is reloaded.

3.6 Output

The output of a Mashup can be consumed either visually or via other data
formats. We consider the output as a dimension in this study since a user can

9

be interested in exporting his/her Mashup (the data flow) result in another
format in order to process it with another particular application (e.g. Excel
spreadsheet) for further processing instead of visualizing it. Considering for
instance the example in Fig 3.3, and a user which wants to analyze the resulting
data (weather condition and number of events in a certain location) in order to
find whether there is a correlation among them. The user will have to export
the result of the Mashup in a standard format (e.g. Excel spreadsheet or XML)
for further processing. For instance, a data mining algorithm can be applied on
this data to understand and extract some correlations.

3.7 Extensibility

Extensibility defines the ability of the tool to support additional, generally user
defined, functionalities. There can be two possible ways to define and use these
functionalities. A functionality can be either (i) embedded inside the tool, i.e.
the corresponding code of that functionality is added to the tool using a specific
programming language, or (ii) external, i.e. invoking the corresponding service
containing such function. This feature depends mainly on the architecture and
the spirit of the tool. In some cases, the extension can be done by embedding
the code of the desired functionality in the tool (e.g. Popfly); in other cases,
services are invoked like REST services, SOAP, etc. (e.g. Pipes). In addition,
this feature is managed differently by the different tools. In fact, in one case,
the added function/service is shared with the whole community that uses the
tool (e.g. Popfly). In the other case, the extension is visible only for the specific
user (e.g. Pipes).

3.8 Sharing

Mashups are based on the emerging technologies of the Web 2.0 in which people
can create, annotate, and share information in an easy way. Enabling security
and privacy for information sharing in this huge network is certainly a big
challenge. This task is made more difficult especially since the targeted public
with the Web 2.0 is, or supposed to be, a general public and not experts in
computing or security. This dimension defines the modality that the tool offers
to enable privacy and security in the Mashup applications that he/she creates.
It should be noted that this is a challenging area in the current Mashup and a
lot of work remains to be done.

Also, this dimension includes the following three indicators: 1) What is
shared in the Mashup?, 2) How is this shared? and 3)Who are the users with
whom this (the shared resource(s)) is shared with?

1. What: indicates the object or the resource(s) that we want to share. For
example, if a user creates a Mashup that integrates personal and public
data, he may want to share only the components of the Mashup which
manipulate the public data. The resources contained in the Mashup can
be shared in different ways:

• Total, the resource(s) (e.g. the Mashup application) is completely
shared, i.e. all the components (e.g. source code, data, and output)
composing the application are shared.

10

• Partial, in this case, only some of the components (e.g. only the
source code but not the data) composing the application are shared
with others.

• Nothing, this is the most restrictive option in which the user prefers
to create his/her own application without sharing it with others.

2. How: indicates the wrights that a user can give to other users on the
shared resource(s). The sharing policies analyzed here are the classical
policies considered for the accessing of the data, e.g. read only (user can
read all entries but cannot write any entry), read/write (user can read
and write all entries in the data), no access (user cannot read or write any
entries).

3. Who: indicates the users with whom the resource(s) is shared with. This
indicator can be: All people, Group, particular User. It should be
noted that for each member, different sharing policies (what and how) can
be specified and applied.

4 Tool Comparison

In this section we will analyze in more detail some Mashup tools1 according to
the different discussed dimensions. The objective of this section is not to make a
comparative, qualitative or quantitative, study of the considered tools but only
to analyze how do they manage and deal with the different described issues at
the data integration level2.

4.1 Damia

IBM provides a tool, Damia[5], to assemble data feeds from Internet and en-
terprise data sources. This tool is dedicated for data feeds aggregation and
transformation in enterprise Mashups. Additional tools or technologies like
QEDWiki3 and feed readers, that consume Atom and RSS, can be used as
presentation layer for the data feed provided by Damia.

Damia supports REST and SOAP web services and allows to fetch local
Excel, CSV and XML files. It should be noted that these files must be first
uploaded to the server, making them addressable, and can be then invoked
through REST protocol. In addition if used in combination with Mashup Hub,
Damia allows to assemble feeds obtained as results of query of data stored in
relational databases like Microsoft Access4 and DB2 5.

Damia provides two main widgets, for data access: URL and Catalog wid-
gets. URL widget is used to extract the repeating elements from a feed, and
the Catalog widget is used to fetch feeds from the Mashup Hub Catalog6. For
processing data feeds, Damia engine translates all data sources into tuples of

1The list of the considered tool can be found in Table 4.1
2In Table 4.1, for the automatic data mapping, this is considered true if the source data has

the same data model as the internal data model. Also, for data flow operators, we reference
here the tables in the text

3http://services.alphaworks.ibm.com/qedwiki/
4http://office.microsoft.com/access
5http://www.ibm.com/db2
6http://services.alphaworks.ibm.com/Mashuphub/

11

Table 4.1: Summary of the considered dimensions for the tools analysis

D
a
m

ia

Y
a
h
o
o

P
ip

e
s

M
S

P
o
p
fl
y

G
M

E

E
x
h
ib

it

A
p
a
ta

r

M
a
s
h
M

a
k
e
r

API
HTTP + + + + + + +
SOAP + + + - - + -
REST + + + + + + -

Data Model
XML-based + + - + - - +
Object-based - - + - + + -

Data Mapping
Manual + - + - - + +
Semi-Automatic - + - - - - -
Automatic - - - + + - -

Data Flow Operators 4.2, 4.3 4.4, 4.5 4.6 4.7 4.8 4.9 4.10

Data Refresh

Pull strategy + + + + + + +
Push strategy - - - - - - -
Global pull interval - + + + + + +
Local pull interval + - - - - - -
Interval Setting + - - - - - -

Output
Data + + - - + + -
Visualization - + + + + - +

Extensibility
Components + + + + + + +
Data - - - - - - +

Sharing

Total + + + + - + +
Partial - + - - - + -
No thing + + + + - + +
Read only + + + + - + +
Read/Write - - - + - - -
All users + + + + - + +
Groups - - - + - - -
Particular user + + + + - + +

sequences of XML, which constitutes it’s internal data model. That is, if the
data source is not in the same formalism like the internal data model, e.g. MS
Excel, and since the source data are all stored in the ’content’ field of the in-
ternal data model without taking in account the schema of the data source, a
special container is created to receive that data. In this case, the mapping is
manually performed between the internal data model if needed to perform more
operations.

To consume and produce data, several operators are made available by
Damia. We can distinguish between two categories of operators:

1. Data elaboration and presentation operators : these operators, shown in
the Table 4.2, are used to perform modifications on the data or their
structure,.

2. Building operators: these operators, shown in the Table 4.3, are used to

12

Table 4.2: Data Elaboration and Presentation Operators offered by DAMIA
Operator Description
Transform used for restructuring the schema of an incoming feed by

adding/removing elements, adding/removing attributes to ele-
ments, or manipulating values of the elements. The transforma-
tion is accomplished by creating an output structure that is used
to create a new feed.

Sort used to sort feeds based on their values, in an ascending or de-
scending order. Also, multiple sort keys can be used to perform
the sort.

Group used to gather entries with similar elements into a single entry
based on a grouping expression. The grouping expression evaluates
to a text value.

produce new data starting from a data source.

Table 4.3: Building Operators offered by DAMIA
Operator Description
Merge the operator is used to combine two source feeds based on an ex-

pression that is applied to the feeds. The expression compares an
item value from the first feed with an item value from the second
feed. All of the entries that satisfy the condition of the expression
are merged, or joined, resulting in a new feed.

Union the Union operator is used to combine two or more feeds into one
feed. The entries from the first feed are added to the new feed,
then the entries from the second feed.

Filter used to extract specific items from a feed that meet the filter con-
ditions.

Augment allowed to combine the data from two incoming feeds into a single
output feed of data. One must link an expression from the upper
feed to a variable that he/she defines in the lower feed.

Damia caches all the data declared as data sources in a Mashup on its own
server. A pull strategy is implemented to update the data on the Damia server
and the pull interval is handled with a Local strategy. To set the pull interval,
each source component has the Refresh Interval parameter for defining the time
that the data from the specified URL is cached. After the time has exceeded,
the data from the specified URL is reloaded. By doing this, Damia offers the
possibility to consume it’s output using other task specific tools, techniques,
etc. (e.g. analysis tools).

As mentioned above, Damia aims to aggregate and manipulate data that can
be reused from other applications. The output is exported using the Publish
operator which transforms the output of the data flow into RSS, Atom, or
XML feed by adding header information and content specific to the feed, and
converting the tuples of sequences to the specified output feed type. Also, Damia
is an extensible tool in that the user can either embed new functionalities inside
the tool or invoke external services. The new operators can be written in PHP

13

language and can be plugged into the engine or can be made available as web
services(SOAP or REST).

From a sharing policy management point of view, the tool offers the possibil-
ity of sharing the whole Mashup, i.e. total sharing, the output of the Mashup,
i.e. partial sharing, or no thing. In the first case, another user might access all
the information used by the Mashup creator. The Mashup is completely shared
meaning that other users have access to source code, data and output. In the
second case, the only shared thing is the final output. The resources are shared
following one policy, which is the read only policy. The user can’t specify an-
other policy. The Mashup can be shared either with all people or no one. There
is no possibility to share the application with a specific user or with a specific
group of users.

4.2 Yahoo pipes

Yahoo Pipes allows to build mashup applications by aggregating and manipulat-
ing data feeds from web feeds, web pages and other services. A pipe is composed
of one or more modules, each one performing a single task like retrieving feeds
from a web source, filter, sort or merge feeds. The modules are broken into
different categories such as Data Source for data accessing, Operators for
data manipulation 7 and so on.

Yahoo pipes supports mainly REST web services, but provides also specific
modules to access services as Flicker for searching for photographs by keyword
and geographic location, Google Base for allowing anyone to create and publish
web-accessible information, Yahoo Local for searching for services in a particular
area, Yahoo Search to build custom searches as a starting point for Pipes and
to fetch the source of a given web site(Fetch Page Module) and a CSV file(Fetch
CSV Module).

To combine data feeds, Yahoo Pipes translates the source formats (which
can be RSS, Atom or RDF) into its internal RSS feed data model. The data
mapping between the source data model and the internal data model is Semi-

Automatic. In fact, if the name of the input fields of a feed match with the
name of the RSS fields, the conversion into the is done automatically; otherwise
many facilities are provided to help the user for the data mapping. An example
is the “Item Building” module which is used to restructure and rename multiple
elements in the feed, in order to convert a source data model to the Internal
RSS feed data model.

To restructure the schema of incoming data, Pipes provides three operators
described in the Table 4.4.

For data flow specification, Yahoo pipes provides only the Union operator to
combine a list of item into a single list. Besides, to perform an elaboration on
the data set, the following operators described in Table 4.5 are made available.

Pipes caches all the feeds it visits on its own server. A pull strategy is also
implemented here to update the data on the server and the pull interval(that in
our tests resulted to be 1 hour) is set for the whole application(Global strategy).
The created pipes are hosted at Yahoo server and can be either accessed by a
RSS or JSON client via it unique URL or visualized on the provide yahoo map.
Besides, the pipes can be used like Mashup components to build a more complex

7http://pipes.yahoo.com/pipes/

14

Table 4.4: Data flow operators offered by Yahoo Pipes
Operator Description
Regex allows to modify fields in an RSS feed using regular expressions.
Rename used to rename elements of the input feed and add new items in

the inputs feeds.
Sub-Element allows extracting sub-elements from the feed, which are buried in

its hierarchy.
Union allows to combine a list of item into a single list.

Table 4.5: Data flow operators offered by Yahoo Pipes
Operator Description
Reverse If the feeds are ordered, the Reverse module provides a way to

change the order of feeds, by flipping the order of all items in a
data feed.

Sort Used to sort a feed by any item element, such as title. The items
can be sorted in ascending or descending order.

Truncate This module returns a specified number of items from the top of a
feed.

Tail This module truncates a feed to the last N items, where N is a
number you specify.

Count This module counts the number of items in the input feed, and
outputs that number.

Filter The Filter operator is used to extract specific items from a feed
that meet the filter condition.

Unique This module removes items that contain duplicate strings.
String Operators These modules help manipulate and combine strings.
Simple Math This module performs basic arithmetic, such as addition and sub-

traction.
Date Operators These modules can perform elaboration on date as create a date

object from a string value.
URL This module builds URLs in either traditional or Web 2.0 style

query-string format from a series of input fields.

pipe or their outputs can be combined with other tools that can process RSS
feeds.

Yahoo Pipes is an extensible tool. If some functionalities the end-user needs
are not offered, he/she can create a web service and invoke it from the system
through the Web Service interface. This external service is accessible through
JSON Interface and its output has to be a data type supported by the tool. The
added functionality is visible only to the owner and cannot be shared with the
whole community.

Finally, the Mashup can be shared with either all people or no one, in par-
ticular the sharing can be: (1) Total, meaning that there is a read access to
source code, to the data, and to the output. The source code of the pipe and
the output are shared. In this way another user might access all the information
used by the Mashup creator. (2) Partial sharing meaning that the people with
whom the Mashup is shared have read access to source code and the output

15

only. The data are not shared in this case. If a private element is used (Private
string or Private text input) the code of the shared Mashup is available, but
it is not possible to visualize the intermediate outputs. The Mashup output is
available. The most restrictive policy is the Nothing policy which allows to have
a read access to output. In this case, only the Mashup output is shared.

4.3 Popfly

Popfly is a web-based Mashup application by Microsoft8 that allows users to
create a Mashup combining data and media sources. The Mashup is built by
connecting blocks. Each block is associated to a service like “Flicker”9, ”Face-
book”10 and ”Virtual Earth”11, and exposes one or more functionalities. A
block is characterized by one or more operations with mandatory, optional in-
put variables and an output. An operation defines the functionality exposed by
the block such as display resources like photos or videos. The input variables are
the parameters of the query to invoke the services, for instance URL of service.
The output represents the way in which the output of the operation is provided
to the user. The output can be either a data object or an HTML object that
can be added to Mashup web page. The Popfly block supports mainly REST
and SOAP services. In addiction, a WSDL block generator, that automatically
produces a stub for a WSDL file, is made available.

In Popfly, the internal data model is in the form of object. The designer
defines himself the characteristics and the behaviors of a block based on the
source data model. Since, there is not an explicit internal data model, any
transformation is performed by the tool for the mapping between the source
data model and the internal data model. Therefore, the mapping is Manual

give that it is manually specified by the designer.
Popfly is much more about data visualization than data manipulation, conse-

quentially few operators are made available for data processing and integration.
For data processing, operators for restructuring the schema of incoming data are
not provided, since the Popfly’s internal data model is object based, but some
operators, described in Table 4.6 for object elaborations are made available.

Table 4.6: Operators offered by Popfly
Operator Description
Sort Sort operator is used to sort a list of input objects based on the

values of the object.
Filter This module filters the input list based on an arbitrary condition.
Truncate This module returns a specified number of objects from the top of

a input list.
Calculate This module allow to do different match operation on the numbers.
Text Helper This module allows to do some operators on the text as: (1)Split

(returns an array of the substrings separated by a given separator),
(2)getSubString: (Returns a portion of the input text, given a
position and length)an so on.

8http : //www.popfly.net/
9www.flickr.com/

10www.facebook.com/
11www.microsoft.com/virtualearth/

16

Besides, for data Integration, Popfly makes available only the Combine

module to join two sets of data of different types into one. For the data refresh,
a pull strategy is implemented by Popfly to update the data. The pull interval
depends on the frequency with the Mashup web page is reloaded by the user
and concerns the whole application(i.e. a global strategy).

Popfly does not offer any true output function. Once a Mashup application
has been developed and shared, it can be embedded into a web page, downloaded
as a gadget, etc. But the mashed data cannot be exported in standard format
for further processing instead of visualizing it.

For the extensibility, in Popfly the user can create his/her own blocks either
by writing the Java Script code or by developing a SOAP web service. The
created block can be plugged into the engine and shared with the whole com-
munity. Finally, the created Mashup can be shared with either all or no one.
That is, two sharing policies are managed: (1) Total sharing where the user are
given read access to the Mashup implementation, the data, and the output. The
implementation of the Mashup and the output are shared. In this way another
user might access all the information used by the Mashup creator. (2) Nothing
where the Mashup is accessible only by the owner.

4.4 Google Mashup Editor

Google Mashup Editor(GME)12 is an interactive environment to build, deploy,
and distribute Mashup applications. The Mashup can be created using technolo-
gies like HTML, JavaScript, CSS along with GME XML tags and JavaScript
API that further allows a user to customize the presentation of the Mashup
output. GME allows also to consume RSS and Atom feeds accessible via REST
web services. Local files contained data feed can be uploaded on the GME server
and can be used through REST protocol. The user can also create his/her own
feeds using Gdata API13 and embed them in the Mashup’s web page.

To operate on different types of data from different sources, the data in GME
applications is managed with an Atom based data model named Google Data
feed. Google Data feed is a data protocol based on Atom. The data from RSS
feeds, are automatically converted to Google Data by GME through an XSL
transformation. In reality, there is not an explicit mapping between the source
data model and the internal data model, given that they have the same schema.

To handle the data, GME makes available operators for modifying the in-
coming data feed by sorting and filtering, shown in Table 4.7.

Table 4.7: Operators offered by Google Mashup Editor
Operator Description
Sort The sorting operator allows sorting the data on various types of

elements as title, e-mail address, etc.
Filter The filtering operator as for it allows retrieving specific data that

meet the filter condition. The filter condition can be applied to
various types of elements that appear in the feeds14.

Operators for data merging and data schema manipulation are not explicitly

12http://code.google.com/gme/index.html
13http://code.google.com/gme/docs/data.html

17

provided but can be implemented using Javascript APIs, and XPath queries for
data field access, and be plugged into the application. All the feeds visited by
GME are cached on its own server. A pull strategy is implemented to update
the data on the server but it does not support variable cache refresh frequencies,
i.e.Global Strategy.

From the output point of view, GME, like Popfly, does not offer any true
output function. The output of the Mashup can be only visualized using the
provided visualization tool. Then, in what concerns the extensibility, if some
functionalities the end-user needs are not offered, he/she can write Java Script
functions that implement them. Like Pipe, the added functionality is visible
only to the specific user and cannot be shared with the whole community.

Unlike the other Mashup tools, GME allows to specify sharing policies for
the Mashup application. The sharing policy can be: (1) total, i.e. read access
to source code, data and output. This means that the source code of the GME
graph and the output are shared. In this way another user might access all
the information used by the Mashup creator. (2) Partial, i.e. read access to
source code. This means that If data is used to build the Mashup, and ”no
access” to other users is set, the code of the shared Mashup is available, but it
is not possible to visualize or manipulate the data of the Mashup. (3) Nothing,
where the Mashup is not shared. When a Mashup is shared in GME, for the
data used to build the application, the designer can be define to share it with a
group or with all users by specifying Read/Write policies. Finally, the data feeds
retrieved from external sources can be read and accessed by any user. The data
of the application can be accessed in Read/Write mode by the designer, and can
be shared by specifying the classical Read/Write policies for data accessing.

4.5 Exhibit

Exhibit[17] is a framework for creating web pages containing dynamic and rich
visualizations of structured data. The generated web page is composed of two
main files: 1) an HTML file, containing the description of user interface, and 2)
a Data file, containing the data sources.

Exhibit can read data directly from own JSON format. But, if used in com-
bination with Babel15(which can be directly imported in Exhibit application),
it allows to assemble data obtained by RDF/XML, N3, Bibtex, Tab Separated
Values and Excel files. The data source can be either web data, accessible via
REST web services, or local files which must be first uploaded on the Exhibit
server and then invoked through REST protocol. The Exhibit data model is a
graph model, based on JSON format and composed by a set of items and prop-
erties. The internal data model can be considered as a sub-model of the RDF
data model[17]. When dealing with heterogeneous data, the mapping between
the data source and the internal data model is automatically generated by the
tool by means of Babel service. Anyway, if the conversion is not automatically
performed by Babel web service, no facilities are provided for the user to design
the transformation.

Exhibit like Popfly and GME is much more about data visualization than
data manipulation, therefore few operators are made available. They are de-
scribed in Table 4.8 Finally, the Besides, operators for data merging and data

15http://simile.mit.edu/babel/

18

schema manipulation can be implemented using Javascript and plugged into the
application.

Table 4.8: Operators offered by Exhibit
Operator Description
Sort The Sorting operator allows sorting the displayed data.
Filter The Filtering operator allows filtering specific data that meets

the filter condition. The filter condition is defined using the Exibit
expression language16.

Search Searching operator lets the user to search some text in the data.

For data refresh, a pull strategy is implemented. The pull interval depends on
the frequency with which the Mashup’s web page is reloaded by the user(Global
strategy). In addition to the primary goal of Exhibit, i.e. creating web pages
containing rich and dynamic visualization of structured data, it also lets the
user to pull out the data providing exporters for RDF/XML, Exhibit JSON,
Semantic wikitext and Tab Separated Values formats. Also, new functionalities
in Exhibit can be implemented in Javascript and included like library into the
Exhibit code. In particular new views can be added and more exporters can be
registered.

Finally, the user can share the created Mashup by uploading it on his own
web pages, since Exhibit does not give any support for the Mashup sharing.

4.6 Apatar

Apatar17 is a Mashup data integration tool that helps users join desktop data
with the web. Users install a visual job designer application to create integration
called DataMaps. A Data Map is composed of data storage type and operator
(which modify data in different ways) and defines the flow of data from the
source(s) to the target(s). Apatar supplies the connectivity to applications
such as MySQL, PostreSQL, Oracle, MS SQL, Compiere, SugarCRM, XML
and flat files. In addition, it has connectors for the most popular Web 2.0 APIs
such as Flickr, Salesforce.com and Amazon. The data sources are accessible
mainly through REST web services. Besides, local files like Excel, RSS, Text
file can be uploaded on Apatar server and then invoked through REST protocol.
In Apatar, the internal data model is an object based. A specific object is
automatically created for each data sources. Like Popfly, since there is not a
specific internal data model, any transformation is performed by the tool for
the mapping between the source data model and the internal data model.

Apatar is actually the only Mashup tool that provide a wide range of op-
erators to consume and manipulate different types of data. In particular, to
restructure the schema of incoming data, the user must define first the structure
of the output, configuring the wished output connector(text file, or database, or
whatever connector blocks), and then using the the Transform operator which
can specify the correspondences between the input and the output fields. To
perform elaboration on the data sets, Apatar makes available different sets of
functions each one associate to a kind of data types such as string, date, number

17www.apatar.com/

19

and so on. These functions are available in each operator blocks. Finally, for
data integration the provided operator are shown in the Table 4.9.

Table 4.9: Operators offered by Apatar
Operator Description
Aggregate used to combine two different data sources. The user first must

define the structure of the output and then in the Aggregate op-
erator, can specify the correspondences between the fields of the
input data and the output.

Distinct similar to the ’DISTINCT’ operator in SQL, this operator elimi-
nates the data duplications for the columns specified by the user.

Filter used to extract specific data fields that satisfy the filter conditions.
Join combined two different data sources based on the join condition

that is applied to the input fields.
Split this operator is named Validate in the terminology of Apatar, split

a data sources in two separate tables according to a specific criteria.
The first table contains all data for which the criteria is True, the
second contains the rest of the records.

To refresh the data uploaded, a pull strategy is implemented in Apatar to
update the data and the pull interval is set for the whole application(Global
strategy). The created Data Map, one created and shared, is hosted on Apatar
web site and its output can be either exported in standard format like RSS
or can be redirected to whatever storage data such as MS SQL, Compiere and
SugarCRM. Apatar like DAMIA mainly aims to aggregate and manipulate data
that can be reused from other applications, so additional tools that consume
the Apatar output formats can be used as presentation layer.

Apatar is an extensible tool. In fact new connector and operator blocks
and new functions can be developed in Java and plugged inside the engine(like
new plug-in). These new functionalities can be also shared with the whole
community. Finally, from a sharing policy management point of view, the tool
offers the possibility of sharing the whole Mashup, i.e. total sharing, or no
thing. Total sharing means that other users have access to source code, data
and output. There is the possibility neither to specify policy for the accessing
of the data nor to share the application with a specific user or a group.

4.7 MashMaker

MashMaker [14] is a web-based tool for editing, querying and manipulating web
data. MashMaker is different from the described tools in that it works directly
on web pages. In fact, MashMaker allows users to create a mashup by browsing
and combining different web pages. A Web page is seen as two parts: the
presentation and the data through HTTP protocol. To handle the data part,
an RDF schema18 is associated to the Web page by the user. For this part,
users can use the Extractor Editor offered by the tool to edit the data model
and formulate the XPath query for data extracting. The extracted schema is
used by the tool to extract and structure the corresponding data included in
the Web page.

18Resources Description Framework: http://www.w3.org/RDF/

20

It should be noted that the schema of the Web page is stored on the Mash-
Maker server. The corresponding data are extracted when the Web page is
retrieved by the navigator19. To build a mashup, different Web pages are com-
bined in one. This combination is done by mean of widgets, a mini-application
that can be added to an existing web page to enhance it in various ways such as
provide data to other widgets. The final goal of this tool is to suggest to the user
some enhancements, if available, for the visited web pages. The enhancements
can be mashups or widgets which have been defined before by other users on
top of the visited web page.

Back to the RDF description of a Web page. Such a description is composed
of a set of nodes and properties. A node corresponds to a location on the web
page. It is characterized by an XPath20 expression to identify the position of the
location and the corresponding value of that location. A node can have only a
concrete value (leaf node) or properties (compound node). To create a mashup
application, MashMaker must first extract the RDF description of the data,
representing the internal data model of the tool, from the HTML pages [13].
For each web page, a different schema can be created: an URI-comprehension
mechanism is used for normalizing URIs that are different but refer to the same
web page.

The particularity and the interest of MashMaker is in it’s operators. In fact,
the idea is to offer the user the possibility of using operation that he is used to
use in his desktop (e.g. copy and paste). That is, MachMaker offer the following
basic operators, Other services are added every day to the tool. Here we focus
on the main operators which are directly related to data integration., described
in Table 4.10.

Table 4.10: Operators offered by Intel MashMaker
Operator Description
Match This operator is similar to the left join operator in SQL. The output

contains all the items of the main Web page (left relation or table
in SQL) plus the matched items from the targeted Web page (the
right relation or table in SQL).

Copy takes a copy of the selected Web page. The copied object contains
the presentation, i.e. the Web page itself, as well as it’s RDF
description if it is available.

Paste Reproduces the copied object, i.e. the Web page and it’s descrip-
tion. From the visualization point of view, this operator allows to
past the data of a new web page into the main web page of the
Mashup. From the data point of view, the two data sets, corre-
sponding to the two Web pages, are merged.

As explained before, once the description schema is defined for a Web page
and saved on the server, the data of the corresponding Web page are extracted
when it’s retrieved via a navigator. MashMaker implements then a pull strategy
to update the data. The refresh interval is fixed by default but the user can
refresh manually the data. From the output point of view, Mashmaker does
not offer any true output function. In fact, once a Mashup application has been

19The navigator is supposed to have MashMaker installed.
20XML Path Language: http://www.w3.org/TR/xpath

21

developed and shared, the mashed data cannot be exported in standard format,
but can be only visualized.

As the other tools, MashMaker is extensible since users can create new
widgets and add and share them with other users. In addition to the possibility
of extending the tool itself with new widgets, a particular schema can be enriched
and extended by other users. The sharing of the created RDF schema of a
particular Web page is automatically done by the tool. This one is shared with
the whole community. For the widgets sharing, the user can create a widget
containing private data, this widget and the Mashup containing it cannot be
accesed by other users. Finally, the sharing can be done with all the users or no
one. This means that it is not possible to manage group of users or particular
users.

5 Discussions and Conclusion

In this section, we make a general discussion on the tools by considering their
strangeness and weaknesses. We aim in the same time to try to give a look out
on the possible points to consider for further improvements.

The mushup tools are mainly designed to handle Web data. This can be
seen as an advantage and an inconvenient. In fact, it’s an advantage since it
offers access and management of some data available only on the Web, e.g. RSS
feeds. A disadvantage since by doing this, user’s data, generally available on
desktops can not be accessed and used. This is a considerable disadvantage
since users bring a lot of data on their desktops for cleaning, manipulation, etc.
To access these Web data, the tools support the two most used protocols for
exposing APIs, i.e. REST and SOAP protocol. This is a consequence of the
success, the utility and the popularity of these protocols.

As discussed in the previous point, i.e. consuming Web data, the majority of
tools have an internal data model based on XML; this design choice is motivated
by the fact that the data available on the web is mainly exposed in the XML
format. This is due also to the fact that the communication protocols for the
data exchanging over the network use generally XML messages. The other
dominant internal data model in Mashup tools is object based. This data model
is much more flexible to use, even if more programming is required to implement
operations on it, especially for programmers.

To manage data, the tools make available a small set of operations for data
integration and manipulation. The set of provided operators is usually designed
based o the main goal of the tool. For example, if the tool is visualization
oriented, only few operators for data elaboration such as filtering and sorting are
available. In addition, the offered operators are not easy to use, at least from a
naive user point of view. Also, the tools don’t offer powerful expressiveness since
they allow expressing only simple operations, e.g. simple joins, and can’t be used
to express more complicated queries such as joins with conditions, division, etc.
This means that, from the expressiveness point of view, these tools are far from
reaching the database languages, i.e. integration languages, such as SQL.

None of the analyzed tools implement a Push strategy for the data refreshing,
the reason is that the majority of the currently available APIs are REST based.
The style of the REST protocol requires all communication between the browser
and the server to be initiated by the client and no support is offered to maintain

22

the state of the connection [9]. All the analyzed tools use a Pull strategy for data
freshness handling. This is motivated by the fact that the tools providers wish to
control (or prevent) the overloading of their servers. In addition, they implement
a Global strategy for the pull interval setting. The latter strategy however does
not allow developing applications in which process data are characterized by a
high refresh frequency, since it is not possible to explicitly specify the refresh
rate for each source.

One of the main goals of the Web 2.0 technologies is the creation, the reusing,
the annotation and the sharing of web resources in an easy way. Based on these
concepts, the Mashup tools are all extensible, in the sense that new operators,
and in some cases data schemas, can be developed and invoked or/and plugged
inside the tools. However, at this stage, the majority of tools do not support
the reuse of the created Mashups. This feature could allow developing complex
applications by integrating the results of different Mashups (also built with dif-
ferent Mashup tools). Some tools start to consider this issue such as potluck
which can use the Exhibit output. However, this is a limited cooperation be-
tween tools especially that the tools have a lot of limitations and a user can’t
express his wishes using one tool only.

The current development of Mashup tools is mainly focused on offering fea-
tures to access, manage and present data. Less consideration has instead been
given to the issue of data sharing and security so far. Observe that security cri-
terion needs to be taken into account inside the tools since communication prob-
lems could make a Mashup perform too many requests to source data servers,
causing overload for those servers. At this time, only Intel Maskmaker takes into
account this problem applying some performance restrictions on the Mashup
application[14].

All the analyzed tools are server side applications, meaning that both the
created Mashup and the data involved in it are hosted on a server, which is
owned by the tool’s provider. Therefore, the tool’s provider has the total control
on the Mashup and, if a user wants to build an application containing that
Mashup, the dependability attributes[6] of that application cannot be properly
evaluated.

No tools provide information regarding the analysis of the performances
and in particular information regarding the evaluation of the scalability. That
information is needed to know the capability of a system to handle a growing
amount of the data and the user request.

Finally, all the tools are supposed to target ’non-expert’ users, but a pro-
gramming knowledge is usually required. In particular, some tools require con-
siderable programming effort, since the whole process needs to be implemented
manually using instructions expressed in programming language such as Java
Script. Others necessitate medium programming effort given that only some
functionalities need to be coded in an explicit way using a programming lan-
guage; a graphical interface is offered to the user to express most of operations.
At this time, there is no tool that require low or no programming effort to the
user to build a Mashup, which is necessary to claim that the tools are targeted
for end-users.

23

Bibliography

[1] Mashup Styles, Part 1: Server-Side Mashups, http://java.sun.com/ devel-
oper/ technicalArticles/J2EE/mashup 1/.

[2] Mashup Styles, Part 2: Client-Side Mashups, http://java.sun.com/ devel-
oper/ technicalArticles/J2EE/mashup 2/.

[3] OASIS: Web Services Business Process Execution Language Version 2.0.
(2007), http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.

[4] A Domain-Specific Language for Web APIs and Services Mashups.
Springer, 2007.

[5] Mehmet Altinel, Paul Brown, Susan Cline, Rajesh Kartha, Eric Louie,
Volker Markl, Louis Mau, Yip-Hing Ng, David Simmen, and Ashutosh
Singh. Damia: a data mashup fabric for intranet applications. In VLDB
’07: Proceedings of the 33rd international conference on Very large data
bases, pages 1370–1373. VLDB Endowment, 2007.

[6] J.-C. Randell B. Avizienis, A. Laprie. Fundamental concepts of dependabil-
ity. Technical Report Series - University of Newcastle upon the Computer
Science, 2001.

[7] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis of
methodologies for database schema integration. ACM Comput. Surv.,
18(4):323–364, 1986.

[8] Manish Bhide, Pavan Deolasee, Amol Katkar, Ankur Panchbudhe, Krithi
Ramamritham, and Prashant Shenoy. Adaptive push-pull: Disseminating
dynamic web data. IEEE Transactions on Computers, 51(6):652–668, 2002.

[9] Engin Bozdag, Ali Mesbah, and Arie van Deursen. A comparison of push
and pull techniques for ajax, 2007.

[10] Francisco Curbera, Matthew J. Duftler, Rania Khalaf, and Douglas Lovell.
Bite: Workflow composition for the web. In ICSOC, pages 94–106, 2007.

[11] Florian Daniel, Jin Yu, Boualem Benatallah, Fabio Casati, Maristella Mat-
era, and Regis Saint-Paul. Understanding ui integration: A survey of prob-
lems, technologies, and opportunities. IEEE Internet Computing, 11(3):59–
66, 2007.

[12] Schreiner W. Dustdar, S. A survey on web services composition. Web and
Grid Services, 2005.

[13] Rob Ennals and David Gay. User-friendly functional programming for web
mashups. In ICFP ’07: Proceedings of the 2007 ACM SIGPLAN interna-
tional conference on Functional programming, pages 223–234, New York,
NY, USA, 2007. ACM.

[14] Robert J. Ennals and Minos N. Garofalakis. Mashmaker: mashups for
the masses. In SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, pages 1116–1118, New
York, NY, USA, 2007. ACM.

24

[15] Philip A. BernsteinDOI Erhard Rahm. A survey of approaches to automatic
schema matching. The VLDB Journal The International Journal on Very
Large Data Bases, 10:334–350, 2001.

[16] Alon Halevy. Why your data won’t mix. Queue, 3(8):50–58, 2005.

[17] David F. Huynh, David R. Karger, and Robert C. Miller. Exhibit:
lightweight structured data publishing. In WWW ’07: Proceedings of the
16th international conference on World Wide Web, pages 737–746, New
York, NY, USA, 2007. ACM.

[18] Anant Jhingran. Enterprise information mashups: integrating information,
simply. In VLDB ’06: Proceedings of the 32nd international conference on
Very large data bases, pages 3–4. VLDB Endowment, 2006.

[19] S. Murugesan. Understanding web 2.0. IT Professional, 9(4):34–41, July-
Aug. 2007.

[20] Jin Yu, Boualem Benatallah, Regis Saint-Paul, Fabio Casati, Florian
Daniel, and Maristella Matera. A framework for rapid integration of pre-
sentation components. In WWW ’07: Proceedings of the 16th international
conference on World Wide Web, pages 923–932, New York, NY, USA, 2007.
ACM.

25

