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Abstract

Process and service execution analysis is a key endeavour for enterprises. Such
analysis requires observing and correlating messages related to process and service
executions, meaning that identifying if messages belong to the same process instance
or service execution. A first challenge is that message correlation is subjective, i.e.,
depends on the purpose of the analysis and on the perspective of the analyst. Another
challenge lies in the huge space of possible correlations between messages, which can
be built based on different combinations of message attributes.

In this paper, we consider process and service execution data as a process space,
and different ways of performing correlations as process views that are views over the
process space. We propose methods, by adopting a level-wise approach, and heuristics
to identify the set of interesting process views and present a visual, interactive envi-
ronment that allows users to efficiently navigate through the views identified over a
process space. The experiments show the viability and efficiently of the approach on
both synthetic and real-world service logs.



1 Introduction

The problem of understanding the behavior of information systems as well as the
processes and services they support is rapidly becoming a priority in medium and large
companies. This is demonstrated by the proliferation of tools for the analysis of process
executions, service interactions, and service dependencies [17, 18, 27], and by recent
research work in process data warehousing and process discovery [28, 8, 33]. Indeed,
the adoption of business intelligence techniques for business process improvement is
the primary concern for medium and large companies [14].

Typical questions that analysts, IT managers, developers and in some cases even
users would like to have answered are: where are the bottlenecks in the purchasing
process? what is the actual process we typically follow for invoice payment? what
is the status of purchase order number 325, who processed it and how?, and how to
find all the information related to a specific purchase of a customer (order, invoice,
payment, shipping, etc) in the enterprise? (the latter is also referred to as enterprise
search [15]).

Performing these kinds of analysis requires the ability to (i) define or discover a
model of the process to be analyzed, used as a reference for asking queries such as those
mentioned above (e.g., model of the purchase order process at the appropriate level
of abstraction); ii) map events occurring in the various IT systems of the company to
progressions of a process (i.e., to the start/completion of process tasks); (e.g., define
that a data entry in a certain SAP table corresponds to the start of the supplier
evaluation phase); and (iii) correlate events occurring in the different IT systems of
the company to process instances, that is, to understand which events correspond to
the same execution (instance) of a process (e.g., be able to detect that a data entry
in SAP and a message sent over an enterprise service bus correspond to two events
related to the same purchase order no. 325). Once these steps are done, we can
interpret enterprise events in terms of executions of processes, and therefore we can
perform process tracking and analysis.

The issue is analogous to that of data spaces [13], where the goal is to support data
analysis (e.g., queries and joins) in environments characterized by heterogeneity in the
information systems where data is kept, heterogeneity in the data formats, and lack of
explicitly stated relationships that can identify correlation among such data elements.
Here, we examine the information in the enterprise related to logical transactions
and superimpose a process metaphor by identifying events, messages and information
related to the same process execution, thereby going from a data space to a process
space. The term “process space” refers to a set of events over which correlations,
mapping, and process models have been defined, so that enterprise events can be
interpreted in the context of executions of processes.

In a process space, different process models, mappings, and correlations, can be
defined over the same set of events as different analysts may be interested in different
views over such events (called process views). For example, the shipments of a set of
goods may be related from the view of the warehouse manager, but if the goods are
the results of different orders, they are unrelated from the view of the sales manager.

Tools that allow the definition of process views exist today and are widely used
due to the ever increasing desire of accurate process tracking and analysis (e.g., HP
OpenView [17]). They are successful, but they impose a heavy process modeling load
and are error-prone. In addition, using these tools, defining correlations and mappings
is difficult, if not impossible. More importantly, it is hard to manually maintain a
process in the wake of changes in the enterprise IT [15].

Identifying correlations is a difficult task. Referring back to our purchase order
(PO) example, we would be tempted to say that correlation should be based on an
OrderID. However, it is unlikely that messages related to the same PO in different
message logs, have a field called OrderID. Furthermore, the problem is often much
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more complex than spotting some identifier in a set of log entries. In many cases, some
messages related to the same PO processing may first be identified by a quotation
number, then by the actual order number, and finally by the invoice number. The
number of fields to be used as correlators and the number of possible combinations of
such fields across log entries is potentially very high so that techniques and automated
support for their identification is needed.

In this paper, we propose an approach, and a system called Process Spaceship, for
the automated discovery of process views in process spaces. The problem of identifying
correlations and deriving process views has two (related) sides: First, we need to
analyze events and identify which events are correlated (belong to the same process
execution). This is done based on discovering candidate correlation conditions that
define which sets of events belong to the same execution trace of a process. In general,
a condition partitions (a subset of) the events into execution traces of a process,
and identifies a process view. Very often, there are many such possible correlation
conditions (and sets of correlation conditions), so the search space and the number
of possible views are very large. Hence, the second key task is to guide the analysts
through the search space so that they can identify correlations and views they consider
useful.

To facilitate this exploration, we process the execution traces and derive process
models out of the traces, using a process discovery algorithm [33, 25]. This is very
important as for analysts it is very hard to judge the usefulness of a view unless users
can see the process model that underlies the view. In addition, we organize process
views in a process map to help users in navigating among the possible views and
to select the ones that are appropriate for their analysis purposes. A process map is
essentially a graph that structures views based on their level of abstractions and the
relationships of process models in process views.

In summary, this paper presents an approach to discover correlations conditions
and process views over a data space. Specifically, we provide the following contribu-
tions:

• We introduce the notion of process space, characterize the problem of event
correlation in process spaces, and introduce the notion of process views over a
process space;

• We present techniques for the semi-automated identification of possible corre-
lation conditions among messages in logs based on a number of heuristics that
guide the search. We limit the user supervision to high level input that is
reasonable to suppose known to them. Moreover, our process is designed to be
robust with respect to the precision of the user supervision and can also perform
without supervision at all.

• We propose to organize process views in a process map, and provide a visual,
interactive interface for navigating through the process map. The navigation
is based on the relationships that exist among process views. Process views of
interest can be selected and used for the subsequent analysis;

• We substantiate the arguments by means of experiments, which show the via-
bility and efficiency of the proposed approach on both synthetic and real-world
datasets.

In this paper, we use as example problem the case of identifying process views by
looking at the messages exchanged by one or more Web services. In particular, we
are interested in identifying the processes collectively executed by services. Hence, we
restrict the problem to the analysis of execution logs of services. This does not imply
any loss of generality in the problem we are solving, with the exception that we do
not deal in this paper with data space issues related to having heterogeneous data
formats, but we “only” focus on correlation among events and on the identification of
process views.
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The rest of the paper is structured as follows: Section 2 characterizes the process
views discovery problem. In Section 3 we present a framework and a set of algorithms
for discovering process views. Section 4 presents the visual, interactive environment
for process view exploration and refinement. In Section 5 we present implementation
and experiments. We discuss related work in Section 6. Finally, we conclude and
outline the future work in Section 7.

2 Problem Definition

In this section, we first characterize service interaction logs, the input, as well as the
results we want to obtain, i.e., process views. We then explain the problem of produc-
ing the later from the former and define the concepts that will be used throughout the
paper.

2.1 Service Interaction Logs

In Web services, an exchange of messages between two or more services is called
a conversation (a conversation is a sequence of messages exchanged to fulfil a cer-
tain functionality, e.g., to order goods), and each conversation typically obeys some
public process, also called business protocol definition [6, 8]. For example, various
services and software components may exchange messages related to a purchase order,
thereby taking part in a purchase order conversation, possibly performed following
some purchase order protocol.

The events related to messages exchanged during service conversations can be
logged using various infrastructures [11]. We use the terms “message” and “event”
interchangeably in the following. For simplicity, we define a generic log model where
each message m is represented by a tuple of a relation L = {m1,m2, . . . ,mn}, and
mi ∈ A1 × A2 × · · · × Ak, where k is the number of attributes and n is the number
of messages. Attributes A1, . . . , Ak represent the union of all message attributes and
each message typically contains only a subset of these attributes. We denote by mx.Ai
the value of a message mx on attribute Ai. We further assume that each message mx

has at least three other attributes: the timestamp at which the event is recorded
(mx.τ), the sender of the message (mx.s), and the receiver (mx.r). Messages of a log
are ordered by their timestamp. Figure 2(a) and 2(b) show two examples of message
logs (where the timestamp attribute has been omitted). Web service interactions
usually involve exchanging structured (XML) messages. A pre-processing ETL-like is
required to extract features from XML documents and represent them as event tuples
(see Section 5).

2.2 Process Views

A process view is a representation of the conversations that take place among services.
Given a set of conversations, a process view offers various information regarding the
corresponding process such as statistical information about, e.g., completion time of
conversations as well as a graphical modeling of the process as, e.g., a state machines
diagram or a Petri-net diagram. The graphical model is inferred using model discovery
algorithms [33, 25]). In this paper, we will discuss the modeling of web services inter-
actions and use the approach presented in [25] for discovering service protocols from
collections of conversations. We give the detail of the information offered by process
views in Section 4.

As mentioned in the introduction, there are often more than one way of grouping
messages of a log into conversations which in turn lead to different process views. As
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Figure 1: Part of process map for SCM dataset

an example, Figure 1 shows part of the process map discovered from the log of an
SCM business service, in a supply chain management scenario, which is implemented
by purchase order (OS), invoice (IS), payment (PS), and customer relationship (CRS)
services. Symbol PO denotes the short form of OS : submitePO operation, i.e., the
operation submitPO of OS service. The extended form of other symbols (Inv, Pay,
NP and SR) are shown in Figure 1. The log contains the messages of interactions
of SCM’s customers with these Web services. The links between map nodes show the
relationship of protocol models corresponding to each view (see Section 4).

The map is arranged according to the granularity of models and conversations,
having small but highly correlated conversations (e.g., purchase order and invoice
messages) at the lower levels, and large and possibly more loosely coupled conversa-
tions (e.g., including all messages related to PO and to its payment, or all messages
related to the interaction with customer relationship service) at the higher levels. This
organization makes it easy (or at least easier) to make sense of the various possible
views and select those of interest based on the goal of the analysis and the interest of
the team performing the analysis, as it identifies various protocols at different levels
of abstraction and scope. Such an analysis also allows identifying how services in the
enterprise depend on one another [28].

2.3 Grouping Messages into Conversations

Given a set of messages in a log L, our objective is to find which messages cor-
respond to the same service execution. For example, considering the SCM service log
in Figure 1, we want to automatically discover that messages of PO and Inv belong
to the same execution but that messages of type NP do not. In most cases, this can
be done by looking at the content of PO and Inv messages and observing that, e.g.,
they share the same purchase order ID. In this case, we say that messages PO and
Inv are correlated and we call correlation condition the fact this stems from the two
messages having a common value on attribute purchase order ID. In the rest of this
section, we will formalize the notions of conversation and that of correlation condition
in the context of Web services.
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ConvID CID SID
m1 1 c1 s1
m2 2 c2 s1
m3 1 c1 s2
m4 2 c1 s1
m5 2 c2 s1
m6 1 c1 s2

(a)

oID OrdRef
m1 001
m2 002
m3 003 001
m4 004 002
m5 005 003
m6 006 005

(b)

Figure 2: Snapshots of service logsm1 m2 m3 m4 m5 m6� � � � �    
Figure 3: Correlation graph Gψ(L) for log in Figure 2(b) (≺ shows time prece-
dence)

2.3.1 From messages to conversations

We assume that messages in the log contain the information needed to correlate them.
This assumption is reasonable since messages are indeed correlated by the recipient
services. Based on this assumption, a correlation condition can be defined as follows:

Definition 1 A correlation condition is a binary predicate defined over attribute val-
ues of two messages mx and my and denoted by ψ(mx,my). This predicate is true
when mx and my are correlated and false otherwise.

For example, in the log presented in Figure 2(a), we can have the correlation
condition ψ(mx,my) : mx.CID = my.CID. A correlation condition ψ allows to partition
a log of messages L into a set of conversations based on the following definition:

Definition 2 A conversation c is a sequence of messages c = 〈m1,m2, . . . 〉 corre-
sponding to a subset of messages of the log L, ordered by their timestamp, and such
that (i) any message mx ∈ c is correlated with at least one other message my ∈ c, y 6= x
and (ii) all the messages m ∈ L correlated with at least one message of c are also in c
(i.e., c is a maximal subset with respect to the correlation condition).

To better see how a correlation condition ψ partitions the log into conversations, let
us represent the relationships between messages in log L using a graph Gψ(L), in which
the set of vertices corresponds to the set of messages L and an edge is placed between
two messages mx and my if ψ(mx,my) holds. We denote Rψ the set of edges in Gψ
(correlated message pairs based on ψ), i.e., we have Rψ = {(mx,my) ∈ L2|ψ(mx,my)}.
For example, the correlation graph corresponding to the log in Figure 2(b) with ψ :
mx.oID = my.OrdRef is illustrated in Figure 3. Conversations correspond to connected
components, i.e., maximal subgraphs of Gψ(L), and the partitioning of the log L by a
correlation condition ψ corresponds to the partitioning of the correlation graph Gψ(L)
into connected components. We denote by Cψ(L) the set of conversations that results
from partitioning L using the correlation condition ψ. For example, with L the log
presented in Figure 2(b), we have Cψ(L) = {〈m1,m3,m5,m6〉, 〈m2,m4〉}.

In the following, we discuss the different approaches used to correlate web service
messages in real world service interactions. From these considerations, we will identify
classes of correlation conditions that need to be investigated when trying to correlate
messages in the log to form conversations.
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2.3.2 Correlation conditions in service-based processes

Web services standard proposals, such as BPEL, WS-Conversation, and WS-CDL, as
well as industrial software products (e.g., IBM Websphere Process Manager) for pro-
cess definition and monitoring of Web services provide a variety of mechanisms for
message correlation. The most common approach for correlating messages in Web
services is through having some identifier(s) shared by messages of the same conver-
sation [3].

In some cases, the identifier value used for correlating messages may be unique
for all messages of a conversation. This value acts as a “key” that uniquely identifies
a conversation. For instance, the attribute ConvID in the log of Figure 2(a) acts as
a key since messages m1, m3 and m6 all have the value “1” on this attribute. The
corresponding correlation condition is ψkey : mx.ConvID = my.ConvID, and we have
Cψkey (L) = {〈m1,m3,m6〉, 〈m2,m4,m5〉}. This method of correlation is called a key-
based correlation.

In other cases, messages of conversations are correlated using a reference to a pre-
vious message in the conversation. In this case, in any message (except the first) there
is a reference attribute sharing a unique value with an identifier attribute in a previous
message. For example, messages in Figure 2(b) are correlated using this method, called
reference-based correlation, by the correlation condition ψref : mx.OID = my.OrdRef.
In this method, messages of the same conversation form a chain as illustrated in Fig-
ure 3. This is also referred to as conversations with chain-based correlation.

The two correlation methods described above can be modeled using a first class of
correlation condition—called atomic conditions—defined as an equality relationship
over attributes of two messages as follows:

Definition 3 An atomic condition ψ specifies that two messages are correlated if they
have the same value on two of their attributes Ai and Aj, that is, ψ : mx.Ai = my.Aj.

Similarly to the concept of composite keys in databases, where keys may consist of
more than one attributes, the method used for correlating messages may use several
attributes. For instance, messages of a conversation may be correlated using the values
of attributes customer ID (ψ1 : mx.CID = my.CID) and survey ID (ψ2 : mx.SID =
my.SID), as for messages NP and SR (Figure 1, node 3). Figure 2(a) shows a log
corresponding to this scenario (assuming attribute ConvID is not present). In this case,
the correlation condition can be defined as ψc= ψ1∧2 = ψ1∧ψ2. We refer to this second
class of correlation condition as composite conjunctive (for short, conjunctive). In this
example, ψ1∧2 partitions the log into three conversations, i.e., Cψ1∧2(L) = {〈m1,m4〉,
〈m2,m5〉, 〈m3,m6〉}.

Definition 4 A composite conjunctive correlation condition is a conjunction of more
than one atomic conditions. It follows the general form of ψ : ψ1 ∧ψ2 ∧ . . . where ψ1,
ψ2, . . . are atomic conditions.

In another scenario, several correlation conditions may be needed to correlate the
messages of the same conversation. For example, consider the log in Figure 4(a) (the
corresponding protocol is illustrated in node 4, Figure 1). Messages of type PO and
Inv are correlated using the condition ψ1 : mx.oID = my.oID and messages of type Inv
and Pay are correlated using the condition ψ2 : mx.invID = my.invID but all are part
of the same conversation. For such conversations, messages mx and my are correlated
if they satisfy either ψ1 or ψ2 (or they may satisfy both). In Figure 4(b) messages
m1 and m3 (resp. m3 and m5) are correlated according to ψ1 (resp. ψ2). These
three messages form a unique conversation under condition ψd= ψ1∨2 = ψ1 ∨ ψ2. In
the case of node 4 of Figure 1, messages of same conversations also form a chain (see
Figure 4(b)). We refer to such cases, also, as conversation with chain-based correlation.
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name oID invID pID
PO m1 o1
PO m2 o2
Inv m3 o1 i1
Inv m4 o2 i2
Pay m5 i1 p1
Pay m6 i2 p2

(a)m1 m2 m3 m4 m5 m6� � � � � 1  1  2  2
(b) ψ1 : mx.OID = my .OID, ψ2 : mx.invID = my .invID

Figure 4: (a) snapshot of the log for node 4 in Figure 1, (b) corresponding
correlation graph Gψ1∨ψ2

Finally, a protocol may accept conversations where each one of them is correlated
using different correlation conditions. For instance, the protocol illustrated in node 5
of Figure 1 allows CRM conversations (node 3)—correlated using condition ψc—as well
as purchase conversations (node 4), correlated with ψd (see above). For producing the
complete set of conversations corresponding to node 5, we have to group messages by
either ψc or ψd. This means that it can be achieved using the disjunctive condition
ψc ∨ ψd as the set of conversations of node 5 is the union of the set of those of nodes
3 and 4.

Definition 5 A composite disjunctive correlation condition is a disjunction of more
than one atomic or conjunctive conditions. It follows the general form ψ : ψ1∨ψ2∨ . . .
where ψis are either atomic or conjunctive conditions.

Time constraints on correlation conditions. In some applications, time constraints
are also used as part of correlation condition definitions. For example, in addition
to equality relationships, WS-CDL allows to define a time limit for a conversation.
In terms of correlation condition, this would mean that two messages are correlated
only if their time difference is below some maximal duration MaxDuration, i.e., ψ :
mx.Ai = my.Aj ∧ |mx.τ −my.τ | ≤MaxDuration.

2.4 Problem Statement

The problem we address in this paper is that of automatically inferring a process
map, i.e., an organized visualization of all the process views relevant to a log. We have
seen that each process view corresponds to a set of conversations obtained by using
a correlation condition to correlate messages in the log. This problem can then be
formulated as an exploration of the possible correlation conditions. This exploration
is difficult as the number of potential correlation condition, if considered from a purely
combinatorial point of view, is huge. One might first try each atomic condition, that
is, the a = k2/2 possible pairs of attributes if the log has k attributes. Then, one
might attempt to combine these atomic conditions to form conjunctive and disjunctive
composite conditions. In theory, there can be c = 2a − 1 conjunctive conditions to
explore, and finally d = 2(a+c) − 1 disjunctive conditions.

An exhaustive search would not scale. Moreover, many of the correlation conditions
produced are not interesting to the user. For instance, grouping messages based on
the total amount of a purchase is unlikely to produce an interesting process view. The
main challenges thus for the automated approach are:
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Figure 5: Architecture of Process Spaceship, a visual, interactive framework
for process space discovery

• How to define interestingness of process views based on some objective criteria,
given it is subjective?

• How to efficiently search the space of possible conditions and to avoid unneces-
sary computations, e.g., by exploiting the properties of conversation sets (e.g.,
inclusion of a set into another)?

• How to incorporate user domain knowledge to further focus the condition space
exploration?

• Once discovered, how to help the user in understanding and navigating through
process views?

In the next section, we will detail our framework for process view discovery and
how each of the aforementioned points is addressed.

3 Discovery of Process Views

We present a framework, a system based on that called Process Spaceship, and
a set of algorithms for discovery of process views to address the challenges outlined in
Section 2.4. Figure 5 depicts its architecture, organized into two components: a back-
end, responsible for discovering interesting views (presented in the following of this
section), and a front-end, for visualization and user-driven refinement (see Section 4
and Section 5.3).

The problem of discovering process views is recasted as a problem of discovering
correlation conditions from the log, coupled with the application of a model discov-
ery algorithm to derive process models, and helping users to navigate the map of
models. To explore the space of possible conditions efficiently, we adopt a level-wise
approach [23] and use a set of criteria to reduce the space of possible correlation con-
ditions. In this approach, the set of candidate conditions is grown from atomic to
composite (conjunctive and disjunctive) and, at each level process views that do not
satisfy objective interestingness measures are pruned. In the following, we identify
interestingness measures for correlation conditions.
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3.1 Interestingness of Correlation Conditions

While interestingness is subjective, it is possible to identify interesting of results based
on identifying what is not interesting, for which we can define objective measures [29].

3.1.1 Non-Interestingness criteria

A correlation condition is interesting if it leads to an interesting process view. Thus,
an interesting correlation condition should lead to forming a set of conversations in
the log. We use heuristics on (i) the properties of attributes that can form interesting
conditions, and on, (ii) how an interesting condition should partition the log into
conversations, as a means to define non-interestingness criteria:

(A) Attributes with non-repeating values are not interesting: Correla-
tion is based on equality of values in two or more messages. The values of correlator
attributes are repeated either in the same attribute (key-based correlation) or in differ-
ent attributes (reference-based correlation). Attributes having unique values, i.e., their
values not found in any attributes of other tuples, can be tagged as non-interesting.
Conversely, attributes with very small domains, i.e., their values repeat a lot, are not
interesting either as they lead to few trivial partitions. To characterize these proper-
ties, we define the following two measures:

• distinct ratio(Ai): for key-based conditions on attribute Ai, this ratio corre-
sponds to the number of distinct values for an attribute Ai w.r.t. the number
of non-null values in Ai;

• shared ratio(ψij): for reference-based conditions between attributes Ai and Aj ,
this ratio represents the number of shared values of attributes Ai and Aj w.r.t.
the number of non-null values in the two attributes.

Moreover, categorical attributes (e.g., those contain error codes or currencies)
which are not used for correlation can be characterized in the log by the fact the
number of values does not vary much with respect to the size of the dataset. Con-
versely, an attribute used for correlation would have more distinct values as the dataset
grows since the dataset would contain more conversations. We use this property to
further filter out non-correlator attributes, by comparing their value distribution on
samples of the dataset of varying sizes. Thus, if the highest number of distinct value
for a categorical attribute identified in this approach is denoted by distinctmax(Ai),
we use a threshold α= |distinctmax(Ai)|/|L| and prune key-based conditions with the
ratio of distinct values smaller than α (usually α ≤ 0.01). Based on a similar rea-
soning, we can prune reference-based conditions with shared ratio(ψij) < α. Finally,
key-based conditions with distinct ratio(Ai) = 1 are also considered non-interesting.
This is because using a key-based condition based on such attributes no messages can
be correlated to each other.

(B) Conditions partitioning the log into conversations of length less than
2, or into very few conversations, are not interesting: A correlation condition
ψ is not interesting if it partitions the log into either very few conversations (i.e. all
messages are correlated to each other) or into a very high number of conversations
(i.e., correlates too few messages). In the latter case, many conversations are of length
1 (isolated messages). Hence, we can filter such conditions, e.g., by examining the
median of the distribution of length of conversations and tag as non interesting those
with median equal to 1. Note that for forming conversations, only messages in the log
are considered where attributes Ai and Aj of a conversation ψij have non-null values.

To identify non-interesting condition of the former category (very few conversa-
tions), we define Conv ratio as the ratio of |Cψ(L)| to the number of messages for
which attributes used in the condition ψ are defined (i.e., they are not null). For in-
stance, for ψ1 in Figure 4, only messages of types PO and Inv have non-null values for
the attribute OID, i.e., there are 4 messages having non-null values. We require that
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ψ: CID=CID

ψ: SID=SID

ψ: oID=oID
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Figure 6: Condition Discovery for Retailer dataset

the majority of conversations have at least a length of 2 and therefore, Conv ratio can
be expected to be greater than 0.5. Therefore, we can safely tag correlation conditions
that lead to a Conv ratio below this threshold as non-interesting.

3.1.2 User domain knowledge

Users may have some knowledge regarding the processes they want to analyze. This
knowledge can be leveraged to help further guide the search and enhance the quality
of the discovery by refining the collection of views presented to the user. For instance,
users may be able to give an estimation of the number, length and/or duration (i.e.,
time elapsed between the first and last message) of conversations. For example, a
salesman may know that, in average, 100 orders are filed daily by customers.

We allow users to specify any of the following three interdependent criteria: the
average number of conversations, their average length or their average duration. Note
that we do not expect the user to provide a precise value for these metrics. They are
used as indication to refine the analysis. We show how this knowledge, if available, can
be used during the discovery process, and also after discovering views to effectively
navigate through them.

3.2 Discovery of Correlation Conditions

We propose to discover the space of correlation conditions by discovering first atomic
conditions, then conjunctive conditions (formed by combining atomic conditions), and
finally disjunctive conditions (formed by combining atomic and conjunctive condi-
tions). Figure 6 illustrates how these three steps are applied on the log presented in
Figure 2(a) (excluding convID attribute) and Figure 4(a), which correspond to nodes
3 and 4 in Figure 1, respectively. In this figure, n is used to denote the number of
conversations that are result of applying this condition on the log, and len gives the
distribution of length of respective conversations. This example is used for illustration
throughout this section.

3.2.1 Discovering atomic conditions

The approach for discovering atomic conditions is depicted in Algorithm 1. The algo-
rithm consists of three steps:

Generating candidate atomic conditions (line 1). In this step, from the set of
attributes in L, we first generate the set of candidate atomic conditions ψij : mx.Ai =
my.Aj , e.g., mx.CID = my.CID;

Pruning non-interesting conditions based on criterion (A) (lines 2 to 9).
In this step, first, key-based conditions are identified and pruned (lines 2 to 5). For this
purpose, distinct ratio(Ai) is computed for all attributes participating in a key-based
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Algorithm 1 Generation and pruning of atomic conditions

Require: A: the set of attribute Ai ∈ L, 1 ≤ i ≤ k
Ensure: AC: the set of atomic conditions
1: AC ← the set of conditions ψij : mx.Ai = my .Aj
2: for conditions ψii : mx.Ai = my .Ai do

3: distinct ratio(Ai) =
distinct(Ai)
nonNull(Ai)

4: end for
5: AC ← AC - {ψii|distinct ratio(Ai) < α or distinct ratio(Ai) = 1}
6: for conditions ψij : mx.Ai = mx.Aj , i 6= j do

7: shared ratio(ψij) =
|distinct(Ai)∩distinct(Aj)|

max(|distinct(Ai)|,|distinct(Aj)|)
8: end for
9: AC ← AC - {ψij |shared ratio(ψij) < α}

10: for all conditions ψ ∈ AC do
11: compute Rψ
12: Cψ(L)← FindConversations(Rψ ,L)
13: end for
14: if ψ not interesting according to criteria (B) on Cψ(L) then
15: AC ← AC − {ψ}
16: end if

condition, and then criterion (A) is applied. For example, in Figure 6, condition ψ5

is pruned as it has all unique values (distinct ratio(pID) = 1). Next, non-interesting
reference-based conditions are identified and pruned (lines 6 to 9). For this purpose,
shared ration(ψij) is computed for attribute pairs participating in reference-based
conditions and then criterion (A) is applied.

Pruning non-interesting conditions based on criterion (B) (lines 10 to
16). This step requires: (i) computing the set of correlated message pairs (Rψ) for
all conditions ψ (line 11), (ii) computing the set of conversation Cψ(L) formed by
correlated message pairs in Rψ (line 12), (iii) applying criterion (B) on Cψ(L) (lines 14
to 16). These sub-steps are explained in the followings.

Computing the set of correlated message pairs for a condition ψ . The set of
correlated messages pairs Rψ can be computed using a standard SQL query (self-join
of log L) in which its WHERE clause applies the condition ψ, e.g.:

SELECT a.id, b.id

FROM L a, L b

WHERE a.Ai=b.Aj AND b.id > a.id

Here, it is assumed that there is a message identifier (id) that can be compared to
each other. The condition b.id > a.id makes sure that only the correlation between
each message and the following messages in the log L are considered. This is because
each message can correlated to messages arrived after itself in the log. Given that the
correlation between messages is undirected, it is enough to look forward from each
message. Doing so, we make sure that the relationships between any previous message
and the current one is identified from the previous message. This also allows to save a
lot in the memory used, also the number of tuples in the database, to store and keep
Rψ.

Computing the set of conversations for a condition ψ . The computation of the
set of conversations Cψ(L) from Rψ corresponds, in terms of database query, to a
recursive (closure) query over the set of correlated message pairs in Rψ. In fact,
a conversation is the transitive closure of binary relationships between messages in
Rψ. Because the support for recursive queries is limited in current database engines,
we choose to use the correlation graph Gψ(L) represented by Rψ and partition it
by applying a graph decomposition algorithm using off-the-shelf algorithms for this
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purpose [9]. In particular, from implementation point of view, this is done in three
steps: (i) computing correlation message pairs for ψ (Rψ), (ii) building the graph
Gψ(L) from Rψ, and (iii) applying the decomposition algorithm on Gψ(L). More
details about this is presented in Section 5.

3.2.2 Discovering composite conjunctive conditions

Conjunctive conditions ψ1∧2 are computed using conjunctive operator on atomic con-
ditions ψ1 and ψ2, i.e., ψ1∧2=ψ2 ∧ ψ2. If the set of atomic correlation conditions
computed in the previous step is AC = {ψ1, ψ2, ψ3}, then the set of possible candi-
date conjunctive condition is CC = {(ψ1 ∧ ψ2), (ψ1 ∧ ψ3), (ψ2 ∧ ψ3), (ψ1 ∧ ψ2 ∧ ψ3)}.
This corresponds to exploring the set containment lattice of AC.

It is possible that some of these combinations, built using more atomic conditions
from simpler ones (with fewer atomic conditions), lead to the same set of conversa-
tions as that of the simpler ones. In such cases, it is enough to find only the minimal
conjunctive conditions. A conjunctive condition ψ is minimal if no other conjunctive
condition formed using fewer conjunction of atomic conditions partitions the log into
the same set of conversations. For example, assume that, in the set AC above, the con-
junctive conditions ψ1∧2 and ψ1∧2∧3 partition the log in the same set of conversations,
then ψ1∧2∧3 is not minimal and ψ1∧2 is desired as it is easier to compute.

Hence, there are two requirements for an automated approach to discover conjunc-
tive conditions: (i) efficiently explore the set containment lattice of atomic conditions,
by discovering only interesting conditions, and (ii) discover only minimal conjunctive
conditions. To fulfil these requirements, in the following we propose an algorithm by
adopting a level-wise iterative approach [23]. At each level Li, more complex conjunc-
tive conditions (i.e., formed using more atomic conditions) are grown from simpler
conditions (i.e., formed from fewer atomic conditions) of the previous level Li−1.

The proposed algorithm is depicted in Algorithm 2. Each iteration of the algo-
rithm has three phases: applying conditions ψ to partition the log into conversations
(lines 4 to 7), candidate condition pruning (lines 8 to 10), and generation of candidate
conditions for the next level (lines 12 to 17). The algorithm ensures that only minimal
conjunctive conditions are discovered, as explained in the following.

Partitioning the log into conversations for a conjunctive condition ψ1∧2.
For a candidate conjunctive condition ψ1∧2, the first step is to compute the set of
correlated messages pairs Rψ1∧2. This is defined as the intersection of the correlated
messages pairs of ψ1 and ψ2 as follows:

(mx,my) ∈ Rψ1∧2 ⇔ (mx,my) ∈ Rψ1 ∧ (mx,my) ∈ Rψ2

⇔ (mx,my) ∈ Rψ1 ∩Rψ2

this means that messages mx and my have same values for attribute pairs in
ψ1 and ψ2. R1∧2 can be computed as an SQL query using the INTERSECT
operator over Rψ1 and Rψ2. Computation of Cψ1∧2(L) can be done based on
finding connected components of its correlation graph Gψ1∧2(L), as explained
in Section 3.2.1.

Pruning candidate conjunctive conditions. This phase, non-interesting
conjunctive correlation conditions are identified and pruned based on the fol-
lowing criteria.

(1) Criterion (B) in Section 3.1.1 is applied to identify and prune non-
interesting conjunctive conditions (lines 8 to 10 of Algorithm 2). In particular,
the number of conversations for ψ1∧2 is necessarily equal or greater than that of
both ψ1 and ψ2 (e.g., consider condition ψc in Figure 6). Therefore, we check if
the condition Conv ratio(ψ1∧2,L) < β is still satisfied (i.e., if the conjunctive
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Algorithm 2 Generation and pruning of conjunctive conditions

Require: AC: the set atomic conditions
Ensure: CC: the set of atomic and conjunctive conditions
1: L0 ← {}; L1 ← AC
2: `← 1
3: while L` <> {} do
4: for condition ψ ∈ L` do
5: compute Rψ1∧2 ← Rψ1 ∩Rψ2

6: Cψ(L)← FindConversations(Rψ ,L)
7: end for
8: if not interesting according to criteria (B) on Cψ(L) or notMon(ψ1∧2) then
9: L` ← L` − {ψ}

10: end if
11: CC ← CC ∪ L`
12: for conditions ψ1, ψ2 ∈ L` do
13: ψ1∧2 ← ψ1 ∧ ψ2

14: if def(ψ1∧2) or notInc(Rψ1, Rψ2) then
15: L`+1 ← L`+1 ∪ {ψ1∧2}
16: end if
17: end for
18: `← `+ 1

19: end while

condition is potentially interesting). If the user knowledge is provided, e.g., on
the number and length of conversations, in this step, it can be used to prune
non-interesting conditions, as well.

(2) Monotonocity of the number and the length of conversations with respect
to the conjunctive operator : As mentioned before, we expect that the number
of conversations for ψ1∧2 is greater than that of both ψ1 and ψ2. This also
implies that (most of) conversations Cψ1∧2(L) are of smaller length than those
of ψ1 and ψ2. Therefore, if the number of conversations does not increase, or
the length of (at least some of) conversations in Cψ1∧2(L) is not smaller than
those of Cψ1(L) and Cψ2(L), then ψ1∧2 is not interesting. This is because such
view does not create a new interesting process view. The slight change in the
number or the length of conversation (since Cψ1∧2(L) 6= ψ1 and Cψ1∧2(L) 6=
ψ2) are due to some imperfection in the log. We apply this condition to prune
non-interesting conditions. This criterion is referred to as notMon(ψ1∧2) in
line 8 of Algorithm 2.

Generating candidate conjunctive conditions. In this phase the set of
candidate conditions for the next level is generated (lines 12 to 17). The set of
candidate conditions for the next level are formed using non-pruned (selected)
correlation conditions of the previous level. In fact, if a condition ψ1 is pruned,
i.e., it fails to satisfy the interestingness measures (e.g., the number of conversa-
tion is too high or conversations are too short), then the conjunctive condition
built using this and any other conditions will also fail to satisfy these criteria
since the resulting conversations will necessarily be shorter or of the same length
at best. Therefore, only selected conditions from the previous level are used.

We use the following criteria to predict that some candidate condition are
non-interesting without having to compute how they partition the log, which is
computationally expensive (see Section 3.3 and Section 5):

(1) Attribute definition constraint : Consider two atomic conditions ψ1 and
ψ2. Each of the attributes used in ψ1 (e.g., Ai1 and Aj1) and ψ2 (e.g., Ai2 and
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Aj2) may be undefined for some messages (consider ψ1 and ψ2 in Figure 4).
However, when considered together in a conjunction, a new constraint appears:
attributes of ψ2 have to be defined whenever the attributes of ψ1 are defined.
More formally, if we denote ψ1∧2 the condition formed by the conjunction of ψ1

and ψ2, it has the following form:

ψ1∧2 : mx.Ai1 = my.Aj1 ∧mx.Ai2 = my.Aj2 .

Hence, for any message of the log, attribute Ai1 (resp. Aj1) is defined if and
only if Ai2 (resp. Aj2) is also defined. Therefore, we can verify if ψ1 and ψ2 have
definite values for the same set of messages. If not, this conjunction can be safely
discarded and we can avoid computing its corresponding log partitioning into
conversations. This criterion is referred to as def(ψ1∧2) in line 14 of Algorithm 2.

(2) Inclusion Property. If the set of messages correlated by ψ1 is included in
that of ψ2 (i.e., if we have Rψ1 ⊆ Rψ2), then we have Rψ1∧ψ2 = Rψ1 . Therefore,
ψ1∧ψ2 is not minimal (since it builds down to ψ1) and we can avoid computing
its conversations. Furthermore, if we have Rψ1 = Rψ2 , then ψ1 and ψ2 partition
the log in the same way (they produce the same view), and it is enough to
consider only one of them in all later computations. This criterion is referred
to as notInc(Rψ1, Rψ2) in Algorithm 2.

3.2.3 Discovering composite disjunctive conditions

Similar to discovering conjunctive conditions, discovering disjunctive condi-
tions consists in finding the set of interesting minimal disjunctive combina-
tions of candidate correlation conditions. For example, if the set of corre-
lation conditions (atomic or conjunctive) computed in the previous steps is
CC = {ψ1, ψ2, ψ3}, then the set of possible candidate disjunctive condition is
MC = {(ψ1 ∨ ψ2), (ψ1 ∨ ψ3), (ψ2 ∨ ψ3), (ψ1 ∨ ψ2 ∨ ψ3)}. This corresponds to
exploring the set containment lattice of CC.

We also propose an algorithm by adopting a level-wise approach [23] to
search the space of possible disjunctive conditions, similar to Algorithm 2 for
discovery of conjunctive conditions. This is performed in an iterative process
comprised of three phases: finding conversations, candidate pruning, and next
level candidate generation. The respective algorithm is depicted in Algorithm 3.
The input of this algorithm is CC, which contains both atomic and conjunctive
conditions. It ensures that all minimal disjunctive conditions are discovered.

Finding conversations for disjunctive condition ψ1∨2. For a disjunc-
tive condition ψ1∨2, we have Rψ1∨2 = Rψ1∪ Rψ1, i.e., the set of correlated
message pairs of ψ1∨2 is the union of set of message pairs ψ1 and those of ψ2:

(mx,my) ∈ Rψ1∨2 ⇔ (mx,my) ∈ Rψ1 ∨ (mx,my) ∈ Rψ2

⇔ (mx,my) ∈ Rψ1 ∪Rψ2

Rψ1∨2 is computed using an SQL query based on UNION operator on Rψ1 and
Rψ2 (step 5). Then, the set of conversations Cψ1∨2(L) is computed based on
finding connected components of its correlation graph Gψ1∨2(L) using a graph
decomposition algorithm (step 6), as discussed in Section 3.2.1.

Pruning candidate disjunctive conditions. In this phase, the following
criteria are used to prune non-interesting correlation conditions:

(1) Criterion (B) in Section 3.1.1 is applied to identify and prune non-
interesting disjunctive conditions. Conversations formed based on disjunction
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Algorithm 3 Generation and pruning of disjunctive conditions

Require: CC: the set atomic and conjunctive conditions
Ensure: CC: the set of atomic, conjunctive and disjunctive conditions
1: L0 ← {}; L1 ← CC
2: `← 1
3: while L` <> {} do
4: for condition ψ ∈ L` do
5: compute Rψ1∨2 ← Rψ1 ∪Rψ2

6: Cψ1∨2(L)← FindConversations(Rψ1∨2,L)
7: end for
8: if not interesting according to criteria (B) on Cψ1∨2(L), or notMon(ψ1∨2) or

TrivUnion(Rψ1, Rψ2) then
9: L` ← L` − {ψ}

10: end if
11: CC ← CC ∪ L`
12: for conditions ψ1, ψ2 ∈ L` do
13: ψ1∨2 ← ψ1 ∨ ψ2

14: if notAssoc(ψ1∨2) or notInc(Rψ1, Rψ2) then
15: L`+1 ← L`+1 ∪ {ψ1∨2}
16: end if
17: end for
18: `← `+ 1

19: end while

of ψ1 and ψ2 are always less numerous (or of equal number) than those of ψ1

and ψ2 (e.g., consider ψd in Figure 6). Hence, it suffices to check if a candidate
condition ψ1∨2 satisfies Conv ratio(ψ1∨2) > α (step 8). In addition, when users
provide hints regarding the average length, number or duration of conversations,
this information can be used to prune non-interesting conditions.

(2) Monotonocity of the number and the length of conversations with respect
to the disjunctive operator : The number of conversations resulting from a con-
dition ψi∨j is smaller than, and each conversation is at least as long as but
expectedly longer than those of ψi or ψj since disjunctions add to the connec-
tivity of the correlation graph (see, for instance, ψd = ψ3 ∨ ψ4 in Figure 6).
Therefore, if for a give disjunctive condition the number of conversations does
not decrease or the length of (at least some of) conversations does not increase,
then such disjunctive condition is not interesting. We use this observation to
identify and prune non-interesting disjunctive conditions. This criterion is re-
ferred to as notMon(ψ1∨2) in line 14 of Algorithm 3.

(3) Avoiding trivial unions of conversation sets. Consider node 2 and node
3 in Figure 1, which represent partial views of the process compared to node 5.
Applying disjunctive operator on the conditions of these nodes leads to a new
node, namely 6 (not shown in Figure 1), which its corresponding conversation
set is the union of the conversations in nodes 2 and 3. Such views are mainly
interesting for the highest level views (e.g., node 5), where the most complete
view of the interaction is desirable. Other intermediate nodes such as node 6
would not add any information and are therefore discarded. Note that users
can nonetheless explore unions of any two or more views, if interested, using
the exploration tool after completion of the discovery process. Nevertheless,
correlation message pairs in node 4 are union of those in nodes 1 and 2 but
conversations in 1 and 2 connect together to form bigger conversations in 4.
This is because the correlated message pairs in the two sets have common nodes
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allowing them to connect and form bigger conversations, e.g., in one set we
may have (m1,m2) and in another (m2,m3). But, in former case, there is no
common message in the message pairs of the two sets, and so their conversations
do not change. This criterion is referred to as TrivUnion(Rψ1, Rψ2) in line 8
of Algorithm 3.

Generating candidate disjunctive conditions. In this phase, the set of
candidate disjunctive conditions for the next level is generated (lines 12 to 17).
This set is built by combining selected conditions from the previous level, i.e.,
the ones that are not pruned. Similar to computation of conjunctive conditions,
we avoid computation of disjunction composed of conditions that have been
tagged as non-interesting in the previous level, since new disjunctive conditions
conditions built using such conditions are necessarily not interesting (producing
longer conversations or less numerous than their parent conditions).

We define the following set of criteria to predict which candidate conditions
are not potentially interesting, and so to avoid computing the set of conversa-
tions for them, which is a computationally expensive operation (see Section 3.3
and Section 5):

(1) Associativity of conjunction and disjunction: A condition that combines
disjunction and conjunction of the same atomic condition can be simplified into a
condition previously explored. For example, the correlation condition ψ2∨(ψ2∧
ψ3) is equivalent to the correlation condition ψ2 (Rψ2∪(Rψ2∩Rψ3)=Rψ2). This
is not useful to compute since the conversation sets for above two conditions are
the same. Hence, we do not compute such combinations further. This criterion
is referred to as notAssoc(ψ1∨2) in line 14 of Algorithm 3.

(2) Inclusion Property : If Rψ1 is included in Rψ2 , i.e., Rψ1 ⊂ Rψ2 , then
ψ1 ∨ ψ2 = ψ2. Therefore, ψ1 ∨ ψ2 is not minimal (since it builds down to
ψ2) and we can avoid computing it. Moreover, when Rψ1 = Rψ2 then ψ1 and
ψ2 partition the log identically (they produce the same views), i.e., Rψ1∨ψ2 =
Rψ1 = Rψ2 , and only one is needed to be explored. This criterion is referred to
as notInc(Rψ1, Rψ2) in line 14 of Algorithm 3.

3.3 Complexity Analysis

In the following, we analyze the complexity of the proposed correlation con-
ditions discovery approach in both worst case scenarios and also in practical
cases.

Atomic condition discovery. The time complexity for atomic condition
discovery depends on the number of attributes in the dataset and also the size of
the log. In the worst case, the time complexity is O(k2.p), in which k represents
the number of attributes in the log, and p is the time complexity of partitioning
log L into conversation for a condition ψ. This latter (p) consists of comput-
ing the set of correlated message pairs Rψ, the correlation graph Gψ(L), and
decomposing it. The worst case time complexity of computing Rψ is O(|L|2),
which is the case for comparing each message in the log L to all messages after
it. Building the graph Gψ(L) from Rψ has a complexity of O(|L|2), as well
(adding an edge for all pairs of correlated messages in the graph). Finally, the
time complexity of graph decomposition algorithm is O(|V |+ |E|), |V | and |E|
representing the number of vertices and edges in the graph. This is equivalent
to O(|L|+ |L|2) in the worst case. Summing up all these, we get the complexity
of O(k2.|L|2) for k attributes. At any given time, Rψ and its corresponding
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graph for ψ are in the memory. Therefore, the space complexity, in the worst
case, is O(|L|2). This is the case for a key-based condition that has only one
value, so each message in the log is connected to all other messages.

However, in practice, due to the definition of correlations between messages
in information systems in an enterprise, only a small part of all possible combi-
nations makes sense, effective pruning criteria and also efficient implementation
techniques, the time and space complexity are significantly smaller that the
worst case analysis. The number of attributes with repeating values in the
dataset is always much smaller than k. If this new number represented by κ,
then we have the number of possible atomic conditions, κ2/2 � k, and so k
can be used as an upper bound for candidate atomic conditions. In addition,
not all messages in a log are correlated to each other. Especially, in chain-
based correlations, each message is only correlated to one another message in
the conversation. Moreover, looking forward from each message in the log, for
correlated messages to it, allows to reduce the worst case number of correlated
pairs by half, from |L|2 to |L|2/2. The combination of these fact, and also using
database queries and indexing techniques (e.g., B-Tree in our implementation)
to compute Rψ, its time complexity in most practical cases is almost linear with
respect to the database size (see Section 5 for experimental results).

Composite conjunctive condition discovery. The time complexity of
the conjunctive condition discovery algorithm depends on the number of con-
junctive conditions, for which the respective set of conversations is computed.
Let s be number of such conditions. In the worst case, s = O(2|A|), in which A
represents the set of atomic conditions. During the computations, s conditions
are discovered, so the time complexity for computing the conjunctive conditions
is O(s.p), in which p it the time complexity of partitioning log into conversations
according to a conjunctive condition ψ1∧2. This time complexity is the same of
that for atomic conditions (see above). Therefore, in the worst case scenario,
the time complexity is O(2|A|.|L|2).

However, in practice, given the small number of conjunctive conditions in a
system, in an enterprise, compared to huge number of possible ones and also due
to pruning criteria, s can be significantly smaller than the worst case analysis
shows. In fact, in many systems, not more than few (e.g., 4) atomic conditions
are used in forming a conjunctive condition to uniquely represent conversations.
Therefore, no more than few levels (4 in this example) have to be explored. In
addition, many of the possible candidates are pruned before computing their
respective set of conversations, and many others are not even considered as
candidates as their parent conditions are pruned.

Similar to computation of atomic condition, there is one set of correlated
messages, Rψ1∧2, and its corresponding correlation graph are in the memory
at a time. Hence, the space complexity, in the worst case, is O(|L|2). Using
a similar argument as the one for atomic conditions, the space complexity, in
most cases, is significantly smaller than what the worst case scenario shows. In
fact, the space complexity is dependent on the size of the longest conversations
in a system, denoted by cmax, which is correlated using a key-based approach.
Assuming that all the other conversations are of the same length (the worst
case), then approximately there are |L|/cmax conversations in the log. In this
case, the required space is O( |L|

cmax
.cmax) = O(cmax.|L|). In most practical cases,

cmax � |L|.
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Composite disjunctive conditions discovery. The analysis of worst
case and practical case time and space complexities for disjunctive conditions
discovery is similar to those for conjunctive conditions discovery. The time com-
plexity, in the worst case scenario, is O(s.p) = (2|C|.|L|2), in which C represents
the union of the sets of atomic and conjunctive conditions discovered in previous
steps. However, in practical cases, s is significantly smaller due to extensive set
of pruning criteria applied to only keep the interesting conditions. This number
is much smaller than the possible candidates. This is validated by experiments
reported in Section 5.

4 Visual Exploration and Discovery

In this section, we first present the visualization facilities of the front-end com-
ponent of the proposed framework. As mentioned before, besides discovering
a set of interesting correlation conditions, it is important to help the user in
understanding discovered views. We next describe how the tool allows a user
to supervise the process view discovery and refine the results. More details on
the front-end is provided in Section 5.3.

4.1 Process Map

We propose the process map as a visualization metaphor for navigating the
discovered process views. A process map organizes the various process views
based on the relationships that exist between the processes (in our scenario, the
business protocols) derived from the conversations corresponding to each view.
Figure 1 shows an example of a process map for the SCM business service. A
process map consists of two visual elements: nodes (process views), and links
(relationships between them).

Process view. A node represents a discovered process view. Each node is
also associated with meta-data that provides a description of its corresponding
process view:

• Statistical meta-data: These are metrics about the log partitioning into
conversations such as the number of conversations, their minimum, aver-
age and maximum lengths (i.e., number of messages) and durations (the
time difference between the first and the last messages of a conversation);

• Condition: The correlation condition that leads to the process view;

• Correlation approach: This refers to the approach used for correlating
messages, i.e., key-based, reference-based, or a combination of these;

• Business protocol : The business protocol of a process view is discovered by
applying existing protocol discovery algorithms [25] to the conversations
of this view.

• Service list : If the WSDL interfaces corresponding to the Web services
involved in the messages of the log are known, we can list services which
their interaction is represented by the process view. This also allows to
identify the dependency between services involved in the given view [28].
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Relationships. The links between nodes in the map represent the relation-
ships that exist between their corresponding business protocols. These relation-
ships may be of the following type [6]:

• Subsumption: Protocol X is subsumed by protocol Y if the set of conver-
sations supported by protocol X is a subset of the conversations supported
by protocol Y . This relationship allows to specify if one protocol is more
specific than another (e.g., nodes 3 and 4 are subsumed by 5 in Figure 1).

• Part-of : Protocol X is part-of protocol Y if any given conversation c
of X is part-of some conversation c′ of protocol Y . A conversation c of
protocol X is part-of conversation c′ of protocol Y if messages in c appear
in the same order in c′. For instance, conversations 〈m1,m2〉 and 〈m2,m4〉
are part-of conversation 〈m1,m2,m3,m4〉. Protocols of nodes 1 and 2 in
Figure 1 are part-of the protocol of node 4. This relationship highlights
that a protocol is a part of a larger (composite) service interaction model
(see [7]).

In order to efficiently compute the relationships between protocols of views,
we leverage the computation that took place during the condition discovery
step. This aspect is very important as, otherwise, we would have to compute
protocol relationships between each pair of process views; a very computation-
ally expensive task. Earlier computations can be leveraged since a subsumption
of protocols translates into an inclusion property at the conversation set level.
During computing composite conditions from Rψ1 and Rψ2, the inclusion be-
tween these two is tested (see Section 3.2). In the disjunctive conditions discov-
ery, by default, using the trivial union criterion ensures that the subsumption
relationship is only allowed between the process views in the highest level and
immediately lower level. Otherwise, between a composite condition ψ and its
parent conditions part-of relationship exist in the process map. In fact, con-
versations corresponding to a correlation condition ψ1 are part-of conversations
built using a condition ψ1∨2. Conversely, conversations built using a condition
ψ1∧2 are part-of conversations built using ψ1. Using this approach, we can
conclude on protocol relationships at almost no cost.

Organization. We organize the process views by levels such that the high-
est level contains the largest and most generic protocols (i.e., protocols not
subsumed nor are part of any other). Correspondingly, the lower levels repre-
sent protocols that correspond to more specific and precise interactions. From
any given process view, users can navigate this map by traversing the links from
one view to its related views (e.g., when all the discovered conditions are atomic
and no relationship exist between them).

To make the job of users easier in identifying what views to visit first, we
provide a ranking method which ranks view close to user preferences –in terms
of expected average length, number, or duration of conversation–, if provided,
higher in the list. This is also helpful when there is no relationship between
protocols of discovered views.

4.2 User Driven Discovery and Refinement

There are two main reasons for allowing users to supervise the correlation dis-
covery process: (i) users can lead the search toward views that interest them,
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and (ii) although the goal in the automated approach is to minimize the risks
of false positives (i.e., the inclusion of irrelevant views) and false negatives (i.e.,
excluding an interesting view), this risk cannot be entirely avoided; there are
exceptions to the heuristics discussed in Section 3.1.1. For example, in some
applications customerID AND countryCode may be used as correlators. How-
ever, countryCode is a categorical attribute with relatively small domain and is
therefore likely to be pruned.

We allow users to supervise all steps of the discovery process, from correla-
tor attribute selection, atomic, conjunctive and disjunctive conditions discovery.
Before (resp. after) each step, the user can inspect the input (resp. output) and
corresponding views, and refine by adding/removing candidate views. This fa-
cility proved effective in practice (see Section 5). We propose two refinement
operations that allow users to instruct the tool to further explore some direc-
tions, after automated discovery is finished, or to remove unrelated results:

• AddCondition: Users can propose new conditions to be examined. This
operation allows to explore views built based on atomic, conjunctive and
disjunctive conditions. In cases, where the proposed condition is examined
and pruned during the execution of the algorithm, the reason for which
it is pruned is presented to the user to allow for decision making about
continuation of exploration.

• RemoveCondition. Users can remove a view from the map. It is possible
to cascade removal to all children or all parents of the current view.

5 Experiments

Implementation. We have implemented the proposed process views discov-
ery approach in a prototype system, called Process Spaceship. It has been
implemented as a set of Eclipse plug-ins using Java 5.0 as the programming
language and PostgreSQL 8.2 as the database management system. For the im-
plementation of the graph decomposition algorithm, we used JGraphT1 library
(release 0.7.2), which is a free Java graph library that provides mathematical
graph-theory objects and algorithms. All experiments have been performed on
a notebook machine with 2.3 GHz Duo Core CPU, and 2 GB memory.

5.1 Datasets

We carried out experiments on three datasets:
SCM. This dataset is the interaction log of a SCM business service, devel-

oped based on the supply chain management scenario provided by WS-I (the
Web Service Interoperability organization)2, for which a simplified protocol is
depicted in Figure 1 (node 5). There are eight Web services realizing this busi-
ness service. The interaction log of Web services with clients was collected using
a real-world commercial logging system for Web services, i.e., HP SOA Man-
ager3. The services in SCM scenario are implemented in Java and uses Apache
Axis as SOAP implementation engine and Apache Tomcat as Web application

1jgrapht.sourceforge.net
2http://www.ws-i.org
3http://managementsoftware.hp.com/products/soa
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Table 1: Characteristics of the datasets
Dataset SCM Robostrike PurchaseNode

service operations 14 32 26
messages in log 4,050 40,000 34,803
attributes 28 98 26

server. Table 1 shows the characteristics of this dataset. The log has 4, 050
tuples, each corresponding to an operation invocation. The protocol of SCM has
three paths, for which conversations of one path is correlated using disjunctive
conditions (the same as those of node 4 in Figure 1), the other using an atomic
condition and finally the other is correlated a conjunctive condition (the same
as those of node 1 in Figure 1). HP SOA Manager records metadata about
message exchange in 13 attributes, and we extracted 15 attributes from mes-
sages in this dataset. This dataset provide an example of a system, for which
its conversations are correlated in a chain-based method.

Robostrike. This is the interaction log of a multi-player on-line game ser-
vice called Robostrike4. Clients exchange XML messages with the service. The
log contains 40, 000 messages (Table 1). In a pre-processing step, we extracted
all the attributes of all messages to present them as a single table. The con-
version of XML schema to relational schema is a separate thread of research
by itself [21]. In our implementation, we used a simple approach for extract-
ing data elements from XML in which XML structure is ignored and only the
name of (deepest) data elements is kept (this simplification was possible in this
case since a given element name does not appear in various structures). The
XML pre-processing method is explained in Section 5.1.1. This dataset repre-
sent a system, which its conversations are correlated using a key-based approach
having very long conversations.

PurchaseNode. This process log was produced by a workflow management
system supporting a purchase order management service called PurchaseNode
(PN). The PN dataset contains 34, 803 tuples corresponding to task executions
within workflow instances (Table 1). It is private process log of a service in
which all messages are correlated using atomic conditions. This dataset was
originally organized into two tables: one for the workflow definitions and the
other for the workflow instances (execution data). The workflow definition table
defines 14 workflows using different combinations of the 26 workflow tasks. For
this experiment we joined the two tables, based on workflow identifier. By
using this dataset we also test the applicability of the approach to process logs.
This dataset is an example of a system, for which its conversations are correlated
using a key-based approach. It can be considered as typical log of single systems
in an enterprise.

5.1.1 Pre-processing Step

The main pre-processing step that is performed is processing XML messages
in service logs to extract data elements (attributes) and to prepare the relational
table that is required as the input of the algorithm. The conversion of XML
schema to relational schema is a separate thread of research [21], and we rely on

4http://www.robostrike.com
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this research for such a conversion in general. In our implementation, however,
we used two simplistic but systematic approaches for extracting data elements
from XML structure: (i) structure-ignorance naming, (ii) structure-preserving
naming. It should be noted that the risk of information loss in using any of the
above approaches exists, as XML schemas are richer than relational schemas.
This is also the main challenge that XML schema to relational schema conversion
approaches is faced.

• structure-ignorance naming : In this approach, all the structure of XML
is ignored, i.e., XML schema of each messages is flattened and only data
elements (including element attributes) are extracted and considered as an
attribute in table L. This approach is appropriate for applications that a
same element/attribute name is used with the same meaning throughout
the whole schema. For instance, the element customerID refers to the same
data element, which is the customer identifier in any place of the schema.
In this case, the corresponding name of this element is also customerID in
table L.

• structure-preserving naming : In this approach, the name of XML con-
structs is also considered as part of the attribute name. For example,
if there is a complex XML construct called Order and there is an ele-
ment of this construct called, customerID, then the corresponding name
of attribute in L is considered Order customerID, which will be treated
differently from another attribute called Invoice customerID. This method
of naming attributes is appropriate for XML schemas that do not use
the same element/attribute name for the same real-world entity or in the
cases that the naming is not complete. For example, both Order and In-
voice construct may have an element called Number. Then, it is desired
to distinguish between Order Number and Invoice Number. In our imple-
mentation, it is possible to specify how many levels of constructs to be
considered in the naming as the input of the procedure.

In reality, a combination of these approaches may be required as there is
some semantics are involved in naming of attributes that may not be able to
address properly. In our experiments, in Robostrike and also in SCM we have
used the structure-ignorance naming method, as it was an appropriate selection
considering the semantics of naming attributes. However, our approach allows
for manual editing the XML conversion as the input of the algorithm is table
L, and in general we assume that pre-processing is performed correctly.

5.2 Evaluation of the Discovery Process

Evaluation criteria. We evaluate our proposition along three dimensions: (i)
the quality of discovered views, (ii) the execution time, and (iii) the contribution
of the proposed criteria in pruning the search space.

The quality of the results is assessed using classical precision and recall met-
rics. Precision is defined as the percentage of discovered views which are actually
interesting. Recall is computed as the percentage of interesting views that have
actually been discovered. We manually selected the set of views that could be
tagged as interesting, considering a wide range of user considerations, i.e., cov-
ering all the meaningful ways by which messages of the log could be correlated
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into processes. This was performed in collaboration with dataset owners. We
ran experiments to validate the performance of the proposed approach on the
above datasets. The following highlight the main findings of these experiments.

The quality of discovered views. For dataset PN, by applying the ap-
proach for correlator attribute identification (based on criterion (A), there are
4 attributes out of 26 selected. Then, one of these attributes (nodeInstanceID,
which is the message unique identifier) also pruned based on having all unique
values in the dataset. The three remained attributes are flowInstanceId,
startT ime and endT ime attributes. The reason that startT ime and endT ime
attributes are selected is that, in this dataset, there are some tasks that were
started or finished at the same times, so these two attributes have repeated val-
ues. There are four conditions defined based on these three attributes, namely
flowInstanceId = flowInstanceId, startT ime = startT ime, endT ime =
endT ime, and startT ime = endT ime. However, by applying criterion (B),
on the number of conversations formed based using each conditions, only condi-
tion flowInstanceId = flowInstanceId remains. In fact, most of conversations
built using other conditions are of length 1 (messages are not correlated). This
results shows a recall of 100% and precision of 100%. In fact, the only discovered
condition is the only interesting correlation to discover for this dataset.

For Robostrike dataset, the recall is 90% (9 out of 10 were discovered).
One of the expected atomic conditions was not discovered. The reason is that
it corresponds to a categorical attribute that was pruned due to small number
of distinct values. There are 7 key-based atomic conditions discovered. These
correspond to views representing conversations in individual games, individual
user sessions (that include several games), and multiple sessions of a same player.
There are three conjunctive conditions discovered, each consisting of two atomic
conditions, and one of them is interesting. It corresponds to a view that identifies
individual games of each user allows to analyse the behavior of a given user in
a game. There are two disjunctive conditions discovered, each consisting of
two atomic conditions. One of them is an unexpected view that was surprising
for the dataset owners. It corresponds to a correlation of messages based on
private chat conversations among players. This view highlights the communities
of players that are talking about a given game. In total, for this dataset, the
precision was 75% (9 out of 12 were interesting).

For the SCM dataset, 9 atomic conditions are selected (after applying criterion
(A)). The attributes are customerID, quoteID, oID, invID, payID, shipID,
custID, surveyID, and rfpID. These are used to form 9 key-based atomic
conditions. The atomic condition based on customerID is used to correlate
messages in the catalogue system. Atomic conditions based on quoteID, oID,
invID, payID, shipID are used to correlate messages in the quoting, ordering,
invoice, payment, and shipment systems. There is one conjunctive condition
discovered that is formed from conjunction of customerID and surveyID. This
condition correlate messages in the customer relationship management (CRM)
system. In fact, customerID is used in two systems for correlations, i.e., the
catalogue and in the CRM systems. Although, in the latter system it is used as
part of a conjunctive condition.

Finally, there are 11 disjunctive conditions discovered. One of these condi-
tions is the disjunction of atomic conditions based on customerID, quoteID,
oID, invID, payID, and shipID. This condition corresponds to the Retailer
business service offering all purchase order management services in the enter-
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prise (see Figure 1). Another disjunctive condition, formed based on atomic
conditions on custID and rfpID, is related to the view corresponding to the
product system. The view with the highest number of conditions is formed
based on disjunction of all above conditions. This view represent the model of
interactions in the whole SCM scenario. There are 9 disjunctive conditions that
represent intermediate views in the process map. For instance, they represent
the interactions between the quoting and ordering systems, the ordering and in-
voice, invoice and payment, and so on. These results shows a recall of 100% as all
paths of the SCM protocol are characterized correctly. Evaluating the precision
depends on the goal of analysis. It can be seen as 100% as no non-interesting
views, in general, were discovered. However, if 9 intermediate views in the map
are considered as non-interesting, then the precision is 42%. In fact, the main
source for having to a low precision is the correlator attribute identification
step. It is possible in many cases that some attributes qualify the statistical
criteria, but they are not relevant for correlation, or some relevant attribute are
pruned since they do not qualify the criterion (A). Examples of non-relevant
attributes that qualify the statistical criteria, in SCM, dataset are requestSize,
responseSize (from metadata attributes provided by HP SOA Manager). If
such attributes are pruned manually, in this step, a great amount of compu-
tations is saved in the later stages. If this is done, the approach proposed for
computing composite conditions achieves a very high precision. The good news
is that identifying non-relevant attributes is easy for a user and it is facilitated
by various meta-data information provided by the tool, see Section 5.3. Based
on this, in above experiments, we have omitted above mentioned two attributes
in this step.

Execution time. Figure 7 shows the execution time of the approach on the
PurchaseNode dataset for 6 different size of the database. In this case, there is
only one atomic condition discovered. Hence, only the execution time of atomic
conditions discovery is presented. This chart allows to compare the amount of
time spent on different sub-steps, i.e., computing Rψ, Gψ, Cψ, and applying
pruning criteria (denoted by Other). It can be seen that more than 90% of
the time is spent on computing Rψ. This step is performed as an SQL query
over the database PurchaseNode, and the other steps are mainly performed in
the memory. Rψ for condition flowInstanceID = flowInstanceID takes the
longest time, among others, due to longer length of conversations. Rψ for this
condition has 48, 476 rows on the dataset with 15000 messages. The selected
attributes and discovered conditions are the same for all dataset sizes. The
time denoted by Other represent the time spent for applying pruning conditions
(here, criterion (A) and criterion (B)). This time is at the same range of that
of computing Gψ, but less than those of computing Cψ and Rψ. In general, the
time increase is nearly linear as the dataset size increases.

The overall execution time of the approach on the Robostrike dataset is
shown in Figure 8. The size of the dataset is varied from 2500 messages in
the log to 15000 messages. This chart also compares the execution time for
the three sptes, i.e., atomic, conjunctive, and disjunctive conditions discovery.
In average, 36% of time is spent on discovering atomic conditions, 20% on
conjunctive conditions, and 44% on disjunctive conditions. Figure 9 shows the
details of execution time of atomic conditions in this dataset. In average, the
shares of computing Rψ, Gψ, Cψ, and applying pruning criteria (Other) are
81%, 14%, 1.5% and 3.5% of the time, respectively. The reason that computing
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Figure 7: The execution time of the approach on the PurchaseNode dataset
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Figure 8: The execution time of the approach on the Robostrike dataset - all
steps

Rψ takes this amount of time is that atomic conditions in Robostrike are key-
based, and there are very long conversations in this dataset. For instance, the
maximum length of conversations for an atomic condition in the dataset with
15000 messages is 821 messages, and Rψ of this condition has 2, 140, 502 rows.
Having this long conversation is normal in this application, as usually during a
game many messages are communicated between the service and the application
of the player.

Figure 10 shows the details of execution time of the conjunctive conditions
discovery on this dataset for varying sizes. In this phase, in average, 48% of time
is spent on computing Rψ, 11% on computing Gψ, 1% on computing Cψ and
40% on applying pruning criteria. The reason that applying pruning criteria has
a significant share in the execution time is that applying some of criteria, e.g.,
checking for inclusion, require executing queries on the database. Note that the
correlation graph in this case is less connected and so the time for computing
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Figure 9: The execution time of the approach on the Robostrike dataset -
atomic conditions discovery
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Figure 11: The execution time of the approach on the Robostrike dataset -
disjunctive conditions discovery

connected components is small. Finally, Figure 11 shows the details of execution
time of the disjunctive conditions discovery on this dataset for various number
of messages. This chart shows that 25%, 48%, 4% and 23% of the time, in
average, are spent on computing Rψ, Gψ, Cψ, and applying pruning criteria,
respectively. It can be seen that most of the time is spent on computing the
correlation graph (the graph is built by parsing Rψ and creating an edge for
each correlated message pairs in Rψ). The reason for this significant time is that
the correlation graphs for disjunctive conditions can be significantly big (since
the set of edges of a correlated graph for a disjunctive condition is the union of
those of its parent conditions) in this dataset, given the key-based correlation
and long conversations.

As explained above, significant time of the algorithm is spent on computing
Rψ in all steps, and also on Gψ in computing disjunctive conditions. One way
to reduce this time is to use approximate approaches for computing Rψ and also
Gψ. Investigation of these optimization techniques is proposed as part of future
work (see Section 7).

Experiments shows that the discovered conditions are the same for the
datasets with 7500 messages and higher. The reason is that in the Robostrike
dataset, playing session of users typically lasts between 1 and 4 hours, that is,
about 7, 000 messages in the dataset. Hence, if we have 7, 000 or more messages,
then we have complete conversations in the log. Identifying the appropriate size
of a dataset, in which there exist complete conversations, is a domain specific
task. Our tool allows specifying either the size of the dataset to use in terms of
number of messages, or in terms of the duration (the time difference between
the first message and the last message in the selected sample of the dataset).

Table 2 shows the execution time of the approach on the SCM dataset. This
dataset represent a case, where conversations are correlated using a chain-based
approach. Hence, in this case, the execution time of the atomic conditions
discovery is small (0.859 Sec.), compared to 63 Sec. for a sample with the same
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Table 2: The execution time of the approach on the SCM dataset

Rψ Gψ Cψ Other Total

Atomic 0.562 0.016 0.031 0.25 0.859
Conjunctive 0.079 0.002 0.001 0.34 0.422
Disjunctive 0.606 0.422 0.205 1.22 2.453

size from Robostrike dataset. For this dataset, 66% of the time is spent on
computing disjunctive conditions, 11% on computing conjunctive conditions,
and 23% on computing atomic conditions.

Above shows that the proposed approach is efficient, especially, in cases
where the correlation follows a chain-based approach. The reason is that in
such cases atomic conditions have conversations of relatively small lengths. In
addition, the proposed approach is very in pruning the search space for com-
puting composite conditions. Hence, in steps for composite condition discovery,
Rψ, Gψ and Cψ are only computed for relevant conditions.

Search space pruning. As discussed above, the proposed criteria proved
effective in identifying and pruning non-interesting candidates. We analyzed
the contribution of individual criteria to the pruning for each dataset. For
the PurchaseNode dataset, only criterion (A) and criterion (B) are applied for
atomic conditions. Here, we only evaluate the criteria used for pruning the
search space for computing composite conditions. Figure 12 shows the usage of
proposed criteria in pruning the search space in discovery of conjunctive condi-
tions for Robostrike dataset. In this case, criterion (B) is responsible for 31%,
inclusion for 25%, monotonocity for 25%, and attribute definition constraints
for 18% of pruning. These numbers show that almost all criteria are equally
important for search space pruning in discovering conjunctive conditions for
this dataset. In discovery of disjunctive conditions, criterion (B) has a share
of 4%, inclusion 13%, monotonocity 50%, associativity 9% and finally trivial
union criterion 23% (see Figure 13). This shows that monotonocity and trivial
union criteria are most useful criteria for pruning the search space in discover-
ing disjunctive conditions for systems that messages are mainly correlated using
key-based conditions.

For SCM dataset, the contribution of pruning criteria in discovering conjunc-
tive conditions are as follows (see Figure 14): attribute definitions constraints
80%, monotonocity 3%, inclusion 0, and criterion (B) 17%. The fact that
attribute definition constraints palyed a significant role is consistent with the
observation that the conjunction of many of attribute cannot be defined as they
are defined for messages of different systems, e.g., for one quoting and another
for ordering system. Inclusion played no role, in this case, as the set of cor-
related messages for each condition do not have overlap, again because they
are related to different systems. Figure 15 shows the contributions of pruning
criteria in discovery of disjunctive conditions for this dataset. This shows that
trivial union accounts for 88% of pruning, associativity 9%, monotonocity 0,
finally criterion (B) 3%. The significant use of trivial union also stems from the
fact that the set of conversations in vast majarity of possible disjunction of con-
ditions is simply the union of the set of conversations of their parent conditions.
This is because such parent conditions correspond to un-related systems, so no
longer conversations can be formed. Note that the only view that is excluded
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from the trivial union criterion, in the automated disjunctive conditions discov-
ery approach, is the most top view of the process map. This view corresponds
to the view of interactions across the whole systems (see Section 3.2.3).

5.3 Experience using Process Spaceship

The Process Spaceship implements the proposed approach, and provides vi-
sual facilities to discover and refine process views. The tool can be used by a
process space administrator. This role can be taken by a process architect, who
is an actor responsible for design and management of process models in the en-
terprise. In the following, we show how Process Spaceship simplifies the job
of the process architect. As a demonstration showcase, we use the SCM dataset.

The process architect starts from the integrated event log and can operate
the tool in two modes: automated, or semi-automated. In the automated mode,
the architect can instruct the tool (using buttons in the top-left in Figure 16(a),
which shows a screenshot of the front-end of the tool) to automatically dis-
cover the set of potentially interesting process views using the heuristics. The
discovered process views are organized in a process map, similar to the one in
Figure 1.

The job of the architect is to explore the map, and to refine it by identi-
fying interesting ones, removing un-related or non-interesting views (e.g., some
middle-level views that correspond to partial views of some process), or aug-
menting process views with comments that might be useful for end-users. In the
case of SCM, the architect may start from one of the bottom level views, or the
highest view, which corresponds to the process of the whole enterprise. Then,
using the links in map, she can navigate through process views. Upon selec-
tion of a view in the map, related process views are highlighted. The zoom-in
and zoom-out operations in the map are provided by following the links, from
a given process view, downwards or upwards to access more concrete or more
abstract views, respectively.

For SCM, 7 out of 9 bottom-level views correspond to views of individual
(sub)systems, which are interesting to keep in the map. These can be quickly
identified by looking at the map, as nodes in the map are labeled with the names
of systems that they are representing. In addition, when a view is selected, the
meta-data related to it (e.g. its process model and statistical meta-data) are
displayed in the bottom-right frame. Alternatively, the architect can switch to
a process view centric view, shown in Figure 16(b), where all meta-data are
presented in a single environment. In this view, the top and bottom frames
show immediately related views (immediately higher and lower views in the
map), and their relationships with the current view. These allow to navigate
the map, while focusing on understanding a given view. To provide more insight
on a process view, top-k frequent process instances of a view are also available
(the top-right frame in Figure 16(b)).

After visiting the bottom level views, the architect may look at the highest
level view, which corresponds to the SCM view. The architect may decide to hide
the some middle level nodes, which correspond to partial views of SCM process,
e.g., showing only interactions of payment and shipping subsystems, probably
because these may not be frequently used, or to remove them if never needed
for analysis, so to keep only 10 views visible in the map. The architect can
propose new process views for consideration by the tool, if there are views that
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(a) Process Map Centric Screenshot

(b) Process View Centric Screenshot

Figure 16: Screenshots of Process Spaceship: the Process Space Discovery
System
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are not discovered. This can be done by selecting the name of a system, desired
messages or attributes that form the corresponding correlation condition.

In the semi-automated mode, the architect can supervise the process view
discovery. This is conducted in three steps including candidate attributes se-
lection, simple conditions and composite conditions discovery. We show that
the tool can capture the architect’s knowledge in terms of expected correlation
pattern (key-based or reference-based), the average number, duration or length
of process instances for various systems. This information is used to direct the
search towards desired process views. In addition, before and after each step, the
architect is provided with a set of meta-data (including statistical meta-data,
process models, and coloring schemes) that helps in making informed decisions,
e.g., to keep a condition for consideration or to remove it. This interactive
discovery and refinement allows to effectively discover interesting process views
and to avoid discovery of un-related views. Ranking of process views, according
to the user’s interests, also helps in effectively exploring the process maps.

Above facilities save considerable amount of time and efforts when compared
to what should be done without such tool support. Integrating this tool with
available process analysis and tracking tools (e.g., [18, 4, 5, 17]) also simplifies
the job of end-users since using the map and the process view centric view make
it easy to locate the desired views for subsequent analysis.

6 Related Work

To the best of our knowledge, this is the first work to propose an approach for
analyzing the logs of web service interactions by automatically discovering and
organizing models of these interactions at various levels of abstraction. The
closely related work are discussed in the following:

Functional dependencies. The problem of correlation dependency analy-
sis is related to that of discovering functional dependency. In functional depen-
dency inference [20] the problem is to identify properties of the form A → B,
where A and B are sets of attributes of the relation, that hold for all or a well
defined subset of tuples of this relation. Approximate functional dependency
relax this constraints and look for properties that hold for “most” of the tuples.
Many types of functional dependencies (e.g., nested, multivalued, join, etc.)
have been explored and algorithms have been proposed to infer them. Discov-
ering a functional dependency is interesting as it reveals an implicit constraint
over attribute values of tuples, which are not expressed in the schema. In con-
trast to dependency, correlation is not expressed over the tuples of a database
but among the tuples and at the conversation level, which is not known a priori.
In fact, there may exist valid functional dependencies between some messages,
but these dependencies do not reveal anything about the conversations that
these messages form. In fact, values of some attributes of messages may show
valid dependency, but these messages may not be part of a same conversation.

Composite key discovery. The problem of discovering (composite) keys
in relational databases [30] consists of identifying groups of attributes such that,
taken together, they identify individual tuples. While related, this problem has
important differences with respect to that of message correlation: whether a
group of attributes is or not a valid composite key can be assessed objectively
(it has to identify a unique tuple). By contrast, there are only statistical criteria
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to decide on the validity of a process view and to be efficient, an exploration
of the solution space can only be achieved by leveraging properties (such as
inclusion or monotonocity) specific to the problem of message correlation. In
addition, key-based correlation of messages into conversations is only one of
the possible types. Correlating messages using a chain-based approach into
conversations is another example (see Section 2.3.2).

Association rule mining. Association rule mining techniques identify
values that co-occur frequently in tuples of a dataset [16]. However, frequent
co-occurrence of values is not a sufficient criteria to identify all the correct
process views. For instance, in the reference-based correlation method a value
used for correlating two messages appears only twice in the entire dataset (once
for each of the two messages). In addition, while association rule mining looks
for values that co-occur in a same tuple, message correlation is concerned with
values that occur in different messages in the whole database.

Classification. Since conversations are drawn from partitioning the log,
building them could be seen as a classification problem [1] where each conversa-
tion is a distinct class. However, classification approaches assume a fixed (and
rather small) number of classes, while conversations come in unbounded and un-
known number, depending mainly on the size of the log considered. Moreover,
messages are sometimes correlated by reference to each other rather than by ref-
erence to the class (conversation), making it impossible to define a classification
function on a message-by-message basis. Moreover, classification approaches
rely on pre-classified instances to infer the classification function. In our work,
conversations to be used as training examples are not available. Note that in-
ferring the correlation conditions from a collection of conversation instances, if
available, would be an interesting and complementary problem to explore.

Clustering. One might also argue that correlation could be formulated
as a clustering problem [19]. In clustering, the relationship between members
of a cluster is typically assessed by their relative proximity according to, e.g.,
some distance measure. However, messages of a same conversation may be very
different (e.g. a purchase order and a payment message) while messages of two
distinct conversations may be very similar (e.g. two purchase orders for the
same products). In fact, two messages of a same conversation may well have
nothing in common due to the transitive nature of the correlation mechanism.
Hence, clustering approaches—as well as other similarity-based approaches such
as, e.g., record linkage [12]—could only be used provided a suitable and very ad-
hoc distance measure has first been defined. Defining this measure is equivalent
to identifying how to correlate messages, which is the purpose of this paper.
We have performed some experiments trying to address the correlation problem
as a clustering problem that supports this claim. The result of experiments is
presented in Appendix A.

Session reconstruction. Web usage mining has raised the problem of
session reconstruction [31]. A session represents all the activities of a user on a
Web site during a single visit. Identification of users is usually achieved using
cookies and IP addresses, if available, or through heuristics on the duration
and behavior of the user. By contrast, when correlating messages, we assume
that the information is present in the log, but it is buried among other irrelevant
attributes and the problem is that of discovering which attributes or combination
thereof are the useful ones.

In time-based session reconstruction, the main issue is how to decide on the
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boundaries of the session, i.e. after how much delay of inactivity would one
consider that the same IP corresponds to a different user, or to the same user
with discontinued activity. In [11], the problem of service session reconstruction
based on time-based approach is investigated. It is mentioned that unlike human
sessions in the Web, for which it is possible to specify some session boundaries,
e.g., maximum duration, it is not possible to take a similar approach for Web
services. In Web services the sessions range from very short to very long. The
proposed approach in this work to heuristically specify a session duration thresh-
old, and then evaluate the quality of the sessions based on the assumption that
the result sessions should be similar in terms of session duration, number of
services consumed in a session, the order of service consumed and the like. The
threshold is then updated until sessions with a satisfactory quality are found.
One limitation of this approach is that it only allows to discover sessions in
cases, where all the user sessions are well separated, e.g., there is no concurrent
sessions with a same service, and also when sessions are similar. These covers
a small portion of all possible cases. In addition, no experimental result of this
approach is reported. We argue that the time information by itself is not enough
and the message content also should be considered, as proposed in this paper.
In fact, these two types of information are complementary (see Section 7).

Application dependency. Correlation is often cited in the context of
dependency discovery, where the task is to identify whether some events may
depend on some others. However, correlation in that context bears a different
meaning than the one intended in this paper. It refers to a temporal depen-
dency between events where, for example, an event is a cause that triggers one
or more subsequent events. Examples of approaches in this category include
several statistical approaches to numerical time series correlation [22] or event
correlation for root cause analysis [32]. In this paper, correlation means group-
ing messages that belong to the same conversation. It is possible that events
that are identified as dependent in above approaches are not part of the same
conversations, or events related to a same conversation are not recognized as
dependent as they may occur very far from each other.

Message correlation in Web services. The need for automated ap-
proaches to message correlation in Web services has first been reported in [24]
where a real situation on how to correlate service messages is presented. Corre-
lation patterns in Web service workflows is studied in [3]. In this work, various
correlation mechanisms in Web services workflow are characterized in three cat-
egories of function-based, chain-based and aggregation functions. This catego-
rization covers the correlation mechanisms discussed in our approach, however,
no automated support for message correlation is proposed.

The need for automated approaches for correlation of service messages in
composite business applications is also raised in IBM Websphere platform [10].
This work also proposes an initial approach for discovery of correlation iden-
tifiers in messages from the log of service interactions. In this approach the
content of each message type (e.g., PurchaseOrder, or Invoice) is extracted
from messages of this type and stored in a table. Then attributes in one table
are considered with attributes in other tables (message types) in order to dis-
cover correlations between them. This is akin to discovery of atomic correlation
conditions in our approach. The end result of this approach is identifying the
correlation between message types (e.g., PurchaseOrder and Invoice message
types). In addition to the fact that our approach for messages correlation in
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Web services (found in [26]) is reported before this approach in the literature,
our approach has several important advantages compared to this approach: (i)
this approach only considers atomic conditions (corresponding to the first step
in our approach), while our approach also considers composite (conjunctive and
disjunctive) conditions; (ii) it identifies correlations between pairs of message
types, while we reason at the conversation level and use many properties of
conversation to identify interestingness of a correlation condition; (iii) we intro-
duce the notion of process views to cater for the fact that there are more than
one possible way of correlating messages into conversations, and hence discover
different correlation conditions to form conversations. A process view allows
users to find out the views that are interesting for their analysis, however, using
this approach it is not clear how messages are correlated at a conversation and
process level.

7 Conclusions and Future Work

In this paper, we have presented concepts, a framework, algorithms, as well as
a system, called Process Spaceship, for discovery of a process space, focusing
on the analysis of interactions among services captured in their interaction logs.
We have characterized the problem in terms of identifying process views that are
views over the process spaces, expressed in terms of different ways to group mes-
sages into service conversations. The main contributions and results, besides the
framing of the problem, lie in (i) the identification of correlation conditions for
service execution data, (ii) the presentation of an efficient and viable approach
for the discovery of process views by adopting a level-wise approach, and (iii)
the organization of process views into a process map, labeled and structured in
terms of the conversations and models implied by the correlations associated to
each node in the map. Based on this framework and the Process Spaceship
implementation, we can look at a set of logs, identify process views, and users
can choose the ones that are appropriate to the kind of analysis that is desired,
at different levels of abstraction.

Research in the area of process spaces is just starting, and this paper is a first
step in the direction of realizing a process space management system for Web
applications, to allow the analysis of interactions and business process execution
data in an enterprise. Further steps needed in this direction involve providing a
query mechanisms and system for performing OLAP process analysis over het-
erogeneous and distributed data (relational data, XML, MS Word documents,
and so on), and a monitoring system that allows real-time tracking of executions
at different abstraction levels based on the correlation perspectives. In particu-
lar, the process space discovery framework can be extended in many directions.
These extensions make it possible to adapt it in various contexts. We highlight
below some future research directions:

Condition language. A lot of work has been done in the record linkage com-
munity to uncover relationships among seemingly separate entities. Users might
be interested in discovering non-trivial correlation properties within collections
of data. The condition language used in this article is one of the basic and can
be extended in several directions to handle various situations. For instance, the
equality between values can be replaced by a similarity function. Such condi-
tions would replace the current graph structure with a weighted graph and the
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problem of identifying connected components is replaced by that of identify-
ing strongly connected components, i.e. components such that the aggregate of
their relationship weights is above some threshold.

Time constraints on correlation conditions. Discovering condition patterns
based on the values of a time attribute is the subject of future work. One
might need to define some functions over the time attributes of messages in
order to create log partitions. This way, messages that share the same values
of the attribute but are very far apart in terms of time (e.g., larger than a
user provided threshold or a threshold discovered from the body of messages)
cannot to be considered members of the same partition. Finally, one could also
consider the partitioning of a log as a post-processing step, where messages of
each partition have a time difference larger than the average time difference of
the messages across all partitions of the log.

Extension to heterogeneous data. We performed the analysis on service logs,
but the same concepts with variations can be applied to generic process exe-
cution data from heterogeneous data sources such as emails, Word documents,
text documents, etc. The next step in our research consists therefore in identi-
fying a methodology and in developing tools for pre-processing enterprise data
so that it can be fed to the algorithms discussed here.

Optimization and approximation techniques. The approach for computing
the set of correlated message pairs (Rψ) is to include all pairs of correlated
messages in Rψ. For long conversations that are correlated using a key-based
approach, Rψ becomes large (if cmax is the size of the longest conversation,
then the size of correlated message pair only for this conversation is (cmax)2).
However, in some cases, it is possible to devise some optimization techniques to
do not include all the correlated message pair to compute Gψ(L). For instance,
assume that we have Rψ = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (5, 6)}. In
this case, Cψ(L) = {〈1, 2, 3, 4〉, 〈5, 6〉}. In fact, to compute Cψ(L) it is suffi-
cient to have Rψ = {(1, 2), (1, 3), (1, 4), (5, 6)}, and not including pairs (2, 3),
(2, 4), (3, 4) does not change the results due to transitivity relationships between
message pairs. In some other cases it may be appropriate to use approximate
approaches instead of exact approaches proposed in this paper. This may in-
clude using a smaller sample of dataset to estimate the number of conversations,
but not to actually compute them. Devising and applying such techniques may
reduce both time and space complexity of computing graph Gψ(L).
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A Correlation Problem as a Clustering Problem

In this section, we present some of our results when we tackle the correlation
problem as a clustering problem. In performing clustering according to the
traditional way, our goal is to group together conversation messages, which
are deemed very similar and separate the dissimilar ones in different clusters.
This is sometimes called horizontal clustering. Driven by a similarity measure
the clustering algorithm places together those messages that reveal maximum
similarity.

In our problem, we performed horizontal clustering on the Retailer (a
variation of SCM, which its conversations are correlated using key-based ap-
proach based on attributes requestID and responseID) and Robostrike data
sets, using the Simple K-means algorithm of the WEKA Data Mining tool
(see http://www.cs.waikato.ac.nz/ml/weka/), letting the algorithm automati-
cally decide what is the proper number of cluster in this data set. Note that
in the domain of service logs, a cluster correspond to a conversation and, thus,
these terms can be used interchangeably. The results showed two things:

• The coherence within the clusters was very large, which is a good indica-
tion that WEKA produced good quality clusters.

• There is a big discrepancy between the number of clusters produced by
WEKA and those that correspond to real conversations in the data sets.

Looking at the second observation a bit more in details reveals that there
is a high overlap among the values of certain attributes in messages of different
conversations. This fact alone drives the clustering algorithm to produce much
fewer clusters than conversations. In addition, these groups do not necessarily
correspond to actual conversations, but e.g., all messages with similar contents
are grouped together. Hence, our initial argument that clustering reveals a par-
ticular type of conversation that is not potentially useful for message correlation
is confirmed.
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Figure 17: Dendrogram for Retailer dataset
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In recent work [2], it has been shown how a categorical clustering algorithm
can be used to (a) group the values of a relation such that ones with higher
degrees of redundancy in the tuples are placed together, and (b) group the
attributes of a relation such that these attributes contain more naturally co-
occurring values or, simply, ones with higher degrees of correlation. This type
of clustering is sometimes called vertical clustering.

This technique is based on information theory and is highly applicable to
attributes with categorical values, something that is in accordance with our
heuristic assumptions. The final result is a so-called dendrogram that offers a
hierarchical representation of the attribute groupings according to the redun-
dancy in their values. Hence, initially each attribute forms its own group. As
redundancy is calculated within the attributes, attribute groups start forming
by placing together attributes with the highest amount of redundancy. Group-
ings (or merges) that take place closer to the leaf level of the dendrogam contain
very good candidates for (simple) key-based correlators. These will be correla-
tors based on natural co-occurrence of values, e.g., the same customer appearing
in the same order over a number of messages.

However, this is only one type of correlation. Our vertical clustering cannot
reveal hints on more complex correlation patterns, e.g., reference-based corre-
lation, in which correlator attributes may change from one set of messages to
another in a same conversation.

To evaluate the effectiveness of this approach on a key-based correlation
scenario, we applied it on the Retailer dataset. The result is given in the den-
drogram of Figure 17. In this figure, we observe that attributes whose values
naturally co-occur get merged closer to the leaf nodes. For example, requestID
and responseID that are key attributes for this dataset are merged together.
However, in case of composite key-based rules it is not clear how to derive them
from this output.
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