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Abstract

The energy expended by sensor nodes in reception and transmission of data packets makes up a

significant quantum of their total energy consumption. Consequently, models that can accurately predict

the communication traffic load of a sensor node are critical for designing effective and efficient sensor

network protocols. In this paper, we present an analytical model for estimating the per-node traffic load

in a multi-hop wireless sensor network, where the nodes sense the environment periodically and forwards

the data packets to the sink using greedy geographic routing. The analysis incorporates the idealistic

circular coverage radio model as well as a realistic model, log-normal shadowing. Our results confirm

that, irrespective of the radio models, the traffic load generally increases as a function of the node’s

proximity to the sink. In the immediate vicinity of the sink, however, the two radio models yield quite

contrasting results. The ideal radio model reveals the existence of avolcano regionnear the sink, where

the traffic load drops significantly. On the contrary, with the log-normal shadowing model, the opposite

effect is observed, wherein the traffic load actually increases at a much higher rate as one approaches

the sink resulting in the formation of amountain peak. The results from our analysis are validated by

extensive simulations. The simulations also demonstrate that our results are applicable in more realistic

environments, which do not conform to the simplifying assumptions made in the analysis for mathematical

tractability.
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I. I NTRODUCTION

Wireless Sensor Networks (WSN) are being increasingly used in a variety of applications ranging

from health care, environmental monitoring to industrial automation [1]. Ensuring energy efficient

operation is critical, especially given that a typical WSN is deployed in remote and unaccessible

areas and sensor nodes are equipped with a limited battery source. A typical WSN consists of

a large number of nodes deployed over a large area. Hence, packets generated at nodes that

are outside the communication range of the base station have to be relayed by other nodes. It

has been well accepted that the energy expended in transmission and reception of packets forms

a significant component of the total energy budget of a sensor node [1] [2]. Consequently, an

analytical model that can accurately estimate the traffic load incurred at each sensor node is

instrumental in predicting the energy consumption of the nodes and thus the operational lifetime

of the entire WSN. In addition, the traffic load characterization can provide important insights for

designing and configuring energy efficient network protocols. As an example, the information about

the traffic load of nodes in a collision domain can be used to tune MAC parameters such as slot

assignments in TDMA-based schemes and also for setting the wake-up and sleep durations in duty-

cycling protocols where nodes periodically go to sleep to conserve energy.In addition, knowledge

of the energy expenditure of nodes can be useful in planning deployment and maintenance of the

WSN. The network designer can deploy redundant nodes in regions where nodes are expected

to expend their energy at a higher rate. Maintenance cycles can also be planned for replacing or

charging depleted nodes, thus preventing the formation of coverage holes in the network.

The traffic load of a given sensor node depends on several factors. The first and foremost is

the relative distance of the node to the sink. In general, the closer the sensor is to the sink, the

greater is the traffic load. This is because the nodes closer to the sink have to relay data packets

transmitted by other far-off nodes. The traffic load also depends on the routing protocol employed

in the network as it determines the selection of the next hop node for relaying the data towards

the sink. Lastly, the characteristics of the environment, which affects the radio communication
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behavior of the sensor nodes also has an impact on the traffic load.

Analytical models which can accurately characterize the traffic load of nodes in a WSN are rare.

The available models, e.g., those presented in [3], [4], [5], are very simplistic and do not incorporate

the specifics of the routing protocol used by the sensor nodes. As such, these models can only be

used to provide a rough estimate of the mean traffic load over a relative large geographic area. In

[6], Esa Hyytia et. al. have analyzed the traffic load of nodes in a very dense wireless multi-hop

network with randomly selected communication pairs. However, their measure of traffic load per

unit radio coverage can only provide for a coarse-grained characterization of the traffic load. In

addition, they have assumed that the shortest path from any node to the sink can be approximated

by a straight line segment, which is true only for highly dense deployments. Furthermore, this

work and in fact all other aforementioned efforts have adopted the idealistic circular coverage

radio model, which is known to be a poor abstraction of the real communication environment.

In this paper, we take a first step towards developing a detailed and precise analytical model

for estimating the per-node traffic load in a WSN. Given that the target domain of WSN is quite

broad in terms of the type of applications, networking protocols (routing, MAC, etc) employed and

characterization of the communication environment, developing a generalised model is extremely

challenging. Thus, we have chosen to focus on a important sub-set within this vast space. With

regards to the application load, we focus on periodic monitoring applications wherein the sensor

nodes sample the environment periodically and forward the collected data (e.g. temperature,

humidity, etc) to the base station. A significant portion of WSN deployed today fall into this

category (e.g.: Great Duck Island [7], Redwood Forest [8], etc). With regards to the routing

strategy, which is important for selecting the next-hop node, we have considered the popular

greedy routingforwarding scheme [9], [10], [11], [12], [13]. In greedy routing, a sensor node

forwards its packets to a neighbor, which is geographically closest to the sink amongst possible

neighbors. In doing so, greedy routing can approximately find the shortest path in terms of hops

[9] between a sensor node and the sink. Moreover, greedy routing provides a scalable solution for
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large sensor networks, because it requires only local (i.e. one hop neighborhood) information for

making forwarding decisions. For developing an analytical model of the traffic load it is necessary

to use an appropriate model that abstracts the wireless communication characteristics of a realistic

environment. In our analysis we have used both the idealistic radio model and the more realistic

log-normal shadowing model, thus enabling us to compare the impact of the two on the results.

To the best of our knowledge, this work is the first attempt at developing a comprehensive model

for characterizing the per-node traffic load in a WSN.

The analytical model is validated by a rich set of simulations. Our results quantitatively confirm

that the traffic load of a node increases with the proximity to the sink. More importantly, we

observe a peculiar difference in the traffic load in the immediate vicinity of the sink for the two

radio models. For the idea radio model, the traffic load declines significantly after a certain knee

point as one moves closer to the sink, resulting in the formation of a volcano shape. On the contrary,

with the more realistic log-normal shadowing radio model, we observe the opposite effect, i.e.,

the traffic load of nodes very close to the sink increases quite significantly as a function of the

proximity to the sink, which results in a mountain peak pattern. For simplifying our analysis we

have had to make several assumptions. We have also investigated the impact of relaxing some of

these assumptions and observed that our analytical results are still valid in these circumstances.

The rest of the paper is organized as follows. In Section II, we provide an overview of our model

and list some of the simplifying assumptions made in our analysis. In Section III, we present the

analysis of the traffic load for both the ideal and more realistic lognormal radio models. Section

IV validates the analytical model by comparing the results with those from simulations. Finally,

Section V concludes the paper.

II. OVERVIEW OF THE SYSTEM MODEL

For mathematical tractability, we make the following simplifying assumptions:

• The sensor nodes are randomly deployed in an infinite plane area. The node distribution

follows a homogenous Poisson point process with a density ofρ sensors per unit area, which
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can approximate uniform distribution for large area. This assumption has been widely used

in analyzing multi-hop wireless ad-hoc networks [14], [15], [16].

• The sensor nodes are deployed in a circular region with the base station (the sink) situated

at the centre (also being assumed in previous work [3], [4], [5]). While this assumption

simplifies the closed-form expressions in our analysis, the results can be readily applied to

other deployment scenarios (e.g., a sink at the edge of the network) with minor modifications.

• All sensors have identical transceivers and the wireless links are assumed to be symmetric.

• Each sensor node periodically generates a data packet containing the relevant sensed data and

routes the packet to the sink. Thisclock driven data generation modelis typical for many

monitoring applications (e.g., monitoring of temperature, soil moisture, etc.) [17]. Our model

can be readily extended for anevent-driven data generation model, wherein the sensor nodes

generate packets in response to certain events of interest. However, for the sake of brevity,

we only focus on the former case in this paper.

• The network is dense enough such that the greedy routing always succeed in finding a next hop

that advances the data packet towards the sink. In other words, we assume that the forwarding

strategy does not encounter alocal minima conditionand thus neglect the effect of planar

routing, which is employed in these circumstances.

• Sensor nodes forward packets towards the sink without any data aggregation.

• A forwarding node can always successfully delivery packets to the next hop. Therefore, data

packets are never retransmitted (no packet lost, no transmission errors or collisions).

In the first part of our analysis we consider an ideal radio model, wherein the signal attenuation

between any two nodes is a function of the Euclidean distance separating the nodes. Consequently,

in this idealistic environment, the radio coverage of a sensor node is a perfect circular disc with the

radius equal to its radio range. However, in reality, the signal attenuation is not solely dependent

on the distance. For example, signal reflection or signal noise can also attenuate the signal. To

make our analytical results more realistic, we extend our analysis and incorporate the log-normal



7

shadowing radio model. This model adds a random signal loss component to the purely distance-

dependent signal attenuation, and has been widely used to approximate the real environment [14]

[15] [16]. As will be elaborated later, we have observed significant differences in the analytical

results with the two models.

Excluding packets that are generated by sensor nodes which can directly communicate with the

sink, packets generated by all other node are relayed by intermediate nodes as determined by the

routing strategy employed. The behavior of a packets’ progress towards the destination is therefore

important in determining the traffic load at each sensor. We use a discrete Markov chain to model

the hop-by-hop progress of a packet from the source to the destination. The state of the Markov

chain is defined as the Euclidean distance (measured in some consistent metric unit, e.g. meters)

between the current forwarding node that holds the packet and the destination. Ideally, this distance

should be modeled as a continuous random variable. However, to simplify our model, we use a

discrete state space to approximately represent the continuous distance values. We quantize the

distances resulting in a state space of(0, ε, 2ε, ..., nε, ...), where the parameterε is the interval of

the state space (i.e. the quantization coefficient). When the intervalε is small enough, the discrete

state space approximates the original continuous distance metric.

We elaborate on the state transition of the Markov chain using the example illustrated in Fig. 1,

Assume that a packet is currently held by node X as it makes its way towards the base station, node

D. Since node X is at a distancei from the destination, the current state for this packet isi. Assume

that the next hop node chosen by node X using greedy forwarding is node N, which is at a distance

of j from the destination. The packet forwarding operation thus results in a state transition fromi

to j for the packet. In general, the hop-by-hop progress made by a packet towards the destination

can be represented by a series of states that the packet transitions through, eventually culminating

in state0 when the packet reaches the sink.

Intuitively, the sensors closer to the sink will have more packets to transmit, because they have

to relay the packets originated from other sensors that are distant. Therefore the traffic load of a
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sensor is dependent on its distance to the sink. Since we assume a clock driven data generation

model, all sensors generate packets with the same periodicity, which is referred to as atime unit.

We assume that all packets generated in one time unit in the entire WSN are delivered to the

base station before the start of the subsequent time unit. This is a reasonable assumption since

in a realistic scenario the end-to-end delay incurred in delivering packets from the sensor nodes

to the sink is usually much smaller than the packet generation periodicity which is of the order

of a few seconds. The goal of our analysis is to determine the traffic load at a sensor, which is

defined as the total packets transmitted by the sensor in one time unit. Letf(d) represent the

average traffic load incurred by sensor nodes located at a Euclidean distance ofd units from the

sink. Note that,f(d) includes the packet generated by the sensor and those forwarded on behalf of

other sensors. Consider a sensor node located at distancej from the sink. Since greedy forwarding

is employed, this node can only receive packets from its one-hop neighbors that are further from

the base station thanj. In other words, any other node at distancei, wherei > j, could possibly

forward its packets to this particular node. If we denote the state transition probability from state

i to j as Pi,j, then the traffic load of a sensor at distancej is dependent on the traffic load of

sensors at distancei and the state transition probabilityPi,j, wherei > j. Therefore, in our model,

we first analyze the state transition probability of the packets. Using the transition probabilities,

we can then recursively calculate the traffic load of the individual sensors. The main symbols used

in the rest of this paper are listed in Table I.

III. A NALYTICAL MODEL OF FORWARDING OVERHEAD

We first evaluate the state transition probabilities assuming the ideal circular disc radio model.

Next we extend this to include the log-normal shadowing model. Finally, in the last sub-section,

we use these transition probabilities to evaluate the traffic load.
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A. Evaluating the State Transition Probability for the Ideal Radio Model

For the ideal radio model, a node can only communicate with other nodes that are located within

the circular coverage region of this node. We employ an approach that uses geometric computations

and probability theory to prove the following,

Theorem 1:In the context of an ideal radio model, the transition probability of a packet from

statei to j when employing greedy routing is,

Pi,j =





1 if i ≤ R and j = 0,

exp(−ρAi,j)− exp(−ρAi,j+ε) if i > R and i−R ≤ j < i,

0 others,

(1)

whereAi,j is,

Ai,j = R2 arccos i2+R2−j2

2iR + j2 arccos i2+j2−R2

2ij −
√

(R+i+j)(R+i−j)(R−i+j)(i+j−R)

2
(2)

Proof: Assume that a packet is currently at node X as it makes its way towards the sink.

Let node X be at a distancei from the sink as illustrated in Fig. 2. Consequently the packet is

currently in statei. The probability that the packet is forwarded to a sensor at distancej and thus

resulting in a transition to statej is the probability that node X finds a neighbor at distancej as

the next hop.

We start with a simple case, wherei ≤ R, i.e. the destination node is within radio coverage of

the current nodeX. Hence, as the next hop is the destination, the statei must transition to state

0. Consequently, we have,

Pi,j =





1 if i ≤ R and j = 0,

0 if i ≤ R and j > 0.
(3)

Now let us consider the situation wherei > R. Recall that, we have assumed that greedy routing

can always succeed in finding a next hop node which is closer to the sink. Thus the next hop of

node X must has a distance that is less thani from the sink. In other words, the probability that

the next hop node lies outside distance region[i−R, i), is zero. Therefore, we have,

Pi,j = 0, if i > R and (j < i−R or j ≥ i) (4)

Now, we discuss the more complicated and plausible case where,i − R ≤ j < i. In greedy

routing, if the next hop of node X is at distancej, it implies that at least one neighbor of node
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X is at distancej and none of its other neighbors are closer to the destination thanj. Thus the

transition probability is the probability that at least one neighbor of nodeX lies on the perimeter

of the curve of radiusj centered at the destination (see Fig. 2) with no neighbors located to the

right of this curve. Since we assume a discrete state space withε as the interval of the state space,

we can approximate the curve as a ring of thicknessε, as illustrated in Fig. 2. LetRi,j represent

the region of this thin ring that intersects with the radio range of nodeX (narrow dark region

in Fig. 2). We also denoteAi,j as the area of the light shaded region in Fig. 2, which is the

intersecting region between the radio coverage of nodeX and a circle of radiusj centered at the

destination.Ri,j andAi,j are also used to represent the area of each region referred.

Now, the transition probabilityPi,j is the probability that at least one node lies inside region

Ri,j and the no nodes are withinAi,j. Let P1 be the probability that at least one node is within

Ri,j, andP2 be the probability that no nodes lie withinAi,j.

Recall that, we have assumed that the node distribution follows a homogenous Poisson point

process with densityρ. As a property of this assumption, the number of nodes in any region of area

A follow a Poisson distribution with mean ofρA. Thus the number of nodes in regionRi,j follow

a Poisson distribution with meanρRi,j, and the number of nodes in regionAi,j has a Poisson

distribution with mean ofρAi,j. Note that, the area ofRi,j can be computed asAi,j+ε − Ai,j.

Consequently, we have,

P1 = 1− Prob(no node inRi,j) = 1− exp(−ρRi,j) = 1− exp(ρAi,j − ρAi,j+ε) (5)

P2 = Prob(no node inAi,j) = exp(−ρAi,j) (6)

In the Poisson point process, the distribution of the number of nodes in any two disjoint region

is independent. ThusP1 andP2 are independent and we have,

Pi,j = P1 · P2 = exp(−ρAi,j)− exp(−ρAi,j+ε) (7)

Finally, the areaAi,j can be computed using simple geometric calculations and expressed as

Equation (2). The details are omitted due to space limitations.

Finally, combining Equations (3), (4), (7) and (2), the theorem is proved.
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B. Evaluating the State Transition Probability for the Log-normal Shadowing Radio Model

Next, we study a more realistic radio model. In the log-normal shadowing radio model, the

signal attenuation between two nodes is dependent not only on the distance separating the two

nodes, but also a random signal loss. More formally, given a distances that separates two nodes,

the signal attenuation (in dB) from one node to another one is,

β(s) = α log10(
s

1m
) + β1 (8)

whereα is a path loss rate, andβ1 is a random variable that follows a normal distribution with

zero mean and a standard deviation ofσ,

f(β1) =
1√
2πσ

exp(− β2
1

2σ2
) (9)

Now two nodes are one-hop neighbors, i.e. they have a direct link between them, only if the

signal attenuation between them is less than or equal to a predefined attenuation thresholdβth.

Thus, for two nodes separated by a distances, the probability that they have a direct link, denoted

asP∧(s), is given by,

P∧(s) = Prob(β(s) < βth) (10)

The above equation has been solved by Bettstetter in [14] and the result can be represented by,

P∧(s) =
1
2

[
1− erf(

10√
2ξ

log10
s

R
)
]
, ξ = σ/α (11)

whereR = 10
βth
α10 , is referred to as theaverage radio range, which is the maximum distance

that permits the existence of a link between two nodes in the absence of signal randomness. The

function erf(.) is denoted as follows,

erf(z) =
2√
π

∫ z

0

exp(−x2)dx (12)

As an illustrative example, Fig. 3 plots the link probability for the log-normal shadowing model

for R = 50meters and different values of the random parameterξ. Note that, the curve has a

longer tail for increasing values ofξ, which implies that a node’s radio may cover a larger area

for larger ξ. Based on the aforementioned characteristics of the log-normal model, we can have

the following theorem,
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Theorem 2:In the context of the log-normal shadowing radio model, the transition probability

of a packet statei to j when employing greedy routing is,

Pi,j =





P∧(i) if j = 0 and i > 0,

0 if j > 0 and j ≥ i,
[
1− P∧(i)

] · exp(−πρj2P∧(Ai,j)) ·
[− πρε(2j + ε) exp(1− (j+ε)2P∧(Ai,j+ε)−j2P∧(Ai,j)

(2j+ε)ε )
]

others,
(13)

WhereP∧(i) is defined in equation (11), and

P∧(Ai,j) =
∫ i+j

i−j

P∧(s)fi,j(s)ds (14)

fi,j(s) =
1

πj2
(j2θ

′
+ 2sφ− i sin(φ) +

s2 + j2 − i2

2
φ
′
) (15)

θ′ =
2s√

4i2j2 − (s2 + j2 − i2)2
φ = arccos(

s2 + i2 − j2

2is
) φ

′
=

is

i
√

4i2j2 − (s2 + i2 − j2)2
(
i2 − j2

s2
− 1)

(16)

Proof:

We start with the simple case whenj = 0 and i > 0. Assume that a packet is currently in state

i, while located at a certain nodeX. The transition probability of the packet from statei to zero

is the probability that there is a direct link between nodeX and the base station. Thus we have

Pi,j = P∧(i) when j = 0 and i > 0.

Now let us consider the situation wherej > 0 and j ≥ i. Since the next hop of node X must

has a distance that is less thani from the sink, the probability that the next hop node lies outside

distance region[0, i), is zero. Therefore, we havePi,j = 0, whenj > 0 and j ≥ i.

In other cases where the next statej > 0 and j < i, the transition probabilityPi,j is the

multiplication of the following three independent probabilities,

• The probability that no direct link exists between node X and the base station (otherwise the

packet can be forwarded to the destination directly), which is1− P∧(i).

• the probability that the nodeX can find at least one neighbor at distancej, denoted as1−P1,

whereP1 is the probability that there is no neighbor at distancej.

• The probability that no neighbor is within the region that is closer to the base station thanj,

which is denoted asP2.
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Thus, we have,

Pi,j =
[
1− P∧(i)

]
(1− P1)P2, if j > 0 and j < i (17)

Similar to the previous sub-section, we use a ring of thicknessε to represent the curve that is

located at distancej from the sink, as illustrated in Fig.4. LetRi,j denote the ring area that has

distancej to the destination, and LetAi,j represent the shaded disc shaped region that is closer to

the base station thanj but does not include the location of the base station itself. Note that, the

area included underRi,j andAi,j with the log-normal model is much larger as compared with the

ideal radio model in section III-B. The reason being that with the realistic log-normal model the

one-hop neighbors of X can located anywhere in the network. On the contrary, in the case of the

ideal radio model, the one-hop neighbors are restricted in the circular coverage area of nodeX.

Thus,P1 is the probability that no direct link exists between X and any node in regionRi,j, and

P2 is the probability that no direct link exists between X and any node in regionAi,j.

We first calculateP1. Since the number of nodes withinRi,j is a random variable, according to

the law of total probability, we have,

P1 =
∞∑

k=0

{
Prob(k nodes inRi,j) · Prob(no direct link from X to any one of k nodes)

}
(18)

According to the Poisson point process, the number of nodes withinRi,j have a Poisson

distribution with mean ofρRi,j and are independent with regards to the probability of there existing

a direct link with node X. LetP∧(A) be the probability that there exists a direct link between

node X and a node within areaA. Equation (18) can be rewritten as,

P1 =
∞∑

k=0

(ρRi,j)k

k!
exp(−ρRi,j)(1− P∧(Ri,j))k = exp(−ρRi,jP∧(Ri,j)) = exp(−πρε(2j + ε)P∧(Ri,j)) (19)

Similar, for P2, we can have,

P2 = exp(−ρAi,jP∧(Ai,j)) = exp(−πρj2P∧(Ai,j)) (20)

Combining Equations (17) (19) and (20), we have,

Pi,j =
[
1− P∧(i)

] · exp
[− πρε(2j + ε)P∧(Ri,j)

] · exp
[− πρj2P∧(Ai,j)

]
(21)

Next we computeP∧(Ri,j) and P∧(Ai,j). According to the definition ofAi,j, the combined

region of Ri,j and Ai,j can be represented byAi,j+ε. ThereforeP∧(Ri,j) can be represented by
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Ai,j andAi,j+ε. In the Poisson point process distribution, given that a node is present withinAi,j+ε,

the node is uniformly distributed in the region and it is either inside regionRi,j or Ai,j. By the

law of total probability, we have,
P∧(Ai,j+ε) = P∧(Ri,j)Prob(the node is withinRi,j) + P∧(Ai,j)Prob(the node is withinAi,j)

= P∧(Ri,j)
(2j+ε)ε
(j+ε)2 + P∧(Ai,j) j2

(j+ε)2

(22)

Equivalently, we have,

P∧(Ri,j) = (j+ε)2P∧(Ai,j+ε)−j2P∧(Ai,j)
(2j+ε)ε

(23)

Combining Equations (21) and (23), we have,

Pi,j =
[
1− P∧(i)

] · exp(−πρj2P∧(Ai,j)) ·
[− πρε(2j + ε) exp(1− (j+ε)2P∧(Ai,j+ε)−j2P∧(Ai,j)

(2j+ε)ε )
]

(24)

Finally, we compute the last unknown variableP∧(Ai,j), i.e., given there exists a node within

regionAi,j, the probability that this node has a direct link with node X. Letfi,j(s) represent the

probability that this node is located at distances from the node X. Based on the law of total

probability, we have,

P∧(Ai,j) =
∫ i+j

i−j

P∧(s)fi,j(s)ds (25)

Following rigorous geometric calculations,fi,j(s) is computed as indicated in Equation (15).

The detailed derivation is omitted here due to the limited space.

Finally, combining Equations (24), (25) and (15), the theorem is proved.

We now provide an example to illustrate the state transition probability,Pi,j. In this example, we

assume the following set of parameters,R = 50meters, ε = 1meter, ρ = 0.0019, the current state

of a packet isi = 100 and the next state varies from 100 to 0. Fig. 5 illustrates the distribution of

the transition probability from statei to the next statej for both radio models under consideration.

Note that, the log-normal model reduces to the ideal circular coverage model when the random

parameterξ is equal to zero. For the ideal radio model the peak of the distribution is aroundj = 57

and it reduces to zero for all states beyond 50. This is because of the circular coverage assumption

(recall thatR = 50m). With the more realistic log-normal model the distribution is more spread

out over the entire range and the peak shifts towards the right, i.e., closer to the sink. This effect

is more pronounced as the random parameterξ increases. This is because higher the randomness

in the signal, the greater is the chance that a node closer to the sink is chosen as the next hop.



15

Note that, while deriving the state transition probability, we have not necessarily made an

assumption about the network shape and the traffic pattern. Hence, the above analysis can be

applied to any generic network.

C. Analysis of the Per-node Traffic Load

Based on the state transition probabilityPi,d, we now proceed to calculate the traffic load incurred

at the individual sensors. The analysis is independent of the radio model under consideration. One

simply has to substitute the appropriate state transition probability equations as derived in the

previous two sub-sections for the radio model under consideration. Recall that, the traffic load of

a sensor refers to the average number of data packets transmitted by the sensor during one time

unit (see definition in Section II). By recursive calculation, we have,

Theorem 3:Consider a circular shaped network of radiusl with the sink located at the centre.

The traffic load of a sensor located at a distanced from the sink,f(d), is given by,

f(d) =
St(d)

π(2d + ε)ερ
(26)

whereSt(d) is given by,

St(d) =





π(2d + ε)ερ if d = l,

π(2d + ε)ερ +
∑

i∈(d,l]

Pi,dSt(i) if d < l,
(27)

and Pi,d denotes the state transition probability for the radio model under consideration.Pi,d for

the ideal and log normal radio model have been derived in theorem 1 and theorem 2 respectively.

Proof:

Let n(d) be the average number of sensors located at distanced, andSt(d) be the total average

number of packets collectively transmitted by thesen(d) nodes. Then we have:

f(d) =
St(d)
n(d)

(28)

Recall that, we approximate distance as a discrete state space with an interval ofε. As a result,

the number of sensors located at distanced are actually the number of sensors within the thin ring

of thicknessε located between the two concentric circles of radiusd andd + ε. Since the area of

the thin ring isπ(2d + ε)ε, the average number of sensors at distanced is given by,

n(d) = π(2d + ε)ερ (29)
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The sensors at distanced transmit all the received packets plus the packets originated by these

n(d) sensors in one time unit. LetSr(d) be the average number of packets received by all sensors

at distanced in one time unit. We have, St(d) = n(d) + Sr(d) (30)

We now proceed to calculateSr(d). When d = l, the sensors at distancel are the furthest

sensors from the sink and therefore they are not involved in forwarding packets for other sensors.

ThereforeSr(d) = 0 and St(d) = n(d) if d = l (31)

For d < l, as discussed in Section II, any sensor at distance farther thand could forward packets

to distanced. In other words, the sensors at distancei, where i ∈ (d, l] could forward packets

to sensors at distanced. For a particular distancei, the average number of packets transmitted

from the nodes ati to those atd is the traffic load of sensors at distancei multiplied with the

corresponding state transition probabilityPi,d, i.e. St(i)Pi,d. By summing up all cases ofi, we

have, Sr(d) =
∑

i∈(d,l]

Pi,dSt(i) if d < l (32)

Combining Equations (30) and (32), we have,

St(d) = n(d) +
∑

i∈(d,l]

Pi,dSt(i) if d < l (33)

Finally, combining Equations (28, 29), (31) and (33), the theorem is proved.

Note thatSt(d) is a recursive function. Since we knowSt(l), the initial value ofSt(d), we can

calculateSt(l − ε) according to Equation (27). Similarly,St(l − 2ε) and so on can be derived.

Finally, for any givend, St(d) can be computed, following which, we can calculatef(d) using

Equation (26).

IV. SIMULATION RESULTS

To validate our analytical model, we first developed a custom C++ simulator, which allows us

to evaluate the results for the state transition probabilities and the per-node traffic load. Note that,

this simulator conforms to the simplifying assumptions made in our analysis as listed in Section

II. In fact, for this validation we have not injected traffic in the network, but rather just made

passive observations using the network topology.
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Recall that, our analysis assumes that nodes are deployed in an infinite plane and that we focus

on a circular sub-region of areaπl2 (l being the radius). To realize this we simulated a square

network of area9 · l2 and chose a circular sub-network which lies at the center of this square

network. Since the square network is double the size of the circular sub-network, from the view of

nodes in the sub-network, the whole network can approximate an infinite plane. A similar approach

is also used in [14].

In the simulation scenario we assumed a WSN deployed in a circular region of radiusl = 200m,

with a node density ofρ = 0.0019 (averagely 240 nodes) and average radio range ofR = 50m. We

simulated three values of the signal randomness parameterξ, namely, 0,1, and 2, where 0 represents

the ideal radio model and other values represent the log-normal shadowing radio model. For each

case ofξ, we ran 5000 simulations and the results presented are averaged over all runs.

For an individual run of the simulation, we randomly draw the total number of nodesM from

a Poisson distribution with the mean ofρ(9 · l2). Then theseM nodes are uniformly distributed

in the whole square network. Once the nodes are placed, we use the appropriate radio model

with the particular value ofξ to generate link connectivity over all pairs of nodes. Then for each

node in the selected circular sub-network, we employ greedy routing to find the routing path to

the centrally located sink. Once the routing paths are established, we can identify the next hop

node for each individual sensor. This enables us to determine the next hop statej for each current

statei . Grouping the transitions from all nodes located at distancei from the sink gives us the

distribution of the transition probabilities from statei.

Recall that each sensor node generates one data packet during one time unit. In other words,

each routing path in the sub-network carries one data packet in one time unit. Therefore, for each

node, we count the number of routing paths that traverse through the node, which effectively

represent the traffic load at this node. Finally, we group all the nodes that are located at the same

distancei from the sink and calculate the average per-node traffic load for that particular state,i.

Fig. 5 compares the results from the simulations with the analytical results for the state transition
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probability when the initial state,i = 100, R = 50m and l = 200m. The graph illustrates that our

model is quite accurate in predicting the one-hop transition probabilities. The slight inconsistency

is caused by the fact that all forwarding paths lead to a common destination, the sink. As a result,

the next hop neighbors of two nodes that are relaying two distinct packets towards the sink are

likely to overlap (i.e. include common neighbors). Note that, this contradicts our assumption in the

analysis that the neighbors of a particular forwarder are completely independent of the neighbours

of other forwarders. The resulting correlation causes the slight deviation from the analytically

results, as observed in Fig. 5. Note that, this slight inconsistency was not observed in additional

simulations (not included) wherein packets were being forwarded to different destinations placed

far apart from each other, thus confirming the above hypothesis.

Fig. 6 plots the average per node traffic load as a function of distance to the sink for a network

of radiusl = 200m andR = 50m. The close match between the simulation and analytical results

confirms the validity of the analytical model. As intuitively expected, the closer the node is to

the sink, the greater is its traffic load. However, the interesting result revealed by the graph is

that the traffic load pattern of nodes close to the sink varies significantly with the radio model. A

3-D plot of the traffic load, as depicted in Fig. 7, illustrates this effect more clearly. Results from

the analysis have been used to plot these graphs. In these graphs, the z-axis represents the traffic

load and the x and y axes represent the two dimensional cartesian coordinate system with the sink

located at the origin (0,0). For the ideal radio model, the traffic load declines significantly if nodes

are too close to the sink, giving rise to avolcanic shape as illustrated in Fig. 7(a). The volcanic

shape of the traffic load is a direct consequence of the circular radio range and the shape of the

state transition probability distribution (see Section III-B). The sensors located very close to the

sink are rarely chosen as next hop forwarders because once a packet reaches a node that contains

the sink within its radio range then the packet can be directly delivered to it. We see that the traffic

volcano is clearly contained within a circular area (volcano zone) of radius R, the radio range of

the sensor nodes, around the sink. The crater signifies a safe area within the volcano zone where
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the sensor nodes do not experience the full force of the traffic volcano.

As evident from Fig. 7(b), the situation is quite different with the log-normal shadowing radio.

In contrast with the ideal radio model, the traffic load of the nodes increases continuously as

we move closer to the sink creating amountain peakeffect. This pattern is caused by the radio

signal randomness that is prevalent in the log-normal shadowing radio. Recall that, due to this

two nodes that are separated by a distance greater than the average radio rangeR may still be

able to communicate with each other. As a result, the nodes closer to the sink tend to receive

a large number of packets from other distant nodes. At the same time the signal randomness

does not guarantee that two nodes which may be very close to each other will always be able to

communicate. Consequently, even the nodes that are close to the sink may still require other nodes

to replay their packets. This effect further compounds the traffic load in the vicinity of the sink,

thus resulting in the mountain peak effect.

As discussed earlier, the energy spent in transmission and reception of packets contributes

significantly to the energy consumption of a sensor node. Consequently, if one were to plot a

graph of the energy consumption of the nodes as a function of their position with respect to the

sink, a similar shape would emerge as that observed in Fig. 7. When considering the ideal radio

model, nodes located at the edge of the volcano, would expend their energy at a higher rate, which

would be determined by the height of the volcano. On the contrary, with the log-normal model,

nodes located within the mountain peak closest to the sink would have a significantly high energy

consumption, again determined by the height of the peak.

In addition to the above topology-driven simulation, we have also carried out simulations using

NS-2 [18]. Unlike the previous simulations, the network now actively carries traffic and we have

also relaxed several of the assumptions used in our analysis. This enables us to evaluate if the

analytical results are applicable in more realistic scenarios. We now assume a bounded circular

network of radius,l = 200m with a centrally located sink and incorporate GPSR [9], a popular

greedy forwarding routing strategy. The node density is again 0.0019 and the average radio range
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is 50 meters. Further, we do away with the assumption of collision-free medium access and

simulate a CSMA/CA MAC protocol (similar to the 802.11 MAC). Packet collisions and the

consequent retransmissions were neglected in our analysis. We wanted to investigate if these factors

significantly affect the observed traffic load. For this we considered two different traffic loads -

(i) low traffic load with sensors transmitting a new packet to the sink every 10 seconds and (ii)

high traffic load with the packet generation periodicity reduced to 2 seconds. The results presented

are averaged over 3000 runs. As seen from Fig. 8, for low load, irrespective of the radio model,

the observed traffic load is very close to the analytical results. At higher load, there is a slight

deviation from the analytical results for both radio models. This difference can be attributed to the

retransmissions caused due to the packets collisions. However, in both cases, the analytical results

still provide for an accurate lower bound.

V. CONCLUSION

Models that accurately predict the energy consumption of each sensor node make valuable con-

tribution towards designing and configuring energy efficient network protocols, planning efficient

network deployments, and extending the operational lifetime of the network. We have proposed an

accurate mathematical model that analyzes the per-node communication traffic load, the dominating

source of energy consumption, in a multi-hop wireless sensor network. Our results confirm that

the traffic load of a node increases with the proximity to the sink. In addition, we discover that

the radio characterization model has a significant impact on the traffic load pattern of sensors

in the immediate vicinity of the sink. The ideal model leads to a volcano effect whereas the

log-normal model causes a mountain peak shape. Our analytical model is validated by extensive

simulations. Furthermore, the simulations demonstrate that our analytical results are also valid in

realistic scenarios where the assumptions made for the analysis have been relaxed (e.g. packet

collisions).

In this analysis we have focussed on WSN employing greedy routing. In our future work, we

intend to extend our analysis to include other popular sensor routing protocols. In recent years,
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experimental measurements of sensor network radio characteristics have led to the development of

more realistic wireless communication abstraction models (e.g. [19]). An interesting direction of

future work would be to evaluate the effect of these models on the traffic load of a sensor network.
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TABLE I

L IST OF MAIN SYMBOLS USED IN THE ANALYSIS

Symbol Definition

l Radius of circular network

R Average radio range of sensors

ρ Node density, i.e. the number of nodes per unit area

ε Quantization interval

i, j, d Euclidean distance from a sensor to the centrally located sink

ξ Signal randomness parameter in log-normal shadowing radio model

P∧(s) The probability that two nodes separated by distances can communicate with each other

Pi,j State transition probability. i.e. the probability that a sensor at distancei from the sink can forward its packets

to the sensor at distancej

f(d) Traffic load, i.e. the average number of data packets transmitted by a sensor at distanced during one time

unit

Fig. 1. Example of state transition (from state

i to statej)

Fig. 2. Illustration used to prove Theorem 1
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Fig. 7. Traffic load as a function of position relative to the sink (l = 200, R = 50)
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