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Abstract

The core of scientific theories are laws. These laws often make use of theoretical
terms, linguistic entities which do not directly refer to observables. There is therefore
no direct way of determining which theoretical assertions are true. This suggests that
multiple theories may exist which are incompatible with one another but compatible
with all possible observations. Since such theories make the same empirical claims,
empirical tests cannot be used to differentiate or rank such theories. One property that
has been suggested for evaluating rival theories is coherence. This was investigated
qualitatively until we [Kwok, et.al. 98] introduced a coherence measure based on the
average use of formulas in support sets for observations. Our idea was to identify
highly coherent theories with those whose formulas that are tightly coupled to account
for observations, while low coherence theories contain many disjointed and isolated
statements. The present paper generalizes it to accommodate fundamental intuitions
from the philosophy of science and better mirrors scientific practice. Moreover, this
new approach is neutral with respect to the philosophy and practice of science, and is
able to explain notions like modularization using coherence.



1 Introduction
Scientific theories evidently comprise laws that use vocabularies that contain terms
which on the one hand refer to observations, and on the other refer to postulated entities
that are not directly observable. This is the case for both the traditional “hard” sciences
like physics and biology, and the modern “soft” sciences like economics and sociol-
ogy. The first category of terms are observational, and the second category are theo-
retical. In genetics DNA is observational while gene is theoretical; in thermodynamics,
temperature is observational but entropy is theoretical. In economics interest rate is
observational while risk is theoretical; and in psychology IQ score is observational
and intelligence is theoretical. However, philosophers [Sellars 88, van Fraassen 80]
have strong misgivings about sharp distinctions between theoretical and observational
terms. Indeed, among their many reasons for this is the one that has some histori-
cal justification. A number of entities that were once considered theoretical became
observational with the advance of instrumentation, e.g. electron microscopy and radio
telescopy. Nevertheless, it is pragmatically useful to distinguish these two categories as
a way to compare alternative theories, albeit relative to a particular phase of scientific
development. The formalism we propose here is flexible enough to permit arbitrary
division of scientific terms into theoretical and observational components, and there-
fore can accommodate at least part of the philosophers’ concerns while respecting the
practical choices of working scientists and engineers. It can also be used to classify the
different emphases of deduction, prediction, and abduction.

One justification for theoretical terms in scientific laws is that such terms provide
increased coherence for the theories. While coherence is interpreted diversely by dif-
ferent researchers, there is some consensus about how to compare two theories for their
degree of coherence. Here are some of the desired informal properties of coherence. If
T1 and T2 are two empirically equivalent theories1, T1 is more coherent than T2 if,
in accounting for the observations, (i) the formulas in T1 “work together better” than
those in T2, or (ii) the formulas in T1 “couple tighter” than in T2, or (iii) the formulas
in T1 are “more useful” than in T2. One of the most persuasive advocates for such
properties is Bonjour [Bonjour 85]. We [Kwok, et.al. 98] used these informal proper-
ties as the basis of a quantitative approach to measuring the coherence of a theory. As
we will be providing a critique of, and an improvement on our earlier approach, we will
simply say here that it identified highly coherent theories with those whose formulas
occur frequently in supporting observations; thus, we may paraphrase that approach as
“coherence = high average use”.

The structure of the paper is as follows. In section 2 we outline some traditional
arguments against theoretical terms. Section 3 has an example of how one might show
that a theoretical term is needed. Support sets are introduced in section 4; there we
also critique our earlier definitions in Kwok et.al. (op.cit.). Section 5 defines utility
and coherence, and section 6 applies these to some well-known examples. The con-
cluding section 7 summarizes the main points, exposes limitations and suggest further
developments of this approach. While most of the formal claims and propostions are
quite straightforward, we supply in-line proofs of some of them; however we include
an appendix that contains proofs of the less obvious ones.

1This means they account for the same set of observations.
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2 Science without Theoretical Terms?
Historically, there were two disturbing formal arguments for the possible elimination
of theoretical terms from scientific laws. They were predicated on certain formulations
of theories, respectively by Ramsey [Ramsey 31] and by Craig [Craig 53]. However,
one should be careful not to attribute to them the arguments against theoretical terms as
they did not use their formulations in that way. We will briefly review these arguments
as our approach to coherence will be used later to examine them in some detail.

Ramsey’s method for eliminating theoretical terms is related to Russell’s [Russell 56]
notion of definite descriptions. Russell desired to provide semantics for terms that do
not refer, as in his classic example sentence “The present king of France is bald”, where
the noun phrase has no contemporary referent. He proposed a formalization of the sen-
tence in logic using existential quantifiers, as in ∃X King(X) together with (sub)
formulas which express those other properties of X . Hence, if one regards the “The
present king of France” as a theoretical term, the overall formula has eliminated any
direct use of it. This is the intuition behind Ramsification, but Ramsey took it further to
also encode the role of the theoretical term. It eliminates a theoretical term t by using
an existential quantifier over a variable V together with other (sub) formulas ∆ in such
a way that any instantiation for V is unique, and moreover ∆ identifies the role of this
instantiation with that of t.

Craig’s method1, on the other hand, allegedly shows that it is never necessary to
use theoretical terms.

Craig’s Theorem: Let T be a recursively enumerable theory. Then T has a recur-
sive axiomatization using the language of T .2

The alleged (not by Craig!) application of this to the elimination of theoretical terms
is as follows. Intepret T as simply all the possibile observation sentences O1, O2, . . .,
which are intuitively recursively enumerable. Then there is a recursive axiomatization
B using only these sentences from which every Oi can be derived. Hence B is a theory
for O1, O2, . . . without theoretical terms.

We recall the proof of Craig’s theorem because we need it for our later exposition
of coherence.

Proof of Craig’s Theorem:
From the sequence O1, O2, . . ., form the set B = {O1, O2∧O2, . . . , Oi ∧Oi ∧ . . . ∧Oi︸ ︷︷ ︸

i copies

, . . .}.

Then B |= On for each n. Further, if B |= β, where β is any logical combination
of observation sentences, then β is equivalent to a conjunction of some of O1, O2, . . ..

Moreover, B is recursive. For, given α, to see if it is in B, do the following. If α is
not in the form A ∧A . . . ∧A︸ ︷︷ ︸

k copies

, reject it. If it is, then begin the enumeration O1, O2, . . .,

and look for Ok. If A is Ok, accept α, else reject it.
There were cogent rebuttals against the (mis?) interpretation of this theorem as an

effective abolition of theoretical terms, e.g., that in scientific practice the set of observa-
tions is never completed, and that this is intimately related to the notion of precdictive
power of B which is not addressed. We will add to the extant objections our notion of
coherence. It will be argued below that both Ramsification and Craig’s theorem, when

1This has some notoriety, and is therefore sometimes nicknamed Craig’s Trick.
2The reverse implication is often posed as an easy exercise in dovetailing arguments in begining logic.
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interpreted as attempts to abolish theoretical terms, fail to produce coherent theories.
The merit in using coherence is that it is quantitative and specific.

3 Theoretical Terms and Predicate Invention
Predicate invention in machine learning is a practical example of a vocabulary ex-
pansion to bring in theoretical terms in knowledge representation. Its literature is ex-
tensive, but the various approaches are typified by those of Muggleton and Buntine
[Muggleton and Buntine 88], Benerji [Banerji 92], and Quinlan [Quinlan 93]. Care-
ful analysis of the philosophical assumptions of such invention was made by Stahl
[Stahl 93] in his overview.

Sometimes the need for such an invention can be formally demonstrated, for in-
stance when it can be shown that there is no finite basis (i.e. no finite axiomatization)
for a theory T . In such a case, when T is recursively enumerable, a well-known result
of Kleene [Kleene 52] is that if the language of T can be expanded by adding new pred-
icates, a finite basis can always be found. The catch in Kleene’s technique is that these
new predicates usually do not have any “ontological significance” beyond encoding
the requisites for recursive enumeration, thus failing some fundamental requirements
of plausibility enunciated by Stahl (op. cit.).

A more mundane example that appeals to the notion of “experimentation” rather
than non-finite axiomatizability is a rudimentary blocks world setting in which the
explicit vocabulary has only one binary predicate On( , ) with arguments the names
of the blocks or the table on which they rest. The only constraint is that no block can
be in two distinct places. Figure 3.1 represents block configurations consistent with
the (partial) theory T = {On(A,B), On(A,C), On(B, Table), On(C, Table), . . .}.
Intuitively, we know that these two configurations “expand” T in different ways, say
T1 for the left and T2 for the right; but how can we show that this expansion needs an
extended vocabulary? Imagine an action which removes block B from the table; the
naive physics of the domain would result in block A remaining on block C in the left
configuration, but block A would topple on to the table in the right configuration. While
there are many ways to represent actions in logic, to keep things simple we consider a
STRIPS-like [Fikes and Nilsson 71] representation using the contraction operation of
the AGM theory of belief revision [Gardenfors 88]. The relevant postulates for AGM
contraction are shown as equations 5.1, 5.2 and 5.3 in section 5. Then the result of the
action on the left configuration is T1′ = T1− {On(B, Table} and that on the right is
T2′ = T2−{On(B, Table}. But experimentally we know that On(A,C) ∈ T1′ while
On(A, Table) ∈ T2′, and hence T1′ ∪ T2′ is inconsistent as it violates the constraint.
Moreover from the first AGM postulate (op. cit.) for contraction (viz. equation 5.1,
(Γ − α) ⊆ Γ for any theory Γ and any proposition α), this implies that T1 ∪ T2 was
already inconsistent. Then by the Robinson consistency test (see e.g., [Hodges 97]),
there is a formula β such that T1 |= β and T2 |= ¬β. This implicit β is the expansion
to T which separates T1 and T2. If we assume that the only predicate that captures the
informal notion of “where is a block” is On( , ), then β must involve a new predicate1

1Intuitively we know in this simple domain what it must minimally involve, viz., the “support” relation,
or equivalently the “skew” property of block placement.
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Figure 3.1: The need for a theoretical predicate

4 Support Sets
We now proceed to formalize the notion of coherence. Earlier, we [Kwok, et.al. 98]
proposed a way of doing this which attempted to quantify the informal notions men-
tioned in section 1. Here we retain the general idea of measuring coherence us-
ing an averaging technique, but we significantly change what is to be averaged. In
[Kwok, et.al. 98] it is the formulas in a theory that account for an observation set that
is considered. Here however, we adopt a perspective that is closer to scientific practice.

A simple example will illustrate our view of this practice. The Newtonian equation
F = MA can be regarded as a (general) law that, when given as particulars an input
force f and an input mass m will produce the output acceleration a. We can choose
to regard all of these quantities as observational terms, and the law as a generalization.
The use of “input” and “output” does not connote directionality, but merely our choice
of which observation terms are used to derive others; in the example above we could
have interchanged the roles of force and acceleration. In fact we could go further and
posit as an alternative input set f and a, and use the equation to infer m as output.

The formal setting will be a propositional language with later forays into a first-
order extension. Thus, we consider a logical language L(T ) of (a scientific) theory T
that has two parts: L(T )o, the observational vocabulary, and L(T )t, the theoretical vo-
cabulary. By the terms of these vocabularies we will mean their propostional (or predi-
cate) symbols. To re-iterate the distinction made earlier, observational terms are meant
to denote entities that can be seen directly, while theoretical terms refer to entities that
are only postulated and whose values (truth, etc) may be infered or hypothesized1 By
a theory T we will usually mean a set of formulas and not their logical closure. There-
fore, the alternative use of “theory” to signify a logically closed set will correspond
to Cn(T ) in our notation, where Cn is the logical consequence operator2. As sug-
gested by our example above, two subsets I and O of formulas denote respectively the
inputs and outputs of an experimental setting. While we place no restriction on their
sub-languages, I will be used as inputs to T and O will be the logical consequences
thereof. In predictive uses of T , the set I would comprise mainly observational terms
and some hypothesized theoretical terms; the output O will be observational terms to
be verified. In abductive uses of T , I will be observational and used with T to produce
O which may be partly observational and partly theoretical (i.e. inferring unobserv-
able values). In engineering designs (e.g., band-pass filters) T is circuit theory, I is
the performance specification (observables), and O will be the component values (also
observables). Other experimental settings can be similarly modelled.

Definition 1 (Supports for Observations) Given an input set I and and output set O,
a subset Γ of T is a I-relative support for a set O of observations if

1Any discomfort with this distinction confirms the misgivings of van Fraassen (op.cit.) and Sellars
(op.cit.); clearly the boundary is at least technology dependent.

2T is a base or basis for Cn(T ).
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1. Γ accounts for O, i.e., Γ ∪ I |= Oi for each Oi ∈ O;

2. Γ is minimal, i.e, for no ∆ ⊂ Γ does ∆ account for O.

Let S(T, I, O) denote the family of all I-relative supports for O.

This definition differs from our previous one in [Kwok, et.al. 98] in the relativisa-
tion here of the notion of support to the input set I . We believe that this accords with
the ordinary use of scientific laws, e.g, by interpreting I as initial or boundary condi-
tions, hypothetical values, measurements, etc., and O with predictions, confirmations,
etc., using the laws in T . Thus, different choices of which observations are to be used
as starting points will result in different support sets. As limiting cases of the defini-
tion, consider the following. If the experimental situation is trivialised by letting I be
identical to O (informally, no theory is necessary), then S(T, I, O) is the singleton set
{∅}. If I is empty, then S(T, ∅, O) comprises the different economical ways in which
T alone can be used to account for O, a kind of oracle. In this way the coherence ap-
proach developed here is independent of any commitment to causality or particular use
of laws (or rules). Happily, this generalization (and its later ramifications)of support
sets preserves most of the results in our earlier paper with only minor modifications,
while suggesting novel directions and interpretations.

Observation 1 (Abbreviating S(T, I, O) to S(T,O)) In any context where there is a
fixed input set I it can be omitted in most discussion, and we can then abbreviate
S(T, I, O) to simply S(T,O), and likewise C(T, I, O) to C(T,O) when this does not
cause confusion.

Observation 2 The set O of (some) of the observational consequences of (base) T
therefore need not appear explicitly in T . On the other hand, support sets may some-
times also contain terms from L(T )o, as these may be explicitly in T and support other
observation terms (with the assistance of theoretical terms).

The support relation, or notions similar to it, occur in many AI areas like diagnoses
[Reiter 87], argumentation [Dung 95] and abduction [Denecker and Kakas 02], an un-
surprising fact since they each formalize a version of the “account for (fault, conclu-
sion, explanation)” idea in their respective domains. However, definition 1 differs from
theirs in making the I-O pair explicit; moreover, we use the support sets S(T, I, O)
combinatorially by counting the occurrence of certain formulas in them. To keep the
counting honest we will need the following assumption.

Assumption 1 (Clausal Basis Assumption) All bases of theories are clauses.

The reason for this is as follows. The single formula α∧β∧γ is logically equivalent
to the separate formulas α, β and γ. Hence, any finite basis is logically equivalent to
a single formula. So if we wish to count the number of formulas in (the basis of) a
theory, unless we split conjuncts, no sensible counting can be made.

Despite the simplicity of definition, support sets have interesting properties. Some
of them, which easily follow from the definition and compactness, are:

Lemma 1 (Some Properties of S(T,I,O)) Fix observation sets I and O, and let T1 ⊆
T2 be theories.

1. Monotonicity in T: S(T1, I, O) ⊆ S(T2, I, O)
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2. T1 ∪ I |= O iff ∃ Γ ⊆ T1 such that Γ ∈ S(T2, I, O).

Fix observation set I and theory T . Let O1 ⊆ O2 be observation sets. Then for every
Γ2 ∈ S(T, I, O2) there is a Γ1 ∈ S(T, I, O1) such that Γ1 ⊆ Γ2.
Fix observation set O and theory T . Let I1 ⊆ I2 be observation sets. Then for every
Γ1 ∈ S(T, I1, O) there is a Γ2 ∈ S(T, , I2, O) such that Γ2 ⊆ Γ1.

S(T, I, O) is not always as well-behaved as we might hope, as shown by the next
observation.

Observation 3 Suppose Γ1 ∈ S(T, I, O1) and O1 ⊆ O2. Let ∆ be a minimal addition
to Γ1 such that Γ1 ∪∆ ∪ I |= O2.

In general, it is not the case that Γ1 ∪ ∆ ∈ S(T, I, O2). The reason is that there
may be a proper subset Γ ⊂ Γ1 such that Γ ∪∆ ∪ I |= O2.

This is the case when ∆ ∪ Γ ∪ I |= α for some α in Γ1\Γ.

5 Utility and Coherence
Within the support sets in S(T, I, O), some formulas (typically, laws or rules) may
occur more often than others. These formulas are more frequently used in accounting
for O (relative to I), and hence we can ascribe to them a higher “value”. A way to
measure this value is provided by the notion of utility which is defined in the next
subsection. A quantification of coherence is then based on utility.

5.1 Basic Definitions and Properties
In this subsection we will define utility and use it to measure the coherence of a theory.
Equivalent definitions of coherence are also given.

Definition 2 (Utility of a Formula) The Utility of a formula α in a theory T with re-
spect to an I-relative observation set O is:

U(α, T, I,O) =
| {Γ : α ∈ Γ and Γ ∈ S(T, I, O)} |

| S(T, I, O) |
if S(T, I, O) 6= ∅

Informally, this is the relative frequency of occurence of α in the support sets for
O. When S(T, I, O) is empty, as it stands above U(α, T, I,O) is undefined. However,
to avoid the inconvenience of isolating this case whenever utility is used, we define it
to be 0 whenever S(T, I, O) is empty. This is not altogether arbitrary; in fact it accords
with the relative frequency intuition — if there are no support sets for O, then α is not
used in any support set.

As 0 ≤ U(α, T, I,O) ≤ 1, the closer it gets to 1 the “more essential” it is. It is 0 if
and only if it is irrelevant to the support of O. It is 1 if and only if it is indispensible to
the support of O. The latter property is useful enough to record as:

Observation 4 U(α, T, I,O) = 1 if and only if α ∈ Γ for every Γ ∈ S(T, I, O).

Utility provides a way to realize the informal property of coherence mentioned in
section 1, viz., that theories in which the (law-like) formulas are “more useful” are
more coherent. We explain this by considering the AGM theory of belief revision
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[Gardenfors 88] in which one of the operations is contraction. Given a theory T , con-
tracting a formula α from it should result in a minimally changed theory denoted by
T −α1. The essential properties of the contraction operation that we need are captured
by the three AGM postulates:

(T − α) ⊆ T (5.1)

α 6∈ (T − α) (5.2)

T ⊆ Cn[(T − α) ∪ α] (5.3)

In the following proposition Γ|o denotes the projection of Γ onto its observational
terms.

Proposition 1 For a finite base T and observation set O in which each observation
has a unique support set:
Cn(T − α)|o ⊆ Cn(T − β)|o ⇒ U(α, T, I,O) ≥ U(β, T, I,O)

This accords with the intuition that if removing a formula α damages a theory
more than removing a formula β, then α is “more useful” than β. The condition of
unique support sets is a limiting case; less restrictive cases require subtle combinatorial
analysis to establish similar results. Without some restrictions, the proposition fails,
e.g., when the O-observations that β “covers” overlap extensively while those for α do
not.

The coherence definition that follows is similar to Kwok, et.al.’s (op.cit), but again
relativised to input observations.

Definition 3 (Coherence of a Theory) Let T be a finite theory {α1, . . . , αn}, I a set
of (input) observations, and O a finite sequence of (output) observations {O1, . . . , Om}.
The I-relative coherence of T with respect to O is:

C(T, I, O) =
1

mn

n∑
i=1

m∑
j=1

U(αi, T, I, Oj)

Informally, coherence is the average utility of the elements of T in supporting some
observations with the help of others. The inputs do not figure directly in the counting
because it is the internal laws (or rules) of T that we are assessing for how the outputs
are supported. In a sense, the inputs are “free”. This in fact accords with scientific and
engineering practice where inputs like boundary conditions or design specifications are
assumed to be given. The inadequacy of our earlier Kwok, et.al. (op.cit.) definition to
allow for the notion of “input” prevented us from applying a potentially fruitful idea to
the “good swan fix” example below, and to explaining modularity of theories.

The finiteness assumptions are not essential as the definition (and subsequent re-
sults) can be generalized to countable sets using measure theory; however the techni-
calities of such a generalization may obscure the simplicity of our approach.

Proposition 2
0 ≤ C(T, I, O) ≤ 1 (5.4)

C(T, I, O) = 1 ↔ ∀i∀j U(αi, T, I, Oj) = 1 (5.5)

1To satisfy postulate 5.2 more than just α may be removed from T if it has formulas that have α as a
logical consequence. To ensure minimal removal is the function of postulate 5.3
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Corollary 1 C(T, I, O) = 1 iff S(T, I, Oj) = {T} for all j.

That is, a maximally coherent theory is one in which the unique I-relative sup-
port set for O is the entire theory. Examples of such theories are the programs which
are used to define the Kolmogorov complexity [Li and Vitanyi 97] of recursively enu-
merable sequences. One translation into our formalism is as follows. The recursively
enumerable sequence is the output observation set O; the program Π is encoded into
logic prgramming clauses CΠ; the input set I is empty. Then by the definition of Kol-
mogorov complexity, every clause in CΠ is needed to produce (or recognize) O. An
alternative translation is to let I be the set of natural numbers, in which case O is the
sequential enumeration of the sequence. This leads to a natural question: if a theory T
has formulas that are redundant with respect to the I-O pair, what happens to its coher-
ence if the redundant formulas are removed? We address this in the next subsection.

There are alternative (and equivalent) ways to view theory coherence. Here is a
useful one which shows that coherence can also be regarded as the average over all
observations of the average size of support sets. The same setting as in 3 is assumed.

Proposition 3

C(T, I, O) =
1

mn

m∑
j=1

1
| S(T, I, Oj) |

∑
Γ∈S(T,I,Oj)

| Γ |

This interpretation of coherence can be thought of as a realization of the idea in
section 1 that one of its features is that the laws “work better together”. In this sense,
a theory with small coherence, and therefore small average support set, is more “dis-
connected”. We shall see examples of this interpretation later. A limiting case of
propostion 3 is when the observation set is a singleton:

Corollary 2 Let T = {α1, α2, ..., αn} be a theory and let O = (O1) contain only one
observation set. Then,

C(T, I, O) =
1
n

1
| S(T, I, O1) |

∑
Γ∈S(T,I,O1)

| Γ |

A consequence of proposition 3 is that there is a lower bound for the coherence of a
theory if it is not 0. The size of non trivial support sets must be at least 1. This implies
that the average size of support sets must be at least 1. Normalising this by the size of
the theory shows that the lower bound on coherence is the inverse of the cardinality of
the theory.

Lemma 2 Let T = {α1, α2, ..., αn} be a theory and let ~O = (O1, O2, ..., Om) be a
finite sequence of observation sets. Suppose that S(T, I, Oj) 6= {∅} for every j, 1 ≤
j ≤ m. Then, C(T, I, O) ≥ 1

n .

Consider a finite sequence O = (O1, O2, . . . , On) of observation sets. Suppose that
each observation set Oj in O contains a single formula αj . Let T = {α1, α2, . . . , αn},
a theory which merely records observations. If it is the case that no observation set in
O is entailed by the other observation sets, then C(T, I, O) = 1

n . The reason for this
is that T contains only one support set for each observation set Oj , viz. {αj}. Thus,
a theory which merely records observations has minimal positive coherence. We will
revisit this later in a related setting when Craig’s Trick is re-examined.
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5.2 Redundancy
Intuitively, redundant formulas are those that are not needed in a theory because they
can be generated from other formulas.

Definition 4 Let T be a theory. Say that α ∈ T is redundant if and only if
Cn(T \ {α})|O = Cn(T )|O. Furthermore, say that T has redundancy if and only if
there exists α ∈ T such that α is redundant in T .

This notion of redundancy can be expressed in terms of the utility of theory ele-
ments and the observational consequences of the theory. An easy consequence is that
an element of a theory is redundant if and only if the utility of the theory element is
less than 1 for every observational consequence of the theory.

Lemma 3 Let T be a theory. T has redundancy if and only if for some α ∈ T and for
every γ ∈ O, U(α, T, I, {γ}) < 1.

The relationship between the coherence of subsets of a theory and the coherence
of the theory itself can be established by showing how the removal of elements from
a theory alters the set of supports for arbitrary observation sets. It should be clear that
the support sets for a theory without a given element are simply the support sets of the
original theory which do not contain that element. This is recorded as the next lemma,
which is also depicted as figure 5.1.

Lemma 4 Let T be a theory, O an observation set, and let α be an element of T . Then
S(T \ {α}, I, O) = {Γ | Γ ∈ S(T, I, O) and α 6∈ Γ}.

α

S(T, O)

Supports not containing 

Supports containing = S(T \ { }, O)αα

Figure 5.1: Support sets after removing an element

‘A consequence of this is that elements of a theory which have zero utility, relative
to certain observation sets, can be removed to increase the coherence of the theory rel-
ative to those observation sets. An element of a theory which has a utility of 0 does
not appear in any support set. Hence, by lemma 4 the support sets for the contracted
theory are exactly the support sets of the original theory. The gain in coherence comes
from the decrease in the size of the theory (the average size of the support sets remains
unchanged). Examples of theory elements which have zero utility include formulas
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containing only theoretical terms that are unnecessary for deriving observational con-
sequences. When such formulas are used to generate incompatible but empirically
equivalent theories, propostion 4 shows that they can be safely removed to increase
coherence. This means that coherence can be used to handle certain simple cases of
underdetermined theories.

Proposition 4 Consider a finite base T and input-output, I = (I1, I2, . . . , Im) a se-
quence of (input) observations and O = (O1, O2, . . . , On) a sequence of (output)
observations for which each (Ij , Oj) pair has a unique support set. If T contains re-
dundancy (i.e., for some α ∈ T , Cn(T ) = Cn(T \ {α})) then, for some β ∈ T ,
U(β, T, Ij , Oj) = 0 for all j and C(T \ {β}, I, O) = n

n−1C(T, I, O).

A sufficient condition for the existence of a theory element with zero utility is that
the theory contains redundancy and that, for the observation sets under consideration,
the set of supports of the theory for each observation set is a singleton. Such a re-
striction is quite strong and it may be expected that theories often contain a number of
minimal proofs for consequences.

Lemma 5 Let T be a theory and = (O1, O2, ..., Om) be a finite sequence of observa-
tion sets. If T has redundancy and for every j, 1 ≤ j ≤ m, | S(T, I, Oj) | = 1, then
there exists α ∈ T such that U(α, T, I,O) = 0.

It would seem intuitive that removing redundant formulae should increase the co-
herence of a theory. However, the removal of redundant elements from a theory can,
in fact, decrease the coherence of a theory. This is because redundant elements can be
part of relatively large support sets for an observation set. For example, consider the
following theory and observation set:

T = {a,¬c ∨ b, c}
O = {a ∨ b}

The two support sets of T for O are {a} and {¬c ∨ b, c}. The utility of all three
elements in the theory is 1

2 . If c is removed, the utility of ¬c ∨ b would fall to 0 while
the utility of a would increase to 1 because the only support set of T \ {c} is {a}.
However, at the extreme values of utility, 0 and 1, removal of theory elements leaves
the utility unchanged.

Lemma 6 Let T be a theory and O an observation set. Suppose α, β ∈ T and α 6= β.
If U(α, T, I,O) = 0, then U(α, T \ {β}, I, O) = 0. Also, if U(α, T, I,O) = 1 and
U(β, T, I,O) < 1, then U(α, T \ {β}, I, O) = 1.

Another result about the utility of theory elements is that the existence of an element
with a utility lying strictly between 0 and 1 is sufficient to guarantee the existence of
another distinct element of the theory with a utility which is also strictly between 0 and
1. This suggests that theories may contain elements which can be removed to increase
the coherence of a theory.

Lemma 7 Let T be a theory and O an observation set. Suppose α ∈ T and 0 <
U(α, T, I,O) < 1 then there exists a β ∈ T, α 6= β such that 0 < U(β, T, I,O) < 1.

The coherence of two theories, with one theory being generated from the other by
removing elements, can be related to each other. By Lemma 4, the support sets of the
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truncated theory are simply the support sets of the original theory which do not contain
any of the removed elements. Recall that S(T, I, O) is the set of support sets for a
theory T and an observation set O, given input I . This notation can be extended to filter
out the support sets which contain a certain element of the theory. Thus S(αi, T, I, O)
consists of the support sets in S(T, I, O) which contain αi.

Definition 5 Let T be a theory and O an observation set. The α supports of T for O
with input I , denoted by S(α, T, I,O), is defined by

S(α, T, I,O) = {Γ ∈ S(T, I, O) | α ∈ Γ}

The relationship between an original theory and a truncated one, generated from
the original theory by removing an element with a utility strictly less than 1, is given
by the next proposition.

Proposition 5 Let T = {α1, α2, . . . , αn} be a theory, O an observation set, and let
α ∈ T . If U(α, T, I,O) < 1, then

C(T \ {α}, I, O) = C(T, I, O)+
(C(T, I, O)((n− 1)U(α, T, I,O) + 1))− 1

|S(T,I,O)|
∑

Γ∈S(α,T,I,O) | Γ |
(n− 1)(1− U(α, T, I,O))

The constraint that the utility of the element removed is less than 1 is necessary
because the removal of an element with a utility of precisely 1 would eliminate all sup-
port sets and the truncated theory would no longer entail the observation set. While the
above mathematical expression is rather complex, there are basically two interacting
factors which give the result. The first is that the original theory has a size of n and the
truncated theory has a size of n−1. Since the coherence measure is always normalised
with respect to the size of the theory, the truncated theory has a multiplicative factor
gain of n

n−1 . The second factor is the average size of support sets for the truncated
theory. This is determined by the support sets of the original theory which do not con-
tain the element that is removed. The average size of the support sets of the original
theory which do not contain α may be more or less than the overall average size of the
support sets of the original theory. The interplay of these two factors give the relation-
ship as described by proposition 5. Notice that the result means that the removal of a
non-essential theory element (a theory element with a utility which is strictly less than
1) can either increase or decrease the coherence of a theory. To see how, consider the
following theory and observation set:

T = {a, b ∨ ¬c, c ∨ ¬d, d}
O = {a ∨ b}

The set of supports of T (with input I) for O is:

S(T, I, O) = {{a}, {b ∨ ¬c, c ∨ ¬d, d}}.

All theory elements are not essential for the observation set O and the removal of
different elements of the theory can either result in an increase or a decrease in coher-
ence. Notice that S(T, I, O) contains one large and one small support set. Removing
an element of T either eliminates the small or the large support set. When the large

11



Figure 5.2: A theory for which the removal of any element decreases the coherence.

support set is left, coherence increases. Otherwise, the small support set is left and co-
herence decreases. The coherence of T for O is 1

2 since the average size of support sets
is 2 and T has 4 elements. Removing a would increase the coherence to 1 because the
remaining elements are all contained in the one remaining support set. The removal of
any other theory element would decrease the coherence to 1

3 because the only support
set is {a} and there are three elements in the contracted theory.

Lemma 7 shows that, if a theory contains an element with a utility in the open
interval between 0 and 1, then that theory contains at least two elements which have
a utility which is strictly between 0 and 1. While it is always possible to obtain a
coherence of 1 for an individual observation set, by adopting one of the support sets as
the theory, it is still of interest to consider if and when theory elements can be removed
to increase coherence. In general, this is not the case as shown by the theory and the
support sets of the theory depicted in Figure 5.2.

An actual theory and observation set which gives such a picture can be easily con-
structed by letting each point in the picture be a distinct propositional letter. The ob-
servation set which would generate such supports contains one formula consisting of
a series of disjunctions. Each disjunct would be the conjunction of the elements in
each support set. In this figure, each point represents an element of the theory while
the points within each box are the elements of a support set. Since each element in a
theory is contained within one small support set and one large support set, the removal
of any element in the theory will eliminate one small support set as well as one of the
two large support sets. In fact, as the “ladder” increases in length, the utility of half the
elements in the theory will essentially have their utility halved by the removal of any
element in the theory; the other half of the theory will have unchanged utilities. The
theory depicted in Figure 5.2 has a coherence of 1

4 (= 0.25) while the removal of any
element reduces the coherence to 8

33 (' 0.2424).
Despite this example, there are a number of quite general sufficient conditions

which imply the presence of a theory element which can be removed to increase co-
herence. The first result shows that the presence of a “disjoint cover”, consisting of
non-essential elements of a theory which generate a partition of the support sets, is a
sufficient condition. A subset of a theory is a disjoint cover if all support sets contain
an element in the subset and for any pair of elements in the subset, α and β, the in-
tersection of the set of support sets which contain α and the set of support sets which
contain β is empty. To illustrate this condition, consider Figure 5.3 which depicts the
support sets of a theory T for a certain observation set O.

12
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Figure 5.3: Depiction of the support sets of a theory and a disjoint cover Γ of the
support sets.

In the figure, the subset Γ of T generates a disjoint partition of S(T,O). Each
support set in S(T,O) contains one and only one element of Γ. The condition that a
subset of the theory, which is a disjoint cover of the support sets, contains more than
one element is sufficient to guarantee that all elements of the cover have a utility which
is strictly less than 1. At least one compartment in the partition of the support sets must
have support sets which have an average size which is less than or equal to the overall
average size of the support sets. This implies that the removal of the theory element
in the cover which corresponds to that compartment will leave support sets with an
average size that is at least as great as that of the supports for the original theory.

Proposition 6 Let T = {α1, α2, . . . , αn} be a theory and O an observation set. Sup-
pose that for some Γ ⊆ T ,

1. |Γ| > 1

2. S(T, I, O) 6= ∅

3. S(α, T, I,O) 6= ∅ for every α ∈ Γ

4.
⋃

α∈Γ S(α, T, I,O) = S(T, I, O)

5. for every α, β ∈ Γ, if α 6= β then S(α, T, I,O) ∩ S(β, T, I,O) = ∅

Then, for some α ∈ Γ, C(T \ {α}, I, O) ≥ n
n−1C(T, I, O).

Another sufficient condition which guarantees the existence of a theory element
which can be removed to increase the coherence is that if the singleton subset {α} is
one of the support sets for some theory element α. This implies that all other support
sets do not contain α and since all support sets must contain at least one element,
removal of α will leave support sets with an average size at least as great as the average
size of support sets in the original theory.
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Proposition 7 Let T be a theory and O an observation set. Suppose for some α ∈
T, {α} ∈ S(T, I, O) and U(α, T, I,O) < 1. Then, C(T\{α}, I, O) ≥ n

n−1C(T, I, O).

A final sufficiency condition which implies increased coherence by removing an
element of a theory is if the size of all support sets of the theory for a certain observation
set are of the same size. Though an intuitively improbable condition, such a constraint
implies that the average size of the support sets remains the same after a non-essential
element has been removed.

Proposition 8 Let T be a theory and O an observation set. Suppose for every Γ,Γ
′ ∈

S(T, I, O) (| Γ | = | Γ
′ |). For any α ∈ T , if U(α, T, I,O) < 1, then C(T \

{α}, I, O) = n
n−1C(T, I, O).

5.3 Union of Theories
A number of major achievements in science have coincided with the formulation of
theories which unify and explain a number of disparate fields of study. These scien-
tific achievements range from the discovery of the connection between magnetism and
electricity to the formulation of plate tectonics theory. Coinciding with the emerging
study of the chemistry of gases, the oxygen theory of combustion unified the study of
gases and combustion. Prior to the formulation by Wegener of plate tectonics theory, a
vast number of observations were made which could not be unified or explained. For
instance, the layers of rock strata in the east of South America and the west of Africa
match very closely. Furthermore, the placement of volcanoes and earthquake zones
around the world seemed to follow lines on the earth’s surface. Yet, no theory could
explain their positions. Since scientific revolutions tend to unify a number of disparate
fields, it is of interest to consider how the coherence measure presented here behaves
when theories are joined together.

Formulations of scientific theories often contain extralogical axioms which are all
necessary before any observational consequences can be derived. This would make the
coherence of the theory, as measured here, close to one. For instance, the kinetic theory
of gases makes a number of assumptions concerning the behaviour of gas molecules
which are all necessary. These assumptions include that molecules collide with each
other and with the walls of a container in a perfectly elastic manner. Also, pressure
is assumed to be due to the collisions of molecules with the walls of a container. The
removal of any of the assumptions would prevent the derivation of any of the observa-
tional gas laws.

The coherence measure presented here also plays a role in showing that the result-
ing theory constructed from the set union of two unrelated theories has a coherence
which is certainly less than the maximum of the coherence of the two initial theories.
For simplicity in this section we will assume that the input set I is common to both the
component theories that will be combined. It is not hard to generalize to the case where
each component theory has its own input set, and indeed this is discussed in section 6.4
where the decrease in coherence in the union of some theories is explained intuitively.

As a starting point, it can be shown that the support sets for the union of two theories
is a superset of the union of the support sets for each of the two theories.

Lemma 8 Let T1 and T2 be theories, I and O be input and observation sets. Then,
S(T1 ∪ T2, I, O) ⊇ S(T1, I, O) ∪ S(T2, I, O).
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This shows that the support sets for individual theories are also support sets for
the union of the individual theories. Moreover, the union of a number of theories
may form new support sets which contain elements from a number of the original
theories. However, for two theories with languages having an empty intersection (and
thus with observational sub–languages having an empty intersection), the support sets
for the union of individual theories coincides exactly with the union of the sets of
supports for the individual theories. This happens when two disparate fields of study
are unified by simply joining the two areas together without unifying principles. For
example, the languages used to describe fossil similarity and earthquake epicentres
have no intersection.

Lemma 9 Let L1 and L2 be the respective languages for two theories, T1 and T2, and
suppose that L1 ∩ L2 = ∅. Then, for input set I and any observation set O ⊆ L1,
S(T1 ∪ T2, I, O) = S(T1, I, O).

Notice in the above result that the roles of T1 and T2 are asymmetric but totally
interchangeable. Consider two theories that do not share common elements of language
and have their coherence measured with respect to two finite sequences of observation
sets. The following result shows the connection between the coherence of each of the
two theories and the coherence of the union of the two theories.

Proposition 9 LetL1 andL2 be the respective languages for theories T1 = {α1, α2, . . . ,
αn} and T2 = {α′

1, α
′

2, . . . , α
′

n′} with common input I . Suppose that L1∩L2 = ∅. Let
O1 = (O1, O2, . . . , Om) and O2 = (Om+1, Om+2, . . . , Om+m′ ) be two sequences of
observation sets such that the observation sets of ~O1 and ~O2 are subsets of the obser-
vational language of L1 and L2 respectively. Then,

C(T1 ∪ T2, I, O2 ◦O1) =
1

(n + n′)(m + m′)
(nmC(T1, I, O1) + n

′
m

′
C(T2, I, O2))

The relationship between the coherence of two theories and the coherence of the
union of the two theories is similar to that between the velocity of a combined object
with the initial objects having different masses and velocities. To gain a better under-
standing of the result, the following corollary considers the effect of combining two
theories of equal size which account for the same number of observation sets and have
the same coherence in doing so.

Corollary 3 LetL1 andL2 be the respective languages for theories, T1 = {α1, α2, . . . ,
αn} and T2 = {α′

1, α
′

2, . . . , α
′

n′} with common input I . Suppose that L1∩L2 = ∅. Let
~O1 = (O1, O2, . . . , Om) and ~O2 = (Om+1, Om+2, . . . , Om+m′ ) be two sequences of

observation sets such that the observation sets of ~O1 and ~O2 are subsets of the obser-
vational language of L1 and L2 respectively. Suppose that n = n

′
, m = m

′
, and

C(T1, I, ~O1) = C(T2, I, ~O2). Then,

C(T1 ∪ T2, ~O2 ◦ ~O1) =
1
2
C(T1, ~O1)

Thus, when two linguistically unrelated theories of equal size and coherence are
combined, the coherence is halved. The main reason for this is that the size of the the-
ory is doubled while the average size of support sets remains the same. This corollary
is closely related to the modularization property outlined in section 6.4.

The following corollary shows that the coherence of the union of two linguistically
unrelated theories is strictly less than the maximal coherence of the two theories.
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Corollary 4 LetL1 andL2 be the respective languages for theories, T1 = {α1, α2, . . . ,
αn} and T2 = {α′

1, α
′

2, . . . , α
′

n′} with common input I . Suppose that L1∩L2 = ∅. Let
~O1 = (O1, O2, . . . , Om) and ~O2 = (Om+1, Om+2, . . . , Om+m′ ) be two sequences of

observation sets such that the observation sets of ~O1 and ~O2 are subsets of the obser-
vational language of L1 and L2 respectively. Then,

C(T1 ∪ T2, I, ~O2 ◦ ~O1) < max{C(T1, I, ~O1), C(T2, I, ~O2)}

In general, when two theories are placed together, without the constraint that the
languages of the theories have an empty intersection, the coherence of the union of the
theories may increase or decrease. Two theories may each contain a number of little
utilised elements. When such theories are joined by set union, the little utilised ele-
ments from both theories may combine to form a large support set and the coherence
of the united theory may increase. As an example, consider the following theories and
observation set:

I = ∅
T1 = {a, b → c, c → d, d → e, e → f}
T2 = {b, g, h, i, j}
O = {a ∨ f ∨ g}

The coherence of T1 with respect to O is 1
5 and T2 with respect to O is 1

5 . But the
coherence of the union of T1 and T2 with respect to O equals 1

10 ·
7
3 = 7

30 which is
greater than 1

5 .

6 Some Applications
The intuitive appeal of the above coherence definition will now be tested against a few
well-known examples.

6.1 Mendelian Inheritance
In the middle of the 19th century, Gregor Mendel [George 75] correctly hypothesised
that two independent characters determine the flower colour of common pea plants
(Pisum sativum). Each character either codes for purple or white. Since the purple
character is dominant, the presence of one purple character ensures that a plant’s flow-
ers are purple. Furthermore, parents randomly donate 1 character to each offspring.
Thus, when a purple plant is self–fertilised, a plant with 2 purple characters will pro-
duce only purple offspring while a plant with only 1 purple character will produce 75%
purple offspring and 25% white offspring. It is impossible to tell from appearances
whether a pea plant with purple flowers contains 1 or 2 purple characters. However,
the colour genes of a plant can be sequenced to produce an observable photograph
which falls into one of two equivalence classes. Depending on which class it’s DNA
sequence photograph falls into, a plant is interpreted as having 1 or 2 purple characters.
This can be formalised as the theory T below:

∀x [pure(x) ∧ purple(x) → selfX purple(x, 1)] (6.1)

∀x [¬pure(x) ∧ purple(x) → selfX purple(x, 0.75)] (6.2)
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∀x [DNA photo(x, 1) → pure(x)] (6.3)

∀x [DNA photo(x, 2) → ¬pure(x)] (6.4)

In this example, the observable predicates are DNA photo( , ),
purple( ), and selfX purple( , ). The purple predicate refers the flower colour of
a plant, DNA photo describes the DNA sequencing result, and selfX purple to the
precentage of purple flowered offspring from self fertilisation experiments. The one
theoretical predicate is pure. A plant is pure if it has two identical colour characters
and impure otherwise.

This theory can be tested by using as inputs the observable details of particalar
plants (flower colour and DNA sequence results) and, as outputs, the results of self fer-
tilisation experiments. For instance, consider the input set I = {purple(p1),
DNA photo(p1, 1)} and the observation set O = {selfX purple(p1, 1)}. Here the
coherence will be 0.5 because 2 out of 4 rules in T are used in the support set. Further,
this coherence value will remain at 0.5 for other plant experiments.

6.2 Ramsification and Craig’s Theorem
Our approach to coherence trivially excludes the use of Ramsification to abolish the-
oretical terms for the simple reason that the existential quantifier used in that method
must be skolemised to convert the theory to clausal form. The effect of skolemiza-
tion is to re-introduce into the theory theoretical terms that Ramsification was meant
to banish. While forcing quantifiers to refer to some entity may be philosophically un-
palatable, this is common practice in knowledge representation. This is reinforced by
a number of critiques, typical of which is Simon and Groen [Simon and Groen 73].

More problematic is Craig’s Theorem. We will use coherence as defined here to
argue that the trick invented for the proof of the theorem results in a highly incoherent
theory. To do this we will assume that the observations are independent in the formal
sense below; informally this amounts to a sequence of experiments in which the result
of any one experiment does not subsume or correlate with another. One way to imagine
this is that care has been taken to design experiments economically to yield maximum
information.

Consider the theory
B = {O1, O2 ∧O2, . . . , Oi ∧Oi ∧ . . . ∧Oi︸ ︷︷ ︸

i copies

, . . .}

which (using Craig’s Trick) is supposed to show that no observation terms are needed.
What is its coherence? To answer this, consider finite initial segments of B, viz.,

Bn = {O1, O2 ∧O2, . . . , On ∧On ∧ . . . ∧On︸ ︷︷ ︸
n copies

}.

What is its coherence, if the output observation set O is {O1, O2, . . . , On}? As this
theory is supposed to be “self-contained” no input is required, so let I be ∅. If the Oi’s
are “independent”, then Oi 6|= Oj for any i 6= j. In that case S(Bn, ∅, Oi) = {Oi} for
each i, so | Γ |= 1 always.

We have: S(Bn, ∅, Oi) = {Oi} for each i ≤ n; | Γ |= 1 for each support set.
Hence,

∑
Γ∈S(Bn,∅,Oj)

| Γ |= 1
Therefore, using proposition 3 in this context:

C(Bn, ∅, O) =
1

mn

m∑
j=1

1
| S(Bn, ∅, Oj) |

∑
Γ∈S(Bn,∅,Oj)

| Γ |
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we have:

C(Bn, ∅, O) =
1

nn

n∑
j=1

1× 1 =
1
n

Asymptotically, B has 0 coherence!

6.3 The Black Swan Fix
The next well-known example is from the philosophy of science literature that impinges
on inductive learning. Prior to western ornithologists’ exploration of Australia all the
swans they had hitherto encountered were white in color. For this focussed domain,
there is only one type of object, namely swans, that are of interest. The observational
predicates are swan and white, and we regard the former as the input and the latter
as the output. A succinct way to capture induction is the formula 6.5 in the theory T
below:

∀x swan(x) → white(x). (6.5)

Notice that T does not have any theoretical terms as we have specified that both the
predicates are observational; but T is a rule whose components are observational. In
Australia they saw black swans. Here is an ad hoc way to revise T minimally if we can
enumerate these black swans as additions to the original input set, i.e. these new swans
are sw1, sw2, . . . , swn. The output set O consists of Call this fix Tn. The revised rules
that replace rule 6.5 are:
(1 sentence)

∀x [swan(x) ∧
∧
i≤n

x 6= swi] → white(x)] (6.6)

and (2n sentences) ⋃
i≤n

{swan(swi), black(swi)} (6.7)

Suppose the new observation terms are about swan color, i.e., black or white.
Tn has 2n + 1 sentences. For any finite set of k black swans, there are exactly 2k

sentences in Tn that support their color.
Each such support sentence has utility 1 for a particular swan swi, and 0 for other

swans.
Hence the coherence of Tn for such k observations is 2k

2n+1 , which is asymptotically
0 with large n. This is an argument against the fix.

The “good” fix is what happens in inductive learning when a predicate1 is invented
to summarize the fact that black swans live in Australia, viz., the new theory T ′ with 2
sentences:

∀x [swan(x) ∧ ¬Australian(x) → white(x)] (6.8)

∀x [swan(x) ∧Australian(x) → black(x)] (6.9)

The input set I now comprises pairs of the swan atoms and the new observable
Australian literals. The output O are the two color terms white and black. Now for
any one swan (call it c) observation, its color is supported either by the formulas 6.8 and
¬Australian(c), or by the formulas 6.9 and Australian(c). Therefore, irrespective

1This is like the Abnormality predicate in non-monotonic reasoning.
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of the color the support set for each observation has cardinality 2. Suppose there are
k1 white and k2 black swans in an observation sequence. It is then easy to see that the
utilities of (a) 6.8 is 1 for k1 observations but 0 for the k2 observations, (b) 6.9 is the
dual of the preceding. Therefore from proposition 3 the coherence of this theory for
any k1 + k2 swans is 1

2 .

6.4 Modularization and Coherence
The coherent fix in the swan example illustrates several features of our definition of
coherence that invite further investigation. Here we will merely indicate the interesting
connection with aspects of current practice in predicate invention. First, we note that
the role of the observable term “Australian”2 served to increase coherence by capturing
regularities. In fact there is more to this than meets the eye. Suppose we partition the
output observational terms into black (swans) and white (swans), denoting the disjoint
sets by Ob and Ow respectively. Likewise, we partition the input set into two, Ib and
Iw denoting the pairs of hypothesized Australian literal and swan atom. Then it is
not hard to see that the formula 6.8 is in all support sets of S(T ′, Iw, Ow), but is not
in any support set of S(T ′, Ib, Ob). Dually, the formula 6.9 is in all support sets of
S(T ′, Ib, Ob) but in none of those of S(T ′, Iw, Ow). The utility of each formula is 1 in
their respective support sets, and 0 in the other. This is about as strong as we can get in
modularizing a theory. In fact, the Mendelian example above shares this feature with
the swan example in being a modular theory in having coherence 1 for each module
but only 1

2 overall.
This idea has the following obvious generalization. Suppose an observation set to

be accounted for can be partitioned into {O1, . . . , On} and the theory Γ has invented
theoretical terms {γ1, . . . , γn}, such that for each i, γi is in every set of S(Γ, I, Oi).
Then the γi modularize the theory Γ with respect to the observation partitions.

7 Conclusion
An improved quantitative measure of theory coherence has enabled its use in modelling
different ways in which theories are empoyed in practice, including prediction, expla-
nation and abduction. This measure was applied to a number of well-known problems
and was able to account for the desired intuitive results, e.g. theories that were widely
considered informally to be incoherent (respectively, coherent) turned out to have low
(respectively, high) measures. Moreover, the measure can be used to identify ways to
modularize theories. Future extensions include measures of how formulas work to-
gether in groups, and how they relate to entropy methods of predicate invention and
selection.

8 Appendix A
This appendix has proofs of some of the lemmas and propositions.

2We appreciate that initially the concept of Australian fauna was theoretical. However it becomes ob-
servable once the specimens are localizable in Australia.
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8.1 Proof of proposition 1
By the assumption of unique support sets for each observation Oi in O, there is a 1-1
correspondence between support sets in S(T, , I, O) and the observations. Hence we
may a support set by the same suffix as the observation it uniquely supports, abbrevi-
ating to Si that which supports Oi. If Si is not in Cn(T −α), then by Cn(T −α)|o ⊆
Cn(T − β)|o it is not in Cn(T − β) either. By 5.2, α is not in any Si that is in
Cn(T − α), and by 5.3 those Sj missing from Cn(T − α) are precisely those which
contain α. Similar remarks apply to Cn(T − β). Moreover, the support sets Si that
are in Cn(T −α) are the same (because of uniqueness) as those in Cn(T −β). Hence
the number of support sets in T which contain α is at least that which contain β, from
which the conclusion follows by definition of utility.

8.2 Proof of proposition 3
For any support set Γ in S(T, I, O), let

δ(Γ, i) =
{

1 if αi ∈ Γ
0 otherwise

From this it easily follows that:

C(T, I, O) =
1

mn

n∑
i=1

m∑
j=1

1
| S(T, I, Oj) |

∑
Γ∈S(T,I,Oj)

δ(Γ, i)

And in turn, by re-writing this expression for C(T, I, O) we obtain:

C(T, I, O) =
1

mn

m∑
j=1

1
| S(T, I, Oj) |

∑
Γ∈S(T,I,Oj)

n∑
i=1

δ(Γ, i)

Therefore:

C(T, I, O) =
1

mn

m∑
j=1

1
| S(T, I, Oj) |

∑
Γ∈S(T,I,Oj)

| Γ |

8.3 Proof of proposition 4

Let T = {α1, α2, . . . , αn} be a theory such that |T | ≥ 2 and ~O = (O1, O2, ..., Om)
be a finite set of observation sets. Suppose C(T, I, ~O) > 0, and U(αn, T, I, ~O) = 0.
Then,

C(T \ {α}, I, ~O) =
1

(n− 1)m

n−1∑
i=1

m∑
j=1

U(αi, T, I, \{α}, Oj) by definition 3

=
1

(n− 1)m

m∑
j=1

1
| S(T \ {α}, I, Oj) |

∑
Γ∈S(T\{α},Oj)

| Γ | by proposition 3

=
n

n− 1

 1
nm

m∑
j=1

1
| S(T,Oj) |

∑
Γ∈S(T,I,Oj)

| Γ |

 by lemma 4

=
n

n− 1
C(T, I, ~O) By proposition 3
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8.4 Proof of lemma 2
By proposition 3,

C(T, I, O) =
1

nm

m∑
j=1

1
| S(T, I, Oj) |

∑
Γ∈S(T,I,Oj)

| Γ |

≥ 1
nm

m∑
j=1

1
| S(T, I, Oj) |

(|S(T, I, Oj)|) since for every Γ ∈ S(T, I, Oj), |Γ| > 1

=
1

nm

m∑
j=1

1

=
1
n

8.5 Proof of lemma 3
(⇒) Let T be a theory and suppose T has redundancy. Then, for some α ∈ T ,
Cn(T \ {α})|O = Cn(T )|O. Let γ ∈ Cn(T ), then T \ {α} |= γ. By lemma 1
there exists a Γ ⊆ T \ {α} such that Γ ∈ S(T, I, {γ}). Γ does not contain α and thus
U(α, T, I, {γ}) < 1 by the remarks following the definition of utility.

(⇐) Suppose for some α ∈ T , and every γ ∈ Cn(T )|O U(α, T, I, {γ}) < 1. Since
U(α, T, I, {γ}) < 1, there is some support set, Γ ∈ S(T, I, {γ}) such that α 6∈ Γ.
Clearly, Γ ⊆ (T \ {α}). Thus, T \ {α} |= γ. Therefore, Cn(T \ {α})|O = Cn(T )|O.

8.6 Proof of lemma 4
Let T be a theory, O an observation set, and let α be an element of T . Suppose
Γ ∈ S(T, I, O) and α 6∈ Γ. This holds iff Γ ⊆ T and Γ ∪ I |= O and for all
Γ

′ ⊂ Γ (Γ
′ ∪ I 6|= O) and α 6∈ Γ. Which is equivalent to saying that Γ ⊆ T \ {α}

and Γ ∪ I |= O and for all Γ
′ ⊂ Γ (Γ

′ ∪ I 6|= O). By definition 1, this is equivalent to
saying that Γ ∈ S(T \ {α}, I, O).

8.7 Proof of corollary 4

Let T = {α1, α2, . . . , αn} be a theory such that |T | ≥ 2 and ~O = (O1, O2, ..., Om)
be a finite set of observation sets. Suppose C(T, I, ~O) > 0, and U(αn, T, I, ~O) = 0.
Then,
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C(T \ {α}, I, ~O) =
1

(n− 1)m

n−1∑
i=1

m∑
j=1

U(αi, T \ {α}, I, Oj) by definition 3

=
1

(n− 1)m

m∑
j=1

1
| S(T \ {α}, I, Oj) |

∑
Γ∈S(T\{α},I,Oj)

| Γ | by proposition 3

=
n

n− 1

 1
nm

m∑
j=1

1
| S(T,Oj) |

∑
Γ∈S(T,I,Oj)

| Γ |

 by lemma 4

=
n

n− 1
C(T, I, ~O) By proposition 3

8.8 Proof of lemma 5
Suppose α is redundant in T . Let Oj be an observation set in ~O. Let S(T, I, Oj) =
{Γj} since S(T, I, Oj) is a singleton. By lemma 3, since α is redundant, U(α, T, I,Oj) <
1. Thus, α 6∈ Γj because otherwise, U(α, T, I,Oj) = 1 by the remarks following def-
inition 2. Hence, α is not in any support set and U(α, T, I, ~O) = 0.

8.9 Proof of lemma 6
By lemma 4 S(T \ {β}, I, O) ⊆ S(T, I, O) Suppose U(α, T, I,O) = 0. Then for
every Γ ∈ S(T, I, O), α 6∈ Γ. Thus for every Γ ∈ S(T \ {β}, O), α 6∈ Γ. Thus
U(α, T, I, \{β}, O) = 0. Similarly, if U(α, T, I,O) = 1, for every Γ ∈ S(T, I, O),
α ∈ Γ. Therefore, for every Γ ∈ S(T \{β}, I, O), α ∈ Γ. Thus U(α, T \{β}, I, O) =
0.

8.10 Proof of lemma 7
Suppose α ∈ T . Since 0 < U(α, T, I,O), there is a Γ ∈ S(T, I, O) such that α ∈ Γ.
Similarly, since U(α, T, I,O) < 1 there is a Γ

′ ∈ S(T, I, O) such that α 6∈ Γ
′
. There-

fore Γ 6⊂ Γ
′
. Also, since both sets are supports, it must be the case that Γ

′ 6⊂ Γ. This
means that for some β ∈ T, α 6= β, β ∈ Γ

′
and β 6∈ Γ. Thus 0 < U(β, T, I,O) < 1.
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8.11 Proof of proposition 5

C(T \ {α}, I, O) =
1

n− 1
1

|S(T \ {α}, I, O)|
∑

Γ∈S(T\{α},I,O)

| Γ | by definition 3

=
1

n− 1
1

|S(T, I, O)| − |S(α, T, I,O)|
∑

Γ∈S(T\{α},I,O)

| Γ | by corollary 5

=
1

n− 1
1

|S(T, I, O)| − |S(α, T, I,O)|
∑

Γ∈S(T,I,O)\S(α,T,I,O)

|Γ| by lemma 4

=
1

n− 1
1

|S(T, I, O)| − |S(α, T, I,O)|

 ∑
Γ∈S(T,I,O)

|Γ| −
∑

Γ∈S(α,T,I,O)

|Γ|


=

1
n− 1

1
|S(T, I, O)|(1− U(α, T, I,O))

 ∑
Γ∈S(T,I,O)

|Γ| −
∑

Γ∈S(α,T,I,O)

|Γ|


= by observation 5

=
n

(n− 1)(1− U(α, T, I,O))

(∑
Γ∈S(T,I,O) | Γ |

n | S(T, I, O) |

)
−

1
|S(T,I,O)|

∑
Γ∈S(α,T,I,O) | Γ |

(n− 1)(1− U(α, T, I,O)

=
n

(n− 1)(1− U(α, T, I,O))
(C(T, I, O))−

1
|S(T,I,O)|

∑
Γ∈S(α,T,I,O) | Γ |

(n− 1)(1− U(α, T, I,O)

= C(T, I, O) +
(C(T, I, O)((n− 1)U(α, T, I,O) + 1))− 1

|S(T,I,O)|
∑

Γ∈S(α,T,I,O) |Γ|
(n− 1)(1− U(α, T, I,O))

8.12 Proof of proposition 6
By lemma 11 there exists an α ∈ Γ such that

1
| S(α, T, I,O) |

∑
Γ′∈S(α,T,I,O)

| Γ
′
|≤ 1

| S(T, I, O) |
∑

Γ′∈S(T,I,O)

| Γ
′
| .

Using this and lemma 12 we see that
1

|S(T, I, O) \ S(α, T, I,O)|
∑

Γ∈S(T,I,O)\S(α,T,I,O)

|Γ| ≥ 1
|S(T, I, O)

∑
Γ∈S(T,I,O)

|Γ|

By lemma 10 it also obtains that U(α, T, I,O) < 1 which means that C(T \{α}, I, O)
is defined. Hence,

C(T \ {α}, I, O) =
1

(n− 1) | S(T, I, O) \ S(α, T, I,O) |
∑

Γ∈S(T,I,O)\S(α,T,I,O)

| Γ |

≥ n

n− 1

 1
n | S(T, I, O) |

∑
Γ∈S(T,I,O)

| Γ |

 by lemma 12

=
n

n− 1
C(T, I, O)
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8.13 Proof of proposition 7
Since {α} ∈ S(T, I, O), for every Γ ∈ S(T, I, O), ifΓ 6= {α} then α 6∈ Γ. Otherwise
{α} ⊂ Γ contradicting the minimality of support sets. Further, | Γ |≥ |{α}|. Thus

C(T \ {α}, I, O) =
1

(n− 1) | S(T \ {α}, I, O) |
∑

Γ∈S(T\{α},I,O)

| Γ |

≥ 1
(n− 1)(| S(T \ {α}, I, O) | +1)

| {α} | + ∑
Γ∈S(T\{α},I,O)

| Γ |


=

n

n− 1
1

n | S(T, I, O) |
∑

Γ∈S(T,I,O)

| Γ |

=
n

n− 1
C(T, I, O)

8.14 Proof of proposition 8
For every α ∈ T , U(α, T, I,O) < 1 implies that S(T \ {α}, I, O) 6= ∅. Further, for
any S ⊆ S(T, I, O)

1
| S |

∑
Γ∈S

| Γ |= 1
| S(T, I, O) |

∑
Γ∈S(T,I,O)

| Γ |

Thus,

C(T \ {α}, I, O) =
1

(n− 1) | S(T \ {α} |
∑

Γ∈S(T\{α},I,O)

| Γ |

=
n

n− 1

 1
n | S(T, I, O) |

∑
Γ∈S(T,I,O)

| Γ |


=

n

n− 1
C(T, I, O)

8.15 Proof of lemma 8
Let T1 and T2 be theories and O an observation set. Suppose that Γ ∈ S(T1, I, O) then
by lemma 1, Γ ∈ S(T1 ∪ T2, I, O). Thus S(T1, I, O) ⊆ S(T1 ∪ T2, I, O). Similarly,
S(T2, I, O) ⊆ S(T1∪T2, I, O). Hence S(T1∪T2, I, O) ⊇ S(T1, I, O)∪S(T2, I, O).

8.16 Proof of lemma 9
By lemma 8, S(T1, I, O) ⊆ S(T1 ∪ T2, I, O). Thus, what is left is to demonstrate that
S(T1 ∪ T2, I, O) is a subset of S(T1, I, O). Suppose that Γ ∈ S(T1 ∪ T2, I, O). Then
Γ = Γ1 ∪ Γ2 where Γ1 ⊆ T1 and Γ2 ⊆ T2. Further, this decomposition of Γ is unique
since L1 ∩ L2 = ∅.
In the case that Γ2 = ∅, Γ ⊆ T1 and since Γ ∈ S(T1 ∪ T2, I, O), for every Γ

′ ⊂ Γ,
Γ

′ 6|= O. Thus, by definition, Γ ∈ S(T1, I, O).
Otherwise, Γ2 6= ∅. In this case, let α1 =

∧
α∈Γ1

α.
Then, since Γ is a support set of T1 ∪ T2 for O, for every β ∈ O, Γ1 ∪ Γ2 |= β.
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Let β0 be an arbitrary element of O. Then, Γ1 ∪ Γ2 |= β0 and Γ2 ∪ α1 |= β0 since
α1 is the conjunction of all the elements in Γ1. Hence, by the deduction theorem,
Γ2 |= α1 → β0. This implies that Γ2 ∪ {¬(α1 → β0)} is not satisfiable. By the
Robinson consistency test [Hodges 97] there exists a γ ∈ L1 ∩ L2 such that Γ2 |= γ
and ¬(α1 → β0) |= ¬γ. Since ¬(α1 → γ) ∈ L1, this is a contradiction because
L1 ∩ L2 = ∅.
Thus, S(T1 ∪ T2, I, O) ⊆ S(T1, I, O) and hence S(T1 ∪ T2, I, O) = S(T1, I, O).

8.17 Proof of proposition 9

C(T1 ∪ T2, I, ~O2 ◦ ~O1) =
1

(n + n′)(m + m′)

m+m
′∑

j=1

∑
Γ∈S(T1∪T2,I,Oj)

|Γ|
|S(T1 ∪ T2, I, O)|


by definition 3

=
1

(n + n′)(m + m′)

 m∑
j=1

∑
Γ∈S(T1∪T2,I,Oj)

|Γ|
|S(T1 ∪ T2, I, O)|

+

1
(n + n′)(m + m′)

m+m
′∑

j=m

∑
Γ∈S(T1∪T2,I,Oj)

|Γ|
|S(T1 ∪ T2, I, O)|


=

1
(n + n′)(m + m′)

 m∑
j=1

∑
Γ∈S(T1,I,Oj)

|Γ|
|S(T1, I, O)|

+

1
(n + n′)(m + m′)

m+m
′∑

j=m

∑
Γ∈S(T2,I,Oj)

|Γ|
|S(T2, I, O)|


by lemma 9

=
1

(n + n′)(m + m′)

(
nmC(T1, I, ~O1) + n

′
m

′
C(T2, I, ~O2)

)
8.18 Proof of corollary 3
By proposition 9

C(T1∪T2, I, ~O2◦ ~O1) =
1

(n + n′)(m + m′)

(
nmC(T1, I, ~O1) + n

′
m

′
C(T2, I, ~O2)

)
Thus, given that n = n

′
, m = m

′
, and C(T1, I, ~O1) = C(T2, I, ~O2) it follows that

C(T1 ∪ T2, I, ~O2 ◦ ~O1) =
1

4nm
(2nmC(T1, I, ~O1))

=
1
2
C(T1, I, ~O1))

8.19 Proof of corollary 4
By proposition 9

C(T1∪T2, I, ~O2◦ ~O1) =
1

(n + n′)(m + m′)

(
nmC(T1, I, ~O1) + n

′
m

′
C(T2, I, ~O2)

)
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Without loss of generality, suppose that C(T1, I, ~O1) ≥ C(T2, I, ~O2). Then,

C(T1 ∪ T2, I, ~O2 ◦ ~O1) ≤ nm + n
′
m

′

(n + n′)(m + m′)
C(T1, ~O1)

< C(T1, ~O1)

Thus,
C(T1 ∪ T2, I, ~O2 ◦ ~O1) < max{C(T1, I, ~O1), C(T2, I, ~O2)}

9 Appendix B
This appendix contains some observations and results that are somewhat peripheral to
the main thrust of the paper, but may nevertheless be of interest. A few of them are
also cited in the proofs in the preceeding appendix.

Observation 5 Let T be a theory and O be an observation set. If α ∈ T then
|S(α, T, I,O)| = U(α, T, I,O)|S(T, I, O)|.

9.1 Proof of observation 5
By definition of S(T, I, O):

U(α, T, I,O) =
|{Γ ∈ S(T, I, O) | α ∈ Γ}|

|S(T, I, O)|

=
|S(α, T, I,O)|
|S(T, I, O)|

by Definition 5

Thus, |S(α, T, I,O)| = U(α, T, I,O)|S(T, I, O)|.

Observation 6 Let T = {α1, α2, ..., αn, } be a theory and O an observation set. Then,

n⋃
i=1

S(αi, T, I, O) = S(T, I, O).

9.2 Proof of observation 6
For each i, 1 ≤ i ≤ n, S(αi, T, I, O) ⊆ S(T, I, O). Thus

n⋃
i=1

S(αi, T, I, O) ⊆ S(T, I, O).

Let Γ ∈ S(T, I, O). Let αi be any element of Γ. Then Γ ∈ S(αi, T, I, O). Thus

Γ ∈
n⋃

i=1

S(αi, T, I, O).

Corollary 5 Let T be a theory, O an observation set, and let α be an element of T .
Then |S(T \ {α}, I, O)| = |S(T, I, O)| − |S(α, T, I,O)|.
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9.3 Proof of corollary 5
By lemma 4, S(T \ {α}, I, O) = {Γ | Γ ∈ S(T, I, O) and α 6∈ Γ}. Thus, |S(T \
{α}, I, O)| = |{Γ | Γ ∈ S(T, I, O) and α 6∈ Γ}|. Since T is finite, |{Γ | Γ ∈
S(T, I, O) and α 6∈ Γ}| = |S(T, I, O)| − |S(α, T, I,O)|.

Observation 7 Let T be a theory and O an observation set. Suppose that for some
Γ ⊆ T , ⋃

α∈Γ

S(α, T, I,O) = S(T, I, O)

and for every α, β ∈ Γ, if α 6= β then S(α, T, I,O) ∩ S(β, T, I,O) = ∅. Then,∑
α∈Γ

|S(α, T, I,O)| = |S(T, I, O)|

9.4 Proof of observation 7
Let Γ = {α1, α2, . . . , αl}. Using the Inclusion-Exclusion Principle,

|
Sl

i=1 S(αi, T, I, O)| =Pl
i=1 |S(αi, T, I, O)|

−|S(α1, T, I, O) ∩ S(α2, T, I, O)| − |S(α1, T, I, O) ∩ S(α3, T, I, O)| − · · · − |S(αl−1, T, I, O) ∩ S(αl, T, I, O)|
+|S(α1, T, I, O) ∩ S(α2, T, I, O) ∩ S(α3, T, I, O)| + · · · + |S(αl−2, T, I, O) ∩ S(αl−1, T, I, O) ∩ S(αl, T, I, O)| − · · ·
+(−1)l+1|S(α1, T, I, O) ∩ S(α2, T, I, O) ∩ · · · ∩ S(αl, T, I, O)|

Since for every α, β ∈ Γ, S(α, T, I,O) ∩ S(β, T, I,O) = ∅ for every α 6= β, this
expression simplifies to:

|
l⋃

i=1

S(αi, T, I, O)| =
l∑

i=1

|S(αi, T, I, O)|

Further, because ⋃
α∈Γ

S(α, T, I,O) = S(T, I, O)

it follows that |S(T, I, O)| = |
⋃

α∈Γ S(α, T, I,O)|. Therefore,
∑l

i=1 |S(αi, T, I, O)| =
|S(T, I, O)|.

Lemma 10 Let T be a theory and O an observation set. Suppose that for some non
empty subset, Γ, of T ,

1. S(T, I, O) 6= ∅

2. S(α, T, I,O) 6= ∅ for every α ∈ Γ

3. ⋃
α∈Γ

S(α, T, I,O) = S(T, I, O)

4. for every α, β ∈ Γ, if α 6= β then S(α, T, I,O) ∩ S(β, T, I,O) = ∅

Then, |Γ| > 1 if and only if U(α, T, I,O) < 1 for every α ∈ Γ.
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9.5 Proof of lemma 10
(⇒) Suppose that |Γ| > 1. Let α ∈ Γ. Then, since |Γ| > 1 there exists a distinct
β ∈ Γ. By assumption S(β, T, I,O) 6= ∅ and S(α, T, I,O) ∩ S(β, T, I,O) = ∅.
Hence S(α, T, I,O) ⊂ S(T, I, O) and by observation 4, U(α, T, I,O) < 1.

(⇐) Suppose that U(α, T, I,O) < 1 for every α ∈ Γ. By assumption, Γ is non-
empty. Thus there exists an α ∈ Γ. Now, U(α, T, I,O) < 1 and by observation 4,
there exists a Γ

′ ∈ S(T, I, O) such that α 6∈ Γ
′
. Since⋃

α∈Γ

S(α, T, I,O) = S(T, I, O)

there exists a β ∈ Γ such that α 6= β and β ∈ Γ
′
. Thus, |Γ| > 1.

Lemma 11 Let T be a theory and O an observation set. Suppose that for some Γ ⊆ T ,⋃
α∈Γ

S(α, T, I,O) = S(T, I, O)

and for every α, β ∈ Γ, if α 6= β then S(α, T, I,O) ∩ S(β, T, I,O) = ∅. Then, for
some α ∈ Γ,

1
| S(α, T, I,O) |

∑
Γ′∈S(α,T,I,O)

| Γ
′
|≤ 1

| S(T, I, O) |
∑

Γ′∈S(T,I,O)

| Γ
′
|

.

9.6 Proof of lemma 11
Suppose the contrary that for every α ∈ Γ

1
|S(α,T,I,O)|

∑
Γ′∈S(α,T,I,O) | Γ

′ | > 1
|S(T,I,O)|

∑
Γ′∈S(T,I,O) | Γ

′ |
⇔

∑
Γ′∈S(α,T,I,O) | Γ

′ | > |S(α,T,I,O)|
|S(T,I,O)|

∑
Γ′∈S(T,I,O) | Γ

′ |
⇒

∑
α∈Γ

∑
Γ′∈S(α,T,I,O) | Γ

′ | >
∑

α∈Γ
|S(α,T,I,O)|
|S(T,I,O)|

∑
Γ′∈S(T,I,O) | Γ

′ | summing over α ∈ Γ

⇔
∑

Γ∈S(T,I,O) | Γ | >
∑

Γ′∈S(T,I,O) | Γ
′ |
(

1
|S(T,I,O)|

∑
α∈Γ | S(α, T, I,O) |

)
⇔

∑
Γ∈S(T,I,O) | Γ | >

∑
Γ′∈S(T,I,O) | Γ

′ |
(

1
|S(T,I,O)| | S(T, I, O) |

)
⇔

∑
Γ∈S(T,I,O) | Γ | >

∑
Γ∈S(T,I,O) | Γ |

Which is a contradiction. Thus for some α ∈ Γ

1
| S(α, T, I,O) |

∑
Γ′∈S(α,T,I,O)

| Γ
′
|≤ 1

| S(T, I, O) |
∑

Γ′∈S(T,I,O)

| Γ
′
|

Lemma 12 Let T be a theory and O an observation set. Suppose that for some α ∈ T ,

1
| S(α, T, I,O) |

∑
Γ′∈S(α,T,I,O)

| Γ
′
|≤ 1

| S(T, I, O) |
∑

Γ′∈S(T,I,O)

| Γ
′
|

then
1

|S(T, I, O) \ S(α, T, I,O)|
∑

Γ∈S(T,I,O)\S(α,T,I,O)

|Γ| ≥ 1
|S(T, I, O)

∑
Γ∈S(T,I,O)

|Γ|
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9.7 Proof of lemma 12
Elementarily, ∑

Γ∈S(T,I,O)\S(α,T,I,O)

|Γ| =
∑

Γ∈S(T,I,O)

|Γ| −
∑

Γ∈S(α,T,I,O)

|Γ|

Thus,

1
|S(T,I,O)\S(α,T,I,O)|

∑
Γ∈S(T,I,O)\S(α,T,I,O) |Γ|

= 1
|S(T,I,O)\S(α,T,I,O)|

(∑
Γ∈S(T,I,O) |Γ| −

∑
Γ∈S(α,T,I,O) |Γ|

)
= 1

|S(T,I,O)|(1−U(α,T,I,O))

(∑
Γ∈S(T,I,O) |Γ| −

∑
Γ∈S(α,T,I,O) |Γ|

)
by observation 5

≥ 1
|S(T,I,O)|(1−U(α,T,I,O))

(∑
Γ∈S(T,I,O) |Γ| − U(α, T, I,O)

∑
Γ∈S(T,I,O) |Γ|

)
using the assumption

= 1
|S(T,I,O)|

∑
Γ∈S(T,I,O) |Γ|
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