Solving the expression problem in Haskell
with true separate compilation

Sean Seefried
Manuel M. T. Chakravarty

'Formal Methods
NICTA
Email: sean.seefried@nicta.com.au

2Programming Languages and Systems
School of Computer Science & Engineering
University of New South Wales
Email: chak@cse.unsw.edu.au

UNSW-CSE-TR-0715
June 2007

THE UNIVERSITY OF
NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales
Sydney 2052, Australia

Abstract

We present a novel solution to the expression problem which offers true separate compilation and can be used in
existing Haskell compilers that support multi-parameter type classes and recursive dictionaries. The solution is best
viewed as both a programming idiom, allowing a programmer to implement open data types and open functions,
and the target encoding of a translation from Haskell augmented with syntactic sugar.

1. Introduction allowing community participation in the development of its func-

The expression problerdescribes the difficulty of extending the ti%nality. This also highlig_rlns_ why we require a solution that pro-
variantsand methods on a data type without modifying existing viges true separate compilation.

code and while respecting separate compilation. This problem has _ OUr solution, while reliant on extensions to Haskell 98, works
been well-studied and was first coined by Wadler [13] on the as is Itis presented as a translation from a simple syntactic exten-

Java-Genericity mailing list. Although it originally described a sion to Haskell to existing Haskell syntax. However, the translation
specific problem—extending a program that processes terms ofSh.OUId be viewed frc_)m more t_han one ang_le. Naturally, the trans-
a simple programming language—it has come to represent thelatlon forms the basis for the |mple_mentat|on of a pre-processor.
general problem oéxtensible data typeZenger and Odersky [16] HOWGV‘?V' th? target of the translat!on can also be Seenfe-a
provide a good definition of the problem and a list of attendant 9ramming idiomwhich can be readily used by developers to im-

criteria that a solution should satisfy. It is presented here with only _plement exte_n_sible c_iata typbg hand It has already been_used, in
minor paraphrasing. just such an idiomatic way, to implement front-end plug-ins for the

aforementioned compiler.

The solution, henceforth known agpen abstract typedises
several experimental features of Haskell: multi-parameter type
classes, scoped type variables, kind annotations, zero construc-

e Strong static type safetyt should be impossible to apply a tor data types and recursive dictionaries. All of these features are
function to a data variant which it cannot handle. present from GHC 6.4 onwards.

» No modification or duplicationlt should not be necessary The structure of the rest of this paper is as follows: First, syn-
to change existing code, nor should it be necessary to re- tactic sugar is introduced for declaring extensible data types. Next,

implement functionality when extending since this effectively @ running example is introduced, demonstrating the new syntax in
amounts to duplication. action. At this point it is necessary to cover a (relatively complex)

technique that is instrumental in the translation. In Section 4 the
concept ofretrospective superclassing introduced. Without pre-
senting the formalisation of the translation, Section 5, shows us
the result of applying the translation and the most salient points
of the code are discussed. Section 6 introduces the formal transla-
tion, which can be used as the basis for the implementation of a
pre-processor. The paper concludes with a comparison of our solu-
tion to others in Haskell and a short discussion of solutions in other
languages.

e Extensibility in both dimensiondt should be possible to add
new data variants and to introduce new functions.

e Separate compilatiorCompiling data type extensions or adding
new functions should not encompass re-type-checking the orig-
inal data type or existing functions, nor the re-compilation of
existing modules. In this paper we aim fone separate compi-
lation which involves just the compilation of new modules and
must only require the interface files of existing modules.

A key observation made by Reynolds [11] and later echoed by
others ([15], [5]) was that object-oriented and functional languages
can be seen as complementary approaches to data abstraction. In .
object-oriented languages variants of a data type are modelled us2. Syntactic sugar for open abstract types

ing classesusually each variant is defined as a subclass of an ab- ajthough the majority of this paper is concerned with demonstrat-
stract base class. Thus it is easy to add new variants. Unfortunately,ng an encoding of extensible data type support in Haskell we are
the addition of new functionality on those variants is difficult; the yitimately interested in introducing syntactic sugar to reduce its
only way to add new methods to a class is by sub-classing and it syntactic burden. In this section we present two new data decla-
must be done for each variant. This quickly becomes unwieldy. In ration. In Section 6 an austere Haskell-like language augmented
functional languages the converse is true: it is easy to add new func-yith these declarations becomes the source language in a formal
tionality by defining new functions on a data type, but is difficult to transation to the encoding we are about to develop.

add new variants. Another approach in object-oriented languages The two syntactic forms arepen dataandextend datadecla-

is to use thevisitor patternwhich makes it easy to add new func- rations. A new extensible data type (EDT) is introduced with the
tionality. However, as is the case with functional languages, adding open data keywords.

new variants becomes difficult. Each of these approaches solves

one half of the problem space but not the other. module F'0 where
A solution in Haskell has already been proposed I land
Hinze [9]. However, it differs from our solution in two ways. First, opendata Exp = Var String
it does not provide true separate compilation for, at the very least, | Lam String Ezp
it is necessary to re-compile ttdain module whenever an open | App Ezp Exp

declaration is added. Second, it relies on features that have not gynctions can be defined upon these data types just like they can
yet been implemented in any Haskell compiler. This is discussed o ordinary algebraic data types.

further in Section 7.
The motivation in developing our solution was to provide ex- alpha :: Exp — (String, String) — String
tensibility for a compiler through plug-ins. Our compiler exposes alpha (Var v) = ...
data types—such as th(_)se representing the abstract syntax tree and |, snother module we can then extend the data type using the
type syntax_—and functl_ons that ope_rateq on those data structures, .+ ond data keywords as follows:
We wanted it to be possible for plug-in writers to extend both. This
makes it possible, for instance, to write a plug-in syntactic sugar ~ module F'l1 where
extension by adding new syntactic forms to the AST and new func-
tions to desugar it to existing language constructs. extend data Exp = LetE String Exp Exp
In a dynamic setting, such as a plug-in enabled application, a
solution to the expression problem is absolutely necessary. Modi-
fying source code is an intolerable option; one immediately loses
the benefits of a plug-in compiler which include ease of extensi-
bility and the ability to keep the source code a trade secret while eval :: Exzp — Env — Exp

As usual it is possible to define new functions on the data type
in this new module but in this case they can also be defined on the
new Let variant.

module F0_Alpha
where

open data Exp = Var String
| Lam String Ezp
| App Exp Exp

alpha :: Exp — (String, String) — Exp
alpha (Var v Exp) =

A(s :: (String, String)) — Var (swap s v)
alpha (Lam v body :: Exzp) =

A(s :: (String, String)) —

Lam (swap s v) (alpha body s)

alpha (App a b i Exp) =

A(s :: (String, String)) — App (alpha a s) (alpha b s)
swap :: (String, String) — String — String
swap ((a, b) :: (String, String)) =

Ao :: String) — if a == o then b else o

Figure 1. The initial module. It defines the data structure to repre-
sent the simple lambda calculus and an alpha conversion function.

eval (Var name) = ...

eval (Lam name body) = ...
eval (App fz) = ...

eval (LetE name body exp) = ...

Unlike regular Haskell, new equations for the functions defined
in the first module can be defined. However, this can only be done
for the new variants introduced. In this case we would be limited to
a new equation on theet variant.

alpha (Let name body exp) = ...

module F'1_Eval
where

import F0_Pretty
extend data Exp = Let String Fxp Exp

alpha (LetE name body exp :: Exp) =
A(s = (String, String)) —
LetE (swap s name) (alpha body s) (alpha body s)
eval :: Bxp — Env — Ezxp
eval (Var name :: Exp) =
Alenv :: Env) — lookupEnv env name
eval (Lam name body :: Exp) =
A(env :: Env) — Lam name body
eval (App f z :: Exp) =
A(env :: Env) — apply z env (eval f env)
eval (LetE name body exp :: Exp) =
A(env :: Env) — eval (App (Lam name exp) body) env
apply :: BFxp — Env — Ezp — FExp
apply (Var name :: Exp) =
Aenv :: Env) (z :: Exp) — error "Function expected"
apply (Lam name body :: Exp) =
Aenv :: Env) (z :: Exp) —
eval body (extEnv env (name, eval x env))
apply (App f = :: Exp) =
Alenv :: Env) (z :: Exp) — error "Function expected"
apply (LetE name body exp :: Exp) =
Alenv :: Env) (z :: Exp) —
error "Function expected"

The semantics of pattern matching is slightly different than
usual. Since new equations can be introduced on existing functions
whenever arextend dataleclaration the meaning of the wild card
pattern becomes ambiguous. Consider the situation where the wild
card pattern is used both in modw#8 andF1. Which one should
be used? Does the new one equation override the old one? In order
to simply the presentation of this paper we have opted to disallow
the wild-card pattern altogether. However, thest-fit left-to-right
pattern matching solution devised byh and Hinze [9] could be
implemented without too much trouble.

There are a few more restrictions on the new syntaxopen
dataandextend dataleclaration cannot appear in the same module.
For a particular extensible data type there is at moseatend data
declaration per module. It was stated earlier that new equations on
existing functionscould be defined. In fact, thesnustbe; to omit
them is an error.

3. Arunning example: the lambda calculus

As a running example we implement a data type representing the
lambda calculus and two operations: alpha conversion and evalu-
ation. At its simplest the lambda calculus consists of three core
concepts: variables, abstraction and application.

We define two modules, an initial and one than extends the
previous. The initial module appears in Figure 1 and defines the
alpha function on a data type that represents just the core concepts
of the lambda calculus.

Figure 2. The extension module. It extends the earlier data struc-
ture to represent let expression, defines an extra equation on the
alpha conversion function and defines a new evaluation function.

type Env = [(String, Exp)]

lookupEnv :: Env — String — Exp
lookupEnv ([] :: Env) =
A(name :: String) —
error $ "lookupEnv: Variable " -+
show name H# " not found"
lookupEnv (hd : tl :: Env) =
A(name’ :: String) — lookupEnvAuz hd tl name’
lookupEnvAuz :: (String, Fxp) — Env — String — Ezp
lookupEnvAuz ((name, term) :: (String, Exp)) =
A(rest :: Env) (name’ :: String) —
if name == name’
then term else lookupEnv rest name’
extEnv :: Env — (String, Ezp) — Env
extEnv = A(env :: Env) (z :: (String, Ezp)) — = : env

We then extend the module in Figures 2 and 3. We add a new Figure 3. Some helper functions that are also present in the exten-

variant to the lambda calculuket expressionsiVe then add a new
equation for this variant to thelpha function and define two new
functions,eval andapply.

sion module.

The reader may notice that the functions are not defined as We now definecomponent typeand corresponding instances
they usually would be. There is one at most one pattern match of the Alpha class to represent the core lambda calculus and the
for each function and in each case the pattern match is flat (i.e.let expression extension. The component types are calied0
not nested). Also, the right-hand side of each function is a lambda and Ezp_1 respectively. Note that where we used to have recursive
expression which while legal Haskell is not standard idiom. In occurrences of the data type we now refer to the wrapper type.
addition, re_aders may v_vonder W_hy there is @mly functio_n at data Ezp 0 = Var String
all when this could easily be defined as a case expression inside X
eval. | Lam String Exp

The translation presented later in this paper is complicated by | App Ezp Ezp
many of the syntactically friendly features of Haskell such as where
clauses, nested pattern matches, etc. To simplify the presentation
the translation is assumed to be performed on an austere Haskell
which includes the syntactic sugar introduced in Section 2. By FEzp_1 can be defined along with its instance in an entirely new
presenting our running example in this austere Haskell it is hoped module. Instances are open declarations.
that the correspondence between the rules of the translation and the q,¢a gup 1 = LetE String Exp Exp
result of applying them to Figures 1, 2, and 3 is much more readily
apparent.

instance Alpha Fzp_ 0 where ...

instance Alpha Ezp_1 where ...
4. Laufer's method andretrospective _
superclassing 4.1 The version problem

In Section 5 a complete translation of the program in Figures 1 and L&t Us now consider extending the functionality of thep data

2 is presented. The solution is based on an extension to the workYP€ by defining an interpreter on it. This will require a new class,
of Laufer [8] and involves a technique that we have dubtetd Ewval, to be deflned_. Using thg inheritance mechanism of type
rospective superclassinghis section will outline Bufer’'s work, classes we can require thatpha is a superclass dfval.

show a gap in the solution to the expression problem and present class Alpha a = Eval a where . ..

retrospective superclassing as a means of closing that gap. We also
show whyrecursive dictionariesa recent extension to Haskell, are
necessary in order for retrospective superclassing to work.

In Haskell, type classes are the only candidatesfuzodingex-
tensible data types since they are the ampgndeclarations. Most data FExp = forall a.Eval a = MkEEFEzp a
declarations in Haskell arelosed their meaning is fully deter-
mined once and for all in the module they are written in. Their
very nature precludes them from being used to encode extensibl
data types. Howeveinstance declarationsvhich define the func-
tionality of class methods for a given type, are open. They can be
defined in a module that is not the same asdlss declaratioras
long as they do natverlagh with an existing instance.

Unfortunately, this requires that we introduce a new type, say
EEzp, to wrap up this new class, sindécp only wraps up the
Alpha class.

Without going any further we can see that there is going to be a
eproblem. Once we have correctly defined instances on the compo-
nent types and declared an unwrapping instance we will have a data
type for whicheval and alpha are both methods. However, while
the type ofeval is EExzp — Env — FEFExp the type ofalpha is
EExzp — (String, String) — Exp. The return type is the origi-

Laufer [8] introduced a technique similar to the dynamic dis- nal type. Unfortunately, this means the following expression would

P ” ” ” b ” N
patch mechanism of object-oriented languages which can be used't YPe checkeval (alpha (MkEzp (Var ”a”)) ("a”, 7 ¢”)) [].
as the basis for a solution to the expression problem. The key ideag 2 Retrospective superclassing
is to treat a class declaration as tinéerfaceto an abstract data
type. Existential types are then used to “wrap” specific implemen-
tations of the abstract data type so that the only way to perform
operations the data type is through class methods. These method
are available because the class context is “wrapped up” inside the
existential type. The technique is demonstrated on our running ex-
ample. Below, we introduce a class for thiha function and an
existential typeEzp wraps up differing value behind th&kExp
constructor. It shall be called therapper typerom now on.

Let us look more closely at why this problem occurs. When a value
of type Fzp is unwrapped the value extracted has access to all of

lassAlpha’s methods and those of its superclassesl no more

t present there is no way that we can define the funciipha to
return values which will have access to methods that a programmer
may write in the future.

The first hint of a solution becomes evident when we restate the

methods a value of typBzp has access to, putting the emphasis in
a different place this time: it has access to allddpha’s methods

class Alpha a where and those of its superclasseand no more. If it were somehow
alpha :: a — (String, String) — Ezp possible to defineFval in such a way that it was a superclass
of Alpha then values of typeFzp would have access to these

data Exp = forall a. Alpha a = MkExp o methods. This would be a kind edtrospective superclassing

. : : In fact, retrospective superclassing is possible using a technique
Methods can then be defined on various data types but with thedue to Hughes [3] and elaborated upon kgmmel and Peyton

aid of anunwrapping instancean be applied to values dfzp . - ;
and have the correct behaviour. The unwrapping instance provides‘]Ones [7] which allows absiraction aver type classes. Hughes' sug-

us with a function of typeEzp — (String, String) — Eap as gestion was to allow declarations like the following:
required. Its definition is quite simple. class czt a = Alpha cxt a where

instance Alpha Ezp where alpha :: a — (String, String) — Ezp cxt

alpha (MkEzp €) s = alpha e 5 data Ezp cat = forall a. Alpha cxt a = MkEzp a
L An overlap occurs when a given instance can be unified via substitutionto ~ This is not valid Haskell since the second parametet, of
another. e.gC (a, Int) overlaps withC(Bool, b). the Alpha class stands for elass not a type or type constructor.

However, let us assume for the moment that such declarations are module F0_Alpha

legal. Now typeEzp has an extra parametet;t, which abstracts where
over a class. Since this very same class is declared to be a superclass
of Alpha we see that metho@pha now returns values which have data P d

access to the methods in any class thatis instantiated to.

. e class Sat a where
Fortunately, Hughes was successful in encoding just such an

abstraction over classes and the technique is now demonstrated. dict :: a
First, we define a clasSat with a single method/ict. This class is data Ezp (cat i —) =
used to return aexplicit dictionarywhose values are taken directly forall b. Alpha cxt b = MkExp b

from the implicit one associated with a given class.

class Sat a where Figure 4a. Preliminaries: the Sat class and wrapper type

dict :: a
Now, whenever the programmer defines a new class they also ~ class Sat (cxt b) = Alpha cxt b where
define a corresponding data type that represents explicitly the im- alpha :: P cxt — b — (String, String) — Exp cxt
plicit dictionary of the class. The programmer also needs to define data Ezp_0 cazt = Var String
an instance that equates the methods of the explicit dictionary with | Lam String (Exp cxt)
those classes we wish to abstract over. The following self-contained | App (Exp cxt) (Ezp cat)

example demonstrates this.
type Env = [(String, Exp EvalD)]

class Sat (cat a) = Alpha czt a where

Figure 4b. Initial component type and the initial functionality

alpha :: a — (String, String) — Ezxp cat class
class Alpha FEvalD a = Ewval a where
eval :: a — Env — Exp EvalD instance (Sat (cat (Ezp cat))
data FvalD a = EvalD{eval’ :: a — Env — FEzp EvalD} ,Sat (cat (Exp_0 cat))
inst Fval Sat (BvalD h) = Alpha czt (Ezp_0 cxt) where
instance Eval a = Sat (EvalD o) where alpha (—:: P cat) (Var v :: Exp_0 cat) =

o ;o
dict = BvalD{eval” = eval} A(s iz (String, String)) — var (u :: P cxt) (swap s v)

alpha (—:: P cxt) (Lam v body :: Exp_0 cat) =

Here is a quick summary of the salient points: . !
A(s :: (String, String)) —

e The class head,class cat @ = Alpha a, has become lam (u:: P cxzt) (swap s v)
class Sat (czt a) = Alpha a. (alpha (u:: P cxt) body s)
e EvalD is the explicit analogue of the implicit dictionary that is alpha (- :: P cat) (App a b:: Ezp-0 cxt) =
associated with th&val class. (s :: (String, String)) —

app (u:: P cxt)

The instance equates the methodsHafal with the explicit
* . . P (alpha (u:: P cat) a s) (alpha (u:: P cxt) b s)

dictionary EvalD.

There is one remaining caveat — calls to extension methods must Figure 4c. Functionality instance
be done through explicit dictionaries. The following expression will
not type check since methedal is not a member of any superclass
of Alpha. instance Sat (cat (Ezp cat))
= Alpha czt (Exp czt) where

case alpha eap ("a”, "b") of MkEap exp’ — eval exp’] alpha (- :: P cat) (MkExp e :: Exp cxt) =

However,dict is a method ofdlpha’s superclassSat. All that A(s i (String, String)) — alpha (u:: P cxt) e s
is required is to replaceval exp’ [| with eval” dict exp’[] which
only imposes minor syntactic inconvenience. Figure 4d. Unwrapping instance

Retrospective superclassing relies recursive dictionariesa
recently? implemented feature of GHC. These dictionaries allow
cycles to occur while resolving the constraints introduced by class 5 Translation of the running example

and instance declarations. We defer an in depth discussion of this) . o
to Section 5.3 but refer the reader taramel and Peyton Jones’ We are now ready to discuss the translation of the initial module

paper [7] on extensible generic functions where the technique was(Figure 1) and the extension module (Figures 2 and 3) of section 3.
first described. To avoid overwhelming the reader the translation has been bro-

In conjunction with capping classes, the explicit dictionary of ken up in_to sgveral sub-figures. The translation of the initial r_nodule
the Sat instance “ties the knot” of constraint resolution. This brings @PPe&rs in Figures 4a through 4g and the translated extension mod-
the functionality introduced by each class—in this cd$gha and ule in Figures 5a through 5Sh.

Eval— to the same semantic level. In Section 6.4.2 we will see .

that it is possible to call extension functions from new equations on -1 Initial module

existing functions. Figure 4aintroduces thgat class and the wrapper type which, this
time, contains a kind annotation. Although not strictly necessary in
this case, itis required when the open data type has type parameters.
2Recursive dictionaries are available from GHC 6.4 onwards. We also introduce proxy type P. An argument of the proxy type is

data AlphaEnd b module F'I1_Eval

class Alpha AlphaEnd b = AlphaCap b where

instance AlphaCap (Exzp_0 AlphaEnd) import F0_Alpha

instance AlphaCap (Exp AlphaEnd) data Ezp_1 (cxt % — %) =
instance AlphaCap b = Sat (AlphaEnd b) where LetE String (Ezp cat) (Exp cat)

dict = error "Capped at Alpha"

Figure 5a. Module header and new component type

Figure 4e. Capping classes, capping types and capping instances

instance (Sat (EvalD czt (Ezp (EvalD cxt)))
, Sat (EvalD cxt (Exp_0 (EvalD cat)))

var :: forall cxt. (Sat (cxt (Exp cat)) , Sat (EvalD cxt (Ewp_1 (BualD cat)))
,Sgt (cat (Ezp-0 cat))) =) = Alpha (EvalD cxt) (Exp_1 (EvalD cat))
P cxt — String — Ezp cxt where
var (= P ca?t) = alpha (_:: P (EvalD cxt))
A(z1 :: String) — MkEzp (Var x1 :: Ezp_0 cxt) (LetE name body exp :: Exp_1 (EvalD cat)) =
lam :: forall cxzt. (Sat (cxt (Exp cat)) A(s :: (String, String)) —
,Sat (cxt (BExp_0 cxt))) = letE (u:: P (BvalD cat)) (swap s name)
P cat — String — Exp cat — Exp cat (alpha (u:: P (EvalD cxt)) body s)
lam (=:: P cat) = A(z! :: String) (22 :: Exp cxt) — (alpha (u :: P (EvalD cat)) exp s)
MkEzp (Lam x1 z2 :: Exp_0 cat)
app :: forall cxt. (Sat (cxt (Exp cat)) Figure 5b. Instances for new equations on existing functions

, Sat (cxt (Ezp_0 cxt))) =
P cxt — Fxp cxt — FExp cat — Fxp cat
app (= P cxt) = Nal :: Exp cat) (22 :: Exp cxt) —
MkEzxp (App z1 22 :: Exp_0 cxt)

class (Sat (EvalD czt b)
, Alpha (EvalD czt) b) = Ewval cxt b where
eval :: P (EvalD cat) — b — Env (EvalD cat) —
Ezxp (EvalD cxt)
apply :: P (EvalD czt) — b — Env (EvalD cxt) —
Ezp (EvalD cxt) — Ezp (EvalD cxt)

Figure 4f. Smart constructors

swap :: (String, String) — String — String data EvalD Cﬂlﬁt b=
swap ((a, b) :: (String, String)) = EvalD{eval’ :: P (EvalD czt) — b —
Ao :: String) — if a == o then b else o Env (BvalD cxt) —
Ezp (EvalD cxt)
roL
Figure 4g. Regular declarations sapply’ 2 P (BvalD cxt) — b —

Env (EvalD cat) —
Exp (EvalD cat) —

required whenever the type signature of a method does not contain Egp (BvalD cat)

an occurrence of thext parameter. It is required for the correct s evalExt :: cat b}
unification of types. This is described in Section 6.4.1.
Figure 4b defines the initial functionality classipha and the Figure 5c. Functionality classes and explicit dictionary

initial component typeFzp_0. The functionality instance of Fig-

ure 4c defines the three equations of tligha method on théVar,

Lam and App variants of typeEzp_0. There are two important instance featuring the capping class as its superclass. (In this case
things to note. First, there are twint constraints in the instance the capping class idlphaCap.)

head, one on the initial component type and one on the wrapper

type. The one for the wrapper type is necessary simfgika returns 5.2 Extension module

a value of typeEzp cat. Second, use is made of the smart con- The first thing to notice about Figures 5a through 5h is that the type
structorsvar, lam and app defined in Figure 4f. These simplify yariable czt has been replaced almost wholesale BylD cat.
the presentation considerably and are also useful when construct-g;,1p is the name of the explicit dictionary defined in Figure
ing concrete values of typBzp 7 (for some typer). _ 5¢ and its occurrence in the typérp (EvalD cxt) gives a visual

_ We call theswap function in Figure 4g aegular declaration jngjcation that evaluation is defined upon it. Although we present
since it is not defined directly upon the open data type. Although ng more functionality for theszp EDT it is readily extensible. As
it is unchanged in this translation this will not always be the case. more functionality is added thext type variable is replaced with
Should a function use one of the instance methods its type will need fther explicit dictionaries, e.gzzp (EvalD (Pretty czt)) and so
to be augmented. More is said about this in Section 6. on.

The only remaining figure to explain is Figure 4e.capping Theextension functionality class shown in Figure 5c. In gen-
classis a null extension that allows a programmer to use the EDT grg there will be one of these present in the translation whenever a
inits current state. A capping class is always accompanieddaya ey function is defined on the EDT.

Figure 5e, while much larger than the corresponding code in
3The proxy type is not strictly required for this example either. Figure 2 is a relatively straightforward translation of what is present

instance Sat (EvalD cazt (Ezp (EvalD cxt))) =
Eval cat (Exzp (EvalD cxt)) where
eval (=:: P (EvalD cxt))
(MkEzp e :: Exp (EvalD cxt)) =
Az1 :: Env (BvalD cat)) —
eval” dict (u :: P (EvalD cxt)) e x1
apply (—:: P (EvalD cxt))
(MkEzp e :: Exp (EvalD cat)) =
Az! :: Env (EvalD cat)) (22 :: Ezp (EvalD cat)) —
apply’ dict (u:: P (EvalD cat)) e z1 z2

instance (Sat (EvalD cat (Ezp (EvalD cxt)))
, Sat (EvalD cxt (Exp-0 (EvalD cat)))
, Sat (EvalD cxt (Exp_1 (EvalD cat)))
) = Ewal cxt (Exp-0 (EvalD cxt)) where
eval (=:: P (EvalD cxt))
(Var name :: Exp_0 (EvalD cat)) =
A(env :: Env (EvalD cat)) — lookupEnv env name
- — eval (—:: P (EvalD cxt))
Figure 5d. Unwrapping instance (Lam name body :: Exp_0 (EvalD cxt)) =
A(env :: Env (EvalD cat)) —
lam (u :: P (EvalD cat)) name body

there. One key difference is that useseahl and apply on the eval (_:: P (EvalD cxt))

right hand sides of the equations have been replaced with calls (App f z :: Exzp_0 (EvalD cat)) =

to eval’ dict and apply’ dict respectively. This occurs in any in- Aenv :: Env (EvalD cxt)) —

stances of extension functionality classes. _ apply’ dict (u:: P (BvalD cat)) z env
Figure 5f introduces the capping classes, types and instances. (eval’ dict (u:: P (EvalD cxt)) f env)

Note that this time the methods of claBsal, eval and apply are "

equated with the selector methodsffalD, eval’ andapply’. The apply (== P (EvalD cat))

selector metho@valEzt is equated with an error, much lik&ct (Var v Brp 0 (BvalD cxt)) =

was in Figure 4e. As more functionality is added to fiey EDT A(env :: Env (EvalD cat))

the dict method of theSat instance will come to consist of nested (z :: Exp (BEvalD cxt)) —

explicit dictionaries. Figure 8c provides more detail. error "Function expected"
Theregular declaration®f Figure 5h have changed in the trans- apply (—:: P (EvalD cxt))

lation. TheEnv type now has azt parameter because it references (Lam name body :: Exp_0 (EvalD cxt)) =

the Ezp type. Similarly the types ofookupEnv, lookupEnvAux Aenw :: Env (EvalD cat))

andeztEnv have changed. (z :: Exp (EvalD cxt)) —

eval" dict (u:: P (EvalD cat)) body

5.3 Recursive dictionaries (extEnv env (name

In conjunction withcapping instancethe “knot” of class constraint eval’ dict (u:: P (EvalD cxt))
dependency is “tied” via th8at instance. Also, the capping type— z env))
in this caseAlphaEnd—allows concrete values of the EDT to be apply (_:: P (EvalD cat))

created. (A . —
L . . pp f z:: Exp_0 (EvalD cxt)) =
A recursive dictionary is created for (and only for) each instance Menv sz Env (EvalD cat))

of the capping class. Figure 6 graphically represents the structure

of the two recursive dictionaries created for thep_0 and Exp (z :: Bap (E”‘?ZD cat)) —
types. (Interestingly, one of the dictionaries contains the other.) To error "Function expected"
see how they are built consider what happens when type checking instance (Sat (EvalD cxt (Exp (EvalD cxt)))
instance AlphaCap (Exp AlphaEnd). First, we must check if . Sat (EvalD cat (Ezp_0 (EvalD cat)))
an instance of the superclass exists. The leads to the following , Sat (EvalD cxt (Ezp_1 (EvalD cat)))
constraint chain.) = Ewal cxt (Ezp_-1 (EvalD cat)) where
Alpha AlphaEnd (Ezp AlphaEnd) eval (—:: P (BvalD cxt))
~ Sat (AlphaEnd (Ezp AlphaEnd) (LetE name body exp :: Exp_1 (EvalD cxt)) =
~» AlphaCap (Ezp AlphaEnd) A(env :: Env (EvalD cat)) —

eval’ dict (u:: P (EvalD caxt))
(app (u:: P (EvalD cxt))
(lam (u :: P (EvalD cat)) name exp)

We are back where we started. Fortunately, recursive dictionar-
ies allow such cyclic constraints to be resolved. A similar line of
reasoning shows us how thestance AlphaCap (Exp-0 AlphaEnd)

is typed and it is graphically represented in Figure 6. The boxes body) env
outlined by broken lines represent dictionary transformers (which apply (- P (EvalD cat))
correspond to instances with contexts). One can also read the solid (LetE name body exp :: Bxp_1 (EvalD cat)) =
arrows asapplicationto the box at its tip. Following Wadler and Aenv :: Env (EvalD cat))
Blott's [14] original formulation of dictionary translation we can (z :: Bxp (BvalD cat)) —
see the form of the recursive dictionarydn error "Function expected"
d :: AlphaCapD (Exp AlphaEnd)
d = AlphaCapD { alphaD = dt; (dt2 d } Figure 5e. Instances for new functions on all component types
dty :: SatD cat (Exp cat) — AlphaD cat (Exp cat)
dty = ...
dtz :: AlphaCapD b — SatD AlphaFEnd b
dta = ...

data EvalEnd b
class Fwval EvalEnd b = FEvalCap b
instance EvalCap (Ezp (EvalD EvalEnd))

instance FvalCap (Ezp_0 (EvalD EvalEnd))
instance FvalCap (Ezp_1 (EvalD EvalEnd))

instance EvalCap b = Sat (EvalD EvalEnd b) where
dict = EvalD{ eval = eval
, apply’ = apply
, evalExt = error "Capped at Eval"}

Figure 5f. Capping class, capping type and capping instances

letE :: forall cxt.
(Sat (EvalD cxt (Exp (EvalD cat)))
,Sat (FvalD cxt (Exp-0 (EvalD cat)))
,Sat (BvalD cxt (Exp_1 (EvalD cxt)))) =
P (EvalD cat) — String — Exp (EvalD cat) —
Ezp (EvalD cxt) — Ezp (EvalD cxt)
letE (_:: P (EwalD cxt)) =
Azl :: String) (22 :: Exp (EvalD cat))
(z8 :: Exp (FEvalD cat)) —
MkEzxp (LetE x1 22 x8 :: Exp_1 (EvalD cat))

Figure 5g. Smart constructors

type Env cxt = [(String, Exzp cxt)]

lookupEnv :: Env (EvalD cxt) — String —
Ezxp (EvalD cat)
lookupEnv ([] :: Env (EvalD cxt)) =
A(name :: String) —
error ("lookupEnv : Variable " H
show name H " not found")
lookupEnv (hd : tl :: Env (EvalD cat)) =
A(name' :: String) — lookupEnvAuz hd tl name’

lookupEnvAuz :: (String, Exp (EvalD cxt)) —
Env (EvalD cxt) — String —
Ezxp (EvalD cat)
lookupEnvAuz (name, term) =
A(rest :: Env (EvalD cat)) (name’ :: String) —
if name == name’
then term else lookupEnv rest name’
extEnv :: Env (EvalD cat) —
(String, Exp (EvalD cat)) — Env (EvalD cxt)
extEnv = A(env :: Env (EvalD cxt))
(z :: (String, Exp (FvalD cxt))) — z : env

Figure 5h. Regular declarations

iSat (AlphaEnd (Exp_0 AIphaEnd))\I i Sat (AlphaEnd (Exp AIphaEnd))Ii
\

F—— "

|Alpha AlphaEnd (Exp_0 AlphaEnd) ' |A|pha AlphaEnd (Exp AIphaEnd) i

(AlphaCap (Exp_0 Alphaknd)) (AtphaCap (Exp Alphaknd)]

—>» Instance constraint —— dictionary
——% Superclass constraint =—.=-= dictionary transformer

Figure 6. A diagram of two recursive dictionaries produced by
AlphaCapinstances ofExpandExp.0.

Symbol Classes

a, B,y — (type variablé

T, F — (type constructdr

C, & — (data constructor

x, f — (term variablé

v — (Collection of pattern variables
Declarations

pgm — decl (whole program)
decl — data; tval (declaration)
data — dataTa = CT (data type decl)
val — Tz =c¢€|lzp =ce (value binding)
vstg — T:0 (type signature)
tval — wsig; val (top level binding)
Terms (Expressions)

e, b — ee|lr:Te|lz|C
Patterns

P — Cxi ...z 7 (n>0)(pattern)

Types

T, & — Tla|nm (monotype)

o — T |Va.o (type scheme)

Figure 7a. Syntax of source language

A full dictionary translation of the code in Figures 4a — 4g
appears in Appendix B.

6. Formalisation

In this section we present a formal translation from the language
described in Section 2 to Haskell. However, so that we may con-
centrate on the important aspects we translate from an austere
source language to a target language equivalent in expressiveness to
Haskell. The running example, although legal Haskell, was written
in a manner very close to the source language which is essentially
the lambda calculus with algebraic data types, flat pattern match-
ing and first order polymorphic types. Most importantly, it contains
two new forms of algebraic data type declaratiomgen dataand
extend data

The target language has type classes but the syntactic restric-
tions on them are less stringent than Haskell 98. The source lan-
guage does not contain type classes but only in order to simplify
the presentation.

6.1 The source and target languages

Apart from theopen dataandextend dataleclarations the lexical
structure of the source language does not differ much from the
lambda calculus extended with algebraic data types and pattern

matching. However there are a number of non-lexical restrictions

The target language is the same as GHC Haskell 6.4 with the

on the syntax. These have largely been put in place to simplify the glasgow extensiofisand allow undecidable instanceptions en-
presentation of the translation and, in such cases, other translationsbled, modulo the syntactic abbreviations we use. In particular, it

from the richer language constructs of full Haskell are known to

has type classes, existential types and allows recursive dictionaries

exist. Some constraints are essential but these have already beeto be created during constraint resolution.

enumerated in Section 2. This section will only describe those
constraints that simplify the presentation.

6.2 Therules

There is at most one pattern match per function and it must be e ransiation is presented in an inductive manner. The “base

flat, i.e. not nested. The source language is explicitly typed. All

case” concerns the translation of thpen datadeclaration while

functions have type signatures except new equations on existingie inductive step demonstrates thh extension of the data type
functions. This is because signatures already exist for such equa-4q themth new function on that data type.

tions albeit in a different module. It is an error to provide signatures
for them.

Further, all value bindings in the source language are supercom-

binators. We overload the terminology and allow both value bind-

We've already introduced the terresemponent typandfunc-
tionality class but due to their specific meaning they are sum-
marised again.

ings and expressions to be supercombinators. An expression that ¢ Component type A type that forms part of the EDT. There is

is supercombinator has the form:
AL IT1 ... ATy Th.€
It has the following properties.
e It has no free variables.

e Any sub-term ine that is a lambda abstraction is also a super-
combinator.

en > 0.

A value binding that is a supercombinator has the form:
TP = ALL:TL...\Tp @ Tn.C

¢ |t has no free variables.

e The patternp, is optional if the function is not defined on an
EDT. Otherwise it is required.

e Any sub-term ine that is a lambda abstraction is a supercombi-
nator.

theinitial component typ&vhich is introduced when translating
theopen datadeclaration. Then there are thrtension compo-
nent typeach introduced with thextend dataleclaration.

¢ Functionality class- Classes that provide the functionality for
the EDT. There is at most one per module.

There are three indexes,j; andk; used in the translation.

e The index: ranges over the component types and functional-
ity classes. We have made another presentation simplifying as-
sumption that whenever an extension is made to the open data
type that a new function is also declared on the EDT

¢ Index j; ranges over the variants (constructors) of the compo-
nent type and has valués< j; < n;, wheren; is the number
of variants for the., component type

¢ Index k; ranges over the functions in a functionality class and
has valued < k; < p;, wherep; is the number of functions in
thei, functionality class.
Tsort

description

is the way we denote translation rules. T8wt is

This restriction was introduced so that it would not be necessary to the language entity we are doing the translation on. For instance,

deal withlet expressionsndwhereclauses. Using lambda-lifting

1.7 hoa transformso-types. Some of the translation rules take

it is always possible to translate from a language containing these arguments e.0ucurap- A translation rule can also be mapped over

to one of supercombinators.

6.1.1 Syntactic conventions

The syntax is provided in Figure 7a. Overbar notation is used ex-
tensively. The notatioa™ means the sequenesq . .. ay; the “n”
may be omitted when it is unimportant. The following notational

shortcuts also apply:

T —

va".r

T — T — &
=Vai...Ya,.T

Superscripts and subscripts make a difference to what overbars

- m

mean. D, § (1 < i < m) is shorthand for
Di (Dit1 ... (D 6)...) . D™ § is shorthand forDy" §. D;" §
is the type of an explicit dictionary for functionality clags with
the explicit dictionaries for functionality classég.1, ..., Fn,
nested within it. Also, we accommodate function types— 7
by regarding them as the curried application of the function type
constructor to two arguments, thys:)7i72.
The following conventions apply to the symbols used. The first

a sequence; this is denotéd°”’ . ., .

The translation rules use a form of a pattern matching. Most
symbols appearing between the Oxford brackpts (]) are generic;
they bind to whatever is in their position. However, some symbols
are concrete and for a match to occur the symbol in the scrutinee
of a translation function must match with the symbol in the pattern.
Just like Haskell, a pattern match failure means that a match should
be attempted on the next translation rule. A list of the concrete
symbols for the source language appears in Figure 7b.

A syntax has been introduced to range over multiple, similar
declarations. An expression of the forfreapression);L, means
“range over the indey from a to m”. There can be nested loops
too. An expression of the forMiezpression)77 , _, means that
k ranges oveb to n for eachj. When seen on the left hand side of
a translation rule imatchen declarations. On the right hand side
it generatesleclarations.

Certain information is required by the translation.

¢ The name of the extensible data type, dendied the transla-
tion rules.

symbol appearing in each symbol class is a generic symbol. Later4we do not even require everything that this enables. We only need multi-
symbols in the list often stand for explicit language entities. For parameter type classes, scoped type variables, kind annotations and zero
exampleF is reserved for the type constructor of the extensible constructor data types.

data type. The concrete symbols are listed in their entirety in Figure 5One could always define an identity function or an empty component type
7b. if they didn't want one or the other.

E The extensible data type.

Eij,
Jisks

Constructor of EDTE < i < m, 1 < j; < ny).
Function defined on EDTO(< i < m,1 < k; < p;).

Figure 7b. Concrete symbols of the source language

T [opendata Ea =
<f0,k0 © 00,ko >11:3i1§
(foro (E0o Vg + E&jo) = bojoko >_j 1 kU 1=

(oo T3)j21;

Initial functionality class

E Wrapper type for the EDT .
£ Constructor for the wrapper type. class 5 (‘? B) = Foo [where
E o Comon et e b G2
Eij %Q?gtiugtgr of comp.(.)nentAtype. instance (S (3 (E8)), S (6 (Eo 9)))
i (0<i<m,1<j; <mny).
S Satclass. = Fo 4 (Eo §) where
F; Functionality class (for functions x, (1 < ki < pi). (foro (-2 PO) (Eo v = Eojy 6 &) =
P Proxy type. Tonetnoalb0.joko])it k=1
di Method of S class. Returns explicit dictionary. Capping class, type and instances
d; Selector method for next explicit dictionary in data Dy 3 ;
explicit dictionaryD,,—1 (1 < i < m). class Fo Do B = Fy 3;
D; Explicit dictionary for functionality clasg"; instance ﬁo (E (Do) ;
. (1= v < m).)) instance Fo (Eo (Do) ;
If,» Capping class for functionality clagds. instance £, 8 = S (f)o 38) where

D; Capping type for functionality class;.
Smart constructor for constructdf; ;,
(0<i<m,0< i <ny).

d = 1

- Figure 8a. A portion of the translation foopen datadeclaration
Figure 7c. Concrete symbols of the target language in the initial module {n — 0).
¢ Acollection,I'(E), of all type constructors whose definition di-

rectly or indirectly contain occurrences of the type constructor

E T {foo (€

¢ A collection, A(E), of all functions that directly or indirectly A

. Nm PO
b0,j1m ko >]m,1 ko=15

: EE) =

mygm Vim

contain occurrences of a functiofi,(i > 0), defined on the <fm_1’km71in (pginl’j’” U, 1 EE,) =
EDT, E @. =L k1 et g1 =1) =
(instance (S (D" 6, (E(D"6m)))

For example, an analysis on the following module would yield

P(B) = {T, T} A(E) = {g,h}. 5 (D" dm (Bo (D"6m)))

PRI

opendata F a = ... (ﬁm(;m (Enm (ﬁm(gm))
data Tbe = T1 b (T ¢) v .) 5 §(D Om) (Em (D" 0m)) where
data T' a = Ti (FE a) (fir (2 P (7 m)) .
(57U7Jm Vijp, * EV” (QL (San) g?m) =
f - FEa — a chthodﬂ 4, 5m i H >77,TL_11 k=1
f=.. Jny
Figure 8b. Translation for new equations on existing functions in

them,;, extension module.

The translation of a module containing extend dataequires
additional information but we defer discussion of this until Section

6.4. occurrence of a constructor becomes a smart constructor instead.

An extra argument of the proxy type is added for all functions,

3 B : Translatin n g
6.3 ase case: Translatingpen data fi,k;» defined on the EDT and to the smart constructors.

A portion of the rule used to translatgen datadeclarations ap-
pears in Figure 8a. The complete rules appear in Figures 10a
and 10b. The portion provided introduces the initial functional-
ity classFo, and an instance for the first functions on the EﬁaTk,
(wherel < k < po). A capplng classFy, and capping typeDo
are also introduced. (There is no explicit dictionary for the base
functionality class.) The complete rule also introduces the initial
component typef, and corresponding smart constructayg (for
1 < j < nop), the proxy typeP, the wrapper typeE and a corre-
sponding unwrapping instance. T8atclass,S is also introduced,
once and for all.

Smart constructors are introduced so that the translation of
regular data constructors in the source language is simplified; an

6.4

The portion of the rules for translating a module containing an
extend dataleclaration appears in Figures 8b and 8c. The complete
rules appear in 10b, 10c, and 10d.

These rules introduce thexth new variant on the EDT and
the mth function. It is assumed that the following information is
available.

Inductive step: Translating extend data

e Alist of m existing functionality classel#y, ..., Fr,—1], func-
tions[fo,kgs - - - s frm—1,k,,_,] (Wherel < k; < p;) and explicit
dictionaries| Do, . . . , Dm—1].

T [extenddata Eqd = (;7)00y ; k41
» m - —_—
<fm,km OmLky, >£Z—1; 7;57,,(1[[041, ey akﬂ = (* — ... — *) — %
(fmkm (5”711,1771 Vgm & B &mjm) = Tcthoa | VO-ET —m _
bm,jm,km >7m_pl km=1]] = ~ — £H = Va. P(D 5m) - ﬁ T = Zr:ethnd [[6]]
7:nethod [[O[ﬂ =«
e - T (D"6,) ,ifTeT(E)
The myy, functlonallty class Tremoal T = { T , otherwise
class (S (1}(2 (fsm %) hm 1 (Dm 67n) ﬁ) method [[Eﬂ = F (5771
= 9m p Where 7T [r1 7] = 1] T etnoall ™
<fm b T hod [[O'm kmﬂ >£:::1; method 71]] nethod[[1]} th, d[[QH
The myp, explicit dictionary fle, Thet(q) (L: P (5”5))
data D,, ,, B = | z>0
D { < Jonm t Toethoalom il Vor =1 5 Tinetnoalfiok (L:P(D"6,))
S i (5771(?) } 0<i<m) otherwnse
unctionality instances (for component types 0 < i < m :
—m —m J_ P D (S , |f S A FE
(instance (S (D" 6, (E (D"6,))) Triemoalz] = i) mothen(,vis)e
’ S (D 6m (EO (D 6m))) Tmeth,od [[)‘x T 6]] AT Tmethod IIT]] 77’LE‘thd[[e]]
T ‘*7” THBLE 104 [[g’hz]] = Eiv ji (J- : (D 6))
5 (D" 5 (B (D"6m)) Tilcl’= ¢
) = Fudm (E; (D™ 67,1)) where e

Znethod[[el ezﬂ - Tmethod[[elﬂ methad[[eQ]]

(frnbom (-2 P (5mém» (51 5 Uy, ¢ B (D O)'SJL) =

e L ni,Pm
Trrethod[bigi k])52, =1

Yo T i) = (di (... (dadh)...))
Capping class, type and instances
data D, 3; Figure 8d. A portion of the translation rules

class F, D, B = ﬁ‘
instance F,, (E (D" D

:)
{instance F, (E; (D" D)) ;)7~

S Sat Fy Eval
“Knot tying” instance o Zﬂﬁt fia evall
lnstance FwpB = S(D" Dy, §) where B fr apply
do= Di{{fi, = fhr) 1:1 E Ezp Fo AlphaCap
do ’: Do {< ok = & >I)27 Ey E;rp,() Dy AlphaEnd
k=1 Fo Alpha | &y dict
dm = Dy, e = fok Y, € MkEzp | do expExt
Ez,if'“: ﬁ}c .’?.>’}“*1 o1 Var | Dy Eval
o2 Lam Fy EvalCap
Figure 8c. A portion of the translation foextend dataleclaration 0,3 AIPJ}DL Dy P EvaiEqd _,
and new function for then,, extension module. foa alpha | (no = ,omo=1p=2)
51,1 LetE (=)
F1 Fxp_1
e A list of m existing component typelsy, ..., E—1] and the _Figur_e_ 9. A mapping_ from symbols in the formal translation to
variant constructorfo jo., - - - , Em—1,5,._,] (Wherel < j; < identifiers in the running example.
ni)
* A list of capping classe§f1, ..., Fr—1] and capping types, 6.4.1 The need for proxy arguments
[Dl,... Do 1]. A capping type is just a zero constructor)
dummy type. Proxy arguments guide the type checker for the target language.

Consider the following function in the source language:

Similar to the base case, the rule in Figure 8c introduces anew data £ = &g String (£ String)
component type and smart constructor, a new functionality class, fo,1 = B — String
function, and capping class. An instance is introduced for each Jo1 (Eose) = s+ fore
existing component type and the newly introduced one.

Also, the rule presented in Figure 8b introduces instances to
handle new equations on old functions (fig, (i < m, 1 < k <
(Remember, there is a syntactic restriction on the source Ianguage class S (6 8) = Fod 3 where

Now consider what we would get if the translation omitted to add
E)roxy arguments.

specifying that these must have been declared.) This rule also fo = B — String
brings into being an explicit dictionary and associated capping
type. instance S (6 (EJ)) = Fo 6(E) where
In many ways the inductive step of the translation is more inter- for(€z) = forz
esting. Consequently we spend some time explaining the subtleties instance (S (6 (Ed)), S (6 (Eo d))) = Fo d (Eo §) where
of the rules. for(Eose) = s H fore

10

—-—m

Among the constraints raised by the useqof on the right hand S (D™ Dy, (E; (D™ Dy)))
side of the instance method equatior¥isé’ (E §). The problem ~s B (B; (D™ Dyn))
is that thed” and§ aren’'t equal. The proxy ensures that they are '

equated. To see this consider the translation with proxy arguments Bt these are in the collection of assumptions, so they get re-

attached. solved. Thus, a recursive dictionary is created for each component
type and the wrapper type. This “ties the knot” &f of the func-
class S (6 8) = Fod 3 where tionality classes, not just thev:, one. To see why, consider how
foq i P6 — B — String we type check
. fio(di ... (dodi)...) s B, (D" D™) — ...
instance (S (0 (E6)), S (6 (Eod))) = Fod (Ep 6) where for somed < a < m, 0 < b < m, and0 < ¢ < p;. This leads
for (0 Pé)(Eose) = s H for(L: Pd)e to the following constraint resolution. (The initial constraint comes

The constraint raised by the expressjon (L : P 6) e is now from substitutingy = D;’, Dy, into S (D' 6 (Ey (D' 9))).
Fo 6 (E). o o
06 (EJ) § (D" D (B (D™ Din)))
6.4.2 S constraints in instance heads ~ Fp (By (D D))

The instance heads for new equations on existing component types ~ But this constraint has been provided by the capping class in-

and the instance heads for new functions both contain many occur-stance which type checks for the reasons stated earlier.

rences ofS constraints. This may seems strange considering that))

each functionality class ha$ as a superclass. The reason is that 6-4-4 Translating regular declarations

the S instance that “ties the knot” will be declared at some point Any type declaration in the source language that directly or in-

in the future (possibly in another module). THeonstraints in the directly contains a reference t8 must be translated to contain

instance head “promise” that this will happen. an occurrence of the wrapper data tyfein the target language.
These constraints mention the latest explicit dictionary (i.e. Any function which directly or indirectly contains an occurrence

D™). The purpose of this is to allow the body of the instance of a functionf; ;. (for a specific0 < i < m,0 < k < p;)

method to contain occurrences of any of the functions so far must also have its body transformed to contain an occurrence of

(fi,eqs- -+ fr—1,k,,_,) andthe latest ones £ x,,). This is pos- firdi (... (d2d1)...) . More importantly, anS constraint must

sible even inside new equations on existing functions, which may be added to the type. However, this only needs to be done for

seem counter-intuitive at first. To see why consider the translation the wrapper data typeE, as these are the only values that will

of the following new equation where < m, b <= m, anda < b. be passed to such functionS. constraints on component types
Thatelf, | (& _ B are only ever seen in the class and instance heads of functionality
a1 (Em22)= ... fon...] = classes.
instance (S (2: om (E (Q'jn5m))) 6.5 The link between the formalisation and the running
, S(D 0w (Eo (D 0m))) example
’ ;5;'(57” 5 (E (57” 5)) To further the reader’s understanding they are encouraged to apply
! o L, the rules from Figures 10a and 10b to the initial module of the
) = Fa(a+1 Om) Em (D" 0m) where running example (Figure 1) to yield the result in Figures 4a—4g. By
far (Emzz) = o foa (dm oo (d2dr)..) . applying the rules in Figures 10c, 10d and 10b to to Figure 2 they
T will get the result in Figures 5a-5h.
The expressiorf; , (dy ... (dz2 d1)...) raises the following However, the translation rules use an abbreviated syntax. In
constraints. order to aid the reader Figure 9 shows the correspondence between
A A the abbreviated syntax and the syntax used in the translation of the
S (D" Dy (Em (D™ Din))) running example.

s B (B (D™ D))

- . 6.6 Creating values of the EDT
This instance for the capping class has been declared. The) o
considerably involved way in which this is type checked is covered For an extensible data type to be created and used, it is neces-

in the next section. sary for the translator to insert the latest capping type in place
of the 4,, in the type E (D™ D.,) 7). However, the only func-
6.4.3 Capping classes tions that can be called on a value of this type are those that

Instances of the capping class, and the associstiestance, are ~ have the constraing (D” 6, (E (D" 4.))) (wherea < m) in

used to “tie the knot” during constraint resolution. They do this, their types. The translation ensures that the functions (where

not just for them,,, functionality class, but for all the others. 0 <i<m1<k < p)(andany function which directly or
For each of the capping class instances we need to check forindirectly calls them) satisfy this condition.

the existence of an instance of its super classpthefunctionality

class. Because constraint resolution is cycle aware we first add the7. Related work

. S —_—m A .
constraintsF, (Ei (D~ Dy)) (for 0 < @ < m) to the current 15 gate, the only published (Haskell) solution to the expression
collection of assumptions. (Each of these constraints will only problem is 6h and Hinze [9]. They describe a method whereby
be resolved if a chain of resolutions reaches it again.) Now let's the amount of recompilation can be kept to a minimum. This is a
consider a particular superclass constraint for component/pe g tiered solution. First, the open declarations and closed decla-
(for some0 < b <). It producesn + 1 S constraints. rations are separated out into tkiain module. Unfortunately, this
Fo (B 07 D), P s Godhetens. Aurout o modas o s S
w S(D7 D (B; (D D)) for each ¢ < j < m) separately they cannot be re-compiled independently; a change to
Each one of thesg constraint is resolved by an open entity necessitates recompilation of all modules depending

11

on Main. Next, the left and right hand sides of the open equations
are separated into two new equations. The first does the pattern
matching and dispatches to the second which is moved back to the
module it was originally declared in. As long as the interface be-
tween this module and tHdain module remains stable a change
to open entities only results in a re-compilation of Main mod-

ule. This fact disqualifies the solution from achieving true separate
compilation. We believe that open data types are eminently use-
ful in plug-in enabled applications. It is unclear how wetiiLand
Hinze’s solution works in a plug-in environment. It may be pos-
sible to use Stewart and Chakravarty's [12] method to re-load the
entire application but this seems much more complicated that our
solution and would require loading the entire program not just the
plug-in module.

A number of informal type-classed based (e.g. [6]) have been
proposed. However, there is a crucial difference with our solution.
Where these solutions lift constructor values to the type level, ours
does not. This means that functions can still be written in a natural
way using the full power of Haskell's pattern matching. Also, there
is still a clear relation between a constructor and the data type it
creates; a constructor creates values of its component type.

Another notable solution to the expression problem is provided
by Kiselyov and lammel [4]. This requires that programs be writ-
ten in an object oriented style. In our solution, functions on open
data types are merely overloaded functions and the construction of
values by smart constructors is almost as natural as with regular
constructors.

Several papers ([15], [5], [10], [1]) have focused on extending
object-oriented languages in order to make the addition of extra
functionality easier. (Of these, only Zenger and Odersky’s and
Bruce’s solutions can be statically type checked.) However, we
wish to do the converse by making the addition of variants easie
in a functional language. Solutions in functional languages have
also been studied. Solutions have been proposed in OCaml [2]

[3] R.J.M Hughes. Restricted data types in Haskell Ptoceedings of
the 1999 Haskell Workshof999.

[4] Oleg Kiselyov and Ralf Bmmel. Haskell's overlooked object system.
2005.

[5] Shriram Krishnamurthi, Matthias Felleisen, and Daniel P. Friedman.
Synthesizing object-oriented and functional design to promote re-use.
Lecture Notes in Computer Sciendd45:91—-??, 1998.

[6] Ralf Lammel. Extensible grammarson the comp.compilers
newsgroup,
http://compilers.iecc.com/comparch
/article/04-12-111, 2004.

[7] Ralf Lammel and Simon Peyton Jones. Scrap your boilerplate with
class: extensible generic functions. Mmoceedings of the ACM
SIGPLAN International Conference on Functional Programming
(ICFP 2005) ACM Press, September 2005.

[8] Konstantin Laufer. Type Classes with Existential Typefgurnal of
Functional Programming6(3):485-517, May 1996.

[9] Andres Loh and Ralf Hinze. Open data types and open functions.
In PPDP’06: Eighth ACM-SIGPLAN International Symposium on
Principles and Practice of Declaritive Programminygenice, Italy,
July 2006.

[10] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers.

Polyglot: An Extensible Compiler Framework for Java.FAroc. 12th
International Conference on Compiler Constructiommber 2622 in
Lecture Notes in Computer Science, pages 138-152. Spring-Verlag,
April 2003.

[11] J. C. Reynolds. User-defined types and procedural data structures as

complementary approaches to data abstraction. In S. A. Schuman,
editor, New Directions in Algorithmic Languagepages 157-168,
1975.

r [12] Don Stewart and Manuel M. T. Chakravarty. Dynamic Applications

From the Ground Up. IRroceedings of the ACM SIGPLAN Workshop
on Haskell ACM Press, September 2005.

and the hybrid object-oriented/functional language, Scala [16]. The [13] Philip Wadler. The expression problgnDiscussion on the Java

solutions in OCaml and Scala both use a notion of sub-typing.
OCaml provides this througbolymorphic variants—constructors
that can belong to more than one data type. Mixins are used in
Scala.

8. Conclusion

We have presented a solution to the expression problem which pro-
vides true separate compilation and works in current implementa-
tions of Haskell. The main ingredients of the solution are multi-
parameter type classes, existential types and recursive dictionaries.
A formal translation has been provided that can be used as the ba-
sis of an pre-processor implementation. However, the technique is
readily usable as a programming idiom.

The source code of the examples in this paper can be found as a
darcsrepository at:

http://www.cse.unsw.edu.au/"sseefried

/code/exp_prob

9. Acknowledgements

The authors would like to thank Roman Leshchinskiy for invalu-
able help in improving the presentation of the translation.

References

[1] Kim B. Bruce. Some Challenging Typing Issues in Object-Oriented
Languages: Extended Abstract. In, volume 82.&lgfctronic Notes
in Theoretical Computer Sciengeages 1-29, 2003.

[2] Jacques Garrigue. Code reuse through polymorphic variants. In
Workshop on Foundations of Software EngineerfBgsaguri, Japan,
November 2000.

12

Genericity mailing list, 1998.

[14] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism

less ad hoc. Ii€onference Record of the Sixteenth Annual Symposium
on Principles of Programming Languages (POPL'8pages 60-76,
Austin, Texas, January 1989. ACM Press.

[15] Matthias Zenger and Martin Odersky. Extensible Data Types with

Defaults. Ininternational Conference on Functional Programming
(IFCP’01), pages 241-252, Firenze, Italy, September 2001.

[16] Matthias Zenger and Marting Odersky. Independently Extensible

Solutions to the Expression Problem. Technical Report IC/2004/33,
Ecole Polytechnique&tkrale de Lausanne, Lausanna, Switzerland,
2004.

A. Translation rules

T [opendata Ea = (o, T3 5215

(forko 00,k)20=s (Joko (E0o Tio = E&jg) = bojjoke)yt b1] =

Proxy type
data PJ;

Sat class
class S a where
d: «

Wrapper type
dataE (0 : TG 4[@])a = 3.Fod B = & (Ba);

Initial component type
data Eyda = < 50,]'0 TET [[ﬁ]] >;I'O

o=11

Initial functionality class
class S (6 B) = Fo 6 S where
(fo.ro * Tietnoa(0s ko)[o0.k0])72 5

Initial functionality instance
instance (S (6 (EJ)), S (§ (Eo6))) = Fo 6 (Eod) where

<f07k0 (*: P 5) (EO % : EO»jO 55) = 'n(iethod[[boJOakOH >;L0:71)1(],k0:1)

Unwrapping instance
instance S (6 (EJ)) = Fo d (E) where

<f0,ko (*: P5) (gz : E(SE) = Zglwm,p(fo,kov $7P5)[[Uo,ko]] >Z);1:1

Capping class, type and instances
data Dy B
class Fo Do B = Fo 3;
instance Fy (E (Do) ;
instance F} (Fo (ﬁo) ;
instance Fy 8 = S (Do §) where
d =1

Smart constructors

<€0,j0 : 7;:nwr't Hﬁm €0,50 (*: P 5) = ,Z;(;na'r't (07]0)[[%]] >;:)0:1

Figure 10a. Translation foropen datedeclaration in the initial modulesf = 0).

13

Tt [data Tw = Cﬂ]:{ dataTéa = CTA[7] ,if T € I'(E)

dataTa = C7T , otherwise

T4 [type Ta = 7] =77 71

Tz : o; val] =z : TZ[o] ; T*"[val]

oal [tp = €] — (- P (ﬁm(gm) P = Trenoale] ifz € A(E)
rp = e , otherwise

T = e] _ (0 P(D"0m) = Thenoalel ifze A(E)
x =e , otherwise
Va. S (D"6m (E(D"6m))) =

T5[Va.r] = T Jifx € A(E)
Tz7] , otherwise

Figure 10b. Translation for regular declarations in the,; module.

Tdam[[<f0,ko (gm,jm Vjp Eg) bO,Jm ko > m_p1 ko=1°
<fm*1ka—1 (5771a.7771 m : Ea) = bmflajmvkmfl >;7;n;p{:bk:nl_1:1]] =
(instance (S (émém (E (Dm5)
, S (D" 6m (Eo (D™"6)))
, S (szSm (Ep (D™ 6m)))
) Fi (D]"6:n) (Em (D™6,,)) where
(i (2P (D"0n)
(5 m,Jm V]m 0 Em (D 67”) é]m) = TZethod[[bi:jMakz]] >]7:LW:J’17J€L:1

i

Figure 10c. Translation for new equations on existing functions in#thg, extension module.

14

Tdutaﬂ extend data Fa = < Em \J TJ >]m—1 3

<f7nakm ©Om kpy, >£:Z:17 <f7n7km (5”"7]7)7, Vm,jm - Eém,,jm) = b"lajnukm >:7;n;p177km:1]] =

The myp extensionfomponent type L
data Ey, (6 : Tgalo]) @ = (Emyn TE[T])j0—1s

The myun functionality class
class (S (D 67,, B)s Frue1 (D 6m) B) = Fi, 0 3 where
<fm ko © Tethod [[Um]‘m]] >£m_1a

The myp explicit dictionary
data D 6m B = D A{ (frk * Tretnoalominls Din—y s
s A1 (6771 ﬁ)}
Unwrapping instance
instance S (D"6,, (E(D"61))) = Fum 0m (E(D"5,,)) where
(frfon (-2 P (D7) (Ez 2 E(D") €) =
IZ;lemp(fm»kmv z, P (D l(sm))[[o'm,kmﬂ >Z::1
Functionality instances (for component types 0 < i < m)
(instance (S (D" 6, (E(D"6m)))
, 8 (D" 6m (Eo (D"6,)))
, S (D" 6m (B (D 5m))
) = Fudm (E; (D"))Where
" (fk (-2 P (D"6m)) (€1, 75 = B (D"6m) &) = Temoallbisiein])50k, 1
i=0

Capping class, type and instances
data D,, G
class F,, ﬁm B = ﬁ' 8
instance F,, (E (D" Dy,)) ;
(instance F,, (E; (D™ Dyn));)i

“Knot tying” instance
instance F,,, 3 = S (D" D, 3) where
dv = Di{{fix = h)iy
do = Da{(fo = foks)i

. dm = Dy, { (f/nk = fm,k)221, dm+1 = L} }
Smart constructors
<€ma]m : T;Inm't [[m}]v Em,jm (*: P 5) = s('rina’r't(mﬂjm)[[mﬂ >J77;::L:1

Figure 10d. Translation forextend dataleclaration and new function for the,;, extension module.

15

Tonaloa, -] = (x = .0 = %) =

Tn‘iethod [[VEEF - 5]] =Va. P(ﬁm(sm) - BF - Z:ethodﬂg]]

Tr;etlmd [[Oé]] = .
. _ [T(D"s,) ,ifTeT(E)
Tnetnoa T A , otherwise
method [[Eﬂ = (Dm5)
Tmethod [[Tl TQ]] = method [[Tlﬂ Tmethod [[TQH
. _ _ f, k; wat () (L:P(D"6m)) ifi>0
,Imethod Hfz,kz]] - { (D S)) , otherwise
; _ J_ PD5)) Jif © € A(E)
Znethod [[37]] - { , otherwise
TTZethod [[A"B T 6]] =z Tmethod [[T]] method [[6]]
chthod[[gi’jz]] = &4 (L P (D"6m))
method =

T’ﬂel(ith()d [[61 eQﬂ T’rrc;cthod [[ell]Twc;cthod [[62]]

%ﬁmep(fl mza’y)[[va'E? — 71 = ... = Tn — Tn+1]] =
ATy Tr:;ethod[[Tl]]

)\xn T cinodlm] fo (Liy)zzr ... 2 Jifi=0
Axl : T’r‘r:ethod [[Tl]]

Aen Theinoalnl- fiks THG) (L:y)w @y ...z , Otherwise

Figure 10e. Translation rules

Tomart [T] =V mVa. (S (D" 6m (E(D"6m)))
, S (D" 6m (Eo (D"6m)))
S (D" 6 (B (D"6)))) =
connect (P (D"6m), Tethoa [71, E(D"61) @)

T(D"6n) T eIl(E)

Tonant [T} T , otherwise
Z:nart IIE]] = E (Dmém)

IZTS:na'r‘t [[7-1 TQH = s:na'rt [[7-1]] Z:nurt [[7'2]]
conmect [T1, ...,] =T1 — - — T

%

'Z;fnart(i7j)[[7'1, ey Tk]] =)\$1 T)\l‘k : Tk.g (gi,]’ I ... Tk : Ei,]‘ (E 51)a)

wat(i) — (((d2 dl)))
Zg[e] =«
Tg[E] =E$
’ T(D"6m) T el(E
T7[T] = {) I ,otier\(/vis)e

T [2] = T[] 7 [72]

Figure 10f. More translation rules

16

B. Dictionary translation of module FO_Alpha

The code demonstrates the resulting of performing dictionary translation (in the style of Wadler and Blott [14]) on the code in Figures 4a —
4qg. It makes it clear where the recursive dictionaries are built.

module Alpha
where

data P d
u=1
{-DI stands for dictionary implicity. D is an explicit dictionary -

{-class Sat a where dict :: & -
data SatDI a = SatDI{dict :: a}

data Ezp (cat :: * — x) = forall b. MkExp (AlphaDI czt b, b)

data Ezp_0 cxt = Var String
| Lam String (Exp cxt)
| App (Ezp cxt) (Ezp cxt)
{-class Sat (cxt by> Alpha cxt b where alpha :: P cxt b — (String, String)— Exp cxt -}
data AlphaDI cat b = AlphaDI{alpha :: P cxt — b — (String, String) — Ezp cxzt}

{-instance (Sat (cxt (Exp cxt)), Sat (cxt (EXpcxt))) = Alpha cxt (ExpO cxt) -}
alphaDEzp0 :: forall cxt. (SatDI (cxt (Exp cat)), SatDI (cxt (Ezp-0 cat))) —
AlphaDI cxt (Exp-0 cxt)
alphaDExp0 (satEzp, satEzp0) = AlphaDI{ alpha = alpha’}
where

alpha' (—:: P cxt) (Var v) =

As — wvar (satEzp, satExp0) (u:: P cat) (swap s v)
alpha’ (_:: P cxt) (Lam v body) =

case body of

MkEzp (alphaD, body') —
As — lam (satEzp, satExp0) (u:: P cat) (swap s v)
(alpha alphaD (u :: P cxt) body’ s)

alpha’ (_:: P cxt) (App a b) =

case ¢ of

MkEzp (alphaDa, a') —
case b of
MkEzp (alphaDb,b") — \s —
app (satEzxp, satExp0)
(u:: P cxt) (alpha alphaDa (u :: P cxt) a’ s)
(alpha alphaDb (u :: P cxt) b’ s)

{-instance Sat (cxt (Exp cxtp> Alpha cxt (Exp cxt) }
alphaDEzp :: forall cat. SatDI (cxt (Ezp cat)) — AlphaDI cat (Ezp cat)
alphaDEzxp satExp = AlphaDI{ alpha = alpha’}

where

alpha’ (_:: P cxt) exp =
case exp of
MkEzp (alphaD, e) —
As — alpha alphaD (u:: P cat) e s

swap :: (String, String) — String — String
swap ((a, b) :: (String, String)) = (o :: String) — if a == o then b else o

17

var :: forall cxt. (SatDI (cxt (Ezp cxt))
,SatDI (cat (Ezp-0 cat))) — P cxt — String — Ezp cat
var (satEzp, satExp0) (—:: P cat) =
A1 :: String) — MkEzp (alphaDExp0 (satExp, satExzp0), Var z1)

lam :: forall cat. (SatDI (cxt (Ezp cat))
,SatDI (cazt (Ezp-0 cat))) — P cxt — String — Ezp cxt — Ezp cat
lam (satEzp, satExp0) (—:: P cxt) =
A1 :: String) (22 :: Exp cat) — MkEzxp (alphaDEzxp0 (satEzp, satExp0), Lam z1 ©2)

app :: forall czt. (SatDI (cxt (Ezp cxt))
,SatDI (cxt (Ezp-0 cat))) — P cxt — Exp cxt — Exp cxt — Exp cxt
app (satEzp, satExp0) (—:: P cxt) =
Ax! :: Ezp cxt) (22 :: Exp cat) — MkExp (alphaDEzp0 (satEzxp, satEzp0), App x1 z2)

-- Capping class

data AlphaEnd b

{-class Alpha AlphaEnd k> AlphaCap b }
data AlphaCapDI b = AlphaCapDI{ alphaD :: AlphaDI AlphaEnd b}

-- d and dO are the recursive dictionaries for "instance AlphaCap (Exp AlphaEnd)” and
-- "instance AlphaCap (Exp0 AlphaEnd)” respectively.

{-instance AlphaCap (Exp0 AlphaEnd) -
d0 :: AlphaCapDI (Exp_0 AlphaEnd)
d0 = AlphaCapDI{ alphaD = alphaDFEzp0 (satD d,satD d0)}

{-instance AlphaCap (Exp AlphaEnd} -
d :: AlphaCapDI (Ezp AlphaEnd)
d = AlphaCapDI{ alphaD = alphaDExp (satD d)}
{-instance AlphaCap b =¢, Sat (AlphaEnd p) -
satD :: AlphaCapDI b — SatDI (AlphaEnd b)
satD _ = SatDI{dict = error "Capped at Alpha"}
{-test = alpha (var (u::P AlphaEnd) "x") ("x", "y") }
test = let p = u :: P AlphaFEnd
in alpha (alphaDEzp (satD d)) p
(var (satD d,satD d0) p "x") ("x","y")

18

