
Adapting the Weighted Backtrack Estimator to

Conflict Driven Search

Shai Haim Toby Walsh

University of New South Wales, Australia

and

NICTA

{shaih,tw}@cse.unsw.edu.au

Technical Report

UNSW-CSE-TR-0805

February 2008

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering

The University of New South Wales

Sydney 2052, Australia

Abstract

Modern SAT solvers present several challenges to estimate search cost including
coping with nonchronological backtracking and learning. We present a method
to adapt an existing algorithm for estimating the size of a search tree to deal
with these challenges. We show the effectiveness of this method using random
and structured problems.

1 Introduction

Simple backtracking SAT solvers like DPLL unfold a proper-binary decision
tree. The Weighted Backtrack Estimator (WBE) [2], which is an adaptation of
Knuths offline sampling method [3] can generate good estimates of search cost
for such solvers. However, more modern SAT solvers present several challenges
for estimating their runtime. For instance, clause learning repeatedly changes
the problem the solver faces. Estimation of the size of the search tree at any
point should take into consideration the expected changes that future learning
clauses will cause.
WBE does not support a range of solvers which use Conflict Driven search.
These solvers unfold a search tree which is not a proper binary tree. In this
report we explain the challenge and suggest a solution for Our approach to
these problems is to use an on-line method to predict the cost of the search by
observing the solvers behaviour in a small part of search. Our method uses the
size of the currently explored search tree to predict the size of the unexplored
search tree.

2 Related Work

Knuth suggested a method which used random probing to estimate the size of
a backtrack search tree [3]. If bi is the branching rate observed at depth i of the
probe, then 1+b1 + b1 · b2 + . . . is an unbiased estimation for the size of the tree.
Despite its simplicity, this method is strikingly effective. Unfortunately, this
random probing technique cannot be directly used during backtrack search,
since it requires full knowledge of the tree structure. This knowledge is not
available when solving a SAT problem, since the search tree is being unfold
through the search. Inspired by Knuth’s method, Kilby et. al. proposed two
online methods to estimate the size of a search tree during backtracking search
[2]: The Weighted Backtrack Estimator, which is discussed in depth in the next
section, and the Recursive Estimator. The Recursive Estimator simply assumes
that any unexplored right subtree is identical in size to the left subtree. Both
methods are unbiased and independent of the problem or solver, but since they
are both estimate the size of a complete binary search tree, they do not work
directly with modern solvers and perform poorly for most satisfiable instances.
Kokotov and Shlyakhter suggested a technique which somewhat resembles RE
([4]). Their “Progress Bar for SAT Solvers” estimates the time remaining to
solving a SAT instance by observing previously visited nodes. The estimate is
calculated using either historical or predictive heuristics. Historical estimators
use the average observed for previous nodes at the same depth, and are of two
types: The simple average estimator uses a simple average, whilst the weighted
average favors closer subtrees. Predictive estimators, on the other hand, are
based on the size of the subproblem (e.g. number and size of the clauses).

1

〈stack, action, conflict〉

〈φ, assign(v1, true), no〉
〈{v1}, assign(v2, true), yes〉
〈{v1, v2}, backtrack(1), no〉
〈φ, assign(v3, true), no〉
〈{v3}, assign(v4, true), no〉
〈{v3, v4}, assign(v5, true), yes〉
〈{v3, v4, v5}, backtrack(2), yes〉
〈{v3}, backtrack(1), yes〉

(a) Sequence of actions

1

υ1

υ3

4

2

υ4

3

(b) Resulting proper bi-
nary search tree

Figure 3.1: An example for conversion of a sequence of search steps into a proper
binary tree. In 3.1(a), every step is represented by a 〈stack, action, conflict〉
tuple, including the assignment stack before the action, the action taken, and
whether the action resulted a conflict. In 3.1(b), Conflicts are denoted by num-
bers, while assignments appear on the corresponding edges. According to our
technique, right edges represent a backtrack to the parent node and therefore
are unlabeled. Note that since decisions v2 and v5 were backjumped over, they
do not appear in the resulting binary tree.

3 WBE for Conflict Driven search

At every point in search, the WBE algorithm generates an estimation for the
size of the tree, by calculating:

∑
d∈D

prob(d)(2d+1 − 1)∑
d∈D

prob(d)
(3.1)

Where prob(d) = 2−d is related to the probability that we visit such a depth
using random probing, and D is the multiset of branches lengths visited. By
keeping the numerator and denominator, this estimate can be calculated in
constant time and space at every backtrack. The resulting estimate is unbiased
assuming we have a proper binary search tree.

Modern SAT solvers perform (conflict driven) backjumping. This creates
a problem for WBE. By backjumping over nodes, we no longer have a proper
binary tree. A second problem is that on backtracking to a decision level,
modern SAT solvers are not forced to branch on the negated decision. We can
instead branch on a new variable. Another challenge for WBE is restarts. At
every restart point, a new tree is generated. Any method to estimate search
cost must take these factors into account.

In order to construct a proper binary search tree representing the branching
decisions of a SAT solver, and to compensate for backjumping, we observe the
two atomic operations performed during search.

• assign(v,b): when v is a variable and b is a Boolean value. This action
assigns the variable v the value b. This assignment will be kept in the
next level of the search stack. After every assignment a unit propagation
process takes place. The values that are assigned in this process are also
considered to be assigned in this decision level.

2

• backtrack(d): backtrack back to decision level d. Unassign all variables
assigned in any decision level equal to or greater than d. Any backtrack
is also followed by unit propagation.

A binary tree can be generated as follows: we branch left from a node for
every assign operation, and we branch right when we backtrack back to the
node, even if the next assignment is at the same decision level. If we backjump
over node n, this node is removed. Note that node depths in the binary tree
no longer correspond with decision levels, Figure 3.1 shows an example of this
technique. In Figure 3.1(a), we see a list of 〈stack, action, conflict〉 tuples,
representing a sequence of actions and the resulted assignment stack. The tree
in Figure 3.1(b) is the explicit proper binary tree corresponding to the same
sequence of steps. Note that in both cases there are 4 conflicts, but also note
that the node depths change.

Every time a backjump occurs, WBE needs to update the depths of leaves
beneath this backjump. This is not possible if we keep just an accumulated sum
for the denominator and numerator in the WBE prediction. Fortunately, the
WBE prediction can be computed by observing two different parameters which
are easy to adjust after backjumping. The first, C, is a simple counter of the
nodes encountered so far in an in-order tree search (counting a node only after
backtracking from its left subtree). The second, P , is the partial size of the tree
explored assuming it is a complete binary tree.

At any point in search, the WBE prediction can be generated by calculating:

C

P
− 1

Where C is the number of nodes encountered so far and:

P =
1∑

n∈closed
(2d(n)+1)

Where d(n) is the depth of node n and closed is the subset of nodes in the
current branch whose left child has been closed. When we backtrack from the
left subtree of the root back to the root, P = 1

2 and the estimate for the size of
the tree is double the number of the nodes encountered so far. We now show
that this new method gives the same prediction as the WBE method.

Theorem 1. After encountering any conflict, except for the last one in the tree,
the following holds:

∑
d∈D

prob(d)(2d+1 − 1)∑
d∈D

prob(d)
=

C

P
− 1

when prob(d) = 2−d

3

Proof.

∑
d∈D

prob(d)(2d+1 − 1)∑
d∈D

prob(d)
=

∑
d∈D

prob(d)2d+1 −
∑

d∈D
prob(d)∑

d∈D
prob(d)

=

∑
d∈D

prob(d)2d+1

∑
d∈D

prob(d)
− 1

=
2 |D|∑

d∈D
prob(d)

− 1

=
C∑

d∈D
prob(d)

− 1

Note that C = 2 |D| as C is increased by 2 for every conflict (once for the leaf
and again for the node we backtrack to). Finally, we can show by induction on
the depth of the tree that:

∑

d∈D

prob(d) =
1∑

n∈closed
(2d(n)+1)

where d(n) is the depth of node n and closed is the subset of the nodes in the
current branch whose left child has been closed.

Both C and P can be computed incrementally as we branch and backjump.
Since the search tree is not kept explicitly in memory, closed is computed using
a bit array. This increases the space and time complexity of calculating WBE
by O(d) where d is the maximum depth. We can avoid increasing the amortized
complexity if we estimate search cost at only every O(d) nodes.

Restarts create an extra challenge for WBE. Upon restarting, a new tree is
generated. The search cost estimation therefore needs to change. Since WBE
generate a tree size estimate, we can generate a cost estimation by adding the
tree size estimated by WBE to the number of nodes explored until we reach a
restart big enough to explore such a tree.

4 Experiments

We ran experiments with these two methods using MiniSat [1]. This is a state-
of-the-art modern solver, which uses clause learning and clause deletion along
with an improved version of VSIDS for variable ordering and a geometrical
restart scheme. We did not, however, enable geometrical restarts.
We used two different distributions of SAT problems.

• rand: An ensemble of 500 satisfiable and 500 unsatisfiable randomly gen-
erated 3-SAT problems with 200 to 550 variables and a clause-to-var ratio
of 4.1 to 5.0.

• bmc: An ensemble of software verification problems generated by CBMC1

based on a binary search algorithm coded in C. The different examples
used different array sizes and different number of loop unwindings. In

1http://www.cs.cmu.edu/ modelcheck/cbmc/

4

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

R
at

io
 -

 e
st

im
at

e
to

 a
ct

ua
l

Percent through search

PB UNSAT
WBE UNSAT

PB SAT
WBE SAT

Figure 4.1: Mean ratio of WBE and PB estimates over time for the rand dataset.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100

R
at

io
 -

 e
st

im
at

e
to

 a
ct

ua
l

Percent through search starting with first PB prediction

PB UNSAT
WBE UNSAT

PB SAT
WBE SAT

Figure 4.2: Mean ratio of WBE and PB estimates over time for the bmc dataset.
Only starts when PB generates its first prediction.

order to generate satisfiable problems, a faulty piece of code that causes
memory overflow was added to the binary search code. These problems
create a very homogeneous ensemble of problems. We used 250 satisfiable
and 250 unsatisfiable problems.

Since training examples can be scarce, we restricted the size of our training set
to no more than 500 problems.

We compare our results with the ones obtained by the Progress Bar (PB) [4].
In order to make the comparison possible, we instrumented MiniSat with the
Progress Bar. In [4], the authors proposed several different heuristics (Constant,
Historical-Basic, Historical-Weighted and Clause Count). We observed similar
results with all of these heuristics. We present results here for the Historical-
Weighted heuristic since it performs slightly better for these data sets. We used
the progress bar’s default settings. Note that if the initial search is too deep,
the Progress Bar may not provide any estimate.

5

Figure 4.1 compares the quality of the WBE prediction and the Progress
Bar prediction over time, for the rand dataset. Both predictors return unbiased
results for the unsatisfiable problems and converge to the correct value given
enough time. WBE is generally more accurate than PB both for satisfiable and
unsatisfiable instances. In all cases, both estimators start by over-estimating
the search cost but their prediction improves with time as we backjump over
nodes.
Figure 4.2 presents the same data for the bmc dataset. For structured problems,
WBE initially over estimates search cost by a large factor (in some cases with by
a factor greater than 21000). During this period the Progress Bar does not make
any prediction as the tree is too deep for it to work, and the “search space left” is
estimated to be 100%. At some later point in search, we often observed a sharp
improvement in the accuracy of both estimators. Typically this corresponds to
search backjumping over an early mistake to a node very close to the root of
the tree (or the root itself). For most instances PB starts returning run-time
predictions at this point. The WBE also starts returning good prediction at this
point. For unsatisfiable problems in the bmc dataset, this point occurs after 72%
of the search (on average), but it appears to occur after a smaller percentage
of the search for harder instances. We found a correlation coefficient of −0.45
between the total size of the search tree and the percent through search where
this improvement occurs.

5 Conclusions

We have identified some challenges in predicting the search cost to solve a SAT
problem using a modern conflict driven solver in an online manner. We have
presented the WBE method which observes the search tree and requires no prior
knowledge of the problem distribution. We have demonstrated the effectiveness
of this method on random problems, as well as on bounded model checking.

Bibliography

[1] N. Een and N. Sorensson. An extensible SAT-solver. SAT, 2919:502–518,
2003.

[2] Philip Kilby, John Slaney, Sylvie Thiébaux, and Toby Walsh. Estimating
search tree size. In Proceedings of the Twenty-First National Conference of
Artificial Intelligence, AAAI, 2006.

[3] D.E. Knuth. Estimating the Efficiency of Backtrack Programs. Mathematics
of Computation, 29(129):121–136, 1975.

[4] D. Kokotov and I. Shlyakhter. Progress Bar for SAT Solvers. In Unpublished
manuscript, http://sdg. lcs. mit. edu/satsolvers/progressbar.html, 2000.

6

