
Tool support for verifying trace inclusion with
Uppaal

T. Bourke
tbourke@cse.unsw.edu.au

NICTA and University of New South Wales

A. Sowmya
sowmya@cse.unsw.edu.au

University of New South Wales

Technical Report
UNSW-CSE-TR-0723

December 2007

THE UNIVERSITY OF
NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

Trace inclusion against a deterministic Timed Automata can be verified with
the Uppaal model checking tool by constructing a test automaton that traps
illegal synchronisation possibilities. Constructing the automaton manually
is tedious and error prone. This paper presents a tool that does it automat-
ically for a subset of Uppaal models.

Certain features of Uppaal, namely selection bindings and channel ar-
rays, complicate the construction. We first formalise these features, and
then show how to incorporate them directly in the testing construction. To
do so we limit the forms of subscript that can be used to specify synchronisa-
tions; striving for a balance between practicability and program complexity.
Unfortunately, some combinations of selection bindings and universal quan-
tifiers cannot be effectively manipulated. The tool does not yet validate
the determinism requirements, nor handle committed states or broadcast
channels.

1 Introduction

Timed automata are a formalism for modelling discrete-event systems where
it is not only important which events occur, but also when they occur. A
dense time domain is assumed, allowing natural descriptions of many real-
time systems. Timing restrictions and behaviours are modelled using clocks.
Operations and constraints on clocks are limited so as to make automatic
model checking practicable.

Uppaal [LPY97] is a software tool for creating timed automata models
and verifying certain of their properties by exhaustive state space explo-
ration. Its expressive description language is one of its strengths, but also
presents a challenge to tools that would automatically manipulate models—
one such tool is described by this report.

Given two models expressed as timed automata, it is sometimes use-
ful to ask whether the behaviours of one are, in some sense, permitted by
the other. For example, such a relationship between models is interesting
when verifying a model of an implementation against a more abstract spec-
ification, or when creating successive abstractions to make model-checking
feasible [JLS00, Sto02]. Many such refinement relationships are possible;
this report focuses on trace inclusion which is both adequate and natural
for a large class of systems [KLSV06].

Trace inclusion is closely related to language inclusion. Whilst decid-
ing language inclusion between two timed automata is undecidable in gen-
eral [AD94, Corollary 5.3], it is PSPACE-complete if the containing automa-
ton is deterministic [AD94, Theorem 6.6].

Checking whether the set of traces of one timed automata A1 is included
within that of another automaton A2, that is whether A1 vTR A2, can be
performed by constructing a test automaton AErr

2 and then performing a
reachability analysis of the composition A1 ‖ AErr

2 [JLS00, Sto02].
Manually constructing AErr can be tedious and error prone. For this rea-

son we have developed a tool to do it automatically for a subset of Uppaal
models. Automation is particularly beneficial because the insights gained
by experimenting with trace inclusion can lead to improvements in spec-
ifications which in turn require updated testing constructions and further
verification runs. Making this faster and more convenient increases the prac-
tical effectiveness of trace inclusion techniques.

Several features of Uppaal facilitate the creation of succinct models.
While these features do not increase fundamental expressiveness, they do
present a challenge to tools that would incorporate them into model trans-
formations, such as the testing construction. We take up this challenge
in §3.

By first formalising Uppaal models in a more concrete way than usual, as
done in §2, we gain a means of describing and understanding the extended
modelling constructs. The chief construct is termed a process, written P,

1

and we focus on generating PErr correctly with respect to underlying au-
tomata A and AErr.

In §4 we briefly describe our implementation of the extended testing
construction. Many parts of the program are more general in nature: model
parsing and layout algorithms, for instance. They are easily adapted to
serve other types of model transformation and generation, some of which
have been incorporated into the tool and are accessed through a simple
expression language.

2 Uppaal

Uppaal [LPY97] comprises three main components: a graphical user inter-
face for specifying networks of timed automata using diagrams and a C-like
description language, an interface for running interactive simulations and
viewing traces, and, a model checking engine for deciding whether a model
satisfies given formulas. The components utilise a library for parsing XML
input and type-checking the description language.

In this section we formalise enough of the Uppaal modelling language to
describe and justify the techniques of §3. We relate these details to those of
existing semantic accounts. Uppaal models are constructed as networks of
communicating processes using the description language to express guards,
invariants, and actions. It is necessary to formalise these processes in a fairly
concrete way for later constructions, and their limitations, to make sense.

Pprocess (N,n0,K, V, valinit
V , invV ∪K , E)

E ⊆ N × 2Vars × Eg(K,V)× 2Actsτ ×∆K∪V ×N
(§2.2)

Aautomaton (L, l0,K, invK , T)

T ⊆ L× Φ(K)× Actsτ × 2K × L
A1 ‖ A2, A \ {a1, . . . , a2}

(§2.3)

Ttimed transition
system

(S, s0,−→) −→⊆ S × (R≥0 .∪ Actsτ)× S
T |= ϕ(§2.4)

exp
an

d
V

exp
an

d
K

Figure 2.1: Overview of the various timed transition systems and operations

Figure 2.1 shows the three major constructions that are required and
some relevant interrelationships. The larger tuples toward the top make
modelling more convenient, while smaller tuples at bottom are easier to
understand and reason about.

Processes are the topmost structure in the figure. They formalise process
models as created directly within Uppaal and transformed by our implemen-

2

tation. The details of template instantiation and priority specification are
omitted. We are not aware of any existing formalisations of such ‘macro
features’ in Uppaal.

Processes, and specifically their non-clock variables, are expanded into
the timed (safety) automata [AD94, BY04, HNSY94], or just automata with
which most accounts of Uppaal begin. This expansion expandV formalises
the meaning of non-clock variables, selection bindings, and channel arrays,
and allows us to adopt the standard definitions for various properties and
constructions.

Interpreting timed automata as open systems leads to a definition of
traces and refinement [Sto02, §7.5.2]. We adopt parallel composition and
restriction operators that are closed over timed automata, and facilitate a
closed system interpretation of Uppaal networks [Sto02, §7.5.2].

Closed networks are represented as timed transition systems (TTS),
which are suitable for simulation and model-checking, and also provide the
ultimate semantic reference for the other structures. The function expandK
expands the constraints expressed by clocks into delay and action transitions
over a more abstract state space.

Several features of Uppaal are excluded from our descriptions.

• In urgent nodes delay is forbidden. The effect is simulated by adding
a fresh clock x, that is reset on every edge, and then augmenting the
invariants of urgent nodes with the constraint x ≤ 0. The implemen-
tation does this automatically.

• Enabled communications on urgent channels occur as soon as possible,
taking priority over delays.

• In addition to channel synchronisations, processes may communicate
with one another through global variables.

• The outgoing edges of a committed node have priority over those from
non-committed nodes. This feature can be used to model atomicity of
action sequences.

• An output action on a broadcast channel may synchronise with all
enabled input actions on the same channel, or, if there are none, occur
alone.

Committed nodes and broadcast channels are not further discussed.
They are not supported by the current implementation. Urgent channels
and global variables are not formalised, but the extended techniques ap-
ply directly and the tool implements the necessary additional construc-
tions [JLS00], which are outlined in §3.3.

3

2.1 Preliminaries

Variables, expressions, and channel arrays add much to the practical utility
of Uppaal. They also present challenges to tools that would automatically
manipulate models. In this section we introduce the minimum of notation
required in the rest of the paper. The material in §2.1 is the most criti-
cal, particularly the description of channel sets. We aim to formalise just
enough of the essential intuitions to make later descriptions both precise
and manageable. Familiarity with Uppaal will greatly aid understanding
the definitions.

Variables

Variables increase modelling convenience. Uppaal has both data and clock
variables. Data variables facilitate concise and flexible process models. They
are eliminated from processes in the expansion to automata. Clock variables
are used to model timing characteristics. They effectively specify which
delay transitions may occur in an underlying timed transition system.

Although Uppaal variables are typed, we need only make a minimum
of distinctions. Clock and channel variables are treated as distinct sets.
Boolean variables, record types, and arrays of anything but channels are,
without loss of generality, ignored. The set of all variables Vars encompasses
the two categories of types that remain:

• Bounded sets of integers Z[l,u] with l ≤ u, and where ∀j ∈ Z. l ≤ j ≤ u
implies j ∈ Z[l,u], and,

• Finite scalar sets Ss, each identified by an index s from the set Scalar.

Variables of scalar or bounded integer types may index arrays. They
may be bound by quantifiers in expressions and as selection variables over
edges in processes.

Elements of scalar sets may only be assigned to variables or compared for
equality. These restrictions allow model-checking to be optimised in certain
ways (by symmetry reduction). Each scalar set is disjoint from every other.
Each declaration within Uppaal, for example scalar[5] ids, introduces a
new set/index. Type aliases, stated using typedef, preserve set identity.

Expressions, valuations, and updates

Expressions in Uppaal are built from variables, constants, function calls,
operators (including a conditional operator), relations, and quantifiers. We
treat expressions abstractly as members of the set Exprs. We write freevars(e)
for the set of unbound variables in e ∈ Exprs.

An expression denotes either a truth value, an integer, or a value from a
scalar set. In the latter case, the only possible expression is a single variable.

4

The value of an expression e depends on the values of variables in freevars(e),
which are formulated as valuations.

A valuation valV is given with respect to a finite set V of variables. For
each v ∈ V , valV (v) is a value of appropriate type. The set of all valuations
for a given set of variables V is written ValsV . Valuations may be composed,

valV1 . valV2(v) =

{
valV2(v) if v ∈ V2

valV1(v) otherwise

For valuations over a set of clock variables K†, we write val0K for the
valuation that maps each k ∈ K to 0, and val+dK for the valuation mapping
each k ∈ K to valK(k) + d.

The value of expression e with respect to valuation valV is written JeKvalV
,

provided freevars(E) ⊆ V . A partial evaluation VeWvalV yields another ex-
pression such that

J VeWvalV KvalV ′
= JeKvalV ′.valV

when freevars(e) \ V ⊆ V ′

An update δ ∈ ∆V is a function mapping one valuation valV into an-
other val′V . Updates model the effect of process transitions on variable
states. The exact details are unimportant, except that it will be neces-
sary to determine the set of clocks reset by an update, resets(δ). Clocks
may not be set to arbitrary values, only reset.

Channels and actions

Let Chansets be a finite collection of channel sets. Every C ∈ Chansets is
associated with a sequence of nC types, each written as either [l, u] for Z[l,u],
or s ∈ Scalar for Ss. A single element C〈i1,...,inC〉 of the set C is designated
by a sequence of values 〈i1, . . . , inC〉 of the respective types.

An empty sequence of types ε denotes a singleton channel set C = {c}.
We write c as shorthand for Cε.

Two actions are associated with each channel. Given a set of channels
C,

C? = {C〈i1...inC〉? | for all 〈i1, . . . , inC〉 }, and,
C! = {C〈i1...inC〉! | for all 〈i1, . . . , inC〉 }

are associated sets of input and output actions, respectively. We will use a
suffix of ?/! when a statement applies to an action regardless of direction.
For any C ⊆ Chansets, let C? =

⋃
C∈C C? and C! =

⋃
C∈C C!. Letting τ

represent the distinguished silent action, sets of actions are given by

Acts = Chansets?
.∪ Chansets!, Actsτ = Acts

.∪ {τ},
†we write K for a set of clocks because C will be used for a set of channels

5

where we write
.∪ to mean union with an implicit assumption of disjointness.

Given an action a, where a 6= τ , its complement is written a, for example,
if a = c? then a = c!, and vice versa.

Subsets of a channel set C may be designated by a sequence of expres-
sions 〈e1, . . . , enC〉; written as C[e1, . . . , enC]. The set of free variables is

freevars(C[e1, . . . , enC]) =
⋃

0<j≤nC
freevars(ej).

The definition of an evaluation can be lifted to designations of channel sub-
sets to specify a single channel from the set,

JC[e1, . . . , enC] KvalV
= C〈Je1KvalV

,...,JenC KvalV
〉.

2.2 Processes

An Uppaal model comprises one or more communicating processes. Features
like variables, selection bindings, and channel arrays assist users to express
timed behaviours.

Definition 2.1 A process P = (N,n0,K, V, valinit
V , invV ∪K , E) over Actsτ

comprises finite sets of nodes N , clocks K, variables V , and edges E; an
initial node n0 and valuation valinit

V ; and a function invV ∪K that maps each
node to an invariant expression over V and K. The edges connects pairs of
nodes with a structured label,

E ⊆ N × S ×Eg(K,V ∪ S)× 2Acts ×∆V ∪K(V, S)×N where S ⊆ Vars.

For (n, S, e, C[e1, . . . , enC]?/!, δ(V, S), n′) ∈ E we write n
S e δ(V,S)−−−−−−−−−→

C[e1,...,enC]?/!E
n′,

and similarly for τ -transitions, where

• n and n′ are, respectively, source and destination nodes.

• S is a finite set of selection bindings, where S ∩ V = ∅.

• freevars(e) ⊆ V ∪ S

• the action set is either {τ}, or it must be consistent in direction, all
inputs or all outputs, and name, that is, it must be expressible in the
form C[e1, . . . , enC]?/! where freevars(C[e1, . . . , enC]) ⊆ V ∪ S,

• δ(V, S) is an update for valuations over V and K that depend on a
valuation of V and S.

Expressions of the form Eg(K,V) are restricted so that they can be
represented by the symbolic zones used by the Uppaal model checking al-
gorithm. To define these expressions we first restrict the form of terms,
particularly those involving clocks.

6

Definition 2.2 The set of clock terms Tclk (K,V) is the smallest set con-
taining

1. pnclk where freevars(pnclk) ⊆ V

2. k R e where k ∈ K,R ∈ {<,≤,=,≥, >}, freevars(e) ⊆ V

3. k1 − k2 R e where k1, k2 ∈ K,R ∈ {<,≤,=,≥, >}, freevars(e) ⊆ V

Form (1) represents boolean-valued, clock-free expressions. In form (2) a
single clock variable is compared to an integer-valued expression that con-
tains no clocks, using one of five relations. Form (3) is similar but compares
the difference of two clock variables.

Definition 2.3 The set of guard expressions over K and V, Eg(K,V),
where K and V are sets of clock and non-clock variables respectively, is
the smallest set that can be built using the rules:

p ∈ Tclk (K,V)

p ∈ Eg(K,V)
1

p, q ∈ Eg(K,V)

p ∧ q ∈ Eg(K,V)
2

p ∈ Eg(K,V) v ∈ Vars

(∀v. p) ∈ Eg(K,V)
3

Guard expressions can be represented compactly by convex polygons
because of the restriction to conjunctive forms. Disjunction and existen-
tial quantification effectively allow such polygons to be pasted together into
more complicated shapes that cannot be represented as efficiently. Unin-
terpreted clock-free expressions pnclk may contain existential quantifiers and
disjunctive sub-terms.

2.3 Automata

Automata are generated from processes by expanding references to non-clock
variables.

Definition 2.4 An automaton A, over Actsτ , is a tuple (L, l0,K, invK , T)
comprising finites sets of locations L and clocks K, an initial location l0,
an invariant function invK from L to expressions over K, and a transition
relation T ⊆ L × Φ(K) × Actsτ × 2K × L. Transition guards are taken
from Φ(K) and depend only on clock variables. Each transition resets a
subset of clocks from K.

A transition (l, φ(K), a, R, l′) ∈ T is written l
φ(K) R−−−−−→

a T l
′.

The definition of expandV effectively defines what the process modelling
notation means. Process manipulations will be justified by their effect on
the underlying automata, which are easier to reason about.

Definition 2.5
Let (L, l0,K, invK , T) = expandV (N,n0,K, V, valinit

V , invV ∪K , E), where

7

• L = N × ValsV

• l0 =
(
n0, valinit

V

)

• invK ((n, valV)) = V invV ∪K(n) WvalV

• T is the smallest relation satisfying:

n
S e δ(V,S)−−−−−−−→
C[e1,...,e2]?E

n′ valV ∈ ValsV valS∈ ValsS

(n, valV)
VeWvalV .valS

resets(δ(V,S))−−−−−−−−−−−−−−−−→JC[e1,...,enC]?K
valV .valS

T

(
n′, δ(V,S)(valV)

) expandV?

n
S e δ(V,S)−−−−−−−→
C[e1,...,e2]! E

n′ valV ∈ ValsV valS∈ ValsS

(n, valV)
VeWvalV .valS

resets(δ(V,S))−−−−−−−−−−−−−−−−→JC[e1,...,enC]!K
valV .valS

T

(
n′, δ(V,S)(valV)

) expandV!

n
S e δ(V,S)−−−−−−−→

τ E n
′ valV ∈ ValsV valS∈ ValsS

(n, valV)
VeWvalV .valS

resets(δ(V,S))−−−−−−−−−−−−−−−−→
τ T

(
n′, δ(V,S)(valV)

) expandVτ

The three rules differ only in the type of action addressed. Every selection
binding in S is assigned a value via valS . The states in the conclusion
are formed by pairing the control nodes n and n′ of the premise with a
valuation valV of variables in V . The destination valuation is formed by
applying the update δ, whose effect may depend on variables and selection
bindings, to the original valuation. The clock variables reset by δ are distilled
for inclusion on the resulting transition. Guard expressions in the process e
are partially evaluated against both valuations; in the result they depend
only on the values of the clock variables in K. For the rules expandV ?
and expandV !, each valuation effectively selects a single channel, and hence
action, from the array C. The rule expandV τ is simpler in this regard.

Every edge corresponds to a set of transitions determined by the state,
that is the combination of control node and data valuation, and all possible
assignments to S. This notion forms the basis of later manipulations.

Two operators over automata are necessary to understand the closed
system semantics given to Uppaal models for model checking and simulation.
Their definitions provide background to subsequent developments, though
the details are not critical. We adopt CCS-like definitions [Sto02, Definition
7.5.6]: given two automata, each may either act alone, or transitions labelled
with complementary actions may synchronise resulting in a silent action and
thus precluding further synchronisation (and ruling broadcast channels out
of consideration).

8

Definition 2.6 The parallel composition of two automata A = A1 ‖ A2 is
defined A = (L, l0,K, invK , T) where

L = L1 × L2

l0 = (l01, l02)

K = K1
.∪ K2

invK(l1, l2) = invK(l1) ∧ invK(l2)

T is the smallest relation such that

l1
φ1 R1−−−−→
a1

T l
′
1

(l1, l2)
φ1 R1−−−−→
a1

T (l′1, l2)

left

l2
φ2 R2−−−−→
a2

T l
′
2

(l1, l2)
φ2 R2−−−−→
a2

T (l1, l
′
2)

right

l1
φ1 R1−−−−→
a T l

′
1 l2

φ2 R2−−−−→
ā T l

′
2

(l1, l2)
φ1∧φ2 R1∪R2−−−−−−−−−→

τ T (l′1, l
′
2)

both

and a1, a2 ∈ Actsτ , a ∈ Acts.

The restriction operator prunes all transitions labelled with actions from
a given set.

Definition 2.7 The restriction of an automaton A = (L, l0,K, invK , T) to
actions over channels not in a set P is written A \ P = (L, l0,K, invK , T

′),
where T ′ is the smallest relation such that

l
φ R−−→
a T l

′ a 6∈ (P? ∪ P !)

l
φ R−−→
a T ′ l

′
restrict

An Uppaal model of n processes P1, . . . ,Pn communicating over sets of
channels Chans, perhaps encompassing several channel sets, and variables V
can be mapped to an automaton

A = (expandV (P1) ‖ . . . ‖ expandV (Pn)) \ Chans

This is a closed system semantics [Sto02]; the resulting automaton contains
only the silent τ transitions made by individual processes and those resulting
from shared communications of pairs of processes. No further interactions
with the environment are possible.

9

2.4 Timed Transition Systems (TTS)

Timed Transition Systems model the bare essentials of sequential behaviour
in real-time.

Definition 2.8 A timed transition system, or TTS, is a triple (S, s0,−→)

where s0 ∈ S and −→ ⊆ S × (R≥0
.∪ Actsτ) × S. The transition relation

comprises delay transitions s d−→ s′, where d ∈ R≥0, and action transi-
tions s a−→ s′, where a ∈ Actsτ .

Uppaal simulates and verifies closed timed transition systems: those
where action labels are limited to the subset R≥0 ∪ {τ}. A less restric-
tive definition, as presented above, is useful for defining the open system
semantics needed to formalise traces and trace inclusion [Sto02, §7.5.2].

The behaviour over time of automata is specified with clocks. The pre-
cise meaning of operations and guards on clocks in automata is given by
translation to TTS.

Definition 2.9 Let (S, s0,−→) = expandK(L, l0,K, invK , T) be defined

• S =
{

(l, valK) | l ∈ L and JinvK(l)KvalK

}
,

• s0 =
(
l0, val0K

)
, assuming JinvK(l0)Kval0K

and −→ is the smallest relation satisfying

l
Φ R−−−→
a T l

′ valK ∈ ValsK JΦKvalK
JinvK(l′)KvalK.val0R

(l, valK)
a−→
(
l′, valK . val0R

) action

d ∈ R≥0 valK ∈ ValsK ∀0 ≤ t ≤ d.
q

val+tK
y

invK(l)

(l, valK)
d−→
(
l, val+dK

) delay

where a ∈ Actsτ .

Each state of the TTS pairs an automaton location l with a valuation of
the set of clocks valK . States where the location invariant is not satisfied
by the valuation are excluded, we assume that this is not the case for the
initial state where all clocks have value zero. An action transition is possible
between two states when there exists an automaton transition between the
location components whose guard is satisfied by the source clock valuation,
and where clocks reset on the transition have zero value in the destination
clock valuation, the latter satisfying the invariant at the destination location.
A delay transition of value d exists between states with the same location

10

component, where clock values at the destination are d greater than those
at the source, and where the location invariant is satisfied for all delay
transitions of lesser value.

Given a closed TTS T and a property ϕ, Uppaal decides whether the
latter is satisfied by the former, that is, whether T |= ϕ. Properties are
evaluated over paths of alternating delay and action transitions beginning
at the initial state s0. They are restricted in form,

E3 p asserts that it is possible to reach a state satisfying p on a path from s0.

E2 p asserts that there is a path from s0 along which states always sat-
isfy p. Either the path is infinite, or ends in a state s with no outgoing
transitions, or where s d−→ s′ is possible for arbitrary d.

A3 p is equivalent to ¬E2¬p

A2 p is equivalent to ¬E3¬p

p ; q is equivalent to A2 (p implies A3 q)

In practice, state properties, written here as p and q, are formulated over the
control nodes and valuations of the component processes that were expanded
to give the TTS. The deadlock property asserts that no action transitions
leave a state or its time successors (states reachable via a delay transition).
Uppaal can provide witness traces for properties asserting existence, that is
true properties of form E3 p or E2 p, or counter-examples for failed proper-
ties of form A3 p or A2 p.

3 Checking trace inclusion

Given two processes, PI and PS , over a set of channels Chans, we would
like to verify whether the possible, open system traces of PI are a subset
of those of PS , that is whether PI vTR PS . If PS is deterministic and free
of τ -transitions it is possible to construct a test process PErr

B , containing a
distinguished error state, such that

expandK
((

expandV (PI) ‖ expandV (PErr
B)

)
\ Chans

)
|= ¬E3 error

implies PI vTR PS .

The problem is usually phrased in terms of automata. The definition of a
test automaton [Sto02, §A.1.5] is repeated below with a minor modification
to the rule error.

Definition 3.1 Given an automaton A = (L, l0,K, invK , T) that is deter-
ministic, where no transitions are labelled τ , define,

AErr = (L
.∪ {error}, l0,K, invErr

K , TErr)

11

where invErr
K (l ∈ L) = true and TErr is the smallest relation such that

l
g R−−→
a T l

′

l
(g ∧ invK(l)) R−−−−−−−−−−→

a TErr l
′

legal

g(a,l) = ¬∨{ g | l g R−−→
a T l

′ }

l
(g(a,l) ∧ invK(l)) ∅−−−−−−−−−−−−→

a TErr error

illegal

l
¬invK(l) ∅−−−−−−−→

τ TErr error

notinv

error
true ∅−−−−→
τ TErr error

error

and a ∈ Acts.

If there are no transitions for a certain pairing of action and location (a, l)
the upper part of the illegal rule becomes ¬∨ ∅ = true, giving a transition
directly to the error state.

Given P we would like to construct PErr such that:

P PErr

A AErr

expandV expandV expandV (P)Err = expandV (PErr)

In pragmatic terms, the aim is to correctly extend the original construction
to address more Uppaal features, thereby allowing trace refinement verifica-
tion for a larger subset of models directly from Uppaal. The formalisation
also serves as a foundation for understanding the algorithm.

Definition 3.2 Let P be a process (N,n0,K, V, valinit
V , invV ∪K , E) where the

underlying automaton expandV (P) is deterministic and free of τ -transitions,
then

PErr = (N
.∪ {error}, n0,K, valinit

V , invErr
V ∪K , E

Err)

where invErr
V ∪K(l ∈ L) = true and EErr is the smallest relation such that

n
S g λ−−−−−−−−→

C[e1,...,enC]?E
n′

n
S (g ∧ invV ∪K(n)) λ−−−−−−−−−−−−−→

C[e1,...,enC]! EErr n
′

plegal?

n
S g λ−−−−−−−−→

C[e1,...,enC]!E
n′

n
S (g∧ invV ∪K(n)) λ−−−−−−−−−−−−−→

C[e1,...,enC]? EErr n
′

plegal!

n
∅ ¬invV ∪K(n) ·−−−−−−−−−−→

τ EErr error

pnotinv

error
∅ true ·−−−−−→

τ EErr error

perror

n ∈ N C ∈ Chansets

(S′, g′, 〈e′1, . . ., e′nC 〉) ∈ flip
(
C,
{

(S, g, 〈e1, . . ., enC 〉) | n
S g ·−−−−−−−−→

C[e1,...,enC]!E
·
})

n
S′ (g′ ∧ invV ∪K(n)) ·−−−−−−−−−−−−−→

C[e′1,...,e
′
nC

]? EErr error

pillegal?

12

n ∈ N C ∈ Chansets

(S′, g′, 〈e′1, . . ., e′nC 〉) ∈ flip
(
C,
{

(S, g, 〈e1, . . ., enC 〉) | n
S g ·−−−−−−−−→

C[e1,...,enC]?E
·
})

n
S′ (g′ ∧ invV ∪K(n)) ·−−−−−−−−−−−−−→

C[e′1,...,e
′
nC

]! EErr error

pillegal!

where flip maps a set of triples—of selection bindings, guards, and subscript
expressions—of edges for a fixed location l and channel set C, to another
set of triples such that one of the triples will be enabled for a single action
at a location of the underlying automaton expandV (PErr) iff no transition
from the same location with the same action is enabled in the corresponding
location of expandV (P). Edges to the error state must serve for all actions
on the labelling channel set.

The following subsections describe, constructively, the flip function for
a large class of, but not all, edge sets. In doing so, we give a means of
automating a significant component of trace inclusion testing for a larger
class of Uppaal models than directly addressed by Definition 3.1 alone. The
techniques apply to Uppaal templates, that is processes where some con-
stant values are unknown. Although Uppaal insists that such values are
determinable at compile time, we prefer to treat their values as arbitrary.
This does preclude handling some models, but doing so would likely involve
explicit edge expansions, which is less elegant and rather inefficient.

The flip function is described by gradually increasing its domain. We
begin with singleton channel sets, making adjustments progressively to in-
corporate selection bindings and universal quantifiers. Then a broader class
of channels sets is considered: at first limited to expressions over state vari-
ables and then extended to include selection bindings in a limited way.

3.1 Basic channels

This section describes the flip function for edges that are labelled with sin-
gleton channel sets. We focus on handling selection bindings over guards
only and producing transition resultant guards that are acceptable to Up-
paal. These techniques are extended, in the next section, to more general
channel sets.

The function and its implementation is described progressively over the
next three subsections. We begin with simple transition guards, then admit
selection bindings, and finally explain the additional problems introduced
by universal quantifiers.

No selection bindings or quantifiers

In the absence of selection bindings and quantifiers over expressions con-
taining clocks, the challenge is to ensure that an implementation produces

13

guard expressions that meet the syntactic restrictions of Uppaal. Ideally,
expressions are simplified whenever possible.

We define a set of clock expressions to represent the intermediate results
of manipulations. They must be converted back into guard expressions to
be acceptable to Uppaal.

Definition 3.3 The set of clock expressions Eclk (K,V) over sets of clock K
and non-clock variables V is the smallest set that can be built using the rules:

p ∈ Tclk (K,V)

p ∈ Eclk (K,V)
clkterm

p, q ∈ Eclk (K,V)

p ∧ q ∈ Eclk (K,V)
clkand

p, q ∈ Eclk (K,V)

p ∨ q ∈ Eclk (K,V)
clkor

p ∈ Eclk (K,V) v ∈ Vars

∀v. p ∈ Eclk (K,V)
clkall

p ∈ Eclk (K,V) v ∈ Vars

∃v. p ∈ Eclk (K,V)
clkexists

Proposition 1 For any sets of clocks K and variables V,

Eg(K,V) ⊆ Eclk (K,V)∗.

For the present, we limit ourselves to clock expressions constructed with-
out using either of the clkall or clkexists rules. Quantifier bindings within
clock terms, like p ∈ Tclk (K,V), are not considered significant because they
do not enclose clock variables.

Definition 3.4 Given a clock expression e constructed without clkall and
clkexists, neg(e) is a function that returns a clock expression e′.

neg(pnclk) = negnclk (pnclk)

neg(c < e) = c ≥ e
neg(c ≤ e) = c > e

neg(c = e) = c < e ∨ c > e

neg(c ≥ e) = c < e

neg(c > e) = c ≤ e
neg(c1 − c2 < e) = c1 − c2 ≥ e
neg(c1 − c2 ≤ e) = c1 − c2 > e

neg(c1 − c2 = e) = c1 − c2 < e ∨ c1 − c2 > e

neg(c1 − c2 ≥ e) = c1 − c2 < e

neg(c1 − c2 > e) = c1 − c2 ≤ e
neg(p ∧ q) = neg(p) ∨ neg(q)

neg(p ∨ q) = neg(p) ∧ neg(q)

∗clock terms and guard expressions are defined in Definitions 2.2 and 2.3 respectively.

14

where negnclk (pnclk) gives the logical negation of pnclk in an appropriate
subexpression language.

Proposition 2 The function neg is closed over the set of clock expressions
constructed without using clkall and clkexists.

Proposition 3 For any clock expression e, constructed without using clkall
and clkexists, and any valuation valV ∈ ValsV , ¬ JeKvalV

= Jneg eKvalV
.

The set of m edges to be flipped can be written E = {g1, . . . , gm},
because each edge has the same source node n, none have selection bindings,
each performs the same action a, and neither updates nor destination nodes
are relevant.

The result of flip should contain guards such that at least one is true
exactly when all of the guards in E are not. We directly mimic the premise
of rule illegal in Definition 3.1 by forming neg(g1 ∨ · · · ∨ gm). To ensure that
the resultant expression conforms to the syntactic restrictions of Uppaal, it
must first be converted into disjunctive normal form (DNF) g1 ∨ · · · ∨ gm′ ,
before separating the clauses to give E = {g1, . . . , gm′}. Each component of
which will guard a transition in PErr:

n
∅ (gi ∧ invV ∪K(n)) ·−−−−−−−−−−−−−→

a EErr error

due to either the rule pillegal? or pillegal! of Definition 3.2.
In practice, it is often possible to simplify the resulting guard terms.

For example, (c > 2) ∧ (c ≤ 2) may be omitted completely, and (c < 2) ∧
(c < 4) may be replaced with (c < 4). Whilst not strictly necessary, such
simplifications improve the readability of the results which, in turn, increases
confidence in their correctness, and makes traces within Uppaal easier to
follow. The current version of the tool uses simple syntactic criteria to
assess, for a pair of terms in a conjunctive clause, whether one implies or
contradicts the other. One possible improvement would be to exploit a heavy
duty simplifier, as used in theorem provers like HOL or Isabelle.

P3.1 :
s3

s2 x<4s1

x>1 && x < 3
d?d!

c?

PErr
3.1 :

Err

s3

s2s1

x>=4

c! c? d!d?

x<4 c!
x<4 c?

x<=1 d!

x<4 && x>=3
d!x<4

d?c?
d!

x<3 && x>1
d!d?

c!

//process declarations
clock x;

Figure 3.1: Example for guards without selection bindings or quantifiers

The left side of Figure 3.1 shows a process P3.1 that has one clock x and
synchronises over channels c and d. The right side shows PErr

3.1 . The two

15

transitions from s1 of PErr
3.1 to error are labelled with complements of the

actions not leaving s1 of P3.1. The guards of transitions leaving s2 of PErr
3.1

are more involved
c?, c!, and d? x < 4 node invariant becomes guard
τ x ≥ 4 negated invariant, neg(invV ∪K(n))
d! x < 3 ∧ x > 1 original guard
d! x < 4 ∧ x ≥ 3 invariant and half of negated guard
d! x ≤ 1 other half of negated guard

In the third and fourth cases, simplification has removed the unnecessary
invariant term from the conjunct. The negated guard of d! is split across two
transitions because it would otherwise be a disjunction of two clock terms.

Handling selection bindings

Selection bindings are a relatively new feature of Uppaal. A selection bind-
ing pairs a variable name with either a bounded integer or scalar type.
There may be multiple bindings on an edge, the names are bound over the
guard expression, update statement, and action array indices. The latter
possibility is not considered until §3.2.

An edge with selection bindings represents multiple transitions in the
corresponding unwound automaton, even after fixing the values of state
variables. This is apparent from the transition rules of Definition 2.5. Given
a node and variable valuation, any choice of values for the selection bindings
that satisfies the guard represents a possible transition. The simulator will
present each such valuation as a distinct transition, while the model checker
will explore all possibilities.

A set of m edges to be flipped, must now be written

E = {(S1, g1), . . . , (Sm, gm)},

where each Si is a set of selection variables, bound over gi. Again, we assume
that the gi are constructed without using the clkall and clkexists rules, and
that the selection sets are pairwise disjoint—elements can be renamed if
necessary.

A transition for a given location and action is enabled whenever

(∃s11, . . . , s1n1
. g1) ∨ · · · ∨ (∃sm1, . . . , smnm . gm)

which can be rewritten

∃s11, . . . , s1n1
, . . . , sm1, . . . , smnm . g1 ∨ · · · ∨ gm.

Thus, no transitions are enabled when

∀s11, . . . , s1n1
, . . . , sm1, . . . , smnm . neg(g1 ∨ · · · ∨ gm),

16

that is, when, for all valuations of the selection bindings, no guard is satisfied.
The result of neg(g0 ∨ · · · ∨ gm) can be converted to DNF g0 ∨ · · · ∨ gm, but
it is only possible to assign each clause to a separate transition if the scope
of each universally bound variable can be reduced to a single disjunct. This
is disappointing because it limits the processes for which the construction
can be automated. An alternative would be to eliminate the quantified
variables that apply over more than one disjunct, by generating a separate
transition for each possible value, and for every disjunct within scope. Such
manipulations would increase, possibly greatly, the number of edges. They
are not possible when the variable takes values from a scalar set, or from
a bounded integer where either of the bounds is an expression that cannot
be reduced to a concrete value, for instance, expressions involving template
arguments. The current tool displays a warning message when a negated
expression cannot be split into separate transitions and hence will likely be
rejected by Uppaal.

P3.2:

s0

i : int[0,n-1]

x[i]<=i

c!

x[i] = 0

PErr
3.2 :

Err

s0

c!

forall (i : int[0,n - 1]) x[i]>i
c?

i : int[0,n - 1]

x[i]<=i

c?

x[i] = 0

//process declarations
clock x[n];

Figure 3.2: Example for guards with selection bindings but no quantifiers

In PErr
3.2 of Figure 3.2 a transition from s0 to error occurs on c? only when

the negated guard is true for all possible values of i.

P3.3:

i:int[0,N] x<a[i] && y>b[i] c?

clock x, y;
int a[N], b[N];

PErr
3.3 :

Err c!

c?

forall (i : int[0,N]) x>=a[i] || y<=b[i]
c!

c?

i : int[0,N] x<a[i] && y>b[i] c!

Figure 3.3: Example where selection bindings clash with a negated guard

Another process and corresponding test process are depicted in Fig-
ure 3.3. The disjunct guard clauses in the latter cannot be split into separate
transitions due to the forall binding. The error process PErr

3.3 is rejected
Uppaal.

17

Handling quantifiers

The previous section showed how universal quantifiers are introduced when
negating transitions with selection bindings. We now consider the case where
edge guards additionally already contain universal quantifiers, that is the
clkall rule may be used to construct expressions.

A quantifier binding, like a selection binding, pairs a name and finite
type. Names are bound over subexpressions. A universally quantified ex-
pression ∀i ∈ Z[l,u]. e(i) effectively expands to a conjunctive sequence e(l) ∧
· · · ∧ e(u), and the existential variety ∃i ∈ Z[l,u]. e(i) to a disjunctive se-
quence e(l) ∨ · · · ∨ e(u). As existential bindings may split clock zones, they
may not enclose subexpressions containing clocks, and thus need not be
addressed by the flip function.

Since it is possible to convert a guard expression into prenex normal
form where all the quantifiers are universal, and thus order is irrelevant, a
set of m edges may now be written

E = {(S1, A1, g1), . . . , (Sm, Am, gm)},

where each Ai is a set of universally quantified variables binding over gi. We
assume that all selection and quantifier sets are pairwise disjoint, and further
that quantified variables only occur in corresponding guard expressions, that
is,

∀ 1 ≤ i, j ≤ m. Si ∩Aj = ∅
∀ 1 ≤ i, j ≤ m, i 6= j. Si ∩ Sj = ∅, Ai ∩Aj = ∅, Ai ∩ freevars(gj) = ∅,

Si ∩ freevars(gj) = ∅

These assumptions can be met by renaming as required.
For a fixed valuation, a transition for the given action is enabled when-

ever
∃s11, . . . , smnm . ∀a11, . . . , amn′m . g1 ∨ · · · ∨ gm.

Thus, there are no transitions enabled for the action when

∀s11, . . . , smnm . ∃a11, . . . , amn′m . neg(g1 ∨ · · · ∨ gm), (ψ1)

which is problematic because if any of the guards contain clock variables,
Uppaal will reject the expression. There would seem to be hope only for
those cases where the expression can be manipulated into the form

∃a11, . . . , amn′m . ∀s11, . . . , smnm . neg(g1 ∨ · · · ∨ gm), (ψ2)

The existential bindings in the prefix could then be converted into selection
bindings, with the remainder of the expression having the form discussed
in §3.1 and subject to the same limitations and treatment.

18

We require some condition(ψ1) such that

condition(ψ1) =⇒ ∀ valV ∈ ValsV . Jψ1KvalV
= Jψ2KvalV

,

which soundly increases the range of the technique. The most minimal condi-
tion is false which simply rejects all processes with guards that mix selection
bindings and universal quantifiers over clock variables. The condition that
determines whether ψ1 is logically equivalent to ψ2 is the most precise. It
could be implemented, for example, by emitting constraints and proof obli-
gations for treatment in a theorem prover or, if the values of all constants
are known, a model-checker. Instead we have implemented a simpler and
approximate condition.

Definition 3.5 We define the canswap predicate on formulas of the form

∀a1, . . . , an. ∃e1, . . . , em. ϕ1 ∨ · · · ∨ ϕl
where each ϕi = p1

i ∧ · · · ∧ pnii . Let

A = {a1, . . . , an}, E = {e1, . . . , em},
Ai = freevars(ϕi) ∩A Ei = freevars(ϕi) ∩ E

canswap is true iff for each 1 ≤ i ≤ l either
1. Ai = ∅ or Ei = ∅, or

2. For all 1 < j < n where j 6= i, Ai ∩ Aj = ∅, Ei ∩ Ej = ∅, and for all
1 < k < ni either freevars(pki) ∩Ai = ∅ or freevars(pki) ∩ Ei = ∅.

Proposition 4 Given a quantifier free formula ψ in disjunctive normal
form,

canswap(∀a1, . . . , an. ∃e1, . . . , em. ψ) =⇒
∀a1, . . . , an. ∃e1, . . . , em. ψ ≡ ∃e1, . . . , em. ∀a1, . . . , an. ψ

Proof Assume that ψ is in disjunctive normal form. It is possible,
through associativity and commutativity of disjunction, to juxtapose clauses
that do not contain any universally bound variables. The scope of each ex-
istential quantifier can be reduced to either the juxtaposed group or a single
clause; the clauses of canswap guarantee the side condition of ∃x. (φ1∨φ2) =
(∃x. φ1)∨ φ2 (x 6∈ freevars(φ2)). The scope of the universal quantifiers can
be similarly reduced.

The scope of existential quantifiers in clauses of the form ∀Ai. ∃Ei. p1
i ∧

· · · ∧ pnii can be reduced to a subset of the terms. Likewise for the scopes
of universal quantifiers. The second clause of canswap guarantees that no
existential quantifier overlaps with any universal quantifier on a term.

The scope of existential bindings can be widened to cover all clauses.
Similarly for universal bindings. 2

19

The canswap predicate is no panacea, but it does address several useful
cases, for example, sets of transitions where no single transition employs
both selection bindings and universal quantifiers and each guard is a single
term.

3.2 Channel arrays

This section considers edges labelled with actions on elements of channel
arrays, thus generalizing the techniques of the previous section. The central
difficulty is in deciding when channels can be identified. For basic channels,
that is singleton channel sets, two channels are equal when they share a
name. An array name, however, can stand for multiple channels. Individual
elements are selected by sequences of index expressions over state variables
and selection bindings.

We first develop techniques for handling array index expressions where
the only variables are state variables, then extend these, in a limited way,
to incorporate variables from selection bindings. More general solutions are
possible, but more difficult to implement, and it remains to be determined
whether they are proportionately useful.

In Uppaal, channels and arrays of channels can be passed by reference as
template parameters. Reference values cannot be compared for equality and
thus aliasing is not easily detectable. The implementation prints a warning
for templates where channels are passed by reference.

For simplicity of presentation, we assume in this section that arrays are
indexed from one rather than zero.

No bindings for channel selection

Rather than collecting edges based on a single action, they must now be
grouped by channel set and direction. Recall, from §2.1, that for every
C ∈ Chansets, there is an associated sequence of nC types, and that a single
channel in the set can be specified by a sequence of expressions 〈e1, . . . , enC 〉.

The set of m edges to be flipped is now written

E = {
(
S1, A1, g1, 〈e1

1, . . . , e
1
nC
〉
)
, . . . ,

(
Sm, Am, gm, 〈em1 , . . . , emnC 〉

)
},

We make the previous assumptions of disjointness, and additionally require
that quantifier bindings are restricted to guards, and likewise, until the next
section, for selection bindings, that is,

∀1 ≤ i, j ≤ m, 1 ≤ k ≤ nC . (Ai ∪ Si) ∩ freevars(ejk) = ∅
The edges within E must now be grouped by channel, and allowance

made for channels in C that are not represented by edges.
For example, given C = {c[1], c[2]}, and,

E = {(S1, A1, g1, e
1), (S2, A2, g2, e

2)},

20

Given a valuation valV there are two possibilities, if Je1KvalV
= Je2KvalV

then
the previous techniques can be applied to the edge (S1∪S2, A1∪A2, g1∨g2) on
action c[Je1KvalV

], and the edge (∅, ∅, false) on action c[i] where i 6=
q
e1
y

valV
.

Otherwise, if Je1KvalV
6= Je2KvalV

there is one edge (S1, A1, g1) on c[Je1KvalV
],

and another (S2, A2, g2) on c[Je2KvalV
].

In general, every possible partitioning of them edges must be considered.
Unfortunately, this (Bell) number grows exponentially:

B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, B6 = 203, B7 = 877, . . .

This effectively limits the models that can be addressed, based on the max-
imum number of edges leaving a single node, on the same channel array,
in the same direction, and with unique index expressions. Before perform-
ing partitioning, the implementation merges edges that have sequences of
syntactically identical index expressions by forming unions of their selection
binding sets and disjunctions of their guards.

Each partition is represented by a predicate pb that equates index expres-
sions in the same block, and distinguishes representatives between blocks.
For example, given three edge labels on a channel array of two dimensions:
〈e1

1, e
1
2〉, 〈e2

1, e
2
2〉, and 〈e3

1, e
3
2〉, there are five partitions and corresponding

predicates:

[1, 2, 3] (e1
1 = e2

1 ∧ e1
2 = e2

2 ∧ e1
1 = e3

1 ∧ e1
2 = e3

2)
[1, 2] [3] (e1

1 = e2
1 ∧ e2

1 = e2
2) ∧ (e1

1 6= e3
1 ∨ e1

2 6= e3
2)

[1] [2, 3] (e2
1 = e3

1 ∧ e2
2 = e3

2) ∧ (e1
1 6= e2

1 ∨ e1
2 6= e2

2)
[1, 3] [2] (e1

1 = e3
1 ∧ e1

2 = e3
2) ∧ (e1

1 6= e2
1 ∨ e1

2 6= e2
2)

[1] [2] [3] (e1
1 6= e2

1 ∨ e1
2 6= e2

2) ∧ (e1
1 6= e3

1 ∨ e1
2 6= e3

2) ∧ (e2
1 6= e3

1 ∨ e2
2 6= e3

2)

A given valuation will only satisfy one of the predicates. In practice, parti-
tion predicates may be simplified, as per guard terms. Some subexpressions
can be replaced with true, for instance comparing a variable with itself x = x,
others with false, as when comparing two different constants 1 = 2, which
may then lead to further simplifications.

Edges within the same partition can be grouped and negated using the
techniques of previous sections, provided the partition predicate is added
after negating the guard: ∀ . . .∃ . . . pb ∧ neg(g ∨ . . . ∨ g). This technique
makes the channel subscripts irrelevant: while the exact action groupings
may depend on variable values, the predicates guarantee that all possibilities
are taken into account.

There is the possibility that some channel set elements are never enabled
at a node. These synchronisations must also be directed to the error state
by creating an edge with a selection binding for each dimension and a guard
that is true whenever at least one of the selection bindings differs from all
other expressions in the same dimension. For the previous three transition,
two dimension example, this cover all edge would be
(
{i1, i2}, ∅,

(
(i1 6= e1

1 ∨ i2 6= e1
2) ∧ (i1 6= e2

1 ∨ i2 6= e2
2) ∧ (i1 6= e3

1 ∨ i2 6= e3
2)
))
.

21

P3.4:

s0

x<=3 && (head<tail || head==N1-1)
c[head][j]!

head = (head+1) % N1

x>=5
c[tail][i]!

tail = (tail+1) % N1, x=0
//global declarations
const int N1=3, N2=2;
chan c[N1][N2];

//process declarations
clock x;
int[0,N1-1] head=0, tail=0;
int[0,N2-1] i=0, j=1;

PErr
3.4 :

Err

s0
s : int[0,N1 - 1], s1 : int[0,N2 - 1]
c[s][s1]!

s : int[0,N1 - 1], s1 : int[0,N2 - 1]
(s!=tail || s1!=i) && (s!=head || s1!=j)
c[s][s1]?

tail==head && i==j && (x>3 && x<5)
c[head][j]?

tail==head && i==j && (head>=tail && head!=N1 - 1 && x<5)
c[head][j]?

(tail!=head || i!=j) && x<5
c[tail][i]?

(tail!=head || i!=j) && x>3
c[head][j]?

(tail!=head || i!=j) && (head>=tail && head!=N1 - 1)
c[head][j]?

x<=3 && (head<tail || head==N1 - 1)
c[head][j]?

head = (head + 1) % N1

x>=5
c[tail][i]?

tail = (tail + 1) % N1, x = 0

Figure 3.4: Example channel selections without bindings

In the PErr
3.4 process of Figure 3.4 seven transitions connect the original

state to the error state, from top to bottom: two for state valuations where
both original transitions have the same input action, three for when both
transitions have different input actions, one to cover all outputs on channels
in c, and another to cover any inputs on c not present on the other edges.
The constants N1 and N2 are declared globally, but they could also be
template parameters. The testing process is correct regardless of their exact
values.

Restricted channel selection

In the previous section we assumed the absence of selection bindings in
channel subscript expressions. In Uppaal, however, channel array expres-
sions are within the scope of selection bindings on the same edge. These
further complications are partially addressed in this section and the current
implementation.

The set of m edges to be flipped is again written

E = {
(
S1, A1, g1, 〈e1

1, . . . , e
1
nC
〉
)
, . . . ,

(
Sm, Am, gm, 〈em1 , . . . , emnC 〉

)
},

The disjointness assumptions from §3.1 still hold, and, additionally, we re-
quire, as does Uppaal, that quantifier bindings are restricted to guards,

∀1 ≤ i, j ≤ m, 1 ≤ k ≤ nC . Ai ∩ freevars(ejk) = ∅.

22

We admit selection bindings into channel expressions in a limited way, by
partitioning the subscript indexes into two classes Ifree and Ibound. For
each ek, either k ∈ Ifree or k ∈ Ibound. An index expression is either com-
pletely free of selection variables, ∀1 ≤ i ≤ m, k ∈ Ifree. Si ∩ freevars(eik) = ∅;
or it is a selection variable, ∀1 ≤ i ≤ m, k ∈ Ibound. ∃s ∈ Si. eik = s, that
spans the whole array dimension. No single selection variable may occur in
two different dimensions, ∀1 ≤ i ≤ m k, l ∈ Ibound. e

i
k = eil =⇒ k = l.

Where a selection variable indexes an array dimension, we assume, without
loss of generality, that the same variable sk is used across all edges in T ,
∀1 ≤ i, j ≤ m k ∈ Ibound. e

i
k = ejk = sk, and write selsub(i ∈ Ibound) for

the corresponding variable. Let ∀k ∈ Ibound. sk ∈ Ssub, be the set of all such
variables.

As an example, consider Ifree = {1, 3}, Ibound = {2, 4}, and,

E = { ({s, t}, ∅, l > 0, 〈2, s, 2l − 1, t〉) ,
({s, t, u}, ∅, u 6= s ∧ ou > 0, 〈1, s, 2l, t〉) } ,

where s and t range over their entire respective dimensions. The guard
expressions contain a free variable l, which is not bound by the selection set.
The variables s and t appear in the same index position in all transitions.
One of the transitions has a third selection binding, but it is only present in
the guard.

The advantage of these restrictions is that no two different assignments
to variables in Ssub specify the same channel. Thus, a limited form of action
selection is permitted with only a minor extension to the basic techniques.
The set of transitions is altered,

E′ = {
(
S1 \ Ssub, A1, g1, 〈e1

1, . . . , e
1
nC
〉
x
Ifree

)
, . . . ,

(
Sm \ Ssub, Am, gm, 〈em1 , . . . , emnC 〉

x
Ifree

)
} .

where we write 〈i1, . . . , in〉
x
Ifree

to indicate a new sequence containing, in the
same order, only those elements occurring at indices in Ifree in the original se-
quence 〈i1, . . . , in〉. Since E′ meets the stronger disjointedness assumptions,
the techniques of previous sections may be applied to yield m′ transitions,

E′ =
{(
S1, A1, g1, 〈e1

1, . . . , e
1
|Ifree|〉

)
, . . . ,

(
Sm′ , Am′ , gm′ , 〈em

′
1 , . . . , em

′
|Ifree|〉

)}
,

to which the elements of Ssub may be returned,

E = {
(
S1 ∪ Ssub, A1, g1, injectselsub

(
〈e1

1, . . . , e
1
|Ifree|〉

))
, . . . ,

(
Sm′ ∪ Ssub, Am′ , gm′ , injectselsub

(
〈em′1 , . . . , em

′
|Ifree|〉

))
} .

The inject function inserts variables from Ssub back into their original posi-
tions within the sequence.

23

P3.5:

s2
forall(t:int[0,N-1]) v[t]<10

s1s0

s:int[0,N-1]
s!=curr && s<N/2 c[s][m]!

v[curr]<10
inc?

v[curr]++

t:int[0,N-1]
t==curr c[t][m]!

s:int[0,N-1]
s<=protected
c[s][n]?

s:int[0,N-1]
s>protected c[s][m]? curr=s

//global declarations
const int N=12, protected=5;
chan c[N][5];
chan inc;

//process declarations
typedef int[0,4] Sub;
Sub m,n;
int curr;
int v[N];

PErr
3.5 :

Err

s2

s1s0

exists (t : int[0,N - 1]) v[t]>=10

s : int[0,N - 1], s1 : int[0,4] forall (t : int[0,N - 1]) v[t]<10 c[s][s1]!

s : int[0,N - 1], s1 : int[0,4] forall (t : int[0,N - 1]) v[t]<10 c[s][s1]?

forall (t : int[0,N - 1]) v[t]<10 inc!

forall (t : int[0,N - 1]) v[t]<10 inc?

s : int[0,N - 1], s1 : int[0,4] c[s][s1]!

s1 : int[0,N - 1], s2 : int[0,4] s2!=m c[s1][s2]?

t1 : int[0,N - 1] t1!=curr && (t1==curr || t1>=N / 2) c[t1][m]?

v[curr]>=10 inc!

inc?

s2 : int[0,N - 1], s3 : int[0,4] s3!=m && s3!=n c[s2][s3]!

s1 : int[0,N - 1] m!=n && s1<=protected c[s1][m]!

s1 : int[0,N - 1] m!=n && s1>protected c[s1][n]!

s : int[0,N - 1], s1 : int[0,4] c[s][s1]?

inc!

inc?

s : int[0,N - 1]
s!=curr && s<N / 2 c[s][m]?

v[curr]<10
inc!

v[curr]++

t : int[0,N - 1]
t==curr c[t][m]?

s : int[0,N - 1]
s<=protected
c[s][n]!

s : int[0,N - 1]
s>protected c[s][m]! curr = s

Figure 3.5: Example channel selections with limited bindings

In the example of Figure 3.5 selection bindings are used in channel se-
lection. Note the transition from s1 to s0 in P3.5: it combines a selection
binding with a guard to meet the restrictions outlined above, rather than
the simpler equivalent (∅, ∅, true, 〈curr ,m〉) (where curr , a state variable,
would otherwise clash with s, a selection variable, on the other transition
leaving s1); and the selection variable t differs from that, s, used on the
other transition—both have been renamed in the edges to the error state of
PErr

3.5 , to t1, to satisfy the required assumptions.
The restriction of selection variable occurrences to at most one subscript

dimension, excluding forms like ({s}, A, g, 〈s, s〉), is easily circumvented by
introducing additional selection bindings and appropriate constraints. For

24

example, the previous transition becomes ({s, s′}, A, s = s′ ∧ g, 〈s, s′〉), then
meeting the required assumptions. The implementation performs such ma-
nipulations automatically.

P3.6:

i : int[2,N] x<8 && i!=4 C[i]?

i : int[0,9] x>1 && i!=3 C[i]?

//global declarations
chan c[10];

//process declarations
clock x;

PErr
3.6 :

Err

s : int[0,9] C[s]?
i1 : int[0,9] i1==3 && i1==4 C[i1]!
i1 : int[0,9] i1==3 && x>=8 C[i1]!
i1 : int[0,9] i1==3 && (i1<2 || i1>N) C[i1]!
i1 : int[0,9] x<=1 && i1==4 C[i1]!
i1 : int[0,9] x<=1 && (i1<2 || i1>N) C[i1]!

s : int[0,9] C[s]?
s : int[0,9] C[s]!

i : int[2,N] x<8 && i!=4 C[i]!

i : int[0,9] x>1 && i!=3 C[i]!

Figure 3.6: Example of channel selections with differing ranges

The requirement for selection bindings used in channel selection to span
the entire subscript range is not limiting. Given an integer binding s over
the range [l, u], where either or both bounds differ from those of the array
dimension, the binding can be replaced with one over the full range provided
the additional constraint l ≤ s ≤ u is added to the transition guard. This
technique is implemented in the current version. Figure 3.6 gives an example
(note that the built-in simplifier does not eliminate the clause i1 = 3 ∧ i1 =
4).

The strict separation of selection variables from expressions over state
variables is not so easily eliminated. When selection variables are allowed
in non-elementary expressions, it becomes more difficult to determine which
assignments resolve to the same channel, and thus to group expressions be-
fore negation. Certain forms of expressions preserve the property that each
selection variable assignment specifies a different channel, for instance ad-
dition and multiplication simply shift the assignments, and correspondingly
selection bounds, within the array. Whereas the modulo operator, shift op-
erators, integer division, and function calls (for example, f(x) = 1) do not
necessarily.

Allowing a mix of selection variables and expressions in a single channel
array dimension across transitions also makes grouping transitions more
difficult. The distinction is irrelevant if selection variables are allowed in
compound expressions (not just single variables).

Augmenting the tool with features to overcome these limitations would
increase its utility, but also its complexity; we currently favour relative sim-
plicity.

25

3.3 Urgent channels and shared variables

A process is not usually obliged to synchronise on an enabled channel if
further delay is permitted by the active location invariant. But Uppaal also
allows channels to be marked urgent. Synchronisation on such channels,
when they are enabled, must occur in preference to delay.

The basic notion of trace inclusion testing is insufficient when models
contain urgent channels. When testing whether PI vTR PS , we must ensure
that PI can synchronise on a given urgent channel whenever PS can [JLS00].
The testing construction is extended by splitting states with outgoing urgent
actions, joining the new state to the original with a τ -transition, and using
an additional clock to detect illegal delays that are then directed to the error
state [JLS00].

In Uppaal, processes may communicate by reading and writing shared
variables. The testing construction is extended to check this behaviour
by creating duplicate global variables in a PErr that shadow those in the
original P. At each state of PErr the real variables are compared to the
copies [JLS00].

P3.7:

s2

s1s0

j : int[0,4]

w < 2

u[j][w+1]?

i : int[0,4] w>4 u[i][w-1]?

//global declarations
urgent chan u[5][10];

//process declarations
int w;

//new variables (Perr only)
int[0,4] i3;
int[0,9] i2;
clock x_u;

PErr
3.7 :

l_u

l_u_out

s2

s1

s0_u

s0

Err

s : int[0,4], s1 : int[0,9] u[s][s1]?
i1 : int[0,4] w - 1!=w + 1 && w>=2 u[i1][w + 1]!
i1 : int[0,4] w - 1!=w + 1 && w<=4 u[i1][w - 1]!
i1 : int[0,4] w - 1==w + 1 && (w>=2 && w<=4) u[i1][w + 1]!
s : int[0,4], s1 : int[0,9] s1!=w - 1 && s1!=w + 1 u[s][s1]!

s : int[0,4], s1 : int[0,9] u[s][s1]?
s : int[0,4], s1 : int[0,9] u[s][s1]!

s : int[0,4], s1 : int[0,9] u[s][s1]?
s : int[0,4], s1 : int[0,9] u[s][s1]!

x_u>0

u[i2][i3]!

j : int[0,4]
w<2

x_u = 0,
i2 = j,
i3 = w + 1

i : int[0,4]
w>4

x_u = 0,
i2 = i,
i3 = w - 1

j : int[0,4]

w<2

u[j][w + 1]!

i : int[0,4] w>4 u[i][w - 1]!

Figure 3.7: Testing for an array of urgent channels

Our implementation supports both extensions. Only a minor adjustment
is necessary to support arrays of urgent channels: state variables are added

26

to record index values in the two transition check for immediate synchro-
nisation. Figure 3.7 shows an example. Since Uppaal provides direct array
comparison, arrays of shared variable present no special challenges.

4 An implementation

We have developed a tool called urpal that is able to parse a saved Uppaal
model and automatically generate the testing construction for a specified
template. It implements the standard techniques [JLS00, Sto02] and the
extensions described by this report.

The tool can only handle models

• that are deterministic,

• without committed nodes,

• where all edges are labelled (no τ transitions),

• and no broadcast channels are used, and,

• template parameters are not passed by reference.

Additionally, there are limitations on combinations of selection bindings
and conjunction, as described in §3.1, and also with forall bindings, as
described in §3.1. Channel array subscripts must be of the form stated
in §3.2.

The tool does not provide any support for validating the assumption of
determinism.

Whilst the tool currently focuses on the testing construction for trace
inclusion, many of its subsystems are generic and could form the basis of a
more general system for transforming Uppaal models. As an example, we
have implemented an input enabling construction [Sto02, §A.1.4], features
to prune transitions, and merge, drop, and rename nodes. Model transfor-
mations may be specified by a simple expression language over templates,
sets and maps.

The tool produces models for Uppaal 4.0.6 and runs under Windows
with Cygwin and Unix.

4.1 Overview

Urpal is written in Standard ML, a strongly-typed, garbage-collected, mostly
functional language with formally defined semantics. Standard ML is ideal
for applications involving complex symbol manipulation. Similar advantages
are offered by the Haskell and Ocaml languages, as well as a greater number
of libraries. Haskell has additional conveniences like type classes and list

27

XML parse XML parse desc. manipulate layout pretty print XML

Figure 4.1: High-level structure of Urpal

comprehensions. In its favour, Standard ML has an excellent module system
and is very stable, the language and core library will not change.

Figure 4.1 shows the five major subsystems of the tool: a parser for the
XML-based format in which Uppaal saves models; a parser for the descrip-
tion language used for declarations, expressions and actions; algorithms for
transforming models; an interface to Graphviz [GN00] for placing nodes and
routing transitions; and a pretty printer back to the XML format.

The Uppaal developers distribute a separate C++ parsing library (libu-
tap). It parses both the XML format and the description language, and
performs type checking. While using the library potentially saves imple-
mentation effort and provides some insulation from changes to the XML file
format, we decided that integrating the object-based API into Standard ML
would involve as much work as writing a custom parser. Any such integration
would depend on updates and binary releases from the Uppaal developers,
and would complicate compilation and installation of our tool. Thus we
wrote a custom parser that allows rudimentary access to type information,
but otherwise assumes that input files have already passed validation by
Uppaal.

Uppaal XML files are first parsed by FXP [Neu99], giving unparsed
declarations and templates which are then processed by an ml-lex/ml-yacc
parser for the description language. The result is an Uppaal model expressed
in Standard ML data types. Extensive use is made of the SML Basis and
SML/NJ libraries.

The manipulations performed by the tool can introduce many new tran-
sitions. A custom interface to the GraphViz fdp and neato tools makes
an attempt at untangling introduced states and transitions while preserv-
ing any elements of the original structure. This processing make it easier
to inspect and validate output from the tool, and increases confidence in
its results. When trace inclusion verification fails, good formatting of the
testing construction is almost essential to understand why. It is for similar
reasons that we use the SML/NJ pretty printing library, based on Weis’
Caml version, to output updated declarations and expressions.

Most of the figures in this report were produced directly by the tool,
although transition label positions were sometimes adjusted slightly to im-
prove readability. Some of the nodes and transitions in Figure 3.7 were
placed manually.

28

5 Summary

This report has described a tool that supports trace inclusion verification
for a subset of Uppaal models. Uppaal contains several features that make
modelling convenient, but that complicate construction of test automata.
We have addressed these by providing a more concrete formalisation than
usual, and showing how successively more complicated edge forms can be
addressed.

Uppaal restricts the form of expression guards to avoid splitting the sym-
bolic clock zones used for verification. Unfortunately, these restrictions, in
combination with certain modelling features and expression forms can pre-
vent the effective construction of transitions needed to build test automata.

We believe our tool is still quite useful despite these limitations. It might
be further improved by incorporating a more sophisticated term rewriting
engine for simplification and equivalence testing, and by adding automatic
or semi-automatic validation of the assumption of determinism.

Many of the implemented subsystems could potentially be reused for
other transformations of Uppaal models, though more experience is needed
to choose the most appropriate data structures and library functions.

6 Acknowledgements

This work was inspired by a pleasant afternoon with Frits Vaandrager, who
recommended two of the key references, at Radboud University in Nĳmegen.

This research was fully funded by National ICT Australia. National
ICT Australia is funded through the Australian Government’s Backing Aus-
tralia’s Ability initiative, in part through the Australian Research Council.

Bibliography

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, April 1994.

[BY04] Johan Bengtsson and Wang Yi. Timed automata: Semantics, al-
gorithms and tools. In Jörg Desel, Wolfgang Reisig, and Grzegorz
Rozenberg, editors, Lectures on Concurrency and Petri Nets: Ad-
vances in Petri Nets, volume 3098 of Lecture Notes in Computer
Science, pages 87–124. Springer-Verlag, 2004.

[GN00] Emden R. Gansner and Stephen C. North. An open graph vi-
sualisation system and its applications to software engineering.
Software: Practice and Experience, 30(11):1203–1233, 2000.

29

[HNSY94] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio
Yovine. Symbolic model checking for real-time systems. Infor-
mation and Computation, 111(2):192–244, June 1994.

[JLS00] Henrik Ejersbo Jensen, Kim Guldstrand Larsen, and Arne Skou.
Scaling up Uppaal: Automatic verification of real-time systems
using compositionality and abstraction. In Mathai Joseph, ed-
itor, Proc. 6th International Symposium on Formal Techniques
for Real-Time and Fault-Tolerance (FTRTFT ’00), volume 1926
of Lecture Notes in Computer Science, pages 19–30, Pune, India,
September 2000. Springer-Verlag.

[KLSV06] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaan-
drager. The theory of Timed I/O Automata. Synthesis Lectures
on Computer Science. Morgan & Claypool Publishers, 2006.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a
nutshell. International Journal of Software Tools for Technology
Transfer, 1(1–2):134–152, October 1997.

[Neu99] Andreas Neumann. Parsing and Querying XML Documents in
SML. PhD thesis, Universität Trier, Germany, December 1999.

[Sto02] Mariëlle I.A. Stoelinga. Alea Jacta est: Verification of probabilis-
tic, real-time and parametric systems. PhD thesis, Katholieke
Universiteit Nĳmegen, The Netherlands, April 2002.

30

