
Herbrand Analysis of Some Second-order Theories

with Weak Set Existence Principles

Chung Tong Lee1

Aleksandar Ignjatović2

1 University of New South Wales, NSW 2052, Australia
ctlee@cse.unsw.edu.au

2 University of New South Wales and NICTA, NSW 2052, Australia
ignjat@cse.unsw.edu.au

Technical Report

UNSW-CSE-TR-0808

April 2008

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering

The University of New South Wales

Sydney 2052, Australia

Abstract

We present a proof-theoretic analysis of some second-order theories of binary
strings which were introduced in [5]. The core of these theories contains,
besides finitely many open axioms for basic operations on strings, only a
weak comprehension axiom schema. In such theories, a collection W can be
defined to play the role of natural numbers. W is given as the intersection
of all sets containing the empty string and closed under the two successor
functions S0 and S1. We characterize the classes of functions which provably
map W into itself and whose graphs are defined by formulas of an appropri-
ate bounded quantifier complexity. For theories with weak comprehension
schemas, this notion corresponds naturally to that of provably recursive
functions for arithmetic theories. The techniques of Herbrand analysis de-
veloped by Sieg in [8] and [9] allow us to prove that these classes match up
with levels of the polynomial-time hierarchy.

1 Languages and Theories

Second-order theories with weak set existence principles, suitable for a treat-
ment of computational complexity classes, were introduced by Leivant in [6].
He defined a theory with a comprehension schema for quantifier-free posi-

tive formulas, denoted by L2(QF
+), and a collection of strings which plays

the role of natural numbers via the usual impredicative definition. Leivant
showed that L2(QF

+) proves that a function f maps the collection of “nat-
ural numbers” into itself, just in case f is a polynomial-time computable
function. In [5] a more standard approach was taken. Algorithms are treated
as definable partial functions in theories with a comprehension principle for
formulas with limited quantifier complexity, but with no restriction on the
propositional connectives. We review briefly the theories Cb(Σb

i) from [5].
The languages we consider are formulated in Ferreira’s [3].

The language of Cb(Σb
i) is denoted by Lb. Its first-order variables x, y,

z, . . . range over binary strings, while its second-order variables X, Y , Z, . . .
range over sets of binary strings. The non-logical vocabulary of Lb consists
of the symbols ε, S0, S1, ⊕, ⊗, ↾, =, ⊑, 4 and ∈. The meaning is indicated
in the following table:

Symbols Meanings

ε constant symbol for the empty string
S0(x), S1(x) concatenate 0, 1 to the end of x
x⊕ y concatenate y to the end of x
x⊗ y concatenate x to itself length of y many times
x ↾ y the initial segment of x with length equal to that of y,

or just x if the length of x is smaller than that of y
x = y x equals y
x ⊑ y x is an initial segment of y
x 4 y the length of x is smaller than or equal to that of y
x ∈ X x is a member of X

In analogy to the language for bounded arithmetic in [2], we introduce
bounded and sharply bounded quantifiers (∀x 4 t), (∃x 4 t), respectively
(∀x ⊑ t), (∃x ⊑ t). The hierarchy of bounded formulas, Σb

i , is defined
as usual. The class of formulas Σb

0 is defined similarly to Σb
0, except that

formulas in Σb
0 may contain second-order variables. The class of all open

formulas is denoted by QF. All languages in this paper extend Lb only by
symbols for functions or functionals whose values are strings, not sets of
strings. When referring to a formula class of a particular language, we add
the language symbol in parentheses after the class symbol, e.g. Σb

1(L
b).

The theory BASIC contains only axioms expressing elementary proper-
ties of the functions and relations of Lb; its second-order extensions Cb and

1

Cb(Σb
i) in Lb are defined as in [5] with comprehension schema Φ–CA given

in the form:

(∀~y)(∀~Y)(∃X)(∀x)
(

(x ∈ X) ↔ ϕ(x, ~y, ~Y)
)

,

where Φ is a class of formulas of the underlying language and ϕ is a formula
of that class not containing the variable X.

Definition 1.

1. Cb df
= BASIC + Σb

0(Lb)–CA

2. For all i ≥ 1, Cb(Σb
i)

df
= Cb + Σb

i(L
b)–CA.

2 Inductive Sets and Definable Functions

Let M be a model of a theory T ⊇ Cb. An element in the second-order
domain of M is inductive if it contains the empty string and is closed under
the two successor functions. The intersection W of all inductive elements in
M is defined by the formula W (x) which is given by the following formulas:

Ind(X)
df
= (ε ∈ X) ∧ (∀y)

(

(y ∈ X) →
(

(S0(y) ∈ X) ∧ (S1(y) ∈ X)
))

;

W (x)
df
= (∀X) (Ind(X) → (x ∈ X)) .

W has many properties analogous to those of the set N of natural num-
bers as defined in, say, ZF set theory. For example, the following two facts
are proved in [5] and are significant in the proof of the Corollary 5 below:

Lemma 1. Cb ⊢ (∀x)(∀y 4 x)(W (x) → W (y)).

Lemma 2. W is closed for all functions with polynomial growth rate.

For an arbitrary formula ϕ, ϕW denotes the formula obtained from ϕ by
relativizing all first order quantifiers of ϕ to W. Thus, if ϕ is of the form
(∀x)ψ or (∃x)ψ, then ϕW is (∀x)(W (x) → ψW), respectively (∃x)(W (x) ∧
ψW). B1 is the standard structure consisting of the set of all finite binary
strings B = {0, 1}∗ together with its usual operations and relations. In [5]
an appropriate notion of “Φ–definable function” was introduced:

Definition 2. A function f(~x) : Bk 7→ B is Φ-definable in the theory T

which extends Cb, if there is a formula ϕf (~x, y) ∈ Φ such that:

T ⊢
(

(∀~x)(∃!y)ϕf (~x, y)
)W

,

B1 |= (∀~x)ϕf (~x, f(~x)).

2

We take over definitions of some additional notions from bounded arith-
metic, but replace reference to numbers by that to binary strings. In partic-
ular, p

i+1
is the collection of all functions computable in polynomial time

with a Σb
i -oracle. Buss proved in [2] that the functions in p

i are those which
are Σb

i -definable in Si
2 for the number version, and Ferreira established the

binary string version of this theorem in [4]. Buchholz and Sieg in [1] reached
the latter result via a different route, namely, Herbrand analysis.

Through an interpretability result, with comprehension in place of in-
duction, it was shown in [5] that:

Lemma 3. All functions from
p
i are Σb

i -definable in the theory Cb(Σb
i).

The converse of Lemma 3 was proved in [5] by a model-theoretic ar-
gument and Buss’ corresponding theorem for Si

2. Thus, Cb(Σb
1) plays the

role of the theory S1
2 in bounded arithmetic: its Σb

1-definable functions are
exactly the polynomial-time computable functions. Here we prove the con-
verse of Lemma 3 directly by an Herbrand analysis of the theories Cb(Σb

i).
We follow the method presented in [9], in particular section 1.3.

3 Proof System

We work with a Tait-style calculus that is slightly different from the calculus
used in [9], since our second-order objects are sets, rather than functions.
Quantifiers are the standard ones: ∀ and ∃. Connectives for formulas are ∧,
∨ and ¬ with their usual meanings. However, negations are allowed only in
front of atomic formulas. Thus, ¬ϕ, where ϕ is an arbitrary formula, stands
for the equivalent formula with negations pushed in front of the atomic
subformulas. Similarly, → and ↔ are abbreviations for the corresponding
equivalent formulas built up with ∧ and ∨ from (negated) atomic formulas.

In this calculus we derive finite sets of formulas. Such sets are denoted
by capital Greek letters; Γ,∆ stands for Γ∪ ∆ and Γ, ϕ stands for Γ ∪ {ϕ}.
The free variables of the end set of a derivation are called the parameters

of that derivation. The initial sets of derivations are either logical axioms
of the form Γ, ϕ,¬ϕ, where ϕ is an atomic formula, or axioms of the form
Γ,Φ∗, where Φ∗ is a substitution instance of Φ which represents either an
equality axiom or a non-logical axiom of a theory T extending Cb. The
inference rules of the calculus are as follows:

(∧)
Γ, ϕ Γ, ψ

Γ, ϕ ∧ ψ

(∨)
Γ, ϕ

Γ, ϕ ∨ ψ ,
Γ, ψ

Γ, ϕ ∨ ψ

(∀1)
Γ, ϕ(a)

Γ, (∀x)ϕ(x)
(a is not free in any formula in Γ)

3

(∃1)
Γ, ϕ(t)

Γ, (∃x)ϕ(x)

(∀2)
Γ, ϕ(A)

Γ, (∀X)ϕ(X)
(A is not free in any formula in Γ)

(∃2)
Γ, ϕ(A)

Γ, (∃X)ϕ(X)

(C)
Γ, ϕ Γ,¬ϕ

Γ (ϕ is called the cut formula)

The comprehension principle is incorporated in the calculus via a com-
prehension rule:

(Φ–CR)
Γ, ψ(Vϕ)

Γ, (∃X)ψ(X)
(X does not occur in ψ(Vϕ) and ϕ ∈ Φ.)

Vϕ is called the abstract of ϕ and is an auxiliary technical notion (not
part of the formal proof-system): ψ(Vϕ) is the formula obtained from ψ(X)
by replacing all occurrences of atomic formulas t ∈ X in ψ(X) by ϕ(t) where
t is a term of the language (see [2] or [10]). The formula ψ(Vϕ) is the minor

formula of Φ–CR, while the formula (∃X)ψ(X) is the principal formula of
this rule.

It is well known (see e.g. [10]) that the proof system with Φ–CA is
equivalent to that with Φ–CR, when Φ is closed under substitution (as just
described) of second-order variables by the abstracts of formulas from Φ.
All theories in our paper have this property. We call a derivation D normal

if and only if

• every cut formula in D is a member of a set of formulas which repre-
sents an instance of an axiom;

• every free variable that appears in D, but is not among the parameters
of D, is used as the eigenvariable of exactly one ∀–inference and occurs
in D only above its corresponding rule;

• the eigenvariables ~b = b0, . . . , bm are enumerated in such a way that if
bi is quantified below bj (on the same thread), then i < j.

For every derivation of Γ in the proof-systems with Φ–CR there exists a
normal derivation of Γ in the same system, i.e., the cut elimination theorem
holds for these systems.

4 Functionals and Skolemization

By adding suitable functions to a language, we can perform term extraction
from a derivation of (∃y)ϕ(~x, y) which expresses a functional dependence of

4

y on ~x. Term extraction is the central idea of Herbrand analysis, it requires
a delicate balance between mathematical proof principles (with existential
import like induction for existentially quantified formulas) and definition
principles for functions (like primitive recursion). The latter are used to
”functionally” analyze the formulas. In our case, we are dealing with a
weak set-existence principle and consider the limited recursion principle to
define polynomial-time computable functions. In the classical investigations
of Σ0

1–IND, the primitive recursively defined functions allow the perfectly
balanced analysis; in this case, we are considering the polynomial-time com-
putable functions play the analogous role.

Definition 3. A function f(~x) is defined by limited recursion from g(~x),
h0(~x, y), h1(~x, y) and k(~x, y) if:

f(~x, ε) = g(~x) ↾ k(~x, ε);

f(~x, S0(y)) = h0(~x, y, f(~x, y)) ↾ k(~x, S0(y));

f(~x, S1(y)) = h1(~x, y, f(~x, y)) ↾ k(~x, S1(y)).

This definition of limited recursion is a slight modification of that given in

[5]; it guarantees that (∀~x)
(

(∀y)
(

f(~x, y) 4 k(~x, y)
)

)W

in our theories. The

first expansion of Lb is obtained by adding symbols for functions defined by
composition and limited recursion from functions of Lb; it is naturally called
Lp. The suitable theory for Lp was introduced in [5]: BASICp contains
BASIC and the defining equations for all functions of Lp.

In our further investigations, we call a purely first-order mapping a func-

tion, and a mapping with second-order arguments (but first-order values
only) a functional. For example, Mem(X,x) is the functional defined by

Mem(X,x) =

{

ε if x ∈ X

S0(ε) otherwise.

The notions of composition, limited recursion and definable function can be
extended to functionals. The language Lp is obtained from Lp by adding
symbols for all functionals defined by composition and limited recursion
from Mem(X,x) and functions in Lp. The corresponding theory BASICp

contains BASICp, the axioms for Mem(X,x), i.e., {x 6∈ X,Mem(X,x) =
ε} and {x ∈ X,Mem(X,x) = S0(ε)}, and the defining equations for all
functionals of Lp as just described. Using comprehension, the theory Cp is
defined as BASICp + Σb

0(Lp)–CR.

A functional F (~X, ~x) is polynomial-time computable when its values can
be computed by a polynomial-time Turing machine which uses oracles to
decide membership in the sets ~X. The argument for Theorem 2 in the first
chapter of [2] yields:

5

Theorem 4. The class of polynomial-time computable functionals is exactly

the class of functionals of Lp.

For clarity’s sake, we denote by ~X the sequence of variables ~X and ~x.
The next fact is a consequence of Lemma 1 and Lemma 2.

Corollary 5. Let T be a theory in the language L ⊇ Lb such that T extends

Cb. For every functional F of L, if there is a term tF of Lb such that T ⊢
(

(∀~X)(F (~X) 4 tF (~x))
)W

, then T ⊢ ¬W (~x),W (F (~X)).

The polynomial induction principle, Φ–PIND, is given by the schema:

(

ϕ(ε, ~X) ∧ (∀y)
(

ϕ(y, ~X) →
(

ϕ(S0(y), ~X) ∧ ϕ(S1(y), ~X)
)))

→ (∀y)ϕ(y, ~X)

where ϕ(y, ~X) is any formula in Φ. In the theory Cp, we not only have
the appropriately limited recursion, but also the W-relativized Φ–PIND
schema for the formula class Σb

0(Lp). The proof for this schema in Cp is
essentially the same as that for (Σb

0(Lb) − PIND)W in Cb; c.f. [5].

Lemma 6. Cp ⊢ (Σb
0(Lp)–PIND)W .

With this principle and by induction on the complexity of formulas,
we can establish the following: for any open formula ϕ of Lp, there is a
functional Fϕ of the same language such that

Cp ⊢ ¬W (~x), ϕ(~X) ↔
(

Fϕ(~X) = ε
)

.

This is an important fact for our applications of Herbrand analysis, because
it allows us to define functionals by cases with open formulas as conditions.
It follows that for every open formula ϕ of the language Lp and every se-
quence of functionals Fi, i ≤ k, there exists a single functional F such that

Cp ⊢ ¬W (~x),
∨

i≤k

ϕ(~X, Fi(~X)) ↔ ϕ(~X, F (~X)). (4.1)

This fact will be used at the very end of the proof of Lemma 10.

Theorem 7. For any open formula ϕ and any term t of Lp, there is a

functional Fϕ of the same language such that

Cp ⊢ ¬W (~x), (∃y ⊑ t(~X))ϕ(~X, y) →
(

ϕ(~X, Fϕ(~X)) ∧ (∀v < Fϕ(~X))¬ϕ(~X, v)
)

where x < y stands for (x ⊑ y) ∧ ¬(x = y).

6

Proof. Let ψ(~X, u) be the formula

(∃y ⊑ u)ϕ(~X, y) →
(

ϕ(~X, F (~X, u)) ∧ (∀v < F (~X, u))¬ϕ(~X, v)
)

where F (~X, u) is a search functional defined by composition and limited
recursion: starting from ε, F looks for the shortest witness y0 ⊑ u for
ϕ(~X, y0) and gives y0. If there is no such witness, F (~X, u) equals S0(u).

As Cp proves ψ(~X, ε) and ψ(~X, u) →
(

ψ(~X, S0(u)) ∧ ψ(~X, S1(u))
)

, Lemma

6 yields a derivation of ¬W (u), ψ(~X, u). Now, define Fϕ(~X) = F (~X, t(~X)),

substitute u by t(~X) and apply cut with a derivation ¬W (~x),W (t(~X)) from
Corollary 5 to complete the argument.

This theorem has as an immediate consequence that every Σb
0-formula

is equivalent to an open formula when relativized to W, provably in Cp.

Corollary 8. For every Σb
0-formula ϕ of Lp, there exists an open formula

ϕ∗ of the same language such that

Cp ⊢ ¬W (~x), ϕ(~X) ↔ ϕ∗(~X). (4.2)

However, for the Herbrand analysis of Cb(Σb
i), we need a theory with

a comprehension rule for open formulas ϕ with no restriction that its first-
order variables must range over W. The Skolem theory we introduce in the
next definition addresses this problem. It is a version of the Skolem operator
theory presented in section 2 of [8].

Definition 4.

1. LSk
0

df
= Lp, BASICSk

0

df
= ∅ .

2. For every open formula ϕ and every term t of LSk
i , there exists a

functional symbol Sϕ,t in LSk
i+1 such that

(∀~X)
(

(∃y ⊑ t(~X))ϕ(~X, y) → ϕ(~X, Sϕ,t(~X))
)

.

Using the transformation for universal axioms in [9], the following sets

are added to the theory BASICSk
i to obtain BASICSk

i+1
:

¬(y ⊑ t(~X)),¬ϕ(~X, y), ϕ(~X, Sϕ,t(~X)) (4.3)

Sϕ,t(~X) ⊑ t(~X).

3. LSk =
⋃

i∈ω

LSk
i , BASICSk =

⋃

i∈ω

BASICSk
i .

7

Paralleling the developments in [8], we can show that for every Σb
0-

formula ϕ of Lp, there exists an open formula ϕs of LSk such that

BASICSk ⊢ ϕ(~X) ↔ ϕs(~X). (4.4)

The “converse” of this claim also holds, namely, for the formula ϕs in the
defining equation (4.3) of an arbitrary Σb

0-Skolem function Sϕs,t, there is a
Σb

0-formula ϕ such that (4.4) holds. (This can be shown by induction on i

of LSk
i .) Combining the “converse” with (4.2) and Theorem 7, we have

BASICSk ⊢ (∃y ⊑ t(~X))ϕs(X, y) → ϕs(X, Sϕs ,t(X))

Cp ⊢ ¬W (~x), (∃y ⊑ t(~X))ϕ∗(X, y) → ϕ∗(X, Fϕ∗(X)).

This yields a natural correspondence between Sϕs,t of LSk and Fϕ∗ of Lp.
For each Σb

0-Skolem function S, we denote the corresponding functional
by FS . We combine these Skolemizations by letting BASICQF contain
BASICP and BASICSk, as well as the axiom {¬W (~x), S(~X) = FS(~X)} for
each Σb

0-Skolem function S.

Definition 5. CQF df
= BASICQF + QF(LSk)–CR.

Only open formulas are eligible for CR in CQF, and yet CQF is powerful
enough to derive all theorems of Cb. The reason is this: we can replace any
abstract (in Lb) of a Σb

0–CR in Cb derivations with an open formula (in
LSk) and perform a QF–CR in a CQF derivation to get the same result.
The general facts about Skolem theories and equation (4.4) imply:

Corollary 9. The theory CQF is a conservative extension of the theory Cb.

By applying the universal axioms transformation in section 1.1 of [9] we
can assume: open formulas in sets that represent axioms do not contain ∨
and ∧ symbols. Further, all quantified formulas in the axiom sets are of the
form ¬W (x). Following the proof of Lemma (2.5) in [7], it can be shown
that ∀, ∨ and ∧–inversion lemmas hold for our systems. We will use this fact
and the properties of normal derivations in our proof-theoretic arguments.

5 Derivations in CQF(s-Σb
1) and CQF(Σb

1)

We now formulate and prove one of our main proof-theoretic lemmas. It
is concerned with the class s-Σb

1 of strict Σb
1-formulas of LSk. This class

consists of all purely first-order formulas that start with exactly one bounded
existential quantifier (∃x 4 t) followed by an open formula. The theory
CQF(Φ) is obtained from CQF by extending the comprehension rule for
all formulas in Φ. This crucial lemma combines the ∃-inversion Theorem

8

(Proposition 1.2.3) and Lemma 1.3.4 of [9]. The proof techniques used are
similar to those from section C of [1], adapting them from induction to
comprehension.

Lemma 10. Let ϕi be open formulas of the language LSk for any k ∈ N

and 0 < i ≤ k. If D is a normal derivation in CQF(s-Σb
1) of the set

Γ,¬W (~x), (∃y)ϕ1(~X, y), . . . , (∃y)ϕk(~X, y) (5.1)

where Γ is purely existential with no second-order quantifier and ~x is the list

of all first-order parameters of D, then there are functionals Fϕi
of Lp such

that

CQF(s-Σb
1) ⊢ Γ,¬W (~x), ϕ1(~X, Fϕ1

(~X)), . . . , ϕk(~X, Fϕk
(~X)).

Proof. We proceed by induction on the height of normal derivations. The
crucial case is when the last inference is a CR–instance. Since Γ contains no
second-order existential quantifier, the CR–inference must introduce one of
the ¬W (xj) such that xj ∈ ~x. Weakening with ¬W (xj), we have a normal
derivation of the set:

Γ,¬W (~x), (∃y)ϕ1(~X, y), . . . , (∃y)ϕk(~X, y),

θ(~X, ε) ∧ (∀y)
(

¬ θ(~X, y) ∨ (θ(~X, S0(y)) ∧ θ(~X, S1(y)))
)

∧ ¬ θ(~X, xj)

where θ is the abstract of the CR–instance. When the context is clear,
we suppress variables ~X and ~x to simplify the notation. With ∧– and ∀–
inversions, an eigenvariable b is obtained. Further inversions and weakening
with ¬W (b), we can obtain normal derivations in CQF(s-Σb

1) of the following
sets of formulas:

Γ,¬W (~x), (∃y)ϕ1(y), . . . , (∃y)ϕk(y), θ(ε)

Γ,¬W (~x),¬W (b), (∃y)ϕ1(y), . . . , (∃y)ϕk(y),¬ θ(b), θ(S
0(b))

Γ,¬W (~x),¬W (b), (∃y)ϕ1(y), . . . , (∃y)ϕk(y),¬ θ(b), θ(S
1(b))

Γ,¬W (~x), (∃y)ϕ1(y), . . . , (∃y)ϕk(y),¬ θ(xj)

The formula θ is either a s-Σb
1-formula or an open formula. We will discuss

the case of s-Σb
1-formula first. θ is of the form (∃z)θ∗(~x, b, z) where θ∗ is

open. The ∀–inversion of ¬ θ yields an eigenvariable a. Weakening with
¬W (a), we obtain derivations of the following sets:

Γ,¬W (~x), (∃y)ϕ1(y), . . . , (∃y)ϕk(y), (∃z)θ∗(ε, z)

Γ,¬W (~x),¬W (b),¬W (a), (∃y)ϕ1(y), . . . , (∃y)ϕk(y),

¬ θ∗(b, a), (∃z)θ∗(S0(b), z)

Γ,¬W (~x),¬W (b),¬W (a), (∃y)ϕ1(y), . . . , (∃y)ϕk(y),

¬ θ∗(b, a), (∃z)θ∗(S1(b), z)

Γ,¬W (~x),¬W (a), (∃y)ϕ1(y), . . . , (∃y)ϕk(y),¬ θ∗(xj , a)

9

As all derivations of the above sets are of strictly smaller height than D

and of the form of (5.1), the induction hypothesis is applicable. Hence
there are functionals Gϕi

(~X), H∗
ϕi

(~X, a, b), M∗
ϕi

(~X, a, b), N∗
ϕi

(~X, a), Gθ∗(~X),

H∗
θ∗(
~X, a, b), and M∗

θ∗(
~X, a, b) of Lp and derivations of the following sets:

Γ,¬W (~x), ϕ1(Gϕ1
(~X)), . . . , ϕk(Gϕk

(~X)), θ∗(ε,Gθ∗(~X))

Γ,¬W (~x),¬W (b),¬W (a), ϕ1(H
∗
ϕ1

(a, b)), . . . , ϕk(H∗
ϕk

(a, b)),

¬ θ∗(b, a), θ∗(S0(b),H∗
θ∗(a, b))

Γ,¬W (~x),¬W (b),¬W (a), ϕ1(M
∗
ϕ1

(a, b)), . . . , ϕk(M∗
ϕk

(a, b)),

¬ θ∗(b, a), θ∗(S0(b),M∗
θ∗(a, b))

Γ,¬W (~x),¬W (a), ϕ1(N
∗
ϕ1

(a)), . . . , ϕk(N∗
ϕk

(a)),¬ θ∗(xi, a)

Combining these derivations using ∨, ∧-rules and weakening, we have a
derivation of

Γ,¬W (~x),¬W (b),¬W (a),

ϕ1(Gϕ1
(~X)), ϕ1(H

∗
ϕ1

(a, b)), ϕ1(M
∗
ϕ1

(a, b)), ϕ1(N
∗
ϕ1

(a)),

...

ϕk(Gϕk
(~X)), ϕk(H∗

ϕk
(a, b)), ϕk(M∗

ϕk
(a, b)), ϕk(N∗

ϕk
(a)),

θ∗(ε,Gθ∗(~X)) ∧ ¬ θ∗(xi, a)

∧
(

¬ θ∗(b, a) ∨
(

θ∗(S0(b),H∗
θ∗(a, b)) ∧ θ

∗(S1(b),M∗
θ∗(a, b))

))

. (5.2)

Now, consider a functional Lθ∗(~X, y) s.t.

Lθ∗(~X, y) =











ε if ¬ θ∗(ε,Gθ∗(~X))

shortest z else if (∃z ⊑ y)ϑ

y otherwise

where ϑ is an open formula defined as:

ϑ
df
= θ∗(z,Gθ∗(~X))∧

(

(

¬ θ∗(S0(z),H∗
θ∗(Gθ∗(~X), z))

)

∨
(

¬ θ∗(S1(z),M∗
θ∗(Gθ∗(~X), z))

)

)

.

By Theorem 7, Lθ∗ is a functional in Lp. By its definition, we can prove in
CQF that:

¬W (~x),¬ θ∗(ε,Gθ∗(~X)), θ∗(xi, Gθ∗(~X)),

θ∗(Lθ∗(xi), Gθ∗(~X)) ∧

(

¬ θ∗(S0(Lθ∗(xi)),H
∗
θ∗(Gθ∗(~X), Lθ∗(xi)))

∨ ¬ θ∗(S1(Lθ∗(xi)),M
∗
θ∗(Gθ∗(~X), Lθ∗(xi)))

)

(5.3)

10

Substituting a by Gθ∗(~X) and b by L(xi) in (5.2) allows us to eliminate
¬W (a) and ¬W (b) (formally by cuts and Lemma 1); replace H∗

ϕi
(a, b) with

Hϕi
(~X), M∗

ϕi
(a, b) with Mϕi

(~X) and N∗
ϕi

(a) with Nϕi
(~X). Further, we can

apply the cut rule with (5.3) and remove all formulas which contain θ∗. Fi-
nally, we combine each ϕi(Gϕi

(~X)), ϕi(Hϕi
(~X)), ϕi(Mϕi

(~X)) and ϕi(Nϕi
(~X))

into ϕi(Fϕi
(~X)) by equation (4.1).

When θ is open, the proof proceeds nearly the same, except that there is
no ∀–quantifier to invert in ¬ θ. We need a different search function Lθ(~X, y)
for the substitution of b. The definition of Lθ(~X, y) is given as:

Lθ(~X, y) =











ε if ¬ θ(ε)

shortest z else if (∃z ⊑ y)
(

θ(z) ∧
(

¬ θ(S0(z)) ∨ ¬ θ(S1(z))
))

y otherwise

.

Lemma 11. Let φ(~x) be a Σb
1-formula of the language LSk, there is a s-Σb

1-

formula φ∗(~x) of the same language such that

CQF(Σb
1) ⊢ ¬W (~x), φ(~x) ↔ φ∗(~x).

Proof. This is a binary string version of Theorem 14 of 2.7 in [2]: The
usual pairing function 〈x, y〉, the polynomial-time computable coding func-
tion β(w, x), and all functions required to construct the bounding term
SqBd(x, y) are functions of Lp. (Σb

1–PIND) is required in the proof of
the Theorem 14 in [2]. We can get the relativized version (Σb

1–PIND)W in
CQF(Σb

1) by the argument for Lemma 6. Pushing all sharply bounded quan-
tifiers into the scope of bounded existential quantifier using β and SqBd,
replacing Σb

0-formulas with open ones and contracting any two bounded ex-
istential quantifiers into a single one by the pairing function gives us the
desired s-Σb

1-formula.

This equivalence requires a relativization to W in systems with com-
prehension, in contrast to the unconditional equivalence in systems with
induction. For this reason, the proof of the next lemma is a bit harder.
Nonetheless, the techniques used for proving Lemma 1.3.4 in [9] and Theo-
rem 9 in [1] are helpful.

Lemma 12. CQF(Σb
1) is conservative over CQF(s-Σb

1) for Π0
2–formulas

when relativized to W.

Proof. By inversions, we only have to establish CQF(Σb
1) is conservative over

CQF(s-Σb
1) for sets of the form Γ,¬W (~x) where Γ is purely existential and

~x is the list of all first-order parameters of the corresponding derivations.

11

We proceed by induction on the number n of CR–instances in a normal
derivation D of the above set where the abstracts of these instances are not
valid abstracts in derivations in CQF(s-Σb

1). The case n = 0 is trivial. Let
D have k + 1 such CR–instances. By weakening we can assume that every
set of D contains the set of formulas ¬W (~x). Consider one of the top-most
applications of such a rule with premise ∆, ¬W (~x), ϕ(Vθ), where formula
θ is neither a s-Σb

1-formula nor an open one. The basic idea is to replace θ
with its s-Σb

1–equivalent θ∗. However, the equivalence is valid only when all
first-order variables range over W, including those eigenvariables.

Let D1 be the immediate sub-derivation of the above set and ~E be the
eigenvariables which are quantified below D1. In particular, ~e = e0, . . . , em.
By weakening with ¬W (~e) and using Lemma 11, we can obtain a s-Σb

1-
formula θ∗ and a derivation D2

1 in CQF(Σb
1) of ∆, ¬W (~x), ¬W (~e), ϕ(Vθ∗).

By removing D1 from D, we obtain the sub-tree D \ D1. We need to
transform both D2

1 and D \D1 so they can be combined and get the same
conclusion of Γ,¬W (~x). The following procedures transform ¬W (~e) into
simpler formulas. We denote by −→e<j all variables whose quantifications are
below that of ej ; in particular, −→e<0 is the empty vector of variables. Starting
with D2

1 , we perform a proof transformation for each variable ej in descend-
ing order of j, with the result of each pass used in the next. In each pass, we
obtain a formula λe

j ; we denote by Λe
>j the set {λe

i | ei ∈ ~e and i > j} which
is of course empty when j = m. The transformation is given as follow:

1. If ej is quantified in an unbounded ∀–instance, the unbounded quan-
tifier must correspond to ¬W (v), where v ∈ ~x or v ∈ −→e<j . We set
λe

j = ¬(ej 4 v). Using the cut rule with a CQF-derivation of ¬W (v),
¬(ej 4 v), W (ej) (from Corollary 5), we obtain a derivation of

∆,¬W (~x), ϕ(Vθ∗),¬W (−→e<j),¬(ej 4 v),Λe
>j .

2. If ej is quantified by a bounded ∀–instance, there must be a term
tj(~x,

−→e<j) in D such that the ∀–ej has the principal formula of the form
(∀ej 4 tj(~x,

−→e<j))ψ(~x,−→e<j , ej). We set λe
j = ¬(ej 4 tj(~x,

−→e<j)). Using

a cut rule with a CQF-derivation of the set ¬W (~x), ¬W (−→e<j), ¬(ej 4

tj(~x,
−→e<j)), W (ej) (again from Corollary 5), we obtain a derivation of

∆,¬W (~x), ϕ(Vθ∗),¬W (−→e<j),¬(ej 4 tj(~x,
−→e<j)),Λ

e
>j .

3. If ej is quantified by a sharply bounded ∀–instance, there must be a
term tj(~x,

−→e<j) in D such that the ∀–ej has the principal formula of the
form (∀ej ⊑ tj(~x,

−→e<j))ψ(~x,−→e<j , ej). We set λe
j = ¬(ej ⊑ tj(~x,

−→e<j)).

From Corollary 5 and a CQF-derivation of ¬(ej ⊑ tj(~x,
−→e<j)), ej 4

tj(~x,
−→e<j), we get a CQF-derivation of the set ¬W (~x), ¬W (−→e<j), ¬(ej ⊑

12

tj(~x,
−→e<j)), W (ej),. By an application of cut rule, we obtain a deriva-

tion of

∆,¬W (~x), ϕ(Vθ∗),¬W (~e<j),¬(ej ⊑ tj(~x,
−→e<j)),Λ

e
>j .

Denoting by Λe the set
⋃m

=0
{λe

j}, the above transformation replaces all
¬W (~e) with Λe. We now apply a CR–rule with θ∗ as abstract. The re-
sult is a CQF(s-Σb

1)-derivation of the set ∆, ¬W (~x), ∃Xϕ(X), Λe. We call
the normal CQF(s-Σb

1)-derivation of the same set D∗
1.

Though Λe is simpler than ¬W (~e), the presence of ~e in these extra for-
mulas makes the ∀–ej inapplicable in D \ D1. We need to transform this
sub-tree to (D \ D1)

∗ so it is suitable for grafting back D∗
1. Transformation

procedures are as follows:

1. For every ∀–ej instance, we add λe
j to all sets above such a rule as a

side formula.

2. If the ∀–ej is a bounded or sharply bounded instance, it is easy to
eliminate this side formula while the sub-tree remains normal as its
principal formula contains λe

j .

3. If the ∀–ej is an unbounded instance, the minor formula must contain

¬ θj(ej , ~x,
−→e<j) ∨

(

θj(S
0(ej), ~x,

−→e<j) ∧ θj(S
1(ej), ~x,

−→e<j)
)

.

Let us denote by θ∗j the Σb
1-formula θj(ej , ~x,

−→e<j) ∨ ¬(ej 4 v). With
a few inferences, we can transform θj to θ∗j in the above formula and
eliminate λj , while the sub-tree remains normal.

4. The unbounded quantified formula with θj will eventually be a part of
the minor formula for a CR–instance for ¬W (v). Thus, the minor for-
mula of the CR–instance also contains θj(ε, ~x,

−→e<j) and ¬ θj(v, ~x,
−→e<j).

Using similar inferences, we transform both to θ∗j (ε, ~x,
−→e<j) and ¬ θ∗j (v,

~x,−→e<j) respectively.

5. Using θ∗j as a new abstract, we can get the same result of ¬W (v).

Finally, we graft D∗
1 back to (D \ D1)

∗ and obtain a normal CQF(Σb
1)-

derivation of the same set with only k CR–instances of which the abstracts
are not valid in CQF(s-Σb

1). By induction, Lemma 12 is shown.

6 Definable functions and the Polynomial Hierar-

chy

Definition 6. Let T be a theory in L ⊇ Lb such that T extends Cb.

13

1. Φ-DFW (T) is the class of Φ-definable functionals in T.

2. FnW (L) is the collection of the restrictions of functionals of L to W.

3. Similar to the definition of s-Σb
1, the class of formulas s-Σ0

1 consists

of all formulas of the form (∃y)ϕ(~x, y) where ϕ(~x, y) is open.

Lemma 13. s-Σ0
1-DF

W (CQF(s-Σb
1)) ⊆ FnW (Lp)

Proof. A functional F (~X) that belongs to s-Σ0
1-DF

W (CQF(s-Σb
1)), has a

defining formula (∃z)ϕF (~X, y, z) where ϕF is open. The existence condition
for F (~X) means:

CQF(s-Σb
1) ⊢

(

(∀~X)(∃y)(∃z)ϕF (~X, y, z)
)W

.

After inversions, we can obtain a derivation of the set

¬W (~x), (∃y)
(

W (y) ∧ (∃z)
(

ϕF (~X, y, z) ∧W (z)
))

.

Since both y and z belong to W, the pairing function enables us to contract
two existential quantifiers into one. With a few inferences, we obtain:

CQF(s-Σb
1) ⊢ ¬W (~x), (∃u)ϕF (~X, u|1, u|2)

where u is < y, z > and its coordinates of are denoted by u|1 and u|2
respectively. By Lemma 10, there is a functional Fϕ(~X) ∈ FnW (Lp) such

that CQF(s-Σb
1) proves ¬W (~x), ϕF (~X, Fϕ(~X)|1, Fϕ(~X)|2). Applying the (∃1)

inference, we obtain:

¬W (~x), (∃z)ϕF (~X, Fϕ(~X)|1, z).

The uniqueness condition for F (~X) implies F (~X) = Fϕ(~X)|1. FnW (Lp) is

closed under composition, hence Fϕ(~X)|1 ∈ FnW (Lp).

Theorem 14. Σb
1-DF

W (CQF(Σb
1)) is the class of polynomial-time com-

putable functionals; thus, the Σb
1-definable functions of the theory CQF(Σb

1)
are exactly the polynomial-time computable functions.

Proof. By Theorem 4, the class of polynomial-time computable functionals
is FnW (Lp). Extending the argument for Lemma 3 to functionals, we have
FnW (Lp) ⊆ Σb

1-DF
W (Cb(Σb

1)). As a result of the previous lemmas, we have
the other direction of the subset relation, depicted by the following table:

Claims Justifications

Σb
1-DF

W (Cb(Σb
1))

⊆ Σb
1-DF

W (CQF(Σb
1)) Corollary 9

= s-Σb
1-DF

W (CQF(Σb
1)) Lemma 11

= s-Σb
1-DF

W (CQF(s-Σb
1)) Lemma 12

⊆ s-Σ0
1-DF

W (CQF(s-Σb
1)) s-Σb

1 ⊆ s-Σ0
1

⊆ FnW (Lp) Lemma 13

14

Thus, all classes above are actually the class of polynomial-time computable
functionals, including Σb

1-DF
W (CQF(Σb

1)).

Definition 7.

1. Lp1
df
= Lp, BASICp1

df
= BASICp, C

QF
1

df
= CQF

2. For each purely first-order open formula ϕ and each term t of Lpi,

there is a Σb
1-Skolem function fϕ,t in Lpi+1 such that

(∃y 4 t(~x))ϕ(~x, y) → (ϕ(~x, fϕ,t(~x)) ∧ (fϕ,t 4 t(~x)))

while BASICpi+1 contains BASICpi and two additional sets of for-

mulas, {¬(y 4 t(~x)),¬ϕ(~x, y), ϕ(~x, fϕ,t(~x))} and {fϕ,t(~x) 4 t(~x)}, for

each fϕ,t.

3. For all i > 1, the language Lpi and the theory C
QF
i are obtained from

BASICpi in the same way as Lp and CQF from BASICp, i.e. adding

functionals which are defined by composition and limited recursion,

adding Σb
0–Skolem functionals and using open formulas for CR–rule.

Theorem 15. Σb
i -definable functions of Cb(Σb

i) are exactly
p
i functions.

Proof. It is clear that fϕ,t of Lpi+1 belongs to p
i+1

. For any Σb
i -formula ϕ

in Lb, there is a Σb
1-formula ϕ∗ in Lpi such that C

QF
i ⊢ ϕ ↔ ϕ∗. Thus,

C
QF
i (Σb

1) is a conservative extension of Cb(Σb
i). All our previous lemmas

hold for C
QF
i as all new functionals are bounded by terms of the previous

theory and ultimately by terms in Lb. Following the logic of Theorem 14,
one obtains Σb

i -DF
W (Cb(Σb

i)) ⊆ FnW (Lpi). Restricting our discussion to
functions, we get the converse of Lemma 3.

Finally, we would like to mention that the uniformity of the proof-
theoretic analysis of Cb(Σb

i) in this paper, Σb
1(P)–PIND in [9] and s-Σb

1(P)−
NIA in [1] supports our belief that the method of Herbrand analysis will
see many more applications in Proof Theory.

Bibliography

[1] Wilfried Buchholz and Wilfried Sieg. A note on polynomial time com-
putable arithmetic. Contemporary Mathematics, 106:51–55, 1990.

[2] Samuel R. Buss. Bounded Arithmetic. Bibliopolis, 1986.

[3] Fernando J. I. Ferreira. Polynomial Time Computable Arithmetic and

Conservative Extensions. PhD thesis, The Pennsylvania State Univer-
sity, 1988.

15

[4] Fernando J. I. Ferreira. Stockmeyer induction. In S.R. Buss and P.J.
Scot, editors, Feasible Mathematics, proceedings of the Mathematical

Sciences Institute Workshop, pages 161–180, Ithaca, New York, June
1989. Birkhäuser, 1990.

[5] Aleksandar Ignjatović. Delineating classes of computational complexity
via second order theories with weak set existence principles (i). The

Journal of Symbolic Logic, 60:103–121, 1995.

[6] Daniel Leviant. A foundational delineation of computational feasibil-
ity. Logic in Computer Science, 1991. LICS ’91., Proceedings of Sixth

Annual IEEE Symposium on, pages 2–11, 15-18 July 1991.

[7] Helmut Schwichtenberg. Proof theory: Some applications of cut-
eliminiation. In J. Barwise, editor, Handbook of Mathematical Logic,
chapter D.2, pages 867–895. North-Holland, 1977.

[8] Wilfried Sieg. Fragments of arithmetic. Annals of Pure and Applied

Logic, 28:33–71, 1985.

[9] Wilfried Sieg. Herbrand analyses. Archive for Mathematical Logic,
30(5-6):409–441, 1991.

[10] Gaisi Takeuti. Proof Theory. North-Holland, second edition, 1987.

16

