
Towards Agile Service-oriented Business Systems:

A Directive-oriented Pattern Analysis Approach

Soo Ling Lim1 Fuyuki Ishikawa2 Eric Platon2 Karl Cox3

1 University of New South Wales and NICTA, Sydney, Australia
slim@cse.unsw.edu.au

2 National Institute of Informatics, Tokyo, Japan
{f-ishikawa,platon}@nii.ac.jp

3 NICTA, Sydney, Australia
Karl.Cox@nicta.com.au

Technical Report
UNSW-CSE-TR-0806

February 2008

THE UNIVERSITY OF
NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia



Abstract

Volatile requirements should be managed such that changes can be introduced
into the system in a quick and structured way. This paper presents Directive-
oriented Pattern Analysis (DoPA), a requirements engineering approach that
handles volatile requirements by managing the coupling between business inten-
tions and service integration. The key insight is to utilise services as commodi-
ties via service choreography patterns. DoPA captures differentiating enterprise
intentions as Directives, while using patterns to handle common business needs.
This enables the notion of declarative configuration of services to achieve busi-
ness agility.



1 Introduction

Business software systems face the challenge of rapidly changing requirements.
Enterprises want to build, configure and deploy their applications “in real-time”
to meet the needs of volatile market conditions [25]. Hence, it is important
for the requirements management of these applications to support quick and
structured introduction as well as modification of requirements.

Managing requirements change has always been a challenge in requirements
engineering (RE) research [15][5]. Existing research isolates requirements that
are most likely to change. The techniques used include aspect-oriented [13]
and scenario based [3]. However, these methods are business specific; hence
unsuitable for services, which are cross-domains and inter-enterprise.

In service-oriented computing (SOC), enterprises use services as fundamental
elements for developing their business systems [17]. SOC builds on service-
oriented architecture (SOA) where business agility is enabled through business
process integration and reuse [10]. Core to SOA is service composition, where
a business application combines services into business processes [18]. Also, the
application’s behaviour can be configured and customised for a specific business
context [10]. With the open, rapid and low-cost service compositions offered by
SOC, how can requirements for service-oriented systems be managed to respond
quickly to business change?

To build, modify and deploy service-oriented systems “in real-time”, busi-
nesses should utilise services as commodities. Many business services have per-
vasive and well-defined functionalities [4], such as flight booking, currency ex-
change, and credit card charging. Applications that are built from these services
can be modelled such that volatile requirements are externalised as easily recon-
figurable metadata, followed by compositions. Requirements changes can then
be cascaded into either a configuration or composition change.

This paper presents DoPA (Directive-oriented Pattern Analysis): a RE ap-
proach that manages requirements change by associating enduring requirements
with reusable patterns and externalizing volatile requirements as Directives.
DoPA associates the functional logic of a system with business archetype pat-
terns [1] which act as placeholders for services. These services can be replaced
and reconfigured when the requirements changes. Directives are volatile el-
ements in a business plan [22] that reflect business decisions for addressing
change. They capture business flow logic and can be categorised as Business
Policies and Business Rules. Structured change occurs when Business Policies
are introduced into the system via configuration, while Business Rules via com-
position. Requirements are managed from the perspective of change and adapt-
ability, resulting in agile systems that can be modified and deployed quickly.

The remainder of the paper is organised as follows. Section 2 discusses
background work. Section 3 introduces DoPA. Section 4 validates the DoPA
approach with an example case. Section 5 evaluates the approach. Section 6
discusses related work. Section 7 concludes the paper and provides directions
for future work.

1



2 Background

2.1 Services and their commoditisation

SOA encourages reuse by the encapsulation of service functions and the loose
coupling of service interactions. In SOC, abstraction emerges in three layers:
configuration, composition and customisation. Configuration involves creating
service specifications based on service choreography patterns, and cascading re-
quirements change into existing specifications. Composition enables services to
be composed from other services via orchestration or choreography [19]. Cus-
tomisation involves creating new services or modifying existing services.

To achieve business agility, services should be modelled to be configurable for
meeting volatile requirements. As configurations are dynamic [10], changing the
system in response to requirements can be quick and easy. Composition should
model how business services are delivered, as the adoption of business processes
is often evolutionary in nature and do not change frequently. Customisation
should only be done on services that the business delivers and not on those it
uses.

In business service choreography, the development of business process flow
logic is separated from functional logic [14]. Business service choreography pat-
terns govern services to interact across business processes, enabling them to
be aggregated into workflows. Such patterns promote utilisation of services as
commodities by abstracting common functional flow logic into best practices
and solutions to meet functional requirements.

2.2 Business archetype patterns

Business archetype patterns [1] are patterns for enterprise computing that ad-
dress requirements analysis and ontological issues in the business environment.
Most businesses are made up of the same semantic elements such as customer,
product, and order. These pervasive elements span business domains. Hence,
most business systems can be assembled from a sufficiently complete set of
archetype patterns. The following paragraphs explain the main concepts of busi-
ness archetype patterns: archetype; archetype pattern; archetype and archetype
pattern variability; and pleomorph.

Archetype is a primordial element that occurs consistently and universally
in business environments and business software systems. Archetypes are repre-
sented as UML classes and relate to one another via inheritance, association,
aggregation and composition. In Figure 2.1, the ProductType archetype has an
aggregation relationship with the ProductInstance archetype.

Archetype pattern is the collaboration between archetypes that occurs
consistently and universally in business environments and software systems.
The archetypes in Figure 2.1 are part of the Product archetype pattern. Other
archetypes in the Product archetype pattern include Price and ProductCatalo-
gue. An archetype pattern can be represented as a parameterised collaboration
in UML. Figure 2.2 specifies placeholders such as ProductCatalog and Price
by naming them as parameters to the pattern. The instantiation of the pattern
involves providing classifiers to play the roles of the placeholders. The classifiers
must accord with the semantic constraints of the pattern and its parameters.

Variation can occur in archetypes and archetype patterns to be effective

2



Figure 2.1: Archetypes in the Product archetype pattern [1]

Figure 2.2: Parameterized collaboration [1]

3



in different business contexts. Archetypes vary in their features (attributes,
operations, constraints) by adding new features and omitting optional features
(stereotyped <<o>>). In Figure 2.1, the ProductInstance archetype has the
optional attribute name and optional operations such as getBatch(). For
archetype patterns, archetype relationships stereotyped <<o>> (e.g. batch in
Figure 2.1) and classes stereotyped <<archetype>> are optional. These features
provide points of controlled variation that can be “pruned” such that the resul-
tant pattern remains semantically valid. “Hooks” are provided to add back the
removed features.

Pleomorph is the variation of an archetype pattern for a specific business
domain. Pleomorphism modifies the form of an archetype pattern such that
the essential semantics of the base archetype pattern remain unchanged. The
pattern may take on a different structure to suit the specific requirements of a
business context (Figure 2.3). This may mean different archetypes, archetype
features, and relationships in each of the variants.

Figure 2.3: The Product archetype pattern pleomorphs [1]

2.3 Directives

Directives are elements of the business plan that define, constrain or liberate
some aspects of an enterprise [22]. Directives are put in place by the business
based on internal and external influences that can assist or hinder its operations.
These include changes in the competitive, sociocultural, political or internal
organisational environment [22]. Hence, Directives are volatile elements of the
business plan. They govern how a business system should, or should not work
in order to support enterprise activities. Directives are categorised as Business
Policies and Business Rules.

Business Policies are Directives that provide broad governance or guidance
to the enterprise. They define what can be done and what must not be done, and
may indicate or set limits on how it should be done. They are non-actionable
in the sense that their compliance cannot be determined from the observation
of a relevant situation. An example Business Policy for a car rental company
[22] is “Rental payments must be guaranteed in advance”.

Business Rules provide specific and discrete governance or guidance to
implement Business Policies. They are actionable such that a relevant situation

4



or behaviour can be observed and decided directly whether it is complying with
the rule. Business Rules can be classified into Behavioural Rule and Structural
Rule. The former governs the conduct of business activity while the latter de-
fines how the business organises its business semantics. An example Business
Rule based on the car rental Business Policy is “A provisional charge for the
estimated cost of the Rental must be made against a valid credit card held by
the Renter before the Car is handed over” [22]. Following the formal vocabulary
in the OMG business modelling specification [16], Business Rules can be inter-
preted and used by computer systems to enable automation. The predefined
linguistic structure enables natural language to represent and formally define
requirements. Stakeholders can express their ideas in a language familiar to
them in an unambiguous way.

3 Directive-oriented Pattern Analysis

3.1 Enduring and volatile requirements

In Directive-oriented Pattern Analysis (DoPA), requirements fall into two cat-
egories: enduring and volatile. Enduring requirements are stable requirements
derived from core business activity while volatile requirements are likely to
change, at any time [21]. Figure 3.1 illustrates the elements of DoPA and their
relationships.

Figure 3.1: Elements of DoPA

Enduring requirements are associated with archetype patterns that are
pervasive across business domains. DoPA uses archetype patterns with service
choreography [19] as abstractions for common business workflows. To do so,
the following information from the archetype pattern catalogue [1] are used:
(1) functional requirements for common business needs captured as models;
(2) rationale for using the pattern; (3) business context for the pattern; (4)
stakeholders and their interactions with the pattern; and (5) pattern adaptation
for a specific business context.

Archetype patterns are represented as parameterised collaborations of busi-
ness processes to form workflows. Using this representation, instantiation of the
pattern involves using services to play the roles of the placeholders. The services
must accord with the semantic constraints of the pattern and its parameters.

5



DoPA uses archetype patterns as business service choreography patterns.
The relationships between archetypes specify the interactions among processes
in the workflow, similar to specifications for service choreography. Archetypes
that are related via composition, association, and aggregation are parties in
the interaction. The direction of the relationship defines the sequence of the
messages. The multiplicity of the relationships defines the party responsible for
the interaction, and parties allowed or required to send messages.

DoPA allows the combination of archetype patterns to assemble workflow
abstractions. The following variations on archetype patterns are permitted:
(1) dropping the <<o>> and <<archetype>> stereotypes on elements that are
required by the business; (2) dropping optional features; and (3) structure vari-
ation via pleomorphism.

Volatile requirements are externalised as Directives. These include non-
functional requirements [6] and business flow logic. Deriving Directives from
volatile requirements ensures that system requirements are driven by the busi-
ness and depicts changes in the business.

To relate Directives to SOC, the guidelines for their classification are as fol-
lows. Business Policies can be organisational or technological in nature. They
include: regulatory compliance; conformance to standards and best practices;
and corporate, divisional or departmental statements that provide directions
for the enterprise. Business Rules are formulated based on Business Policies.
They define or constrain a specific aspect of the business. Structural Rule con-
strains understanding of concepts specific to the business by built-in definitions.
Behavioural Rule defines the behaviour required from the system to support
business processes and workflows. These are related to business flow logic such
as activities, sequencing, dependencies, and interactions.

Using the guidelines, Business Policies govern the configuration of work-
flows, while Business Rules guide the composition of services to form business
processes. Hence, in a set of functionally equivalent services, Directives identify
the one that best suits the business.

3.2 Managing requirements with DoPA

The DoPA approach focuses on requirements change and evolution of service-
oriented business systems (Figure 3.2). The approach is adapted from the pro-
gression of steps in business planning for dealing with change [22]. Similar to
[13], DoPA emphasises on managing change and not on requirements elicitation
or conflict analysis. In Figure 3.2, the solid arrows indicate logical dependencies
while the dotted ones indicate points of entry for changes.

Step 1: Identify requirements. This step involves the identification of
the stakeholders and their needs from stakeholder interviews, business docu-
ments, and analysis outcomes [21]. The output is a list of requirements.

Step 2: Identify Business Policies. Business Policies are identified fol-
lowing the classification in Section 3.1. The source of Business Policies can be
stakeholders, and business documents such as business plans. Broader Business
Policies can be a basis for more specific Business Policies. The output is a list
of Business Policies and dependencies.

Step 3: Select archetype pattern(s). This step selects pattern(s) from
the archetype pattern catalogue [1] as workflow patterns to meet the require-
ments from Step 1. As DoPA focuses on commodity requirements via patterns,

6



Figure 3.2: The DoPA approach

requirements for specialised business systems that cannot be mapped to the
patterns are not handled. The Business Policies from Step 2 are used for work-
flow configuration. They introduce variations to the archetype patterns such
as: (1) removal of the stereotype <<o>> in operations and relationships; and
(2) removal of optional operations and relationships. The output is a service
choreography specification with the configured variations.

Step 4: Identify Business Rules. The Business Rules identified here are
based on the Business Policies from Step 2, following the classification in Section
3.1. Dependencies are identified to track the cascading effects on Business Rules
when Business Policies change. The output is a list of Business Rules and
dependencies.

Step 5: Select pleomorph. The archetype pattern(s) from Step 3 are
applied to the specific business context by choosing the most appropriate pleo-
morph based on the Business Rules from Step 4. This can cause pleomorphism
or schema variation to the archetype patterns. The output is a service compo-
sition specification that expresses the compositions required to meet the varia-
tions. This is a set of criteria to select business processes that meet the business
needs by supporting workflow requirements while adhering to Business Rules.
The business processes are composed services using building blocks (e.g. web
services) that adhere to the choreography specification.

Step 6: Handle change. Evolution in the business system involves intro-
duction, modification and removal of Directives and requirements. Changes in
Business Policy maps to changes in service choreography specification, and is
introduced into the system via configuration. Changes in Business Rules map
to changes in service composition. The dependencies ensure that cascading ef-
fects of change are captured for traceability. In the cases where a Directive
is removed, all corresponding dependencies need to be removed. Archetype
patterns are well-defined, pervasive and related to core needs of the business.
Hence, modifications to requirements that are associated with archetype pat-
terns are not frequent, unless drastic changes occur in the business model. New
Business Policies require reapplication of the approach from Step 2, while new
Business Rules from Step 4. Finally, new requirements require the reapplication
of the DoPA approach to select archetype patterns and identify Directives.

The DoPA approach produces criteria for selecting from various compositions
provided by service providers. The ability to change among them supports evo-

7



lution of the business system. DoPA maintains service composition specification
separate from service choreography specification. The former contains business
flow logic and non-functional requirements while the latter contains only func-
tional logic and abstractions of common service interaction. This provides a
mechanism to ensure that the business processes composed from services can:
(1) be integrated with the functional requirements from stakeholders; (2) be
checked for adherence to the Directives; and (3) support workflow change via
configuration changes. This provides a structured way to identify volatile re-
quirements changes where service configuration and composition form the most
important task to achieve the flexibility needed for agile systems.

4 Case study

This section validates the DoPA approach using a case study based on a Finan-
cial Information System (FIS) [24]. The FIS enables financial professionals of a
fictitious Financial Consulting Company (FCC) to access real-time price, price-
histories and statistics of stocks. FCC provides financial advice to its clients,
who trade regional and industry focussed financial instruments. FCC requires
a system that can supply financial information for a small and focussed client
base. The market to which FCC offers advice depends on investor interest and
market dynamics.

4.1 Step 1: Identify requirements

The stakeholders of the FIS are mainly financial analysts. They access market
data and currency exchange rates to devise investment strategies. They require
information on historical price and trading patterns to forecast price movements
and identify buy and sell signals. To make financial projections, they also require
historical and present stock data. The requirements are tabulated in Table 4.1.

Table 4.1: List of requirements for the FIS
ID Description
R1 The analyst accesses market data and currency exchange rates.
R2 The analyst views statistics of historical price and trading pattern of

stocks.
R3 The analyst checks current and historical stock price.

4.2 Step 2: Identify Business Policies

As FCC is a financial consulting firm, it does not engage in trading activities
such as money exchange or stock trade. FCC attracts and retains customers by
providing professional financial consulting to its clients. To do so, FCC focuses
on consulting for specific markets depending on employee expertise. Currently,
it concentrates on the analysis of the NASDAQ stock market. Finally, FCC is
located in Australia, and targets Australian based investors. The list of Business
Policies and dependencies are tabulated in Table 4.2.

8



Table 4.2: List of Business Policies for FCC
ID Business Policy Based on
P1 FCC provides professional financial consulting. R1, R2, R3
P2 FCC does not engage in trading financial assets. P1
P3 FCC provides advice on NASDAQ stocks. P1
P4 FCC clients must be based in Australia. P1

4.3 Step 3: Choose archetype pattern(s)

The requirements R1, R2 and R3 (Table 4.1) are concerned with stocks price
and currency exchange rate. Stocks are goods that can be bought and sold.
The Product archetype pattern provides a way to model goods and services.
One of the archetypes is ProductType which describes the common properties
of a set of goods or services. Foreign exchange is pervasive in dealings involving
money. The Money 1 archetype pattern consists of the CurrencyConverter
archetype which converts Currency from a source to a target by applying an
ExchangeRate.

The Business Policy P2 (Table 4.2) ensures that FCC does not trade stocks.
Hence, it does not require archetypes such as Batch (Section 2.2 Figure 2.1).
The related operations are removed from the service choreography configura-
tion. For the Money archetype pattern, the main references are made to the
CurrencyConverter and ExchangeRate archetypes (Figure 4.1). The result-
ing service choreography specification consists of archetypes annotated with the
required configurations (Table 4.3).

Figure 4.1: CurrencyConverter archetype [1]

Table 4.3: Partial service choreography specification
ID Archetype Pat-

tern
Service choreography require-
ments

Based on

CH1 Product Prune archetype Batch P1
CH2 ProductCatalog: NASDAQ P3
CH3 GetPrice context: Last Price P3, R3
CH4 Money toCurrency: AUD P4

1A sample chapter from [1] on the Money archetype pattern is available at
http://www.codegeneration.net/articles/arlow/Arlow ch11.pdf.

9

http://www.codegeneration.net/articles/arlow/Arlow_ch11.pdf


4.4 Step 4: Identify Business Rules

The Business Policy P1 (Table 4.2) emphasises on professional consulting ser-
vices. To implement P1, FCC has the Business Rule that analysis submitted to
customers must be backed up with statistics and graphs. Also, analysts must
base their work on up-to-date market information. For convenient analysis, the
present price of stocks is converted to local currency. FCC refers to this value
as Local Last Price. The list of Business Rules and dependencies are tabulated
in Table 4.4.

Table 4.4: List of Business Rules for FCC
ID Business Rule Based on

Behavioural Rule
BR1 Analysis must be backed up with statistics and graphs. P1, P3
BR2 The financial information used for analysis must be updated

every 20 minutes.
P1

Structural Rule
SR1 Local Last Price is the present price of a stock in local cur-

rency.
P1, P4

4.5 Step 5: Select pleomorph(s)

The Product archetype pattern (Section 2.2 Figure 2.3) can adapt into the
IdenticalProduct and UniqueProduct pleomorph. As the purpose of the FIS
is to monitor stock quotes, each stock is a unique product to FCC. Hence, the
UniqueProduct pleomorph (Figure 4.2) is selected. If the requirements were for
a stock trading system, the general Product archetype pattern would be used.
This is because the stock quote will be for a ProductType, while the actual
instance of stocks being purchased will be the ProductInstance. The Money
archetype pattern does not require pleomorphism here.

Figure 4.2: UniqueProduct pleomorph [1]

A service composition specification from the Business Rule BR1 is that an-
nual historical quotes of Yahoo and Amazon must be compared to Google in a
graph. Based on BR2, financial information must be updated every 20 minutes.
SR1 results in the composition specification that the last price of stock quotes

10



must be displayed in Australian Dollar. Table 4.5 illustrates the contents of a
service composition specification.

Table 4.5: Partial service composition specification
ID Service composition requirements Based on
CO1 Annual historical quotes of Yahoo and Amazon must be

compared to Google in a graph.
BR1, BR2

CO2 Stock quotes must be updated every 20 minutes. BR2
CO3 Last price of stock quotes must be displayed in Australian

Dollar.
SR1

The output of the DoPA approach includes the list of requirements, Direc-
tives and specifications. The final step of the approach is a continuous process
of handling requirements change. This step is demonstrated in the following
section as part of the approach evaluation.

5 Evaluation

Evaluation is based on the criteria for evaluating RE approaches [21] which in-
clude managing change, mapping requirements to later stages, and traceability.
Scalability, verification and validation are not addressed in this paper.

5.1 Managing change

Four typical business scenarios from [22] are applied to the FIS case to evaluate
DoPA in supporting changes. The first two scenarios occur more frequently.

Scenario 1: The enterprise reacts to competition. FCC faces com-
petition from another consulting firm and decides to get faster updates on its
financial information, to provide more timely financial advice to its clients. The
Business Rule BR2 (Table 4.4) is changed to: “The financial information used
for analysis must be updated every 15 minutes”. The service composition re-
quirements CO1 and CO2 are affected as they are based on BR2. Original
compositions that offer 20 minutes delay can no longer be used. This requires
a change of compositions and/or service provider. The service choreography
configurations are unaffected.

Scenario 2: The enterprise reacts to market change. Clients are shift-
ing their interest to investments in Japan. FCC decides to change the market it
operates in from NASDAQ to Nikkei. In this case, the Business Policy P3 (Ta-
ble 4.2) is changed to: “FCC provides advice on Nikkei stocks”. This requires a
reconfiguration of the service choreography specification to access Nikkei stock
quotes instead of NASDAQ. The Business Rule BR1 (Table 4.4), about dis-
playing stocks in graphs, is based on P3. Hence, BR1 needs to be inspected
for cascading changes, followed by the service composition specification CO1
(Table 4.5) which is based on BR1. CO1 is modified to include recomposition
of Nikkei stock quotes into a graph.

Scenario 3: The enterprise diversifies. FCC decides to diversify its
analysis to include providing advice in options and bonds. This requires the
reapplication of the DoPA approach from Step 1. A new requirement R4 is
introduced into the FIS: “The analyst accesses options and bonds commentary”.

11



A new Business Policy formulated from R4 is P5: “FCC provides financial advice
on options and bonds”. The service choreography specification has to include
configurations to access options and bonds information. This can also introduce
new Business Rules to display the information. The Product archetype pattern
is selected for composition as the information belongs to different product types,
requiring the ProductType archetype.

Scenario 4: The enterprise expands. FCC decides to expand to Japan.
This changes the Business Policy P4 to include Japan based customers. The
service choreography specification needs to be reconfigured such that the getEx-
changeRates operation is set to convert to Japan Yen for the Japan based
offices.

5.2 Mapping requirements to later stages

This section describes how the requirements derived from DoPA are mapped to
elements in typical service-oriented architecture, design and implementation.

Service-oriented design and development. Service specifications in
service-oriented design [18] contains three specification elements: (1) structural
specification defines service types, messages, port types and operations; (2) be-
havioural specification defines service behaviour, effects and side effects of service
operations; and (3) policy specification defines policy assertions and constraints
on the service. The Directives in DoPA correspond to specification elements as
follows. Business Policies correspond to policy specification. Structural Rules
correspond to structural specification while Behavioural Rules to behavioural
specification.

Architecture. The output of DoPA is mapped to the Service Component
Architecture (SCA) component model [23]. SCA is a set of specifications that
describe a model for construction, assembly and deployment of services to build
applications using SOA. SCA divides the steps in building a service-oriented
application into: the implementation of service components which provide and
consume services; and the assembly of components to build business applica-
tions, through the “wiring” of service references to services (Figure 5.1). The
mapping focuses on how business patterns and Directives define the “wires”
between business logic components.

Figure 5.1: Service Component Architecture [23]

12



The SCA component type represents configurable aspects of an implemen-
tation. It consists of: services; references to other services that can be wired;
and properties that can be set. These can be configured following the service
choreography specification from DoPA, with archetype patterns governing the
interaction between components. Service composition specification defines the
“wiring” of service references to services such that the endpoints of a component
map to their equivalent in the composition specification.

Implementation. A prototype Financial Information System is developed
based on the specifications formulated from the DoPA approach. It uses the Ed-
itGrid [8] spreadsheet platform as an example domain specific language. This
specific implementation can be generalised to other implementations as follows.
Services such as exchange rates and stock quotes are configured from real-time
remote data. Service composition maps to formulas performed on two or more
remote data. Graphs can be composed from remote data or from existing com-
positions provided by vendors via remote image.

5.3 Traceability

Traceability is supported by guidelines and archetype patterns. With the DoPA
approach and dependency tables, traceability is reversible, such that an enter-
prise can show why it has chosen a particular business process.

6 Related work

Existing RE approaches for services include: goal-oriented modelling of service
capabilities (e.g. [20], [12]); service elicitation and orchestration requirements
for new composite services (e.g. [11]); evaluating services based on their eco-
nomic viability (e.g. [27]); and negotiations of conflicts between global and local
business requirements (e.g. [26]). The main purpose of these approaches is not
on managing change. They either focus on the requirements for new services, or
assume the need to customise services for meeting individual business needs. In
contrast to these approaches, DoPA aims to manage requirements for volatile
systems, based on the concept of services commoditisation [4].

DoPA uses similar notion with product line architectures [7] which models
a family of related applications as patterns and configures particular instances
from the patterns. DoPA uses business archetype patterns making it specific
for analysing business systems.

Business archetype patterns have been used as meta Platform Independent
Models in Model Driven Architecture (MDA) [9], and as an ontology for busi-
ness system messaging standards [1]. In MDA, non-functional requirements
(NFRs) are realised by the executable model. Hence, only infrastructural NFRs
are considered and not volatile business changes. Also, applying requirements
change involves re-execution of the model. This results in replacing the entire
system, which inevitably impacts on the business. DoPA departs from MDA by
enabling changes to be made only to affected parts of the system. This is made
possible by SOA and service utilisation.

The Service Mosaic framework uses state machines to model the behaviours
of service choreography [2]. It provides the underlying work that enables DoPA
to utilise services at the abstract level of archetype patterns.

13



7 Conclusion and future work

This paper proposes a novel approach for managing requirements of service-
oriented business systems from the perspective of change and adaptability.
The salient features of DoPA include: (1) utilisation of services with business
archetype patterns as service choreography patterns; (2) mapping of business
changes to service requirements via Directives; and (3) cascading of changes in
Directives to service configuration and composition. The Financial Information
System case study shows how DoPA models services to be configurable to meet
volatile requirements while separating business flow logic as composition speci-
fications. The evaluation shows how DoPA provides a structured approach for
cascading changes in business requirements to service specifications. It provides
a high-level mapping of the output of the DoPA approach to service-oriented
architecture, design and implementation.

Future work involves addressing: (1) stakeholder dependencies and business
intention analysis for eliciting requirements and Directives; and (2) alignment
of changes in stakeholder dependencies and business intentions with service re-
quirements.

Bibliography

[1] Jim Arlow and Ila Neustadt. Enterprise Patterns and MDA: Building Bet-
ter Software with Archetype Patterns and UML. Addison-Wesley Profes-
sional, Boston, Massachusetts, 2004.

[2] Boualem Benatallah, Fabio Casati, Farouk Toumani, Julien Ponge, and
Hamid Reza Motahari Nezhad. Service mosaic: A model-driven frame-
work for web services life-cycle management. IEEE Internet Computing,
10(4):55–63, 2006.

[3] David Bush and Anthony Finkelstein. Requirements stability assessment
using scenarios. In Proc. of the IEEE Int. Req. Eng. Conf. (RE), pages
23–32, 2003.

[4] Nicholas G. Carr. It doesn’t matter. Harvard Business Review, 81(5):41–49,
2003.

[5] Betty H. C. Cheng and Joanne M. Atlee. Research directions in require-
ments engineering. In Proc. of Int. Conf. on Soft. Eng. (ICSE), pages
285–303, 2007.

[6] Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopoulos. Non-
functional requirements in Software Engineering. Kluwer Academic Pub-
lishers, 1999.

[7] Paul Clements and Linda Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley Pro., 2002.

[8] EditGrid. www.editgrid.com.

[9] David S. Frankel. Model Driven Architecture: Applying MDA to Enterprise
Computing. Wiley, 2003.

14



[10] Michael N. Huhns and Munindar P. Singh. Service-oriented computing:
Key concepts and principles. IEEE Internet Computing, 9(1):75–81, 2005.

[11] Rim Samia Kaabi, Carine Souveyet, and Colette Rolland. Eliciting ser-
vice composition in a goal driven manner. In International Conference on
Service Oriented Computing (ICSOC), pages 308 – 315, 2004.

[12] Lin Liu, Chi-hung Chi, Zhi Jin, and Eric Yu. Strategic capability mod-
elling of services. In L. Baresi, X. Franch, and N. Maiden, editors, Service-
Oriented Computing: Consequences for Engineering Requirements (SOC-
CER’06 - RE’06 Workshop), page 3, 2006.

[13] Ana Moreira, Joao Araujo, and Jon Whittle. Modeling volatile concerns
as aspects. CAiSE 2006. LNCS, 4001:544–558, 2006.

[14] Chris Nott. Patterns: Using business service choreography in conjunction
with an enterprise service bus. IBM Redbooks paper, page 32, 2004.

[15] Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: A
roadmap. In Proc. of Int. Conf. on Soft. Eng. (ICSE), pages 35–46, 2000.

[16] Semantics of Business Vocabulary and Business Rules (SBVR) Specifica-
tion. in OMG, www.omg.org, 2006.

[17] Michael P. Papazoglou and Dimitrios Georgakopoulos. Service-oriented
computing. Communications of the ACM, 46(10):25–28, 2003.

[18] Michael P. Papazoglou and Willem-Jan Van Den Heuvel. Service-oriented
design and development methodology. Int. J. of Web Eng. and Tech.
(IJWET), 2(4):412 – 442, 2006.

[19] Chris Peltz. Web services orchestration and choreography. IEEE Computer,
36(10):46–52, 2003.

[20] Loris Penserini, Anna Perini, Angelo Susi, and John Mylopoulos. From
stakeholder intentions to software agent implementations. CAiSE 2006.
LNCS, 4001:465–479, 2006.

[21] Ian Sommerville. Software Engineering. Addison-Wesley, 7th edition, 2004.

[22] Business Motivation Model (BMM) Specification. version 1.0, in OMG,
www.omg.org, 2007.

[23] Service Component Architecture Specifications. in Open Service Oriented
Architecture, www.osoa.org.

[24] Financial Information Systems. in Reuters,
http://about.reuters.com/productinfo/s, 2008.

[25] Dave Thomas. Next generation it - computing in the cloud life after jurassic
oo middleware. Journal of Object Technology, 7(1):27–33, 2008.

[26] Paolo Traverso, Marco Pistore, Marco Roveri, Annapaola Marconi, Raman
Kazhamiakin, Pierluigi Lucchese, Paolo Busetta, and Piergiorgio Berto.
Supporting the negotiation between global and local business requirements
in service oriented development. In Int. Conf. on Service-Oriented Com-
puting (ICSOC), page 10, New York, USA, 2004.

15



[27] Bas van der Raadt, Jaap Gordijn, and Eric Yu. Exploring web services
from a business value perspective. In Proc. of the IEEE Int. Req. Eng.
Conf. (RE), pages 53– 62, 2005.

16


	Introduction
	Background
	Services and their commoditisation
	Business archetype patterns
	Directives

	Directive-oriented Pattern Analysis
	Enduring and volatile requirements
	Managing requirements with DoPA

	Case study
	Step 1: Identify requirements
	Step 2: Identify Business Policies
	Step 3: Choose archetype pattern(s)
	Step 4: Identify Business Rules
	Step 5: Select pleomorph(s)

	Evaluation
	Managing change
	Mapping requirements to later stages
	Traceability

	Related work
	Conclusion and future work

