
Solving the expression problem in Haskell
with true separate compilation

Sean Seefried1

Manuel M. T. Chakravarty2

1Formal Methods
NICTA

Email:sean.seefried@nicta.com.au

2Programming Languages and Systems
School of Computer Science & Engineering

University of New South Wales
Email:chak@cse.unsw.edu.au

UNSW-CSE-TR-0715
June 2007

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

We present a novel solution to the expression problem which offers true separate compilation and can be used in
existing Haskell compilers that support multi-parameter type classes and recursive dictionaries. The solution is best
viewed as both a programming idiom, allowing a programmer to implement open data types and open functions,
and the target encoding of a translation from Haskell augmented with syntactic sugar.

1. Introduction
The expression problemdescribes the difficulty of extending the
variantsand methods on a data type without modifying existing
code and while respecting separate compilation. This problem has
been well-studied and was first coined by Wadler [13] on the
Java-Genericity mailing list. Although it originally described a
specific problem—extending a program that processes terms of
a simple programming language—it has come to represent the
general problem ofextensible data types. Zenger and Odersky [16]
provide a good definition of the problem and a list of attendant
criteria that a solution should satisfy. It is presented here with only
minor paraphrasing.

• Extensibility in both dimensions:It should be possible to add
new data variants and to introduce new functions.

• Strong static type safety:It should be impossible to apply a
function to a data variant which it cannot handle.

• No modification or duplication.It should not be necessary
to change existing code, nor should it be necessary to re-
implement functionality when extending since this effectively
amounts to duplication.

• Separate compilation:Compiling data type extensions or adding
new functions should not encompass re-type-checking the orig-
inal data type or existing functions, nor the re-compilation of
existing modules. In this paper we aim fortrue separate compi-
lation which involves just the compilation of new modules and
must only require the interface files of existing modules.

A key observation made by Reynolds [11] and later echoed by
others ([15], [5]) was that object-oriented and functional languages
can be seen as complementary approaches to data abstraction. In
object-oriented languages variants of a data type are modelled us-
ing classes; usually each variant is defined as a subclass of an ab-
stract base class. Thus it is easy to add new variants. Unfortunately,
the addition of new functionality on those variants is difficult; the
only way to add new methods to a class is by sub-classing and it
must be done for each variant. This quickly becomes unwieldy. In
functional languages the converse is true: it is easy to add new func-
tionality by defining new functions on a data type, but is difficult to
add new variants. Another approach in object-oriented languages
is to use thevisitor patternwhich makes it easy to add new func-
tionality. However, as is the case with functional languages, adding
new variants becomes difficult. Each of these approaches solves
one half of the problem space but not the other.

A solution in Haskell has already been proposed by Löh and
Hinze [9]. However, it differs from our solution in two ways. First,
it does not provide true separate compilation for, at the very least,
it is necessary to re-compile theMain module whenever an open
declaration is added. Second, it relies on features that have not
yet been implemented in any Haskell compiler. This is discussed
further in Section 7.

The motivation in developing our solution was to provide ex-
tensibility for a compiler through plug-ins. Our compiler exposes
data types—such as those representing the abstract syntax tree and
type syntax—and functions that operated on those data structures.
We wanted it to be possible for plug-in writers to extend both. This
makes it possible, for instance, to write a plug-in syntactic sugar
extension by adding new syntactic forms to the AST and new func-
tions to desugar it to existing language constructs.

In a dynamic setting, such as a plug-in enabled application, a
solution to the expression problem is absolutely necessary. Modi-
fying source code is an intolerable option; one immediately loses
the benefits of a plug-in compiler which include ease of extensi-
bility and the ability to keep the source code a trade secret while

allowing community participation in the development of its func-
tionality. This also highlights why we require a solution that pro-
vides true separate compilation.

Our solution, while reliant on extensions to Haskell 98, works
as is. It is presented as a translation from a simple syntactic exten-
sion to Haskell to existing Haskell syntax. However, the translation
should be viewed from more than one angle. Naturally, the trans-
lation forms the basis for the implementation of a pre-processor.
However, the target of the translation can also be seen as apro-
gramming idiomwhich can be readily used by developers to im-
plement extensible data typesby hand. It has already been used, in
just such an idiomatic way, to implement front-end plug-ins for the
aforementioned compiler.

The solution, henceforth known asopen abstract types, uses
several experimental features of Haskell: multi-parameter type
classes, scoped type variables, kind annotations, zero construc-
tor data types and recursive dictionaries. All of these features are
present from GHC 6.4 onwards.

The structure of the rest of this paper is as follows: First, syn-
tactic sugar is introduced for declaring extensible data types. Next,
a running example is introduced, demonstrating the new syntax in
action. At this point it is necessary to cover a (relatively complex)
technique that is instrumental in the translation. In Section 4 the
concept ofretrospective superclassingis introduced. Without pre-
senting the formalisation of the translation, Section 5, shows us
the result of applying the translation and the most salient points
of the code are discussed. Section 6 introduces the formal transla-
tion, which can be used as the basis for the implementation of a
pre-processor. The paper concludes with a comparison of our solu-
tion to others in Haskell and a short discussion of solutions in other
languages.

2. Syntactic sugar for open abstract types
Although the majority of this paper is concerned with demonstrat-
ing an encoding of extensible data type support in Haskell we are
ultimately interested in introducing syntactic sugar to reduce its
syntactic burden. In this section we present two new data decla-
ration. In Section 6 an austere Haskell-like language augmented
with these declarations becomes the source language in a formal
translation to the encoding we are about to develop.

The two syntactic forms areopen dataandextend datadecla-
rations. A new extensible data type (EDT) is introduced with the
open data keywords.

module F0 where

open data Exp = Var String
| Lam String Exp
| App Exp Exp

Functions can be defined upon these data types just like they can
on ordinary algebraic data types.

alpha :: Exp → (String , String) → String
alpha (Var v) = . . .

In another module we can then extend the data type using the
extend data keywords as follows:

module F1 where

extend data Exp = LetE String Exp Exp

As usual it is possible to define new functions on the data type
in this new module but in this case they can also be defined on the
newLet variant.

eval :: Exp → Env → Exp

1

module F0 Alpha
where

open data Exp = Var String
| Lam String Exp
| App Exp Exp

alpha :: Exp → (String ,String) → Exp
alpha (Var v :: Exp) =

λ(s :: (String ,String)) → Var (swap s v)
alpha (Lam v body :: Exp) =

λ(s :: (String ,String)) →
Lam (swap s v) (alpha body s)

alpha (App a b :: Exp) =
λ(s :: (String ,String)) → App (alpha a s) (alpha b s)

swap :: (String ,String) → String → String
swap ((a, b) :: (String ,String)) =

λ(o :: String) → if a == o then b else o

Figure 1. The initial module. It defines the data structure to repre-
sent the simple lambda calculus and an alpha conversion function.

eval (Var name) = . . .
eval (Lam name body) = . . .
eval (App f x) = . . .
eval (LetE name body exp) = . . .

Unlike regular Haskell, new equations for the functions defined
in the first module can be defined. However, this can only be done
for the new variants introduced. In this case we would be limited to
a new equation on theLet variant.

alpha (Let name body exp) = . . .

The semantics of pattern matching is slightly different than
usual. Since new equations can be introduced on existing functions
whenever anextend datadeclaration the meaning of the wild card
pattern becomes ambiguous. Consider the situation where the wild
card pattern is used both in moduleF0 andF1. Which one should
be used? Does the new one equation override the old one? In order
to simply the presentation of this paper we have opted to disallow
the wild-card pattern altogether. However, thebest-fit left-to-right
pattern matching solution devised by Löh and Hinze [9] could be
implemented without too much trouble.

There are a few more restrictions on the new syntax. Anopen
dataandextend datadeclaration cannot appear in the same module.
For a particular extensible data type there is at most oneextend data
declaration per module. It was stated earlier that new equations on
existing functionscould be defined. In fact, theymustbe; to omit
them is an error.

3. A running example: the lambda calculus
As a running example we implement a data type representing the
lambda calculus and two operations: alpha conversion and evalu-
ation. At its simplest the lambda calculus consists of three core
concepts: variables, abstraction and application.

We define two modules, an initial and one than extends the
previous. The initial module appears in Figure 1 and defines the
alpha function on a data type that represents just the core concepts
of the lambda calculus.

We then extend the module in Figures 2 and 3. We add a new
variant to the lambda calculus,let expressions. We then add a new
equation for this variant to thealpha function and define two new
functions,eval andapply .

module F1 Eval
where

import F0 Pretty

extend data Exp = Let String Exp Exp

alpha (LetE name body exp :: Exp) =
λ(s :: (String ,String)) →

LetE (swap s name) (alpha body s) (alpha body s)

eval :: Exp → Env → Exp
eval (Var name :: Exp) =

λ(env :: Env) → lookupEnv env name
eval (Lam name body :: Exp) =

λ(env :: Env) → Lam name body
eval (App f x :: Exp) =

λ(env :: Env) → apply x env (eval f env)
eval (LetE name body exp :: Exp) =

λ(env :: Env) → eval (App (Lam name exp) body) env

apply :: Exp → Env → Exp → Exp
apply (Var name :: Exp) =

λ(env :: Env) (x :: Exp) → error "Function expected"

apply (Lam name body :: Exp) =
λ(env :: Env) (x :: Exp) →

eval body (extEnv env (name, eval x env))
apply (App f x :: Exp) =

λ(env :: Env) (x :: Exp) → error "Function expected"

apply (LetE name body exp :: Exp) =
λ(env :: Env) (x :: Exp) →

error "Function expected"

Figure 2. The extension module. It extends the earlier data struc-
ture to represent let expression, defines an extra equation on the
alpha conversion function and defines a new evaluation function.

type Env = [(String ,Exp)]

lookupEnv :: Env → String → Exp
lookupEnv ([] :: Env) =

λ(name :: String) →
error $ "lookupEnv: Variable " ++

show name ++ " not found"

lookupEnv (hd : tl :: Env) =
λ(name ′ :: String) → lookupEnvAux hd tl name ′

lookupEnvAux :: (String ,Exp) → Env → String → Exp
lookupEnvAux ((name, term) :: (String ,Exp)) =

λ(rest :: Env) (name ′ :: String) →
if name == name ′

then term else lookupEnv rest name ′

extEnv :: Env → (String ,Exp) → Env
extEnv = λ(env :: Env) (x :: (String ,Exp)) → x : env

Figure 3. Some helper functions that are also present in the exten-
sion module.

2

The reader may notice that the functions are not defined as
they usually would be. There is one at most one pattern match
for each function and in each case the pattern match is flat (i.e.
not nested). Also, the right-hand side of each function is a lambda
expression which while legal Haskell is not standard idiom. In
addition, readers may wonder why there is anapply function at
all when this could easily be defined as a case expression inside
eval .

The translation presented later in this paper is complicated by
many of the syntactically friendly features of Haskell such as where
clauses, nested pattern matches, etc. To simplify the presentation
the translation is assumed to be performed on an austere Haskell
which includes the syntactic sugar introduced in Section 2. By
presenting our running example in this austere Haskell it is hoped
that the correspondence between the rules of the translation and the
result of applying them to Figures 1, 2, and 3 is much more readily
apparent.

4. Läufer’s method andretrospective
superclassing

In Section 5 a complete translation of the program in Figures 1 and
2 is presented. The solution is based on an extension to the work
of Läufer [8] and involves a technique that we have dubbedret-
rospective superclassing. This section will outline L̈aufer’s work,
show a gap in the solution to the expression problem and present
retrospective superclassing as a means of closing that gap. We also
show whyrecursive dictionaries, a recent extension to Haskell, are
necessary in order for retrospective superclassing to work.

In Haskell, type classes are the only candidate forencodingex-
tensible data types since they are the onlyopendeclarations. Most
declarations in Haskell areclosed: their meaning is fully deter-
mined once and for all in the module they are written in. Their
very nature precludes them from being used to encode extensible
data types. However,instance declarations, which define the func-
tionality of class methods for a given type, are open. They can be
defined in a module that is not the same as theclass declarationas
long as they do notoverlap1 with an existing instance.

Läufer [8] introduced a technique similar to the dynamic dis-
patch mechanism of object-oriented languages which can be used
as the basis for a solution to the expression problem. The key idea
is to treat a class declaration as theinterface to an abstract data
type. Existential types are then used to “wrap” specific implemen-
tations of the abstract data type so that the only way to perform
operations the data type is through class methods. These methods
are available because the class context is “wrapped up” inside the
existential type. The technique is demonstrated on our running ex-
ample. Below, we introduce a class for thealpha function and an
existential typeExp wraps up differing value behind theMkExp
constructor. It shall be called thewrapper typefrom now on.

class Alpha a where
alpha :: a → (String , String) → Exp

data Exp = forall a. Alpha a ⇒ MkExp a

Methods can then be defined on various data types but with the
aid of anunwrapping instancecan be applied to values ofExp
and have the correct behaviour. The unwrapping instance provides
us with a function of typeExp → (String , String) → Exp as
required. Its definition is quite simple.

instance Alpha Exp where
alpha (MkExp e) s = alpha e s

1 An overlap occurs when a given instance can be unified via substitution to
another. e.g.C (a, Int) overlaps withC (Bool , b).

We now definecomponent typesand corresponding instances
of the Alpha class to represent the core lambda calculus and the
let expression extension. The component types are calledExp 0
andExp 1 respectively. Note that where we used to have recursive
occurrences of the data type we now refer to the wrapper type.

data Exp 0 = Var String
| Lam String Exp
| App Exp Exp

instance Alpha Exp 0 where . . .

Exp 1 can be defined along with its instance in an entirely new
module. Instances are open declarations.

data Exp 1 = LetE String Exp Exp

instance Alpha Exp 1 where . . .

4.1 The version problem

Let us now consider extending the functionality of theExp data
type by defining an interpreter on it. This will require a new class,
Eval , to be defined. Using the inheritance mechanism of type
classes we can require thatAlpha is a superclass ofEval .

class Alpha a ⇒ Eval a where . . .

Unfortunately, this requires that we introduce a new type, say
EExp, to wrap up this new class, sinceExp only wraps up the
Alpha class.

data EExp = forall a.Eval a ⇒ MkEExp a

Without going any further we can see that there is going to be a
problem. Once we have correctly defined instances on the compo-
nent types and declared an unwrapping instance we will have a data
type for whicheval andalpha are both methods. However, while
the type ofeval is EExp → Env → EExp the type ofalpha is
EExp → (String , String) → Exp. The return type is the origi-
nal type. Unfortunately, this means the following expression would
not type check:eval (alpha (MkExp (Var ”a”)) (”a”, ”c”)) [].

4.2 Retrospective superclassing

Let us look more closely at why this problem occurs. When a value
of typeExp is unwrapped the value extracted has access to all of
classAlpha ’s methods and those of its superclasses,and no more.
At present there is no way that we can define the functionalpha to
return values which will have access to methods that a programmer
may write in the future.

The first hint of a solution becomes evident when we restate the
methods a value of typeExp has access to, putting the emphasis in
a different place this time: it has access to all ofAlpha ’s methods
and those of its superclasses, and no more. If it were somehow
possible to defineEval in such a way that it was a superclass
of Alpha then values of typeExp would have access to these
methods. This would be a kind ofretrospective superclassing.

In fact, retrospective superclassing is possible using a technique
due to Hughes [3] and elaborated upon by Lämmel and Peyton
Jones [7] which allows abstraction over type classes. Hughes’ sug-
gestion was to allow declarations like the following:

class cxt a ⇒ Alpha cxt a where
alpha :: a → (String , String) → Exp cxt

data Exp cxt = forall a. Alpha cxt a ⇒ MkExp a

This is not valid Haskell since the second parameter,cxt , of
theAlpha class stands for aclass, not a type or type constructor.

3

However, let us assume for the moment that such declarations are
legal. Now typeExp has an extra parameter,cxt , which abstracts
over a class. Since this very same class is declared to be a superclass
of Alpha we see that methodalpha now returns values which have
access to the methods in any class thatcxt is instantiated to.

Fortunately, Hughes was successful in encoding just such an
abstraction over classes and the technique is now demonstrated.
First, we define a classSat with a single methoddict . This class is
used to return anexplicit dictionarywhose values are taken directly
from the implicit one associated with a given class.

class Sat a where
dict :: a

Now, whenever the programmer defines a new class they also
define a corresponding data type that represents explicitly the im-
plicit dictionary of the class. The programmer also needs to define
an instance that equates the methods of the explicit dictionary with
those classes we wish to abstract over. The following self-contained
example demonstrates this.

type Env = [(String ,Exp EvalD)]

class Sat (cxt a) ⇒ Alpha cxt a where
alpha :: a → (String ,String) → Exp cxt

class Alpha EvalD a ⇒ Eval a where
eval :: a → Env → Exp EvalD

data EvalD a = EvalD{eval ′ :: a → Env → Exp EvalD }
instance Eval a ⇒ Sat (EvalD a) where

dict = EvalD{eval ′ = eval }

Here is a quick summary of the salient points:

• The class head,class cxt a ⇒ Alpha a , has become
class Sat (cxt a) ⇒ Alpha a.

• EvalD is the explicit analogue of the implicit dictionary that is
associated with theEval class.

• The instance equates the methods ofEval with the explicit
dictionaryEvalD .

There is one remaining caveat – calls to extension methods must
be done through explicit dictionaries. The following expression will
not type check since methodeval is not a member of any superclass
of Alpha.

case alpha exp (”a”, ”b”) of MkExp exp′ → eval exp′ []

However,dict is a method ofAlpha ’s superclass,Sat . All that
is required is to replaceeval exp′ [] with eval ′ dict exp′[] which
only imposes minor syntactic inconvenience.

Retrospective superclassing relies onrecursive dictionaries, a
recently2 implemented feature of GHC. These dictionaries allow
cycles to occur while resolving the constraints introduced by class
and instance declarations. We defer an in depth discussion of this
to Section 5.3 but refer the reader to Lämmel and Peyton Jones’
paper [7] on extensible generic functions where the technique was
first described.

In conjunction with capping classes, the explicit dictionary of
theSat instance “ties the knot” of constraint resolution. This brings
the functionality introduced by each class—in this caseAlpha and
Eval— to the same semantic level. In Section 6.4.2 we will see
that it is possible to call extension functions from new equations on
existing functions.

2 Recursive dictionaries are available from GHC 6.4 onwards.

module F0 Alpha
where

data P d

class Sat a where
dict :: a

data Exp (cxt :: ∗ → ∗) =
forall b. Alpha cxt b ⇒ MkExp b

Figure 4a. Preliminaries: the Sat class and wrapper type

class Sat (cxt b) ⇒ Alpha cxt b where
alpha :: P cxt → b → (String ,String) → Exp cxt

data Exp 0 cxt = Var String
| Lam String (Exp cxt)
| App (Exp cxt) (Exp cxt)

Figure 4b. Initial component type and the initial functionality
class

instance (Sat (cxt (Exp cxt))
,Sat (cxt (Exp 0 cxt))
) ⇒ Alpha cxt (Exp 0 cxt) where

alpha (:: P cxt) (Var v :: Exp 0 cxt) =
λ(s :: (String ,String)) → var (u :: P cxt) (swap s v)

alpha (:: P cxt) (Lam v body :: Exp 0 cxt) =
λ(s :: (String ,String)) →

lam (u :: P cxt) (swap s v)
(alpha (u :: P cxt) body s)

alpha (:: P cxt) (App a b :: Exp 0 cxt) =
λ(s :: (String ,String)) →

app (u :: P cxt)
(alpha (u :: P cxt) a s) (alpha (u :: P cxt) b s)

Figure 4c. Functionality instance

instance Sat (cxt (Exp cxt))
⇒ Alpha cxt (Exp cxt) where

alpha (:: P cxt) (MkExp e :: Exp cxt) =
λ(s :: (String ,String)) → alpha (u :: P cxt) e s

Figure 4d. Unwrapping instance

5. Translation of the running example
We are now ready to discuss the translation of the initial module
(Figure 1) and the extension module (Figures 2 and 3) of section 3.

To avoid overwhelming the reader the translation has been bro-
ken up into several sub-figures. The translation of the initial module
appears in Figures 4a through 4g and the translated extension mod-
ule in Figures 5a through 5h.

5.1 Initial module

Figure 4a introduces theSat class and the wrapper type which, this
time, contains a kind annotation. Although not strictly necessary in
this case, it is required when the open data type has type parameters.
We also introduce aproxy type, P . An argument of the proxy type is

4

data AlphaEnd b

class Alpha AlphaEnd b ⇒ AlphaCap b

instance AlphaCap (Exp 0 AlphaEnd)
instance AlphaCap (Exp AlphaEnd)

instance AlphaCap b ⇒ Sat (AlphaEnd b) where
dict = error "Capped at Alpha"

Figure 4e. Capping classes, capping types and capping instances

var :: forall cxt . (Sat (cxt (Exp cxt))
,Sat (cxt (Exp 0 cxt))) ⇒

P cxt → String → Exp cxt
var (:: P cxt) =

λ(x1 :: String) → MkExp (Var x1 :: Exp 0 cxt)

lam :: forall cxt . (Sat (cxt (Exp cxt))
,Sat (cxt (Exp 0 cxt))) ⇒

P cxt → String → Exp cxt → Exp cxt
lam (:: P cxt) = λ(x1 :: String) (x2 :: Exp cxt) →

MkExp (Lam x1 x2 :: Exp 0 cxt)

app :: forall cxt . (Sat (cxt (Exp cxt))
,Sat (cxt (Exp 0 cxt))) ⇒

P cxt → Exp cxt → Exp cxt → Exp cxt
app (:: P cxt) = λ(x1 :: Exp cxt) (x2 :: Exp cxt) →

MkExp (App x1 x2 :: Exp 0 cxt)

Figure 4f. Smart constructors

swap :: (String ,String) → String → String
swap ((a, b) :: (String ,String)) =

λ(o :: String) → if a == o then b else o

Figure 4g. Regular declarations

required3 whenever the type signature of a method does not contain
an occurrence of thecxt parameter. It is required for the correct
unification of types. This is described in Section 6.4.1.

Figure 4b defines the initial functionality class,Alpha and the
initial component typeExp 0. The functionality instance of Fig-
ure 4c defines the three equations of thealpha method on theVar ,
Lam andApp variants of typeExp 0. There are two important
things to note. First, there are twoSat constraints in the instance
head, one on the initial component type and one on the wrapper
type. The one for the wrapper type is necessary sincealpha returns
a value of typeExp cxt . Second, use is made of the smart con-
structorsvar , lam andapp defined in Figure 4f. These simplify
the presentation considerably and are also useful when construct-
ing concrete values of typeExp τ (for some typeτ).

We call theswap function in Figure 4g aregular declaration
since it is not defined directly upon the open data type. Although
it is unchanged in this translation this will not always be the case.
Should a function use one of the instance methods its type will need
to be augmented. More is said about this in Section 6.

The only remaining figure to explain is Figure 4e. Acapping
classis a null extension that allows a programmer to use the EDT
in its current state. A capping class is always accompanied by aSat

3 The proxy type is not strictly required for this example either.

module F1 Eval
where

import F0 Alpha

data Exp 1 (cxt :: ∗ → ∗) =
LetE String (Exp cxt) (Exp cxt)

Figure 5a. Module header and new component type

instance (Sat (EvalD cxt (Exp (EvalD cxt)))
,Sat (EvalD cxt (Exp 0 (EvalD cxt)))
,Sat (EvalD cxt (Exp 1 (EvalD cxt)))
) ⇒ Alpha (EvalD cxt) (Exp 1 (EvalD cxt))

where
alpha (:: P (EvalD cxt))

(LetE name body exp :: Exp 1 (EvalD cxt)) =
λ(s :: (String ,String)) →
letE (u :: P (EvalD cxt)) (swap s name)

(alpha (u :: P (EvalD cxt)) body s)
(alpha (u :: P (EvalD cxt)) exp s)

Figure 5b. Instances for new equations on existing functions

class (Sat (EvalD cxt b)
,Alpha (EvalD cxt) b) ⇒ Eval cxt b where

eval :: P (EvalD cxt) → b → Env (EvalD cxt) →
Exp (EvalD cxt)

apply :: P (EvalD cxt) → b → Env (EvalD cxt) →
Exp (EvalD cxt) → Exp (EvalD cxt)

data EvalD cxt b =
EvalD{eval ′ :: P (EvalD cxt) → b →

Env (EvalD cxt) →
Exp (EvalD cxt)

, apply ′ :: P (EvalD cxt) → b →
Env (EvalD cxt) →
Exp (EvalD cxt) →
Exp (EvalD cxt)

, evalExt :: cxt b}

Figure 5c. Functionality classes and explicit dictionary

instance featuring the capping class as its superclass. (In this case
the capping class isAlphaCap.)

5.2 Extension module

The first thing to notice about Figures 5a through 5h is that the type
variablecxt has been replaced almost wholesale byEvalD cxt .
EvalD is the name of the explicit dictionary defined in Figure
5c and its occurrence in the typeExp (EvalD cxt) gives a visual
indication that evaluation is defined upon it. Although we present
no more functionality for theExp EDT it is readily extensible. As
more functionality is added thecxt type variable is replaced with
further explicit dictionaries, e.g.Exp (EvalD (Pretty cxt)) and so
on.

Theextension functionality classis shown in Figure 5c. In gen-
eral there will be one of these present in the translation whenever a
new function is defined on the EDT.

Figure 5e, while much larger than the corresponding code in
Figure 2 is a relatively straightforward translation of what is present

5

instance Sat (EvalD cxt (Exp (EvalD cxt))) ⇒
Eval cxt (Exp (EvalD cxt)) where

eval (:: P (EvalD cxt))
(MkExp e :: Exp (EvalD cxt)) =

λ(x1 :: Env (EvalD cxt)) →
eval ′ dict (u :: P (EvalD cxt)) e x1

apply (:: P (EvalD cxt))
(MkExp e :: Exp (EvalD cxt)) =

λ(x1 :: Env (EvalD cxt)) (x2 :: Exp (EvalD cxt)) →
apply ′ dict (u :: P (EvalD cxt)) e x1 x2

Figure 5d. Unwrapping instance

there. One key difference is that uses ofeval and apply on the
right hand sides of the equations have been replaced with calls
to eval ′ dict andapply ′ dict respectively. This occurs in any in-
stances of extension functionality classes.

Figure 5f introduces the capping classes, types and instances.
Note that this time the methods of classEval , eval andapply are
equated with the selector methods ofEvalD , eval ′ andapply ′. The
selector methodevalExt is equated with an error, much likedict
was in Figure 4e. As more functionality is added to theExp EDT
thedict method of theSat instance will come to consist of nested
explicit dictionaries. Figure 8c provides more detail.

Theregular declarationsof Figure 5h have changed in the trans-
lation. TheEnv type now has acxt parameter because it references
theExp type. Similarly the types oflookupEnv , lookupEnvAux
andextEnv have changed.

5.3 Recursive dictionaries

In conjunction withcapping instancesthe “knot” of class constraint
dependency is “tied” via theSat instance. Also, the capping type—
in this caseAlphaEnd—allows concrete values of the EDT to be
created.

A recursive dictionary is created for (and only for) each instance
of the capping class. Figure 6 graphically represents the structure
of the two recursive dictionaries created for theExp 0 andExp
types. (Interestingly, one of the dictionaries contains the other.) To
see how they are built consider what happens when type checking
instance AlphaCap (Exp AlphaEnd). First, we must check if
an instance of the superclass exists. The leads to the following
constraint chain.

Alpha AlphaEnd (Exp AlphaEnd)
 Sat (AlphaEnd (Exp AlphaEnd)
 AlphaCap (Exp AlphaEnd)

We are back where we started. Fortunately, recursive dictionar-
ies allow such cyclic constraints to be resolved. A similar line of
reasoning shows us how theinstance AlphaCap (Exp 0 AlphaEnd)
is typed and it is graphically represented in Figure 6. The boxes
outlined by broken lines represent dictionary transformers (which
correspond to instances with contexts). One can also read the solid
arrows asapplication to the box at its tip. Following Wadler and
Blott’s [14] original formulation of dictionary translation we can
see the form of the recursive dictionary ind .

d :: AlphaCapD (Exp AlphaEnd)
d = AlphaCapD { alphaD = dt1 (dt2 d }
dt1 :: SatD cxt (Exp cxt) → AlphaD cxt (Exp cxt)
dt1 = . . .
dt2 :: AlphaCapD b → SatD AlphaEnd b
dt2 = . . .

instance (Sat (EvalD cxt (Exp (EvalD cxt)))
,Sat (EvalD cxt (Exp 0 (EvalD cxt)))
,Sat (EvalD cxt (Exp 1 (EvalD cxt)))
) ⇒ Eval cxt (Exp 0 (EvalD cxt)) where

eval (:: P (EvalD cxt))
(Var name :: Exp 0 (EvalD cxt)) =

λ(env :: Env (EvalD cxt)) → lookupEnv env name
eval (:: P (EvalD cxt))

(Lam name body :: Exp 0 (EvalD cxt)) =
λ(env :: Env (EvalD cxt)) →
lam (u :: P (EvalD cxt)) name body

eval (:: P (EvalD cxt))
(App f x :: Exp 0 (EvalD cxt)) =

λ(env :: Env (EvalD cxt)) →
apply ′ dict (u :: P (EvalD cxt)) x env

(eval ′ dict (u :: P (EvalD cxt)) f env)
apply (:: P (EvalD cxt))

(Var v :: Exp 0 (EvalD cxt)) =
λ(env :: Env (EvalD cxt))
(x :: Exp (EvalD cxt)) →
error "Function expected"

apply (:: P (EvalD cxt))
(Lam name body :: Exp 0 (EvalD cxt)) =

λ(env :: Env (EvalD cxt))
(x :: Exp (EvalD cxt)) →
eval ′ dict (u :: P (EvalD cxt)) body

(extEnv env (name,
eval ′ dict (u :: P (EvalD cxt))

x env))
apply (:: P (EvalD cxt))

(App f x :: Exp 0 (EvalD cxt)) =
λ(env :: Env (EvalD cxt))
(x :: Exp (EvalD cxt)) →
error "Function expected"

instance (Sat (EvalD cxt (Exp (EvalD cxt)))
,Sat (EvalD cxt (Exp 0 (EvalD cxt)))
,Sat (EvalD cxt (Exp 1 (EvalD cxt)))
) ⇒ Eval cxt (Exp 1 (EvalD cxt)) where

eval (:: P (EvalD cxt))
(LetE name body exp :: Exp 1 (EvalD cxt)) =

λ(env :: Env (EvalD cxt)) →
eval ′ dict (u :: P (EvalD cxt))

(app (u :: P (EvalD cxt))
(lam (u :: P (EvalD cxt)) name exp)
body) env

apply (:: P (EvalD cxt))
(LetE name body exp :: Exp 1 (EvalD cxt)) =

λ(env :: Env (EvalD cxt))
(x :: Exp (EvalD cxt)) →
error "Function expected"

Figure 5e. Instances for new functions on all component types

6

data EvalEnd b

class Eval EvalEnd b ⇒ EvalCap b

instance EvalCap (Exp (EvalD EvalEnd))
instance EvalCap (Exp 0 (EvalD EvalEnd))
instance EvalCap (Exp 1 (EvalD EvalEnd))

instance EvalCap b ⇒ Sat (EvalD EvalEnd b) where
dict = EvalD{eval ′ = eval

, apply ′ = apply
, evalExt = error "Capped at Eval"}

Figure 5f. Capping class, capping type and capping instances

letE :: forall cxt .
(Sat (EvalD cxt (Exp (EvalD cxt)))
,Sat (EvalD cxt (Exp 0 (EvalD cxt)))
,Sat (EvalD cxt (Exp 1 (EvalD cxt)))) ⇒
P (EvalD cxt) → String → Exp (EvalD cxt) →
Exp (EvalD cxt) → Exp (EvalD cxt)

letE (:: P (EvalD cxt)) =
λ(x1 :: String) (x2 :: Exp (EvalD cxt))
(x3 :: Exp (EvalD cxt)) →
MkExp (LetE x1 x2 x3 :: Exp 1 (EvalD cxt))

Figure 5g. Smart constructors

type Env cxt = [(String ,Exp cxt)]

lookupEnv :: Env (EvalD cxt) → String →
Exp (EvalD cxt)

lookupEnv ([] :: Env (EvalD cxt)) =
λ(name :: String) →

error ("lookupEnv : Variable " ++
show name ++ " not found")

lookupEnv (hd : tl :: Env (EvalD cxt)) =
λ(name ′ :: String) → lookupEnvAux hd tl name ′

lookupEnvAux :: (String ,Exp (EvalD cxt)) →
Env (EvalD cxt) → String →
Exp (EvalD cxt)

lookupEnvAux (name, term) =
λ(rest :: Env (EvalD cxt)) (name ′ :: String) →

if name == name ′

then term else lookupEnv rest name ′

extEnv :: Env (EvalD cxt) →
(String ,Exp (EvalD cxt)) → Env (EvalD cxt)

extEnv = λ(env :: Env (EvalD cxt))
(x :: (String ,Exp (EvalD cxt))) → x : env

Figure 5h. Regular declarations

Figure 6. A diagram of two recursive dictionaries produced by
AlphaCapinstances onExpandExp 0.

Symbol Classes
α, β, γ → 〈type variable〉
T, E → 〈type constructor〉
C, E → 〈data constructor〉
x, f → 〈term variable〉
ν → 〈Collection of pattern variables〉
Declarations
pgm → decl (whole program)
decl → data; tval (declaration)
data → data T α = C τ (data type decl)
val → x = e | x p = e (value binding)
vsig → x : σ (type signature)
tval → vsig ; val (top level binding)
Terms (Expressions)
e, b → e1 e2 | λx : τ.e | x | C
Patterns
p → C x1 . . . xn : τ (n ≥ 0)(pattern)
Types
τ , ξ → T | α | τ1 τ2 (monotype)
σ → τ | ∀α.σ (type scheme)

Figure 7a. Syntax of source language

A full dictionary translation of the code in Figures 4a – 4g
appears in Appendix B.

6. Formalisation
In this section we present a formal translation from the language
described in Section 2 to Haskell. However, so that we may con-
centrate on the important aspects we translate from an austere
source language to a target language equivalent in expressiveness to
Haskell. The running example, although legal Haskell, was written
in a manner very close to the source language which is essentially
the lambda calculus with algebraic data types, flat pattern match-
ing and first order polymorphic types. Most importantly, it contains
two new forms of algebraic data type declarations:open dataand
extend data.

The target language has type classes but the syntactic restric-
tions on them are less stringent than Haskell 98. The source lan-
guage does not contain type classes but only in order to simplify
the presentation.

6.1 The source and target languages

Apart from theopen dataandextend datadeclarations the lexical
structure of the source language does not differ much from the
lambda calculus extended with algebraic data types and pattern

7

matching. However there are a number of non-lexical restrictions
on the syntax. These have largely been put in place to simplify the
presentation of the translation and, in such cases, other translations
from the richer language constructs of full Haskell are known to
exist. Some constraints are essential but these have already been
enumerated in Section 2. This section will only describe those
constraints that simplify the presentation.

There is at most one pattern match per function and it must be
flat, i.e. not nested. The source language is explicitly typed. All
functions have type signatures except new equations on existing
functions. This is because signatures already exist for such equa-
tions albeit in a different module. It is an error to provide signatures
for them.

Further, all value bindings in the source language are supercom-
binators. We overload the terminology and allow both value bind-
ings and expressions to be supercombinators. An expression that
is supercombinator has the form:

λx1 : τ1 . . . λxn : τn .e
It has the following properties.

• It has no free variables.

• Any sub-term ine that is a lambda abstraction is also a super-
combinator.

• n ≥ 0.

A value binding that is a supercombinator has the form:
x p = λx1 : τ1 . . . λxn : τn .e

• It has no free variables.

• The pattern,p, is optional if the function is not defined on an
EDT. Otherwise it is required.

• Any sub-term ine that is a lambda abstraction is a supercombi-
nator.

This restriction was introduced so that it would not be necessary to
deal with let expressionsandwhereclauses. Using lambda-lifting
it is always possible to translate from a language containing these
to one of supercombinators.

6.1.1 Syntactic conventions

The syntax is provided in Figure 7a. Overbar notation is used ex-
tensively. The notationαn means the sequenceα1 . . . αn; the “n”
may be omitted when it is unimportant. The following notational
shortcuts also apply:

τn → ξ ≡ τ1 → . . . → τn → ξ
∀αn .τ ≡ ∀α1 . . .∀αn .τ

Superscripts and subscripts make a difference to what overbars
mean. D

m
i δ (1 ≤ i ≤ m) is shorthand for

Di (Di+1 . . . (Dm δ) . . .) . D
m

δ is shorthand forD
m
1 δ. D

m
i δ

is the type of an explicit dictionary for functionality classFi with
the explicit dictionaries for functionality classesFi+1, . . . , Fm

nested within it. Also, we accommodate function typesτ1 → τ2

by regarding them as the curried application of the function type
constructor to two arguments, thus:(→)τ1τ2.

The following conventions apply to the symbols used. The first
symbol appearing in each symbol class is a generic symbol. Later
symbols in the list often stand for explicit language entities. For
exampleE is reserved for the type constructor of the extensible
data type. The concrete symbols are listed in their entirety in Figure
7b.

The target language is the same as GHC Haskell 6.4 with the
glasgow extensions4 and allow undecidable instanceoptions en-
abled, modulo the syntactic abbreviations we use. In particular, it
has type classes, existential types and allows recursive dictionaries
to be created during constraint resolution.

6.2 The rules

The translation is presented in an inductive manner. The “base
case” concerns the translation of theopen datadeclaration while
the inductive step demonstrates thenth extension of the data type
and themth new function on that data type.

We’ve already introduced the termscomponent typeand func-
tionality class, but due to their specific meaning they are sum-
marised again.

• Component type– A type that forms part of the EDT. There is
theinitial component typewhich is introduced when translating
theopen datadeclaration. Then there are theextension compo-
nent typeseach introduced with theextend datadeclaration.

• Functionality class– Classes that provide the functionality for
the EDT. There is at most one per module.

There are three indexes,i, ji andki used in the translation.

• The indexi ranges over the component types and functional-
ity classes. We have made another presentation simplifying as-
sumption that whenever an extension is made to the open data
type that a new function is also declared on the EDT5.

• Index ji ranges over the variants (constructors) of the compo-
nent type and has values1 ≤ ji ≤ ni, whereni is the number
of variants for theith component type

• Indexki ranges over the functions in a functionality class and
has values1 ≤ ki ≤ pi, wherepi is the number of functions in
theith functionality class.

T sort
description is the way we denote translation rules. Thesort is

the language entity we are doing the translation on. For instance,
T σ
method transformsσ-types. Some of the translation rules take

arguments e.g.T e
unwrap . A translation rule can also be mapped over

a sequence; this is denotedT sort
description .

The translation rules use a form of a pattern matching. Most
symbols appearing between the Oxford brackets (J . . .K) are generic;
they bind to whatever is in their position. However, some symbols
are concrete and for a match to occur the symbol in the scrutinee
of a translation function must match with the symbol in the pattern.
Just like Haskell, a pattern match failure means that a match should
be attempted on the next translation rule. A list of the concrete
symbols for the source language appears in Figure 7b.

A syntax has been introduced to range over multiple, similar
declarations. An expression of the form〈 expression〉mj=a means
“range over the indexj from a to m”. There can be nested loops
too. An expression of the form〈 expression 〉m,n

j=a,k=b means that
k ranges overb to n for eachj. When seen on the left hand side of
a translation rule itmatcheson declarations. On the right hand side
it generatesdeclarations.

Certain information is required by the translation.

• The name of the extensible data type, denotedE in the transla-
tion rules.

4 We do not even require everything that this enables. We only need multi-
parameter type classes, scoped type variables, kind annotations and zero
constructor data types.
5 One could always define an identity function or an empty component type
if they didn’t want one or the other.

8

E The extensible data type.
E i,ji Constructor of EDT (0 ≤ i ≤ m, 1 ≤ ji ≤ ni).
fi,ki Function defined on EDT (0 ≤ i ≤ m, 1 ≤ ki ≤ pi).

Figure 7b. Concrete symbols of the source language

E Wrapper type for the EDT .
E Constructor for the wrapper type.
Ei Component type of EDT.
E i,ji Constructor of component type.

Ei (0 ≤ i ≤ m, 1 ≤ ji ≤ ni).
S Satclass.
Fi Functionality class (for functionsfi,ki (1 ≤ ki ≤ pi).
P Proxy type.
d1 Method ofS class. Returns explicit dictionary.
di Selector method for next explicit dictionary in

explicit dictionaryDn−1 (1 ≤ i ≤ m).
Di Explicit dictionary for functionality classFi

(1 ≤ i ≤ m).
F̂i Capping class for functionality classFi .
D̂i Capping type for functionality classFi .
εi,ji Smart constructor for constructorE i,ji

(0 ≤ i ≤ m, 0 ≤ ji ≤ ni).

Figure 7c. Concrete symbols of the target language

• A collection,Γ(E), of all type constructors whose definition di-
rectly or indirectly contain occurrences of the type constructor
E

• A collection,∆(E), of all functions that directly or indirectly
contain occurrences of a function,fi (i ≥ 0), defined on the
EDT, E α.

For example, an analysis on the following module would yield
Γ(E) = {T, T ′}, ∆(E) = {g, h}.

open data E a = . . .

data T b c = T1 b (T ′ c)
data T ′ a = T ′

1 (E a)

f :: E a → a
f = . . .

g = . . . f . . .
h = . . . g . . .

The translation of a module containing anextend datarequires
additional information but we defer discussion of this until Section
6.4.

6.3 Base case: Translatingopen data

A portion of the rule used to translateopen datadeclarations ap-
pears in Figure 8a. The complete rules appear in Figures 10a
and 10b. The portion provided introduces the initial functional-
ity classF0, and an instance for the first functions on the EDT,f0,k

(where1 ≤ k ≤ p0). A capping class,̂F0, and capping type,̂D0

are also introduced. (There is no explicit dictionary for the base
functionality class.) The complete rule also introduces the initial
component type,E0, and corresponding smart constructorsε0,j (for
1 ≤ j ≤ n0), the proxy typeP , the wrapper typeE and a corre-
sponding unwrapping instance. TheSatclass,S is also introduced,
once and for all.

Smart constructors are introduced so that the translation of
regular data constructors in the source language is simplified; an

T dataJ open data E α = 〈 E0,j0 τj 〉n0
j=1;

〈 f0,k0 : σ0,k0 〉
p0
k0=1;

〈 f0,k0 (E0,j0 νj0 : E ξj0) = b0,j0,k0 〉
n0,p0
j=1,k0=1 K =

. . .
Initial functionality class

class S (δ β) ⇒ F0 δ β where
〈 f0,k0 : T σ

method(0, k0)Jσ0,k0K 〉p0
k=1 ;

Initial functionality instance
instance (S (δ (E δ)), S (δ (E0 δ)))

⇒ F0 δ (E0 δ) where

〈 f0,k0 (: P δ) (E0 νj0 : E0,j0 δ ξj0) =
T e
methodJb0,j0,k0K 〉n0,p0

j0=1,k0=1

Capping class, type and instances
data D̂0 β ;

class F0 D̂0 β ⇒ F̂0 β ;

instance F̂0 (E (D̂0)) ;

instance F̂0 (E0 (D̂0)) ;

instance F̂0 β ⇒ S (D̂0 β) where
d1 = ⊥

. . .

Figure 8a. A portion of the translation foropen datadeclaration
in the initial module (m = 0).

T dataJ 〈 f0,k0 (Em,jm νjm : E ξjm) = b0,jm ,k0 〉
nm ,p0
jm=1,k0=1;

. . . ;
〈 fm−1,km−1 (Em,jm νjm : E ξjm) =

bm−1,jm ,km−1 〉
nm ,pm−1
jm=1,km−1=1 K =

〈 instance (S (D
m

δm (E (D
m

δm)))

, S (D
m

δm (E0 (D
m

δm)))
, . . .
, S (D

m
δm (Em (D

m
δm)))

) ⇒ Fi (D
m
i δm) (Em (D

m
δm)) where

〈 fi,ki (: P (D
m

δm))

(Em,jm νjm : Em (D
m

δm) ξjm) =
T e
methodJbi,jm ,ki K 〉

nm ,pi
jm=1,ki=1

〉m−1
i=0

Figure 8b. Translation for new equations on existing functions in
themth extension module.

occurrence of a constructor becomes a smart constructor instead.
An extra argument of the proxy type is added for all functions,
fi,ki , defined on the EDT and to the smart constructors.

6.4 Inductive step: Translatingextend data

The portion of the rules for translating a module containing an
extend datadeclaration appears in Figures 8b and 8c. The complete
rules appear in 10b, 10c, and 10d.

These rules introduce themth new variant on the EDT and
the mth function. It is assumed that the following information is
available.

• A list of m existing functionality classes[F0, ..., Fm−1], func-
tions[f0,k0 , . . . , fm−1,km−1] (where1 ≤ ki ≤ pi) and explicit
dictionaries[D0, . . . , Dm−1].

9

T dataJ extend data E α = 〈 Em,j τj 〉nm
jm=1 ;

〈 fm,km : σm,km 〉pm
km=1;

〈 fm,km (Em,jm νm,jm : E ξm,jm) =
bm,jm ,km 〉nm ,pm

jm=1,km=1 K =

. . .
The mth functionality class

class (S (D
m

δm β), Fm−1 (Dm δm) β)
⇒ Fm δm β where

〈 fm,km : T σ
methodJσm,km K 〉pm

km=1;
The mth explicit dictionary

data Dm δm β =
Dm { 〈 f ′m,km : T σ

methodJσm,km K; 〉pm
km=1

, dm+1 : (δm β) }
;

Functionality instances (for component types 0 ≤ i ≤ m)

〈 instance (S (D
m

δm (E (D
m

δm)))

, S (D
m

δm (E0 (D
m

δm)))
, . . .
, S (D

m
δm (Em (D

m
δm)))

) ⇒ Fm δm (Ei (D
m

δm)) where

〈 fm,km (: P (D
m

δm)) (E i,ji νji : Ei (D
m

δm) ξji) =
T e
methodJbi,ji ,km K 〉ni ,pm

ji=1,km=1

〉mi=0

Capping class, type and instances
data D̂m β ;

class Fm D̂m β ⇒ F̂m β ;

instance F̂m (E (D
m

D̂m)) ;

〈 instance F̂m (Ei (D
m

D̂m)) ; 〉mi=0

“Knot tying” instance
instance F̂m β ⇒ S (D

m
D̂m β) where

d1 = D1 { 〈 f ′1,k = f1,k 〉p1
k=1

d2 = D2 { 〈 f ′2,k = f2,k , 〉p2
k=1

. . .
dm = Dm { 〈 f ′m,k = fm,k 〉pm

k=1,
dm+1 = ⊥} . . . }. . .

Figure 8c. A portion of the translation forextend datadeclaration
and new function for themth extension module.

• A list of m existing component types[E0, ..., Em−1] and the
variant constructors[E0,j0 , . . . , Em−1,jm−1] (where1 ≤ ji ≤
ni) .

• A list of capping classes,[F̂1, . . . , F̂m−1] and capping types,
[D̂1, . . . , D̂m−1]. A capping type is just a zero constructor
dummy type.

Similar to the base case, the rule in Figure 8c introduces a new
component type and smart constructor, a new functionality class,
function, and capping class. An instance is introduced for each
existing component type and the newly introduced one.

Also, the rule presented in Figure 8b introduces instances to
handle new equations on old functions (i.e.fi,ki (i < m, 1 ≤ ki ≤ pi)).
(Remember, there is a syntactic restriction on the source language
specifying that these must have been declared.) This rule also
brings into being an explicit dictionary and associated capping
type.

In many ways the inductive step of the translation is more inter-
esting. Consequently we spend some time explaining the subtleties
of the rules.

T α
kindJα1, . . . , αk K =

k+1z }| {
(? → . . . → ?) → ?

T σ
methodJ ∀α.E τ

→ ξ K = ∀α. P(D
m

δm) → β τ → T τ
methodJξK

T τ
methodJαK = α

T τ
methodJT K =


T (D

m
δm) , if T ∈ Γ(E)

T , otherwise
T τ
methodJEK = E (D

m
δm)

T τ
methodJτ1 τ2K = T τ

methodJτ1K T τ
methodJτ2K

T e
methodJfi,ki K =

8>><>>:
f ′i,ki

T dict(i) (⊥ : P (D
m

δm))
, if i > 0
fi,ki (⊥ : P (D

m
δm))

, otherwise

T e
methodJxK =


x (⊥ : P (D

m
δm)) , if x ∈ ∆(E)

x , otherwise
T e
methodJλx : τ.eK = λx : T τ

methodJτK. T e
methodJeK

T e
methodJ E i,ji K = εi,ji (⊥ : P (D

m
δm))

T e
methodJ CK = C
T e
methodJe1 e2K = T e

methodJe1KT e
methodJe2K

T dict(i) = (di (. . . (d2 d1) . . .))

Figure 8d. A portion of the translation rules

S Sat F1 Eval
δi cxt f1,1 eval
β b f1,2 apply

E Exp F̂0 AlphaCap

E0 Exp 0 D̂0 AlphaEnd
F0 Alpha d1 dict
E MkExp d2 expExt
E0,1 Var D1 Eval

E0,2 Lam F̂1 EvalCap

E0,3 App D̂1 EvalEnd
f0,1 alpha (n0 = 3, p0 = 1, n1 = 1, p1 = 2)
E1,1 LetE (m = 2)
E1 Exp 1

Figure 9. A mapping from symbols in the formal translation to
identifiers in the running example.

6.4.1 The need for proxy arguments

Proxy arguments guide the type checker for the target language.
Consider the following function in the source language:

data E = E0 String (E String)
f0,1 :: E → String
f0,1 (E0 s e) = s ++ f0,1 e

Now consider what we would get if the translation omitted to add
proxy arguments.

class S (δ β) ⇒ F0 δ β where
f0 :: β → String

instance S (δ (E δ)) ⇒ F0 δ(E δ) where
f0,1 (E x) = f0,1 x

instance (S (δ (E δ)), S (δ (E0 δ))) ⇒ F0 δ (E0 δ) where
f0,1 (E0 s e) = s ++ f0,1 e

10

Among the constraints raised by the use off0,1 on the right hand
side of the instance method equation isF0 δ′ (E δ). The problem
is that theδ′ andδ aren’t equal. The proxy ensures that they are
equated. To see this consider the translation with proxy arguments
attached.

class S (δ β) ⇒ F0 δ β where
f0,1 :: P δ → β → String

instance (S (δ (E δ)), S (δ (E0 δ))) ⇒ F0 δ (E0 δ) where
f0,1 (: P δ) (E0 s e) = s ++ f0,1 (⊥ : P δ) e

The constraint raised by the expressionf0,1 (⊥ : P δ) e is now
F0 δ (E δ).

6.4.2 S constraints in instance heads

The instance heads for new equations on existing component types
and the instance heads for new functions both contain many occur-
rences ofS constraints. This may seems strange considering that
each functionality class hasS as a superclass. The reason is that
theS instance that “ties the knot” will be declared at some point
in the future (possibly in another module). TheS constraints in the
instance head “promise” that this will happen.

These constraints mention the latest explicit dictionary (i.e.
D

m
). The purpose of this is to allow the body of the instance

method to contain occurrences of any of the functions so far
(f1,k1 , . . . , fm−1,km−1) and the latest ones –fm,km). This is pos-
sible even inside new equations on existing functions, which may
seem counter-intuitive at first. To see why consider the translation
of the following new equation wherea < m, b <= m, anda < b.

T dataJfa,1 (Em,2 x) = . . . fb,1 . . .K =
. . .
instance (S (D

m
δm (E (D

m
δm)))

, S (D
m

δm (E0 (D
m

δm)))
, . . .
, S (D

m
δm (Em (D

m
δm)))

) ⇒ Fa (D
m
a+1 δm) Em (D

m
δm) where

fa,1 (Em,2 x) = . . . f ′b,1 (dm . . . (d2 d1) . . .) . . .
. . .

The expressionf ′b,1 (db . . . (d2 d1) . . .) raises the following
constraints.

S (D
m

D̂m (Em (D
m

D̂m)))

 F̂m (Em (D
m

D̂m))

This instance for the capping class has been declared. The
considerably involved way in which this is type checked is covered
in the next section.

6.4.3 Capping classes

Instances of the capping class, and the associatedS instance, are
used to “tie the knot” during constraint resolution. They do this,
not just for themth functionality class, but for all the others.

For each of the capping class instances we need to check for
the existence of an instance of its super class, themth functionality
class. Because constraint resolution is cycle aware we first add the
constraintsF̂m (Ei (D

m
D̂m)) (for 0 ≤ i ≤ m) to the current

collection of assumptions. (Each of these constraints will only
be resolved if a chain of resolutions reaches it again.) Now let’s
consider a particular superclass constraint for component typeEb

(for some0 ≤ b ≤ m). It producesm + 1 S constraints.

Fm D̂m (Eb (D
m

D̂m))

 S (D
m

D̂m (Ej (D
m

D̂m))) for each (0 ≤ j ≤ m)

Each one of theseS constraint is resolved by

S (D
m

D̂m (Ej (D
m

D̂m)))

 F̂m (Ej (D
m

D̂m))

But these are in the collection of assumptions, so they get re-
solved. Thus, a recursive dictionary is created for each component
type and the wrapper type. This “ties the knot” forall of the func-
tionality classes, not just themth one. To see why, consider how
we type check

f ′a,c (di . . . (d2 d1) . . .) :: Eb (D
m

D̂m) → . . .
for some0 ≤ a ≤ m, 0 ≤ b ≤ m, and0 ≤ c ≤ pi. This leads

to the following constraint resolution. (The initial constraint comes
from substitutingδ = D

m
i+1 D̂m into S (D

i
δ (Eb (D

i
δ))) .

S (D
m

D̂m (Eb (D
m

D̂m)))

 F̂m (Eb (D
m

D̂m))

But this constraint has been provided by the capping class in-
stance which type checks for the reasons stated earlier.

6.4.4 Translating regular declarations

Any type declaration in the source language that directly or in-
directly contains a reference toE must be translated to contain
an occurrence of the wrapper data typeE in the target language.
Any function which directly or indirectly contains an occurrence
of a function fi,k (for a specific0 ≤ i ≤ m, 0 ≤ k ≤ pi)
must also have its body transformed to contain an occurrence of
f ′i,k di (. . . (d2 d1) . . .) . More importantly, anS constraint must
be added to the type. However, this only needs to be done for
the wrapper data type,E, as these are the only values that will
be passed to such functions.S constraints on component types
are only ever seen in the class and instance heads of functionality
classes.

6.5 The link between the formalisation and the running
example

To further the reader’s understanding they are encouraged to apply
the rules from Figures 10a and 10b to the initial module of the
running example (Figure 1) to yield the result in Figures 4a–4g. By
applying the rules in Figures 10c, 10d and 10b to to Figure 2 they
will get the result in Figures 5a–5h.

However, the translation rules use an abbreviated syntax. In
order to aid the reader Figure 9 shows the correspondence between
the abbreviated syntax and the syntax used in the translation of the
running example.

6.6 Creating values of the EDT

For an extensible data type to be created and used, it is neces-
sary for the translator to insert the latest capping type in place
of the δm in the type E (D

m
D̂m) τ). However, the only func-

tions that can be called on a value of this type are those that
have the constraintS (D

a
δa (E (D

a
δa))) (wherea ≤ m) in

their types. The translation ensures that the functionsfi,ki (where
0 ≤ i ≤ m, 1 ≤ ki ≤ pi) (and any function which directly or
indirectly calls them) satisfy this condition.

7. Related work
To date, the only published (Haskell) solution to the expression
problem is L̈oh and Hinze [9]. They describe a method whereby
the amount of recompilation can be kept to a minimum. This is a
two tiered solution. First, the open declarations and closed decla-
rations are separated out into theMain module. Unfortunately, this
often results in a mutually dependency with each module that con-
tained open declarations. Although the modules can be compiled
separately they cannot be re-compiled independently; a change to
an open entity necessitates recompilation of all modules depending

11

on Main. Next, the left and right hand sides of the open equations
are separated into two new equations. The first does the pattern
matching and dispatches to the second which is moved back to the
module it was originally declared in. As long as the interface be-
tween this module and theMain module remains stable a change
to open entities only results in a re-compilation of theMain mod-
ule. This fact disqualifies the solution from achieving true separate
compilation. We believe that open data types are eminently use-
ful in plug-in enabled applications. It is unclear how well Löh and
Hinze’s solution works in a plug-in environment. It may be pos-
sible to use Stewart and Chakravarty’s [12] method to re-load the
entire application but this seems much more complicated that our
solution and would require loading the entire program not just the
plug-in module.

A number of informal type-classed based (e.g. [6]) have been
proposed. However, there is a crucial difference with our solution.
Where these solutions lift constructor values to the type level, ours
does not. This means that functions can still be written in a natural
way using the full power of Haskell’s pattern matching. Also, there
is still a clear relation between a constructor and the data type it
creates; a constructor creates values of its component type.

Another notable solution to the expression problem is provided
by Kiselyov and L̈ammel [4]. This requires that programs be writ-
ten in an object oriented style. In our solution, functions on open
data types are merely overloaded functions and the construction of
values by smart constructors is almost as natural as with regular
constructors.

Several papers ([15], [5], [10], [1]) have focused on extending
object-oriented languages in order to make the addition of extra
functionality easier. (Of these, only Zenger and Odersky’s and
Bruce’s solutions can be statically type checked.) However, we
wish to do the converse by making the addition of variants easier
in a functional language. Solutions in functional languages have
also been studied. Solutions have been proposed in OCaml [2]
and the hybrid object-oriented/functional language, Scala [16]. The
solutions in OCaml and Scala both use a notion of sub-typing.
OCaml provides this throughpolymorphic variants—constructors
that can belong to more than one data type. Mixins are used in
Scala.

8. Conclusion
We have presented a solution to the expression problem which pro-
vides true separate compilation and works in current implementa-
tions of Haskell. The main ingredients of the solution are multi-
parameter type classes, existential types and recursive dictionaries.
A formal translation has been provided that can be used as the ba-
sis of an pre-processor implementation. However, the technique is
readily usable as a programming idiom.

The source code of the examples in this paper can be found as a
darcsrepository at:

http://www.cse.unsw.edu.au/~sseefried
/code/exp_prob

9. Acknowledgements
The authors would like to thank Roman Leshchinskiy for invalu-
able help in improving the presentation of the translation.

References
[1] Kim B. Bruce. Some Challenging Typing Issues in Object-Oriented

Languages: Extended Abstract. In , volume 82.8 ofElectronic Notes
in Theoretical Computer Science, pages 1–29, 2003.

[2] Jacques Garrigue. Code reuse through polymorphic variants. In
Workshop on Foundations of Software Engineering, Sasaguri, Japan,
November 2000.

[3] R.J.M Hughes. Restricted data types in Haskell. InProceedings of
the 1999 Haskell Workshop, 1999.

[4] Oleg Kiselyov and Ralf L̈ammel. Haskell’s overlooked object system.
2005.

[5] Shriram Krishnamurthi, Matthias Felleisen, and Daniel P. Friedman.
Synthesizing object-oriented and functional design to promote re-use.
Lecture Notes in Computer Science, 1445:91–??, 1998.

[6] Ralf Lämmel. Extensible grammars, on thecomp.compilers
newsgroup,
http://compilers.iecc.com/comparch
/article/04-12-111, 2004.

[7] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate with
class: extensible generic functions. InProceedings of the ACM
SIGPLAN International Conference on Functional Programming
(ICFP 2005). ACM Press, September 2005.

[8] Konstantin L̈aufer. Type Classes with Existential Types.Journal of
Functional Programming, 6(3):485–517, May 1996.

[9] Andres L̈oh and Ralf Hinze. Open data types and open functions.
In PPDP’06: Eighth ACM-SIGPLAN International Symposium on
Principles and Practice of Declaritive Programming, Venice, Italy,
July 2006.

[10] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers.
Polyglot: An Extensible Compiler Framework for Java. InProc. 12th
International Conference on Compiler Construction, number 2622 in
Lecture Notes in Computer Science, pages 138–152. Spring-Verlag,
April 2003.

[11] J. C. Reynolds. User-defined types and procedural data structures as
complementary approaches to data abstraction. In S. A. Schuman,
editor,New Directions in Algorithmic Languages, pages 157–168,
1975.

[12] Don Stewart and Manuel M. T. Chakravarty. Dynamic Applications
From the Ground Up. InProceedings of the ACM SIGPLAN Workshop
on Haskell. ACM Press, September 2005.

[13] Philip Wadler. The expression problem, Discussion on the Java
Genericity mailing list, 1998.

[14] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism
less ad hoc. InConference Record of the Sixteenth Annual Symposium
on Principles of Programming Languages (POPL’89), pages 60–76,
Austin, Texas, January 1989. ACM Press.

[15] Matthias Zenger and Martin Odersky. Extensible Data Types with
Defaults. InInternational Conference on Functional Programming
(IFCP’01), pages 241–252, Firenze, Italy, September 2001.

[16] Matthias Zenger and Marting Odersky. Independently Extensible
Solutions to the Expression Problem. Technical Report IC/2004/33,
École Polytechnique F́ed́erale de Lausanne, Lausanna, Switzerland,
2004.

12

A. Translation rules

T dataJ open data E α = 〈 E0,j0 τj 〉n0
j=1;

〈 f0,k0 : σ0,k0 〉
p0
k0=1; 〈 f0,k0 (E0,j0 νj0 : E ξj0) = b0,j0,k0 〉

n0,p0
j=1,k0=1 K =

Proxy type
data P δ ;

Sat class
class S α where

d1 : α

Wrapper type
data E (δ : T α

kindJαK) α = ∃β.F0 δ β ⇒ E (β α);

Initial component type
data E0 δ α = 〈 E0,j0 T τ

E Jτj0K 〉n0
j0=1 ;

Initial functionality class
class S (δ β) ⇒ F0 δ β where
〈 f0,k0 : T σ

method(0, k0)Jσ0,k0K 〉p0
k=1 ;

Initial functionality instance
instance (S (δ (E δ)), S (δ (E0 δ))) ⇒ F0 δ (E0 δ) where

〈 f0,k0 (: P δ) (E0 νj0 : E0,j0 δ ξj0) = T e
methodJb0,j0,k0K 〉n0,p0

j0=1,k0=1 ;

Unwrapping instance
instance S (δ (E δ)) ⇒ F0 δ (E δ) where

〈 f0,k0 (: P δ) (E x : E δ ξ) = T σ
unwrap(f0,k0 , x ,P δ)Jσ0,k0K 〉pi

k=1

Capping class, type and instances
data D̂0 β ;

class F0 D̂0 β ⇒ F̂0 β ;

instance F̂0 (E (D̂0)) ;

instance F̂0 (E0 (D̂0)) ;

instance F̂0 β ⇒ S (D̂0 β) where
d1 = ⊥

Smart constructors
〈 ε0,j0 : T τ

smartJτj0K; ε0,j0 (: P δ) = T e
smart(0, j0)Jτj0K 〉n0

j0=1

Figure 10a. Translation foropen datadeclaration in the initial module (m = 0).

13

T dataJdata T α = C τK =


data T δ α = C T τ

E JτK , if T ∈ Γ (E)
data T α = C τ , otherwise

T dataJtype T α = τK =T τ
E JτK

T tvalJx : σ; valK = x : T σ
E JσK ; T valJvalK

T valJx p = eK =


x (: P (D

m
δm) p = T e

methodJeK , if x ∈ ∆(E)
x p = e , otherwise

T valJx = eK =


x (: P (D

m
δm) = T e

methodJeK , if x ∈ ∆(E)
x = e , otherwise

T σ
E J∀ α.τK =

8<: ∀ α. S (D
m

δm (E (D
m

δm))) ⇒
T τ

E JτK , if x ∈ ∆(E)
T τ

E JτK , otherwise

Figure 10b. Translation for regular declarations in themth module.

T dataJ 〈 f0,k0 (Em,jm νjm : E ξjm) = b0,jm ,k0 〉
nm ,p0
jm=1,k0=1;

. . . ;
〈 fm−1,km−1 (Em,jm νjm : E ξjm) = bm−1,jm ,km−1 〉

nm ,pm−1
jm=1,km−1=1 K =

〈 instance (S (D
m

δm (E (D
m

δm)))

, S (D
m

δm (E0 (D
m

δm)))
, . . .
, S (D

m
δm (Em (D

m
δm)))

) ⇒ Fi (D
m
i δm) (Em (D

m
δm)) where

〈 fi,ki (: P (D
m

δm))

(Em,jm νjm : Em (D
m

δm) ξjm) = T e
methodJbi,jm ,ki K 〉

nm ,pi
jm=1,ki=1

〉m−1
i=0

Figure 10c. Translation for new equations on existing functions in themth extension module.

14

T dataJ extend data E α = 〈 Em,j τj 〉nm
jm=1 ;

〈 fm,km : σm,km 〉pm
km=1; 〈 fm,km (Em,jm νm,jm : E ξm,jm) = bm,jm ,km 〉nm ,pm

jm=1,km=1 K =

The mth extension component type
data Em (δ : T α

kindJαK) α = 〈 Em,jm T τ
E Jτj K 〉nm

jm=1;

The mth functionality class
class (S (D

m
δm β), Fm−1 (Dm δm) β) ⇒ Fm δm β where

〈 fm,km : T σ
methodJσm,km K 〉pm

km=1;

The mth explicit dictionary
data Dm δm β = Dm { 〈 f ′m,km : T σ

methodJσm,km K; 〉pm
km=1

, dm+1 : (δm β) }
;

Unwrapping instance
instance S (D

m
δm (E (D

m
δm))) ⇒ Fm δm (E (D

m
δm)) where

〈 fm,km (: P (D
m

δm)) (E x : E (D
m

δm) ξ) =

T σ
unwrap(fm,km , x , P (D

m
δm))Jσm,km K 〉pm

km=1

Functionality instances (for component types 0 ≤ i ≤ m)

〈 instance (S (D
m

δm (E (D
m

δm)))

, S (D
m

δm (E0 (D
m

δm)))
, . . .
, S (D

m
δm (Em (D

m
δm)))

) ⇒ Fm δm (Ei (D
m

δm)) where

〈 fm,km (: P (D
m

δm)) (E i,ji νji : Ei (D
m

δm) ξji) = T e
methodJbi,ji ,km K 〉ni ,pm

ji=1,km=1

〉mi=0

Capping class, type and instances
data D̂m β ;

class Fm D̂m β ⇒ F̂m β ;

instance F̂m (E (D
m

D̂m)) ;

〈 instance F̂m (Ei (D
m

D̂m)) ; 〉mi=0

“Knot tying” instance
instance F̂m β ⇒ S (D

m
D̂m β) where

d1 = D1 { 〈 f ′1,k = f1,k 〉p1
k=1

d2 = D2 { 〈 f ′2,k = f2,k , 〉p2
k=1

. . .
. . . dm = Dm { 〈 f ′m,k = fm,k 〉pm

k=1, dm+1 = ⊥} . . . }
Smart constructors
〈 εm,jm : T τ

smartJτjm K; εm,jm (: P δ) = T e
smart(m, jm)Jτjm K 〉nm

jm=1

Figure 10d. Translation forextend datadeclaration and new function for themth extension module.

15

T α
kindJα1, . . . , αk K =

k+1z }| {
(? → . . . → ?) → ?

T σ
methodJ∀α.E τ → ξK = ∀α. P(D

m
δm) → β τ → T τ

methodJξK
T τ
methodJαK = α

T τ
methodJT K =


T (D

m
δm) , if T ∈ Γ(E)

T , otherwise
T τ
methodJEK = E (D

m
δm)

T τ
methodJτ1 τ2K = T τ

methodJτ1K T τ
methodJτ2K

T e
methodJfi,ki K =


f ′i,ki

T dict(i) (⊥ : P (D
m

δm)) , if i > 0

fi,ki (⊥ : P (D
m

δm)) , otherwise

T e
methodJxK =


x (⊥ : P (D

m
δm)) , if x ∈ ∆(E)

x , otherwise
T e
methodJλx : τ.eK = λx : T τ

methodJτK. T e
methodJeK

T e
methodJ E i,ji K = εi,ji (⊥ : P (D

m
δm))

T e
methodJ CK = C
T e
methodJe1 e2K = T e

methodJe1KT e
methodJe2K

T σ
unwrap(fi,ki , x , γ)J∀α. E τ → τ1 → . . . → τn → τn+1K =8>>>>><>>>>>:

λx1 : T τ
methodJτ1K

. . .
λxn : T τ

methodJτnK.f0 (⊥ : γ) x x1 . . . xn , if i = 0
λx1 : T τ

methodJτ1K
. . .
λxn : T τ

methodJτnK.fi,ki T
dict(i) (⊥ : γ) x x1 . . . xn , otherwise

Figure 10e. Translation rules

T τ
smartJτK = ∀ δm .∀ α. (S (D

m
δm (E (D

m
δm)))

, S (D
m

δm (E0 (D
m

δm)))
, . . .
, S (D

m
δm (Em (D

m
δm)))) ⇒

connect (P (D
m

δm), T τ
method J τ K, E (D

m
δm) α)

T τ
smartJT K =


T (D

m
δm) , if T ∈ Γ(E)

T , otherwise
T τ
smartJEK = E (D

m
δm)

T τ
smartJτ1 τ2K = T τ

smartJτ1K T τ
smartJτ2K

connect J τ1, . . . , τk K = τ1 → · · · → τk

T e
smart(i , j)Jτ1, . . . , τk K = λx1 : τ1 . . . λxk : τk . E (E i,j x1 . . . xk : Ei,j (D

i
δi) α)

T dict(i) = (di (. . . (d2 d1) . . .))
T τ
E JαK = α
T τ
E JEK = E δ

T τ
E JT K =


T (D

m
δm) , if T ∈ Γ(E)

T , otherwise
T τ
E Jτ1 τ2K = T τ

E Jτ1K T τ
E Jτ2K

Figure 10f. More translation rules

16

B. Dictionary translation of module F0 Alpha
The code demonstrates the resulting of performing dictionary translation (in the style of Wadler and Blott [14]) on the code in Figures 4a –
4g. It makes it clear where the recursive dictionaries are built.

module Alpha
where

data P d

u = ⊥
{-DI stands for dictionary implicity. D is an explicit dictionary -}
{-class Sat a where dict :: a -}

data SatDI a = SatDI {dict :: a }
data Exp (cxt :: ∗ → ∗) = forall b. MkExp (AlphaDI cxt b, b)

data Exp 0 cxt = Var String
| Lam String (Exp cxt)
| App (Exp cxt) (Exp cxt)

{-class Sat (cxt b)⇒ Alpha cxt b where alpha :: P cxt→ b→ (String, String)→ Exp cxt -}
data AlphaDI cxt b = AlphaDI {alpha :: P cxt → b → (String ,String) → Exp cxt }

{-instance (Sat (cxt (Exp cxt)), Sat (cxt (Exp0 cxt)))⇒ Alpha cxt (Exp0 cxt) -}
alphaDExp0 :: forall cxt . (SatDI (cxt (Exp cxt)),SatDI (cxt (Exp 0 cxt))) →

AlphaDI cxt (Exp 0 cxt)
alphaDExp0 (satExp, satExp0) = AlphaDI {alpha = alpha ′}

where
alpha ′ (:: P cxt) (Var v) =

λs → var (satExp, satExp0) (u :: P cxt) (swap s v)
alpha ′ (:: P cxt) (Lam v body) =

case body of
MkExp (alphaD , body ′) →

λs → lam (satExp, satExp0) (u :: P cxt) (swap s v)
(alpha alphaD (u :: P cxt) body ′ s)

alpha ′ (:: P cxt) (App a b) =
case a of

MkExp (alphaDa, a ′) →
case b of

MkExp (alphaDb, b′) → λs →
app (satExp, satExp0)

(u :: P cxt) (alpha alphaDa (u :: P cxt) a ′ s)
(alpha alphaDb (u :: P cxt) b′ s)

{-instance Sat (cxt (Exp cxt))⇒ Alpha cxt (Exp cxt) -}
alphaDExp :: forall cxt . SatDI (cxt (Exp cxt)) → AlphaDI cxt (Exp cxt)
alphaDExp satExp = AlphaDI {alpha = alpha ′}

where
alpha ′ (:: P cxt) exp =

case exp of
MkExp (alphaD , e) →

λs → alpha alphaD (u :: P cxt) e s

swap :: (String ,String) → String → String
swap ((a, b) :: (String ,String)) = λ(o :: String) → if a == o then b else o

17

var :: forall cxt . (SatDI (cxt (Exp cxt))
,SatDI (cxt (Exp 0 cxt))) → P cxt → String → Exp cxt

var (satExp, satExp0) (:: P cxt) =
λ(x1 :: String) → MkExp (alphaDExp0 (satExp, satExp0),Var x1)

lam :: forall cxt . (SatDI (cxt (Exp cxt))
,SatDI (cxt (Exp 0 cxt))) → P cxt → String → Exp cxt → Exp cxt

lam (satExp, satExp0) (:: P cxt) =
λ(x1 :: String) (x2 :: Exp cxt) → MkExp (alphaDExp0 (satExp, satExp0),Lam x1 x2)

app :: forall cxt . (SatDI (cxt (Exp cxt))
,SatDI (cxt (Exp 0 cxt))) → P cxt → Exp cxt → Exp cxt → Exp cxt

app (satExp, satExp0) (:: P cxt) =
λ(x1 :: Exp cxt) (x2 :: Exp cxt) → MkExp (alphaDExp0 (satExp, satExp0),App x1 x2)

--
-- Capping class
--

data AlphaEnd b

{-class Alpha AlphaEnd b⇒ AlphaCap b -}
data AlphaCapDI b = AlphaCapDI {alphaD :: AlphaDI AlphaEnd b}

--
-- d and d0 are the recursive dictionaries for ”instance AlphaCap (Exp AlphaEnd)” and
-- ”instance AlphaCap (Exp0 AlphaEnd)” respectively.
--

{-instance AlphaCap (Exp0 AlphaEnd) -}
d0 :: AlphaCapDI (Exp 0 AlphaEnd)
d0 = AlphaCapDI {alphaD = alphaDExp0 (satD d , satD d0)}
{-instance AlphaCap (Exp AlphaEnd) -}

d :: AlphaCapDI (Exp AlphaEnd)
d = AlphaCapDI {alphaD = alphaDExp (satD d)}
{-instance AlphaCap b =¿ Sat (AlphaEnd b) -}

satD :: AlphaCapDI b → SatDI (AlphaEnd b)
satD = SatDI {dict = error "Capped at Alpha"}
{-test = alpha (var (u::P AlphaEnd) ”x”) (”x”, ”y”) -}

test = let p = u :: P AlphaEnd
in alpha (alphaDExp (satD d)) p

(var (satD d , satD d0) p "x") ("x", "y")

18

