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Abstract

Several different notions of equivalence have been proposed for logic programs
with answer set semantics, most notably strong equivalence. However, strong
equivalence is not preserved by certain logic program operators such as the
strong and weak forgetting operators of Zhang and Foo, in the sense that two
programs which are strongly equivalent may no longer be strongly equivalent
after the same operator is applied to both. We propose the stronger notion of T-
equivalence which is designed to be preserved by logic program operators such as
strong and weak forgetting. We give a syntactic definition of T-equivalence and
provide a model-theoretic characterisation of T-equivalence using what we call
T-models. We show that strong and weak forgetting does preserve T-equivalence
and using this, arrive at a model-theoretic definition of the strong and weak
forgetting operators using T-models.



1 Introduction

The answer set semantics for logic programs is a dialect of logic programming
with negation-by-failure, which allows it to handle both defaults as well as in-
complete information [4]. It has been used in applications as diverse as planning,
nonmonotonic reasoning and game theory.

Several different notions of equivalence have been proposed for logic pro-
grams with answer set semantics. One way of doing this is to say that two
logic programs P and Q are equivalent if P and Q have the same answer sets.
However this is insufficient to capture, for example, the difference between the
programs {a← not b} and {a}: both have the single answer set {a}, but behave
differently when additional rules, for example {b}, are added. A stronger notion
of equivalence which distinguishes these two programs is strong equivalence, first
proposed by Lifschitz, Pearce and Valverde [5]: Two logic programs P and Q
are strongly equivalent, if by adding any set of rules R to both P and Q, the
resulting programs P ∪R and Q ∪R have the same answer sets. Strong equiv-
alence naturally arises when we consider logic programs in a modular way: If
we have a program P with a subprogram Q which is strongly equivalent to Q′,
then we may replace Q by Q′ without affecting the answer sets of the resulting
program.

However, for some applications strong equivalence is not strong enough. One
case of this is with the strong and weak forgetting operators of Zhang and Foo
[8], which are described in Section 4 of this paper. There are strongly equivalent
logic programs which do not remain strongly equivalent after the same forgetting
operators are applied to both: For example, the programs P = {a ← b; b ←
a; c ← not a} and Q = {a ← b; b ← a; c ← not b} are strongly equivalent,
however P after strong forgetting by a gives P ′ = {} while the same operation
on Q gives Q′ = {c ← not b}. It is clear that P ′ and Q′ are not strongly
equivalent. In such cases we need a finer notion of equivalence.

In this paper we address this problem by introducing a stronger notion of
equivalence which is preserved by the strong and weak forgetting operators.
We call this relation T-equivalence, since it is preserved under logic program
transformations such as forgetting. T-equivalence is defined syntactically using
three inference rules which define a consequence relation. Two logic programs
P and Q are then said to be T-equivalent if the set of consequences of P and Q
are the same.

We give some background definitions in Section 2, followed by an overview
of equivalence relations on logic programs in Section 3, and an introduction to
forgetting in Section 4. In Section 5 we define T-equivalence, for which we also
give a model-theoretic characterisation. Section 6 discusses the properties of
T-equivalence in relation to the strong and weak forgetting operators, through
which we arrive at a model-theoretic definition of these operators. Finally, we
conclude in Section 7 with some discussion on future research directions.

2 Preliminaries

In this paper we deal with normal logic programs with negation-by-failure, where
each rule is of the form

a← b1, b2, · · · , bm, not c1, not c2, · · · , not cn
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where b1, · · · , bm and c1, · · · , cn are from a set A of atoms, and a is either an
element of A or ⊥. We assume that the set of atoms A is fixed. Given a rule r in
this form, we denote H(r) = a (head of r), B+(r) = {b1, · · · , bm} (positive part
of r), and B−(r) = {c1, · · · , cn} (negative part of r). A positive logic program
is a logic program consisting of positive rules, which are rules with no negative
part (i.e., B−(r) is empty). Note that we allow infinite sets of rules as logic
programs, but each rule itself must be finite.

We adopt the convention of representing single atoms with lowercase letters
(e.g. a, b, c) and sets of atoms with uppercase letters (e.g. A,B, X, Y ). We use
the following notation for writing rules with sets of atoms. Suppose X = {a, b}
and Y = {c, d}. Then the rule p ← a, b, not c, not d may be written as p ←
X, not Y .

For a set X of atoms and a logic program P , we use the notation X |= P to
mean that X is a model of P in the classical sense: For each r ∈ P , if B+(r) ⊆ X
and B−(r)∩X = ∅, then H(r) ∈ X. Observe that under this definition, if H(r)
is ⊥, then X |= r if either B+(r) 6⊆ X or B−(r) ∩X 6= ∅. We say that X is a
minimal model of P if X is minimal by set inclusion among all the models of
P , i.e. X |= P and there is no X ′ such that X ′ ⊂ X and X ′ |= P .

The Gelfond-Lifschitz reduct [4] PX of a program P with respect to a set of
atoms X is defined by PX = {H(r)← B+(r) | r ∈ P and X ∩B−(r) = ∅}. We
say that X is an answer set of P if X is a minimal model of PX .

Example 1. Let P be the program {a ← not b; b}. {b} is an answer set for
P since P {b} = {b}, which has the minimal model {b}. However, {b} is not an
answer set for Q = {a← not b; b← not b} since Q{b} = ∅, and although {b} is
a model for this program, it is not minimal.

For a set of atoms S ⊆ A, write Sc for the complement of S in A.

3 Equivalences on Logic Programs

A number of different notions of equivalence on logic programs with answer
set semantics have been studied in the literature. The most basic notion of
equivalence says that two logic programs are equivalent if they have the same
answer sets. We call this ordinary equivalence.

Ordinary equivalence does not distinguish between programs which have
the same answer sets, but have different answer sets when additional rules are
added. This can be a problem when we consider logic programs in a modular
way by splitting them into components, as substituting a component program
for an equivalent program may not give the intended results.

Example 2. Consider the programs P = {a ← not b} and Q = {a}. Both P
and Q have the single answer set {a}. However after adding rules R = {b}, the
program P ∪R has answer set {b}, while Q ∪R has answer set {a, b}.

To capture the kind of equivalence that distinguishes between these pro-
grams, the notion of strong equivalence [5] was introduced. Strong equivalence
describes the property that two programs remain equivalent regardless of what
additional rules are added, and is defined as follows:

Definition 1. Logic programs P and Q are strongly equivalent, iff for all sets
of rules R, the programs P ∪R and Q ∪R have the same answer sets.
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Strong equivalence has been studied extensively in the literature [7, 5, 2, 6].
There is a model-theoretic characterisation of strong equivalence by Turner [7],
who defined the notion of SE-models for logic programs and showed that two
logic programs are strongly equivalent iff they have the same SE-models. The
definition of SE-models is as follows:

Definition 2. Let P be a logic program, and let X, Y be sets of atoms. We say
the pair (X, Y ) is a SE-model of P if X ⊆ Y , Y |= P and X |= PY .

Eiter and Fink [3] introduced the weaker notion of uniform equivalence. This
is defined in a similar way to strong equivalence, but with the added set of rules
R being restricted to sets of facts, which are rules with empty bodies.

Definition 3. Logic programs P and Q are uniformly equivalent, if for all sets
of facts F , the programs P ∪ F and Q ∪ F have the same answer sets.

Example 3. This example is taken from the paper by Eiter and Fink [3]. Let
P = {a← not b; a← b} and Q = {a← not c; a← c}. It can be verified that P
and Q are uniformly equivalent. However P and Q are not strongly equivalent,
since {a, b} is an answer set of Q ∪ {b← a} but not of P ∪ {b← a}.

It was shown that uniform equivalence can be characterised using UE-models,
which are defined as a refinement of SE-models:

Definition 4. Let P be a logic program and (X, Y ) be an SE-model of P . We
say (X, Y ) is a UE-model of P iff for every SE-model (X ′, Y ), X ′ ⊂ X implies
X ′ = Y .

4 Forgetting on Logic Programs

In applying logic programs to knowledge representation, there arises a need
to allow updating of logic programs with conflicting information. One way of
addressing conflicts is to weaken the logic program to remove the conflicting
atom; the new information may then be added without creating inconsistencies.

Zhang and Foo [8] presented a pair of operators for removing an atom from
a logic program with answer set semantics, called strong forgetting and weak
forgetting. The idea behind the strong and weak forgetting operators is to
remove an atom from the program while preserving as much information as
possible. The difference between strong and weak forgetting is the way that
negation is treated. The intuition is that in strong forgetting, the negation of
the atom to be forgotten is treated as false, while in weak forgetting it is treated
as true.

Definition 5. Given logic program P and atom a, define Reduct(P, a) to be the
program consisting of rules in P plus rules which can be derived by unfolding on
the atom a:

Reduct(P, a) = P ∪ {H(r)← B+(r) \ a,B+(s), not B−(r), not B−(s) |
r, s ∈ P, a ∈ B+(r), H(s) = a}

We then define the strong forgetting operator SForgetLP (P, a) by taking
the program Reduct(P, a) and then removing rules r for which r is valid, and
rules r where H(r) = a or a ∈ B+(r) or a ∈ B−(r):
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Definition 6. The operator SForgetLP is defined as follows:

SForgetLP (P, a) = Reduct(P, a)\
( {r | r is valid} ∪ {r | H(r) = a} ∪
{r | a ∈ B+(r)} ∪ {r | a ∈ B−(r)} )

To construct the weak forgetting operator WForgetLP (P, a), we take the
program Reduct(P, a) and remove rules r for which r is valid, and rules r where
H(r) = a or a ∈ B+(r). Finally each rule r where a ∈ B−(r) is replaced by
a rule r′ with a removed, i.e. H(r′) = H(r), B+(r′) = B+(r), and B−(r′) =
B−(r) \ {a}.

Definition 7. WForgetLP is defined in two steps. First we define WForgetLP ′(P, a):

WForgetLP ′(P, a) = Reduct(P, a)\
( {r | r is valid} ∪ {r | H(r) = a} ∪
{r | a ∈ B+(r)} )

Then WForgetLP (P, a) is given by:

WForgetLP (P, a) = {H(r)← B+(r), not {B−(r) \ a} |
r ∈WForgetLP ′(P, a)}

So far, we have defined strong and weak forgetting for single atoms. Forget-
ting with multiple atoms is defined as follows:

Definition 8. Let S = (s1, · · · , sn) be an ordered sequence of atoms, and ()
represent the empty sequence. SForgetLP (P, S) is defined recursively as fol-
lows:

SForgetLP (P, ()) = P

SForgetLP (P, (s1, · · · , sn)) = SForgetLP (SForgetLP (P, (s1, · · · , sn−1)), sn)

WForgetLP (P, S) is defined in the same way.

Example 4. Let P be the logic program {a← b; b← c; d← c, not b}.
SForgetFP (P, b) gives the result {a ← c}. Notice that we have obtained a

new rule a← c via “unfolding” of a← b and b← c.
WForgetLP (P, b) gives the result {a ← c; d ← c}. Here we see that strong

forgetting and weak forgetting treats the rule d ← c, not b differently. In strong
forgetting, the rule is eliminated, however in weak forgetting, not b is removed
from the rule instead.

The example below shows that strong equivalence is not preserved by strong
forgetting or weak forgetting.

Example 5. Consider the programs P = {a ← b; b ← a; c ← not a} and
Q = {a ← b; b ← a; c ← not b}, which we saw in the introduction. These
two programs are strongly equivalent. However, SForgetLP (P, a) = {} and
SForgetLP (Q, a) = {c← not b} which are not strongly equivalent. In addition,
WForgetLP (P, a) = {c} and WForgetLP (Q, a) = {c← not b} which are also
not strongly equivalent.
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5 T-Equivalence

In this section we introduce a new equivalence relation, which we call T-equivalence.
This equivalence is a refinement of strong equivalence with the property that it
is preserved by both strong and weak forgetting, which we show in Section 6.2.

5.1 Definition

We define T-equivalence by first constructing a consequence relation ` on logic
programs. We then say that two logic programs are equivalent if they have the
same set of consequences. The formal definitions are given below:

Definition 9. Define the consequence relation ` on logic programs by the fol-
lowing inference rules:

(C0) P ` r for every r ∈ P and every r of the form a← a where a is an atom.

(C1) If P ` a ← B,not C and X, Y are sets of atoms, then P ` a ←
B,X, not C, not Y .

(C2) If P ` a ← B1, x, not C1 and P ` x ← B2, not C2, then P ` a ←
B1, B2, not C1, not C2.

The inference rule (C0) states that rules in P and valid rules of the form
a ← a can be immediately derived. (C1) allows for rules to be weakened by
adding additional atoms to the body, while (C2) is essentially an unfolding [1]
operation. Note that any valid rule (rules where the same atom appears in both
the head and in the positive part) can be derived by using (C0) followed by
(C1).

We say that a rule r is a consequence of P , written P ` r, if it can be derived
using a finite number of applications of (C0)–(C2). Let Cn(P ) denote the set
of consequences of P , defined by Cn(P ) = {r | P ` r}. T-equivalence is defined
as follows:

Definition 10. Logic programs P,Q are T-equivalent if Cn(P ) = Cn(Q).

Note that if P and Q are T-equivalent then P and Q are strongly equivalent.
This follows from the results of Section 5.2.

To simplify the proofs in this paper, we now introduce a notation for repre-
senting the steps taken to derive a rule r using the inference rules:

Definition 11. Let P be a logic program, and define C1 and C2 as follows:

C1(r, X, Y ) = H(r)← B+(r), X, not B−(r), not Y

for rule r and sets of atoms X and Y , and

C2(r, s) = H(r)← B+(r) \H(s), B+(s), not B−(r), not B−(s)

for rules r, s with H(s) ∈ B+(r).

C1(r, X, Y ) is the result of applying (C1) to the rule r using the sets of
atoms X and Y , and C2(r, s) is the result of applying (C2) to the rules r and
s. Therefore every consequence of P can be written as an expression using the
operators C1 and C2 and rules satisfying (C0). We call such an expression for r
a derivation of r from P . The derivations of r from P with the smallest number
of occurrences of C1 and C2 are called the minimum derivations of r from P .
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Example 6. Consider the program P = {r1, r2, r3} where r1 = a ← d, r2 =
a← b, c and r3 = b← d, not e. Then the rule r4 = a← c, d, f, not e is in Cn(P )
and can be written as the derivation C1(C2(r2, r3), {f}, ∅). However this is not
the minimum derivation for r4, as it can also be written as C1(r1, {c, f}, {e}).

5.2 Model-Theoretic Characterisation

Here we introduce a characterisation of T-equivalence in model-theoretic terms.
Recall from Section 3 that strong equivalence is characterised by SE-models [7]
and uniform equivalence is characterised by UE-models [3]. It turns out that
T-equivalence can also be characterised in a similar way:

Definition 12. Let P be a logic program, and let X, Y be sets of atoms. We
say the pair (X, Y ) is a T-model of P if X |= PY . Let M(P ) denote the set of
all T-models of P .

Notice the similarity of this to the definition for SE-models. In particular,
observe that (X, Y ) is an SE-model iff it is a T-model that satisfies the additional
properties X ⊆ Y and Y |= P . A consequence of this is that P is strongly
equivalent to Cn(P ). This is because P and Cn(P ) have the same T-models as
shown below, and since Y |= P iff Y |= Cn(P ), we see that P and Cn(P ) must
have the same SE-models.

Example 7. Let P be the logic program {a ← not b}. Pairs of the form
({a}∪X, Y ) or (X, {b}∪Y ) where X, Y ⊆ {a, b} are T-models of P . ({b}, {a}),
({}, {a}), ({b}, {}), and ({}, {}) are not T-models of P .

The following result shows that T-models capture the notion of T-equivalence,
in the same way that SE-models capture strong equivalence and UE-models cap-
ture uniform equivalence:

Theorem 1. Let P,Q be logic programs. Then P and Q are T-equivalent iff
M(P ) = M(Q).

For the proof of Theorem 1, we introduce a new notation to denote the set
of consequences restricted to positive rules. For positive programs P , we define
Cn+ as follows:

Cn+(P ) = {r | r ∈ Cn(P ), B−(r) = ∅}

Lemma 1. Let P be a logic program, and X, Y be sets of atoms. Then

1. X |= P iff X |= Cn(P ). If P is positive, X |= P iff X |= Cn+(P ).

2. Cn+(PY ) = Cn(P )Y

3. M(P ) = M(Cn(P ))

Lemma 2. Suppose P,Q are positive logic programs. Then Cn+(P ) = Cn+(Q)
iff P and Q have the same classical models.

Proof of Lemma 1.
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1. We first show that X |= P iff X |= Cn(P ). The if case follows immediately
from P ⊆ Cn(P ). For the other direction, suppose X |= P . To show that
X |= Cn(P ), it suffices to show that the inference rules preserve |=. Thus
it is enough to show the following:

(0) X |= x← x for any atom x.
(1) If X |= r, then X |= C1(r, A,B) for any sets of atoms A,B.
(2) If X |= {r, s}, then X |= C2(r, s).

The proofs are straightforward and are omitted.

For the positive case, observe that Cn(Cn+(P )) = Cn(P ), so X |= P iff
X |= Cn(P ) iff X |= Cn+(P ).

2. We first show that Cn+(PY ) ⊆ Cn(P )Y . Suppose r ∈ Cn+(PY ). We
show r ∈ Cn(P )Y by induction on the number of occurrences of C1 and
C2 in the expression for r. The base case is where r satisfies (C0). Then
either r is of the form a← a, in which case it is in Cn(P )Y , or r ∈ PY , in
which case it is the reduct of some rule r′ in P , and since r′ ∈ Cn(P ) we
have r ∈ Cn(P )Y . For the inductive step, r is produced by either (C1) or
(C2). If (C1), then r = C1(s,A, B) for some rule s ∈ Cn(PY ), and B and
B−(s) are both empty, since B−(r) is empty. Therefore s ∈ Cn+(PY )
and so s ∈ Cn(P )Y by the induction hypothesis. Now s is the reduct of
some rule s′ ∈ Cn(P ). Therefore r is the reduct of C1(s′, A, ∅) which is
in Cn(P ) and hence r ∈ Cn(P )Y . If (C2), then r = C2(s, t) for some
rules s, t ∈ Cn(PY ), then B−(s) and B−(t) are both empty and so the
induction hypothesis gives us s, t ∈ Cn(P )Y . Let s be the reduct of
s′ ∈ Cn(P ) and t the reduct of t′ ∈ Cn(P ). Then r′ = C2(s′, t′) has the
properties H(r′) = H(r), B+(r′) = B+(r), and B−(r′) = B−(s′)∪B−(t′).
Since both B−(s′) ∩ Y and B−(t′) ∩ Y are empty, the reduct of r′ exists
and is r.

Now we show that Cn(P )Y ⊆ Cn+(PY ). Suppose r ∈ Cn(P )Y , i.e. r is
the reduct of a rule r′ in Cn(P ). We show r ∈ Cn+(PY ) by induction
on the number of occurrences of C1 and C2 in the expression for r′. The
base case is where r′ satisfies (C0). Then either r′ is of the form a ← a,
in which case it is the same as r and is in Cn+(PY ), or r′ ∈ P , in which
case its reduct r is in PY and hence in Cn+(PY ). For the inductive step,
r′ is produced by either (C1) or (C2). If (C1), then r′ = C1(s′, A, B) for
some s′ ∈ Cn(P ). Since the reduct of r′ exists and B−(s′) ⊆ B−(r′), the
reduct s of s′ also exists and is in Cn(P )Y . By the inductive hypothesis,
s ∈ Cn+(PY ). Now r = C1(s,A, ∅), which shows r ∈ Cn+(PY ). If (C2),
then r′ = C2(s′, t′) for some s′, t′ ∈ Cn(P ). Since the reduct of r′ exists,
B−(r′) ∩ Y is empty and so B−(s′) ∩ Y and B−(t′) ∩ Y are also empty.
Therefore the reducts s of s′ and t of t′ both exist and are in Cn(P )Y , and
by the induction hypothesis, are also in Cn+(PY ). We have r = C2(r, s)
and so r ∈ Cn+(PY ).

3. (X, Y ) ∈ M(P ) iff X |= PY iff X |= Cn+(PY ) iff X |= Cn(P )Y iff
(X, Y ) ∈M(Cn(P )).

Proof of Lemma 2 (sketch). The only if case is trivial. For the if case, we note
that the classical consequences of a set of clauses are fully determined by the set
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of classical models. Therefore the result follows from the following fact: If the
rule a← b1, · · · , bn is a classical consequence of P , then this rule is in Cn+(P ).

To show this, consider the program consisting of P plus the rules b1, · · · , bn,
and ⊥ ← a. This is an inconsistent program. Because resolution is complete
for programs of this form, we can produce a refutation tree. This tree can be
thought of as a sequence of applications of (C2) on the rules of P plus the added
rules to produce a rule with empty head and body. We then remove the added
rules from the tree. The resulting tree describes a sequence of applications of
(C2) on the rules of P to produce a rule with a as the head and a subset of
b1, · · · , bn as the body. An application of (C1) gives us the rule that we need.

The case where a = bi for some i needs to be consider separately, as the
tree produced becomes degenerate and does not actually represent a sequence
of applications of (C2); but (C0) followed by (C1) gives us the rule needed.

Proof of Theorem 1. The only if case follows from Lemma 1. For the if case, let
P,Q be logic programs and suppose M(P ) = M(Q). We show that Cn(P ) =
Cn(Q) by partitioning Cn(P ) according to the negative parts of the rules.

For any logic program P, define [P ]S = {H(r) ← B+(r) | r ∈ P,B−(r) =
S}. Thus [P ]S is made by taking the rules from P with negative part S, and
removing the negative parts from these rules to form a positive logic program.
This is related to the reduct operation via the following fact: PX =

⋃
S⊆Xc [P ]S .

[Cn(P )]S has the property that [Cn(P )]S ⊆ [Cn(P )]T if S ⊆ T . This is
true because (C1) allows us to add arbitrary atoms to the body of rules, and in
particular to the negative part of rules. This shows that [Cn(P )]S = Cn(P )Sc ,
and hence the classical models of [Cn(P )]S are exactly {X | (X, Sc) ∈M(P )}.

Using Lemma 2 and the fact that [Cn(P )]S is closed under Cn+, this shows
that [Cn(P )]S = [Cn(Q)]S for every set of atoms S. Therefore Cn(P ) = Cn(Q),
which proves the result.

Example 8. Reconsider the programs P = {a ← b; b ← a; c ← not a} and
Q = {a← b; b← a; c← not b}. In Section 1 we saw that P and Q are strongly
equivalent. However, P and Q are not T-equivalent because (∅, {a}) is a T-model
of P but not of Q. (∅, {a}) is not a SE-model of P because {a} 6|= P .

Now consider the program P = {p ← q, not q}. It can be easily verified
that this program is strongly equivalent to the empty program. However, it is
not T-equivalent to the empty program, since ({q}, ∅) is a T-model of the empty
program but not of P . ({q}, ∅) is not a SE-model of the empty program because
{q} 6⊆ ∅.

6 Forgetting and T-Equivalence

It has been argued that strong equivalence should be the canonical notion of
equivalence for logic programs, and hence the fact that strong equivalence is
not preserved under strong and weak forgetting indicates a problem with the
forgetting operators rather than a need for a new notion of equivalence. We
believe that studying the properties of T-equivalence under strong and weak
forgetting will provide some insights to how a forgetting operator that preserves
strong equivalence can be constructed. Furthermore, strong and weak forgetting
are currently used as mechanisms in modelling negotiation between agents with
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intentions represented as logic programs. T-equivalence may thereby provide
insights into canonical representations of agent intentions.

In this section, we consider the properties of T-equivalence under the strong
and weak forgetting operators described in Section 4. Notice that strong and
weak forgetting operators are defined syntactically. A model-theoretic definition
of strong and weak forgetting would give rise to an equivalence relation on logic
programs, defined by P and Q being equivalent iff they have the same models.
Such an equivalence relation would satisfy certain properties in relation to strong
and weak forgetting, in particular that the equivalence relation is preserved by
the forgetting operators. Here we show that T-equivalence does satisfy these
properties, and that the model-theoretic characterisation of T-equivalence gives
us a way of defining strong and weak forgetting in model-theoretic terms.

6.1 Equivalence Relations Preserved by Forgetting

We define a number of postulates which encode desirable properties for an equiv-
alence relation on logic programs in relation to a forgetting operator.

Let F denote either the strong or weak forgetting operator. Let P be a logic
program, and S an ordered sequence of atoms. We write F (P, S) for the program
obtained from P by applying the forgetting operation with each element of S in
order. If S is the empty sequence, then F (P, S) is P . Let ∼ be an equivalence
relation on logic programs, and consider the following postulates:

(1) F (P, S) ∼ F (P, π(S)) for any permutation π

(2) P ∼ Q⇒ F (P, S) ∼ F (Q,S)

(3) P ∼ Q⇒ P strongly equivalent to Q

The intuition behind (1) is that we want the result of forgetting to be inde-
pendent of the order in which atoms are forgotten. (2) expresses the property
that equivalent programs remain equivalent after the same forgetting operation
is applied to both. We also want the equivalence relation to be a strengthening
of strong equivalence; this is expressed in (3).

6.2 T-Equivalence

T-equivalence satisfies the postulates listed in Section 6.1, as shown below.

Theorem 2. For both strong forgetting and weak forgetting, T-equivalence sat-
isfies postulates (1)–(3).

Lemma 3.

• r ∈ SForgetLP (Cn(P ), a) iff r ∈ Cn(P ), r is not a valid rule, and r does
not contain a.

• r ∈WForgetLP (Cn(P ), a) iff r does not contain a, r is not a valid rule,
and there exists r′ ∈ Cn(P ) such that H(r) = H(r′), B+(r) = B+(r′) and
B−(r) = B−(r′) \ {a}.
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Proof of Lemma 3. We first show that Reduct(Cn(P ), a) = Cn(P ): Since s, t ∈
Cn(P ) implies C2(s, t) ∈ Cn(P ), the rules added by the reduct operation are
in fact already in Cn(P ), and so Reduct(Cn(P ), a) = Cn(P ). The remain-
der of the proof is straightforward from the definitions of SForgetLP and
WForgetLP .

Proof of Theorem 2. Let ∼ denote T-equivalence. We will prove that postulates
(1)–(3) holds for the strong forgetting case. The proof for the weak forgetting
case is similar.

In the following proof, F denotes the strong forgetting operator SForgetLP .

(1) It is sufficient to show that if P ∼ P ′, then F (P, (a, b)) ∼ F (P ′, (b, a))
since it is possible to obtain any permutation of a sequence by swapping adjacent
pairs. In fact, if we assume postulate (2), it is enough to prove

F (P, (a, b)) ∼ F (P, (b, a))

Suppose r ∈ F (P, (a, b)). We need to show that F (P, (b, a)) ` r.
Since F is the strong forgetting operator, r must be in P or be derived from

P via the Reduct operator. We consider separate cases based on how r is derived
from P :

• r is in P . It is clear that r cannot contain a or b. Therefore r ∈ F (P, (b, a)).

• r = C2(r1, r2) for some r1, r2 in P where H(r2) = a. Since r cannot
contain b, r1 and r2 both do not contain b. hence r1, r2 ∈ F (P, b) and so
r ∈ F (P, (b, a))

• r = C2(r1, r2) for some r1, r2 in P where H(r2) = b. In this case, r ∈
F (P, b). Since r does not contain a, we get r ∈ F (P, (b, a)).

• r = C2(r1,C2(r2, r3)) for some r1, r2, r3 in P where H(r3) = a and
H(r2) = b. Now r = C2(C2(r1, r2), r3)). We have C2(r1, r2) ∈ F (P, b)
and r3 is also in F (P, b), so r ∈ F (P, (b, a)) as required.

• r = C2(C2(r1, r2), r3) for some r1, r2, r3 in P where H(r2) = a and
H(r3) = b. If r1 contains b but not r2, then r = C2(C2(r1, r3), r2),
and C2(r1, r3), r2 are both in F (P, b), so r ∈ F (P, (b, a)). Similarly, if r2

contains b but not r1, then r = C2(r1,C2(r2, r3)), and C2(r2, r3), r1 are
both in F (P, b), so r ∈ F (P, (b, a)). Finally, if r1 and r2 both contain
b, then r = C2(C2(r1, r3),C2(r2, r3)), C2(r1, r3),C2(r2, r3) are both in
F (P, b) and so r ∈ F (P, (b, a)).

(2) Suppose F (Cn(P ), a) ⊆ Cn(F (P, a)). Then Cn(F (Cn(P ), a)) = Cn(F (P, a))
and so F (Cn(P ), a) ∼ F (P, a), from which postulate (2) follows. Therefore it
suffices to prove F (Cn(P ), a) ⊆ Cn(F (P, a)).

Suppose r ∈ F (Cn(P ), a). Then r ∈ Cn(P ) by Lemma 3, so there is a way
of deriving r from P . We show r ∈ Cn(F (P, a)) by induction on the size of
the minimum derivation for r from P in terms of the number of applications
of C1 and C2. The proof works by examining the minimum derivation of r
from P . We show that some of the subexpressions of the minimum derivation
are in Cn(F (P, a)), by showing that the rule given by the subexpression is in
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F (Cn(P, a)) and then applying the induction hypothesis. Note that if the rule
happens to be a valid rule, it is not in F (Cn(P ), a), but it is in Cn(F (P, a))
because it contains all valid rules. Therefore to show that it is in Cn(F (P, a)),
we only need to check that the subexpression does not contain a.

We consider separate cases based on the form of the minimum derivation of
r from P :

• If r is derived using (C0), the minimum derivation of r is r itself and
does not contain C1 or C2. Since r cannot be of the form x ← x, as the
forgetting operator removes valid rules, we know that r must be in P . We
also know that r does not contain a. Therefore r ∈ F (P, a), and hence
r ∈ Cn(F (P, a)).

• r = C1(s,A, B)

We need to check that s does not contain a. Since r cannot contain a, s
does not contain a either. Therefore r ∈ Cn(F (P, a)).

• r = C2(s, t)

If neither s nor t contain a, then s, t ∈ Cn(F (P, a)), and so r ∈ Cn(F (P, a)).

On the other hand, if either s or t or both contain a, then since the
resulting rule does not contain a, H(t) must be a and B+(s) must contain
a.

Furthermore, if s, t are both in P , then C2(s, t) is in Reduct(P, a) and
hence in Cn(F (P, a)).

In the cases below we assume H(t) = a and a ∈ B+(s), and that one of s
or t is derived and not in P . Note that minimality prevents either s or t
from being a rule of the form x← x derived using (C0).

• r = C2(C1(x, A,B), t)

We may assume that A ∩B+(x) and B ∩B−(x) are empty.

If B+(x) contains a, then

C2(C1(x,A,B), t) = C1(C2(x, t), A, B)

Since C2(x, t) does not contain a, therefore C2(x, t) ∈ Cn(F (P, a)), show-
ing that r ∈ Cn(F (P, a)).

If B+(x) does not contain a, then we must have a ∈ A. Now x does not
contain a, so x ∈ Cn(F (P, a)). It is easy to see that

C2(C1(x, A,B), t) = C1(x,A \ {a} ∪B+(t), B ∪B−(t))

thus showing r is in Cn(F (P, a)).

• r = C2(C2(x, y), t)

The body of x or y, or both, must contain a.

If a ∈ B+(x) and a 6∈ B+(y), then C2(x, t) exists and does not contain a.
Therefore C2(x, t) and y are both in Cn(F (P, a)). If H(y) 6∈ B+(t), then

C2(C2(x, y), t) = C2(C2(x, t), y)
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which shows r ∈ Cn(F (P, a)). On the other hand, if H(y) ∈ B+(t), then
C2(C2(x, t), y) differs from r in that it does not have H(y) in its body,
but r does. In this case we have

C2(C2(x, y), t) = C1(C2(C2(x, t), y), {H(y)}, ∅)

If a 6∈ B+(x) and a ∈ B+(y), then C2(y, t) exists and does not contain a.
Therefore both C2(y, t) and x are in Cn(F (P, a)). We have

C2(C2(x, y), t)) = C2(x, C2(y, t))

If a ∈ B+(x) and a ∈ B+(y), then C2(x, t) and C2(y, t) both exist and do
not contain a. Hence both C2(x, t) and C2(y, t) are in Cn(F (P, a)). In
this case

C2(C2(x, y), t) = C2(C2(x, t),C2(y, t))

• r = C2(s,C1(x,A,B))

We know that a is the head of C1(x, A,B). So H(x) = a and a ∈ B+(s),
and hence C2(s, x) exists. We have

C2(s,C1(x,A,B)) = C1(C2(s, x), A, B)

It is clear that C2(s, x) does not contain a, since r does not contain a,
therefore C2(s, x) ∈ Cn(F (P, a)), and so r ∈ Cn(F (P, a)).

• r = C2(s,C2(x, y))

The head of C2(x, y) is a, so H(x) = a.

If B+(x) does not contain a, then C2(s, x) does not contain a, so C2(s, x)
is in Cn(F (P, a)), by the induction hypothesis. In addition, y does not
contain a, since a 6∈ B+(x) which implies that the a is not the head of y,
and a is not in r, showing that a is not in the body of y. Therefore y is
also in Cn(F (P, a)). If H(y) 6∈ B+(s), then

C2(s,C2(x, y)) = C2(C2(s, x), y)

However if H(y) ∈ B+(s), then C2(C2(s, x), y) differs from r in that H(y)
is missing from the body. In this case

C2(s,C2(x, y)) = C1(C2(C2(s, x), y), {H(y)}, ∅)

If B+(x) contains a, then H(y) must be a, since B+(r) does not contain
a. Now we know that H(y) = a and a ∈ B+(s), so C2(s, y) exists.
Furthermore, it does not contain a since B+(y) does not contain a, so we
can conclude that C2(s, y) is in Cn(F (P, a)). Therefore

C2(s,C2(x, y)) = C1(C2(s, y), B+(x) \ {a}, B−(x))
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(3) Suppose P and Q are T-equivalent. P and Q have the same T-models, so
they have the same SE-models, and hence they are strongly equivalent.

In addition to postulates (1)–(3), we may also want to add a postulate that
limits how strong the equivalence relation can be:

(4) P 6∼ Q⇒ ∃S such that F (P, S) not strongly equivalent to F (Q,S)

Postulate (4) expresses the notion that the equivalence relation should not be
stronger than necessary; if two programs are not equivalent then there should be
some chain of forgettings after which they are not strongly equivalent. Notice
that (2) and (3) together implies the converse of (4). T-equivalence does not
satisfy this postulate; however this postulate is not necessary for the conclusions
below.

6.3 Forgetting on T-Models

Using the results of the previous section, we can construct a definition of strong
and weak forgetting in model-theoretic terms. We want to define a pair of
operators, SForgetM and WForgetM , on sets of models, with the property
that the models of a logic program P after strong (resp. weak) forgetting is
given by applying SForgetM (resp. WForgetM) to the models of P .

Definition 13. The operators SForgetM and WForgetM are defined by:

SForgetM(M,a) = {(X, Y ) | (X \ {a}, Y ∪ {a}) ∈M or
(X ∪ {a}, Y ∪ {a}) ∈M}

WForgetM(M,a) = {(X, Y ) | (X \ {a}, Y \ {a}) ∈M or
(X ∪ {a}, Y \ {a}) ∈M}

where M = M(P ) for some logic program P .

We claim that this definition of SForgetM and WForgetM has the required
properties, which can be stated formally as follows:

Proposition 1. Let P be a logic program. The SForgetM and WForgetM
operators satisfy:

SForgetM(M(P ), a) = M(SForgetLP (P, a))
WForgetM(M(P ), a) = M(WForgetLP (P, a))

Proof. To show that SForgetM and WForgetM satisfy Proposition 1 we need
to show

(X, Y ) |= SForgetLP (P, a) iff (X \ {a}, Y ∪ {a}) |= P or
(X ∪ {a}, Y ∪ {a}) |= P

(X, Y ) |= WForgetLP (P, a) iff (X \ {a}, Y \ {a}) |= P or
(X ∪ {a}, Y \ {a}) |= P

for all logic programs P . Since P is T-equivalent to Cn(P ), postulate (2) tells us
that M(SForgetLP (P, a)) = M(SForgetLP (Cn(P ), a)) and M(WForgetLP (P, a)) =
M(WForgetLP (Cn(P ), a)). Thus we may assume that P is closed under Cn.
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(Strong forgetting case) Since P is closed under Cn, SForgetLP (P, a) is
the set of all rules r ∈ P which do not contain a.

For the only-if case, suppose (X, Y ) |= SForgetLP (P, a). Firstly let us
consider the case where there is no rule of the form a ← B,not C in P such
that B ⊆ X \ {a} and C ∩ (Y ∪ {a}) is empty. In this case we show that
(X \ {a}, Y ∪ {a}) |= P . For each rule r ∈ P ,

• If r does not contain a, then r is satisfied because (X, Y ) |= r.

• If a = H(r) then the body cannot be satisfied because of our assumption.

• If a ∈ B−(r) then r is eliminated in the reduct, hence it is satisfied.

• If a ∈ B+(r) then the body is satisfied because a is not in the model.

Now let us consider the case where there are rules of the form a← B,not C in
P such that B ⊆ X \ {a} and C ∩ (Y ∪{a}) is empty. In this case we show that
(X ∪ {a}, Y ∪ {a}) satisfies every rule r ∈ P .

• If r does not contain a, then r is satisfied because (X, Y ) |= r.

• If a = H(r) then r is satisfied since a is included in the model.

• If a ∈ B−(r), then r is eliminated in the reduct, hence it is satisfied.

• Suppose a ∈ B+(r). We will show that r is satisfied using contradiction.
Suppose r is not satisfied, i.e. H(r) 6∈ X ∪ {a}, B+(r) ⊆ X ∪ {a}, and
B−(r) ∩ (X ∪ {a}) is empty. From our initial assumption there is a rule
a← B,not C such that B ⊆ X \ {a} and C ∩ (Y ∪{a}) is empty; call this
rule s. We have C2(r, s) ∈ P since P is closed under Cn. This rule does
not contain a, so (X, Y ) |= C2(r, s). But this contradicts H(r) 6∈ X ∪{a}.

Therefore we have shown the only-if case. For the other direction, suppose
either (X \ {a}, Y ∪ {a}) |= P or (X ∪ {a}, Y ∪ {a}) |= P . Then for each
r ∈ SForgetLP (P, a), since r ∈ P and r does not contain a, we get (X, Y ) |= r.

(Weak forgetting case) WForgetLP (P, a) consists of rules r ∈ P which
do not contain a, plus the rule H(r) ← B+(r), not (B−(r) \ {a}) for each rule
r ∈ P which only contain a in the negative part.

For the only-if case, suppose (X, Y ) |= WForgetLP (P, a). We first consider
the case where there is no rule of the form a ← B,not C in P such that B ⊆
X \{a} and C∩(Y \{a}) is empty. For this case we show that (X \{a}, Y \{a})
satisfies P , by showing that each r ∈ P is satisfied.

• If r does not contain a then r is satisfied because (X, Y ) |= r.

• If a = H(r), then r is satisfied because the body is not satisfied.

• If a ∈ B+(r) then r is satisfied because the model does not contain a.

• If a ∈ B−(r) but not a ∈ B+(r) or H(r) = a, then the rule H(r) ←
B+(r), not (B−(r) \ {a}) is in WForgetLP (P, a), which is satisfied by
(X, Y ), hence r is satisfied.
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Next we consider the case where there is some rule of the form a ← B,not C
in P such that B ⊆ X \ {a} and C ∩ (Y \ {a}) is empty. For this case we show
that (X ∪ {a}, Y \ {a}) satisfies P , by showing that each rule r ∈ P is satisfied.

• If r does not contain a, then r is satisfied because (X, Y ) |= r.

• If a = H(r), then r is satisfied since a is included in the model.

• If a ∈ B−(r) but not a ∈ B+(r) or a = H(r), then the rule H(r) ←
B+(r), not (B−(r) \ {a}) is in WForgetLP (P, a) and hence r is satisfied.

• Suppose a ∈ B+(r) but not a = H(r). We show that r is satisfied using
contradiction. Suppose r is not satisfied, i.e. H(r) 6∈ X \ {a}, B+(r) ⊆
X \ {a}, and B−(r)∩ (X \ {a}) is empty. Let s be a rule a← B,not C in
P such that B ⊆ X \ {a} and C ∩ (Y \ {a}) is empty; this rule exists by
our initial assumption. The rule C2(r, s) is in P since P is closed under
Cn. Now C2(r, s) can only contain a in the negative part. If it does not
contain a, then C2(r, s) ∈ WForgetLP (P, a), so (X, Y ) |= C2(r, s) which
contradicts H(r) 6∈ X \ {a}. If it does contain a, then the rule C2(r, s)
with not a removed is in WForgetLP (P, a), and (X, Y ) satisfies this rule,
which contradicts H(r) 6∈ X \ {a}.

For the if case, suppose either suppose either (X \ {a}, Y \ {a}) |= P or (X ∪
{a}, Y \ {a}) |= P . Then it is easy to see that each r ∈ WForgetLP (P, a) is
satisfied by (X, Y ).

7 Conclusion

We have presented a new equivalence relation on logic programs, which we call
T-equivalence. In Section 5 we gave a syntactic definition of T-equivalence,
and showed that it can be characterised in terms of T-models. In Section 6 we
showed that T-equivalence satisfies a number of properties in relation to the
strong and weak forgetting operators of Zhang and Foo, and using this result
we arrived at a definition of strong and weak forgetting in terms of T-models.

In this paper we have only considered normal logic programs. It should be
possible to extend these results in this paper to more general classes of logic
programs, such as nested logic programs. In follow-up work, we have extended
the results to disjunctive logic programs.

Further research can be done in exploring new notions of forgetting “be-
tween” strong and weak forgetting. There is an opinion that strong equivalence
should be in some sense the canonical semantics for logic programs, and hence
forgetting operators should preserve strong equivalence. It would be interest-
ing to see whether looking at forgetting in terms of T-models can provide fresh
insights in constructing new forgetting operators, in particular in constructing
operators that respect strong equivalence.

The properties of T-equivalence and the forgetting operators when restricted
to certain syntactic subclasses of logic programs can also be considered. In par-
ticular, it would be interesting to look for subclasses where T-equivalence coin-
cides with strong equivalence, as this would result in subclasses of logic programs
where strong equivalence is preserved under strong and weak forgetting.
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