
Generative Code Specialisation
for High-Performance Monte-Carlo Simulations

Don Stewart!

Hugh Chaffey-Millar2

Gabriele Keller1

Manuel M. T. Chakravarty1

Christopher Barner-Kowollik2

1Programming Languages and Systems
School of Computer Science & Engineering

University of New South Wales
Email:{dons,keller,chak}@cse.unsw.edu.au

2Centre for Advanced Macromolecular Design
School of Chemical Sciences and Engineering

University of New South Wales
Email:h.chaffey-millar@student.unsw.edu.au

c.barner-kowollik@unsw.edu.au

UNSW-CSE-TR-0710

April 2007

School of Computer Science and Engineering

The University of New South Wales

Sydney 2052, Australia

Abstract

We address the tension between software generality and performance in the do-
main of scientific and financial simulations based on Monte-Carlo methods. To
this end, we present a novel software architecture, centredaround the concept of a
specialising simulator generator, that combines and extends methods from gen-
erative programming, partial evaluation, runtime code generation, and dynamic
code loading. The core tenet is that, given a fixed simulator configuration, a gen-
erator in a functional language can produce low-level code that is more highly
optimised than a manually implemented generic simulator. We also introduce a
skeleton, or template, capturing a wide range of Monte-Carlo methods and use it
to explain how to design specialising simulator generatorsand how to generate
parallelised simulators for multi-core and distributed-memory multiprocessors.
We evaluated the practical benefits and limitations of our approach by applying
it to a highly relevant problem in computational chemistry.More precisely, we
used a Markov-chain Monte-Carlo method for the study of advanced forms of
polymerisation kinetics. The resulting implementation executes faster than all
competing software products, while at the same time also being more general.
The generative architecture allows us to cover a wider rangeof chemical reac-
tions and to target a wider range of high-performance architectures (such as PC
clusters and SMP multiprocessors).
We show that it is possible to outperform low-level languages with functional
programming in domains with very stringent performance requirements if the
domain also demands generality.

Generative Code Specialisation
for High-Performance Monte-Carlo Simulations∗

Don Stewart
Gabriele Keller Manuel M. T. Chakravarty

Programming Languages and Systems
School of Computer Science and Engineering

University of New South Wales
{dons,keller,chak}@cse.unsw.edu.au

Hugh Chaffey-Millar
Christopher Barner-Kowollik

Centre for Advanced Macromolecular Design
School of Chemical Sciences and Engineering

University of New South Wales
h.chaffey-millar@student.unsw.edu.au

c.barner-kowollik@unsw.edu.au

Abstract
We address the tension between software generality and perfor-
mance in the domain of scientific and financial simulations based
on Monte-Carlo methods. To this end, we present a novel software
architecture, centred around the concept of aspecialising simula-
tor generator, that combines and extends methods from generative
programming, partial evaluation, runtime code generation, and dy-
namic code loading. The core tenet is that, given a fixed simula-
tor configuration, a generator in a functional language can produce
low-level code that is more highly optimised than a manuallyim-
plemented generic simulator. We also introduce a skeleton,or tem-
plate, capturing a wide range of Monte-Carlo methods and useit
to explain how to design specialising simulator generatorsand how
to generate parallelised simulators for multi-core and distributed-
memory multiprocessors.

We evaluated the practical benefits and limitations of our ap-
proach by applying it to a highly relevant problem in computational
chemistry. More precisely, we used a Markov-chain Monte-Carlo
method for the study of advanced forms of polymerisation kinet-
ics. The resulting implementation executes faster than allcompet-
ing software products, while at the same time also being moregen-
eral. The generative architecture allows us to cover a widerrange of
chemical reactions and to target a wider range of high-performance
architectures (such as PC clusters and SMP multiprocessors).

We show that it is possible to outperform low-level languages
with functional programming in domains with very stringentper-
formance requirements if the domain also demands generality.

Keywords Generative programming; code specialisation; runtime
code generation; high-performance computing; monte carlometh-
ods.

∗This work was funded by the UNSW FRGPHigh Performance Parallel
Computing for Complex Polymer Architecture Design.

1. Introduction
The tension between software generality and performance isespe-
cially strong in computationally intensive software, suchas scien-
tific and financial simulations. Software designers will usually aim
to produce applications with a wide range of functionality,which in
the case of simulations means that they are highly parameterisable
and, ideally, target different types of high-performance hardware.
Scientific software is often used for new research tasks, andfinan-
cial software is often employed for new products and new markets.
In both cases, there is a high likelihood that the boundary ofprevi-
ous uses will be stretched. However, generality often comeswith a
performance penalty, as computations become more interpretative,
require more runtime checks, and use less efficient data structures.

As an example, consider a computational chemistry simulation,
using a Monte Carlo method, that in its innermost loop repeatedly
selects a random chemical reaction from a set of possible reactions.
The probability of the selection is determined by the concentration
of available reactants and the relative probabilities of each of the
reactions. If we aim for generality, the code will have the capability
to handle a wide range of reactions. These reactions and their
probabilities will be stored in a data structure that the code will
have to repeatedly traverse when making a selection and when
updating the level of concentration of the various reactants. This
is an interpretative process whose structure is not unlike that of an
interpreter applying the rules of a term rewriting system repeatedly
to the redexes of a term. The more general the rules handled bythe
interpreter, the more interpretative overhead we get, and the less
rewrites will be executed per second.

On the other hand, to maximise performance, we need to elimi-
nate all interpretative overhead. In the extreme we have a program
that hard codes a single term rewriting system; i.e., we compile
the term rewriting system instead of interpreting it. We cantransfer
that idea to the chemistry simulation by specialising the simulator
so that it only applies a fixed set of reactions. Such specialisation
can have a dramatic impact on simulators, where a relativelysmall
part of the code is executed very often and even the minor ineffi-
ciency of a few additional cpu cycles can add significantly tothe
overall running time of the application. As giving up on generality
is not an option, and we cannot expect the user to manually spe-
cialise and optimise the simulation program for the exact reactions
and input parameters of a particular simulation, we insteadapply
the compilation model to high-performance simulations.

In programming languages the move between interpreter and
compiler is well known from the work on partial evaluation [11].
More generally, research on generative programming [5] andself-

1

optimising libraries [19] introduced approaches to code specialisa-
tion in a range of application areas, including numericallyintensive
applications [7, 20]. Much of this work is concerned with providing
general libraries that are specialised at compile time. In this paper,
we transfer these ideas from libraries to applications and combine
them with runtime code generation and dynamic code loading.

More precisely, we introduce a novel software architecturefor
simulators based on Monte-Carlo methods. This architecture, based
on generative code specialisation, uses functional programming to
overcome the tension between generality and performance ina
way that is transparent to the end user. Specifically, we implement
a specialising simulator generatorin a functional language and
use it to generate highly optimised C code specialised for specific
simulator configurations. Our software architecture uses astandard,
optimising C compiler together with Haskell’sforeign function
interfaceand a variant of our previous work [15] on dynamically
loaded plugins to compile and load the generated simulator into
the main application for execution and rendering of the simulation
results.

We capture the essence of a wide range of Monte-Carlo methods
in the form of a skeleton; i.e., a template expressed by a typeclass
and a parametrised function. We discuss the design of specialising
simulator generators and the parallelisation of the generated sim-
ulators for Monte-Carlo methods captured by the skeleton. More-
over, we demonstrate the practical relevance of the skeleton and
our software architecture by concrete applications from finance and
computational chemistry. In particular, we implemented a computa-
tional chemistry application that simulates polymerisation kinetics
by way of a Markov-chain Monte-Carlo method. The resulting im-
plementation executes faster than all competing software products,
while at the same time also being more general. The generative
architecture allows us to cover a wider range of chemical reactions
and to target a wider range of high-performance architectures (such
as PC clusters and SMP multiprocessors).

In summary, our main contributions are the following:

• A software architecture using generative code specialisation for
computationally intensive simulations based on Monte-Carlo
methods (Section 2).

• A skeleton and a generative specialisation framework for
Monto-Carlo methods and its instantiation to a Markov-chain
Monte-Carlo simulator for polymerisation kinetics (Section 3).

• Foreign language plugins for Haskell (Section 4).

• A parallelisation strategy for Markov-chain Monte-Carlo meth-
ods (Section 5).

• A detailed performance evaluation of our Monte-Carlo simula-
tor for polymerisation kinetics, which shows that the applica-
tion of methods from functional programming can lead to code
that is significantly more efficient than what can be achieved
with traditional methods and imperative languages (Section 6).

As already mentioned, we build on a host of previous work from
generative programming, partial evaluation, runtime codegenera-
tion, and dynamic code loading. We discuss this related workas
well as other work on polymerisation kinetics in Section 7.

2. A generative code specialisation architecture
Simulations based on Monte-Carlo methods are very popular in the
study of complex systems with a large number of coupled degrees
of freedom, this includes applications ranging from computational
physics (e.g., high energy particle physics) to financial mathematics
(e.g., option pricing). The underlying principle is thelaw of large
numbers;that is, we can estimate the probability of an event with
increasing accuracy as we repeat a stochastic experiment over and

over. This principle can be applied to any system that we can model
in terms ofprobability density functions (PDFs).This includes the
numerical approximation of many purely mathematical constructs
with no apparent stochasticity or randomness, such as approximat-
ing the value ofπ or the numerical integration of complex func-
tions [17].

Monte-Carlo methods use probability density functions to drive
the sampling during a simulation. This can be the repeated eval-
uation of a function at random points, for example to integrate it
numerically, or it can be a sequence of system state changes,each
of which occurs with a certain probability. As an example of the
latter, consider studying reaction kinetics in computational chem-
istry, where the system is characterised by the likelihood of each
simulated chemical reaction in a given system configuration.

In any case, to exploit the law of large numbers, all Monte-Carlo
simulations have to repeat one or more stochastic experiments a
large number of times as well as tallying the many results, and
possibly continuously evolving some system state and compute
variance reduction information. In fact, with increasing complexity
of the system and with increasing need for precision, more and
more stochastic experiments need to be performed. This highly
repetitive nature of Monte-Carlo simulations is one of the two key
points underlying the software architecture that we are about to
discuss.

The second key point is that, in many application areas, Monte-
Carlo simulations should come with a large configuration space.
For example, in reaction kinetics, we would like to handle a wide
variety of chemical reactions and, in financial modelling, we would
like to model complex of financial products. In fact, to explore new
chemical processes and new financial products, we definitelyneed
to (a) repeatedly alter configurations and experimentally explore
a design space; and (b) have short turn-arounds in an interactive
system. We certainly cannot afford to modify the source codeof our
simulator—in fact, many users in application areas using Monte-
Carlo simulation won’t have the expertise to even recompilethe
simulator. On the other hand, when the user found a point in the
design space that they want to simulate in more detail, a simulation
may run for hours or even days.

In summary, the two crucial properties of Monte-Carlo simula-
tions guiding the following discussion are thus:

• Property 1:The simulation repeats one or more stochastic ex-
periments and associated book keeping a large number of times.

• Property 2:It simulates complex systems with a large number
of degrees of freedom and a rich configuration space.

2.1 The classical approach: a simulator in C, C++, or
Fortran

As discussed, Monte-Carlo methods are typically used in complex
systems with a large number of degrees of freedom, where they
require a many repetitions of a stochastic experiment to achieve
numeric accuracy. For example, sophisticated simulationsin the
domain of polymerisation kinetics can take days to execute on a
uniprocessor. Hence, manually optimised simulator code ina low-
level languages like C, C++, and Fortran is the state of the art, and
the use of functional languages in many domains where Monte-
Carlo simulations are applied is out of the question, unlessthe
same level of performance can be achieved. Even a 50% increase
in running time is not acceptable when a program runs for days.

While Property 1 encourages the use of a low-level language,
the amount of optimisations that can be performed in a low-level
language is limited by Property 2. A simulator in a low-levellan-
guage must be sufficiently generic to handle a large configuration
space in which it has to evaluate functions with a large number
of inputs. In other words, the code in the repeatedly executed in-

2

Configuration Simulation result

Renderer

Specialising

simulator

generator

Driver

Simulator
001011010

1001101010

1010101011
0011011

C compiler
-march

Figure 1. Architecture for generative simulators

ner loop will be complex and possibly traverse sophisticated data
structures. However, given the number of repetitions, eachcpu cy-
cle counts significantly towards the final running time. Additional
instructions required to implement a more general solutionlead to
notable inefficiencies compared to specialised implementations.

To illustrate this situation, consider reaction kinetics again. Each
reaction occurs with a probability that depends on the relative con-
centration of the various reactants. If it occurs, it will consume one
or more reactants and release new reactants into the solution. A
Monte-Carlo simulator will have to keep track of these concentra-
tions and the associated reaction probabilities. It has to select re-
actions according to the implied probability distributionfunction.
The reactions have to be modelled in a data structure and the more
variations we allow, the more interpretative the process inthe inner
loop will be. In other words, the larger the configuration space, the
slower the simulator.

This situation calls for a generative approach. The simulator
has a large configuration space and its inner loop will be executed
many times for a single configuration, making it worthwhile to
specialise the inner loop for one configuration, effectively giving
us a custom simulator for one problem, before executing it. This
specialisation has to be transparent to the user and, as we discussed
previously, has to occur in an interactive environment. Hence, we
propose the use of online generative code specialisation: that is, in
dependence on user input, the application specialises its inner core
to produce highly optimised code and dynamically loads and links
that code into the running application. As we will see in Section 3.4,
depending on the type of Monte-Carlo method used, we may have
to generate one or more specialised simulators per executeduser-
level simulation.

2.2 From Haskell to C to a C generator

Writing a new Monte-Carlo simulator using this architecture is a
three-step process:

1. Implement aprototype simulatorin a functional language like
Haskell as an executable specification and to explore alternative
designs.

2. Manually specialise for one or more concrete parameter settings
and translate into C to explore possible low-level optimisations.
This involves selecting appropriate imperative data structures.
The C program, which we call thespecialised simulator, is val-
idated against the functional prototype. (Instead of C, languages
like C++ or Fortran may of course also be used.)

3. Rewrite the prototype simulator as asimulator generatorin the
functional language, such that when fed with the same param-
eter settings it produces the specialised generator we manually
implemented in the previous step.

The generator is actually a three-tier architecture. At thebottom,
we have a set of generic combinators producing C constructs,such
as type declarations, initialisers, control structures, and so forth.
These are reusable between different simulators. On top of the
generic combinators, we implement domain-specific combinators.
For example, for polymerisation kinetics, we have combinators
creating the representation of a reaction or applying a reaction.
We implement the simulator generator with these domain-specific
combinators.

The code generated by the simulator generator can be validated
against the functional prototype and the C implementation.The
later is often more convenient for debugging purposes, as itis easier
to compare the internal states of the two implementations.

The concrete specialisation strategy is, in fact, domain-specific
and can require a rather complicated separation of specialisation
time versus runtime data. In Section 3, we will come back to this
point and describe two general specialisation strategies as well as
detail the strategy that we used for the polymerisation kinetics. For
the moment, it suffices to say that in the simulator for polymerisa-
tion kinetics, we specialise on the possible reactions and their prob-
abilities in dependence on the concentration of the reactants. This
forms the basis for the computation of the probability distribution
functions in this application.

Figure 1 illustrates the overall architecture with the simulator
generator at the very left. The generated C code is passed to adriver
that we discuss next.

2.3 Runtime compilation, loading, and simulator execution

The driver in the middle of Figure 1 is responsible for turning the
C source of the specialised simulator into executable code,running
that code, and passing the results to the third component of the
architecture, therenderer.

Unlike specialising generators for specific problems, suchas
FFTW [7], we generate machine-independent C code, rather than
native code. Our experience is that, while implementing thespe-
cialising simulator generator, we are still exploring a significant
design space for the core data structures and algorithm. To do this,
we need a light weight approach to code generation, that makes it
as simple as possible to perform structural changes to the gener-
ated code. Our three-tier architecture for the simulator generators
simplifies this process.

To compile the C code, we use a standard C compiler, such as
GNU’s gcc or Intel’s icc. We require high-performance, so we
rely on state-of-the-art optimising C compilers that may vary with
machine architectures. In fact, access to low-level and architecture-
specific optimisations is another important reason for generating
C code, rather than attempting to directly generating native code.
For example, it would be extremely difficult to beaticc with
the instruction scheduling for floating-point computations on In-
tel processors. Given the long running times of typical Monte-
Carlo simulations, we can even amortise time consuming compi-
lation with costly optimisations enabled. To generate goodcode,
the driver passes simulator-specific and hardware-specificflags to
the C compiler. Another option to improve the compiled code fur-
ther, which we have only lightly explored, would be to use tools
like Acovea [12], a simulated annealer, to breed a best fit forthe
compiler flags.

In addition to the simplification of data and control structures
explicitly performed by the specialising simulator generator, the
C compiler can exploit the fact that many of the variables of the
generic simulator are now embedded as constants. This leadsto
additional constant folding, loop unrolling, and loop vectorisation.

At this point it would be possible to run the generated simulator
as a separate process. However, we found it advantageous to dy-
namically load and link the compiled simulator into the mainappli-

3

 0

 2500

 5000

 7500

 10000

simulated time
/ seconds

0
100

200
300

400
500

600
700

800

degree
of

polymerisation

 0

 7000

 14000

concentration
/mol L-1

Figure 2. Molecular weight distribution during polymerisation

cation. This is especially valuable during the explorationand design
phase of the simulator user. The loaded code can be more tightly
integrated with the renderer, which may for example graphically
animate a running simulation. Moreover, depending on the specific
Monte-Carlo method, the generated simulator will still have run-
time arguments and be executed repeatedly by the driver on a range
of argument values. We will return to this point in Section 4,where
we discuss the foreign language interface that connects thecom-
piled C code of the simulator with the main application.

2.4 Processing results

The results of a simulation can, of course, be used in a variety
of ways. In particular, they can be visualised online or offline. In
an exploratory context, a user may run a few approximate short
running simulations that are visualised online, until theyfind a
system configuration that they want to explore in more detail. At
this point, they will start a long running simulation whose data
set will be dumped to disk. An example visualisation from our
simulator for polymerisation kinetics is in Figure 2. An important
property in polymerisation is the concentration of molecules with
particular chain lengths of a synthesised polymer. The given graph
plots this concentration in dependence with the simulated time
elapsed since the start of the chemical process, where the chain
length is indirectly given by the molecular weight of the polymer
molecules.

2.5 Summary

In summary, Figure 1 outlines an architecture for implementing
high-performance Monte-Carlo simulators as lightweight,interac-
tive applications. Instead of achieving high-performanceby imple-
menting in a low-level language, we achieve even higher perfor-
mance by generating specialised low-level code in a functional lan-
guage. In the next section, we will see that this approach applies
to a wide range of Monte-Carlo methods and that functional lan-
guages are a good match to the task of implementing generative
code specialisers.

3. Generative Monte-Carlo Methods
After covering specialising simulator generators in the previous
section, we are now going to discuss the generative specialisation of
Monte-Carlo methods at three concrete examples. We will seethat
for specialisation to be worthwhile, simulations need to (a) perform
sufficiently complicated operations during stochastic experiments
and (b) have a number of input parameters that are fixed for at least
part of one simulation. We call such methodsgenerative Monte-

Carlo methods. Given that Monte-Carlo methods are typically used
for complex systems with a large number of degrees of freedom,
practically useful Monte-Carlo methods usually meet thesetwo
criteria. To clarify the general structure of Monte-Carlo methods
and to highlight the points of opportunity for specialisation, we
will discuss a general Monte-Carlo simulation skeleton after the
concrete examples.

3.1 Computingπ

The probably simplest Monte-Carlo method is that to computean
approximation ofπ. We know that the area of a circle isA = πr2.
Hence,π = A/r2; i.e., π/4 is theprobability that a point picked
at random out of a square of side length2r is within the circle
enclosed by that square. As explained in the previous section, the
fundamental idea underlying Monte-Carlo methods is toestimate
the probability of an event with increasing accuracy by repeating
a stochastic experiment over and over.Here the stochastic exper-
iment is to pick a point in the square at random, and we use that
experiment to approximate the probability that picked points lie in-
side the circle. By multiplying that approximated probability with
4, we approximateπ.

The following Haskell functionpiMC implements this idea. It’s
first argument is a stream of randomDoubles from the interval
[−1, 1] and the second one is the number of random points to be
picked.

piMC :: [Double] -> Int -> Double
piMC rs n =
let within = [point

| point <- take n (points rs)
, inCircle point]

hits = fromIntegral (length circlePoints)
in
hits / fromIntegral n * 4
where

points (x:y:rs) = (x, y) : points rs
inCircle (x, y) = sqrt (x*x + y*y) <= 1.0

Although, the computation ofπ illustrates the Monte-Carlo princi-
ple very well, it is not a particularly efficient method of computing
π. It is also not really amenable to code specialisation. After all, the
only variables in the code are the number of stochastic experiments
to perform and the random values. For specialisation to be ofuse, a
simulation must be parametrised by a significant number of param-
eters, which may be numeric or have a complex structure. We call
methods, such as that computingπ, simple Monte-Carlo methods.
Simple methods perform little work per stochastic experiment and
have few, or no, configuration parameters.

3.2 Modelling financial products

Monte-Carlo methods are routinely used in finance to solve prob-
lems, such as the arbitrage-free pricing of derivatives [10]. Such
problems can often be expressed in terms of partial differential
equations, but when the degrees of freedom (i.e., the dimension-
ality) is large, non-stochastic methods often converge slowly and
require large amounts of memory. If the desired value (i.e.,the
valuation of a derivative) can be expressed as the probability of a
stochastic experiment, a standard alternative is the use ofa Monte-
Carlo method.

The basic idea is the same as in the previous computation ofπ,
but there are two big differences:

1. Where the only arithmetic in the computation ofπ is the
Pythagoras test

p

x2 + y2 ≤ 1, a single stochastic experi-
mentin valuating complicated derivatives involves already very
complex computations. Moreover, these derivatives usually in-

4

data Config = Config { -- simulation configuration:
samples :: Int, -- samples to take over lifetime of stock
initialPrice :: Double, -- initial stock price
drift :: Double, -- percentage drift of GBM
volatility :: Double, -- percentage volatility of GBM
strike :: Double -- option strike price

}

optionMC :: [Double] -> Int -> Double -> Config -> Double
optionMC rs n tT (Config samples stock0 dr vo strike) =
let pricePaths = [map (stock tT) path | path <- take n (paths rs)]

results = [0 ‘max‘ ((sum prices / fromIntegral samples) - strike)
| prices <- pricePaths]

in
exp (-dr * tT) * sum results / fromIntegral n
where

-- sets of random variables of variance tT and mean 0
paths rs = let (path, rs’) = splitAt samples rs

in
map (sqrt tT *) path : paths rs’

-- calculate stock price as geometric Brownian motion (GBM)
stock tT wt = stock0 * exp ((dr - vo * vo / 2) * tT + vo * wt)

Figure 3. Monte-Carlo estimate of the price of an Asian option

volve a significant number of dependent assets, each of which
has their own variables. So, instead of scalars (or in the case of
π, pairs), we have to manipulate entire matrices of parameters
for a single experiment.

2. Where a single random point in the approximation ofπ already
gives us the outcome of one stochastic experiment, complicated
derivatives usually require us to evolve a set of assets over
a time interval in discrete steps; e.g., for an Asian option to
sample its price once a week or month.

Let us consider a simple and well-understood form of option,
namely an Asian call option. The code for a Monte-carlo estimate
of the pricing of an Asian option is in Figure 3. The code uses the
local functionstock to calculate future stock prices on the basis of
their initial price and a standard model based on geometric Brown-
ian motion (GDM) that is parametrised bydrift andvolatility. The
last parameter ofstock, namelywt, is a random variable drawn
from a normal distribution with mean 0 and variancetT, which
is the expiration time of the option. To value an Asian option, we
need to sample it a number of times during its lifetime. The num-
ber of samples, calledsamples in the code, determines how many
random numbers we need to obtain per stochastic experiment.We
use the local functionpaths to chop the input stream of random
numbersrs into sublists of just enough random numbers for each
stochastic experiment.

Based on these functions,pricePaths calculates the stock
prices of the Asian option at all sample points (using one sublist
per stochastic experiment). Out of these prices,results computes
the obtained wins per stochastic experiment—we performn such
experiments. The results of all experiments are combined tothe
final estimate in the body of thelet expression.

Although this is a simple derivative, we obviously already per-
form much more work per stochastic experiment than in the ap-
proximation ofπ; in fact, the amount of work depends on the con-
figuration parametersamples, which fixes the path length per ex-
periment. The functionoptionMC has a number of configuration
parameters, and exceptsamples, these parameters are determined
by the option that we are modelling. IfinitialPrice, drift,
volatility, andstrike are known, we can obviously remove

some of the arithmetic operations by performing constant folding.
Moreover, ifsamples is statically known, we can unroll the recur-
sion (or in a C program, the loop) that traverses the path of each
experiment. Given a C version of the option simulator with a hard-
coded configuration, any optimising C compiler will performthe
constant folding. However, it is already less likely that itwill unroll
the loop traversing each path.

More complex derivatives consist out of a number of simpler
derivatives that are often highly correlated. As a result, even com-
puting properly distributed random variables already involves com-
plex matrix operations. Moreover, the random variables in one path
may form a more complex Markov chain, which requires more so-
phisticated computations. All in all, the code quickly getssuffi-
ciently complex that the limited optimisations of a C compiler will
not be able to adequately specialise the code for a given configura-
tion. In contrast, a specialising simulator generator can still gener-
ate a highly specialised form of the simulator, including specialised
data structures.

Despite the differences in complexity, the actual Monte-Carlo
method used inoptionMC is essentially the same as the one we
used to approximateπ. We call it aparallel Monte-Carlo method,
as the individual stochastic experiments—i.e., the computations
leading to one element of theresults list—are independent. We
only need to combine the results of the individual stochastic exper-
iments at the end to compute the final result.

3.3 Modelling polymerisation kinetics

Our largest example, a simulator for polymerisation kinetics, is
much to big to present the Haskell code in a paper. Instead, wewill
simply describe the application and our implementation strategy in
more detail here. The details from a Chemist’s perspective can be
found in a companion paper [2].

The kinetics simulator models two classes of molecules: simple
molecules and polymers. Simple molecules are uniquely charac-
terised by their name, whereas polymers also have a chain length,
and in the case of star polymers, actually a set of chain lengths as-
sociated with each molecule. A reaction can consume up to two
molecules, and produces up to two new molecules. Reactions that
involve polymers are usually parametrised over the chain length.

5

Reactions System

pick random reaction

pick
random
molecule

update
system

update
probabilitiesPn+Pm 7→Pn+m

I+Pm 7→P1+m

Pm 7→Qm

...

2

3 4

1

P3 Q2

P1
I

Q5 P5
I

Figure 4. Structure of the Monte-Carlo simulator for polymerisa-
tion kinetics

For example, a reaction might consume a polymerP with a chain
lengthn and another of the same type with chain lengthm, and pro-
duce a new polymer molecule of the same type with chain length
n + m, which we denote here asPn + Pm 7→ Pn+m. The sim-
ulation keeps track of the actual number of each type of molecule
in the system. A single simulation step consists of the following
substeps, as displayed in Figure 4:

1. Determine the probability of each reaction. The probability of
each possible reaction is the product of the relative probability
and the current concentration of the reactants involved.

2. Randomly pick a reaction according to their probability.

For example, in Figure 4, the result of this random choice
might be the reactionPn + Pm 7→ Pn+m. Note that the
reaction is specific w.r.t. the type of molecules involved, but
is parametrised by their chain length.

3. Randomly pick the molecules involved in the reaction—-this
step is trivial for simple molecules. For polymers, it may have to
be taken into account that polymers with different chain lengths
react with different probability.

For the reactionPn + Pm 7→ Pn+m we have to pick two
random chain lengthn and m. The probability depends on
the number of molecules of each chain length currently in the
system, adjusted by a factor in case the chain length influences
the reactivity of a molecule.

4. Update the system state, that is, the concentration of molecules
and time. We have to delete the molecules consumed by the
reaction from the system, and the product of the reaction, and
increment the system clock.

For our example reaction, this means that we need to remove
one molecule of eachPn and Pm from the system and add
Pn+m. When adjusting the system time, we need to take the
size of the system, i.e., overall number of molecules, into ac-
count, as well as the probability of the reaction. Since we have,
on average, ten times more reactions in a system with ten mil-
lion molecules than with one million, the increment of the time
stamp in the larger system would, for the same reaction, only
be one tenth of that of the smaller system.

For each of these substeps, it is essential that the representation of
the system state supports the following operations very efficiently:

• The mapping of a reaction to the reactants involved.

• The mapping of a molecule type to the number of molecules of
that type in the system.

• Updating the molecule count.

In the Haskell prototype of the simulator, both molecules and re-
actions are modelled using parametrised user-defined data types.
However, our specialising simulator generator for polymerisation

kinetics encodes the set of possible reactions and molecules into
the specialised simulator. Hence, in the emitted C code, reactions
and molecules are simply represented by scalar values, or anarray
of scalars in the case of star polymers. The lookup tables canthen
be implemented as simple arrays.

Moreover, the Haskell prototypes makes extensive use of pat-
tern matching to process the data structures. In contrast, the spe-
cialised simulator generator turns this into simple C switch state-
ments over the scalar values representing the various molecules
and reactions. Note that this isn’t easy to achieve in a generic C
simulator that reads a molecules and reactions configuration at run-
time, as C switch statements can only use constants as case labels.
We will come back to this point when discussing the benchmark
results in Section 6. However, the specialising simulator genera-
tor is still written in Haskell and it still uses all the conveniences
of parametrised user-defined data structures and pattern match-
ing to represent configurations and to traverse them to generate
the C code. Hence, we combine not only generality with high-
performance, but we also maintain programmer convenience.

The more molecules we have in the system, the more accurate
the result of the simulation will be, and the more reactions we
have to simulate for a fixed amount of system time. Another way
to improve the quality of the result is to run the same simulation
several times and calculate the average. However, it is important to
keep in mind that running the same simulation ten times will not, in
general, lead to a result of the same quality as a single simulation of
a system ten times the size, since the concentration of some of the
reactants is so low, that, for small systems there would be less than
one molecule available and the fact that the simulation is discrete
would distort the result.

Generally, we call Monte-Carlo methods that evolve a system
state sequentially as a chain of stochastic experimentssequential
methods.1 As just discussed, we can sometimes split one long chain
into a few parallel, but shorter chains.

3.4 A Monte-Carlo skeleton

Monte-Carlo methods come in a large number of flavours and vari-
ants, some of which are not widely publicised outside the domain
in which they are used. This makes it difficult to generalise over all
Monte-Carlo methods. However, we believe that the functionQC
from Figure 5 captures many, maybe most, Monte-Carlo methods
commonly used. The function is parametrised by a type of systems
configurations that is a member of the type classConfig of Monte-
Carlo simulator configurations.Before we look at the type class
in more detail, it is useful to consider the general structure of the
skeleton. It nests three levels of standard recursive traversals:

1. Configuration space:The outermost recursion is a simple map
over the list of configurationscfgs. It is realised by the list
comprehension forming the body of the functionmc and applies
the local functionsimulate to each configuration.

2. Number of trials:The middle recursion is again a map; this one
is over the number of random generatorseeds requested by the
current configurationcfg. It is realised by the list comprehen-
sion in simulate, and the number ofseedsis determined by
chains cfg in pickSeeds.

3. Chain length:The innermost recursion is realised by anunfoldr
in the body ofsimulate’s comprehension.2

1 Our definition of sequential methods does not exactly coincide with the
term “sequential Monte-Carlo” as found elsewhere in the literature.
2 Unfolding is part of Haskell’s standard list library:unfoldr :: (b ->
Maybe (a, b)) -> b -> [a].

6

class Config cfg where
type Result cfg -- result of individual experiments
type Final cfg -- combined result of simulation at multiple configurations

chains :: cfg -> Int -- number of chains

experiment :: (cfg, [Double]) -- one stochastic experiment
-> Maybe (Result cfg, (cfg, [Double]))

average :: cfg -> [[Result cfg]] -> [Result cfg] -- combine chain results
merge :: [(cfg, [Result cfg])] -> Final cfg -- merge multiple sumulations

mc :: Config cfg -- type of Monte-Carlo configurations
=> [cfg] -- set of configurations to simulate
-> [Seed] -- stream of random generator seeds
-> Final cfg

mc cfgs seedPool =
merge [(cfg, simulate cfg seeds) | (cfg, seeds) <- pickSeeds cfgs seedPool]
where

-- pair each config with as many seeds as there are chains in that config
pickSeeds [] _ = []
pickSeeds (cfg:cfgs) seeds =
let (chainSeeds, seeds’) = splitAt (chains cfg) seeds
in
(cfg, chainSeeds) : pickSeeds cfgs seeds’

-- run the simulator on one configuration
simulate cfg seeds =
average cfg [unfoldr experiment (cfg, seedToStream seed) | seed <- seeds]

Figure 5. Generic Monte-Carlo skeleton

Depending on the concrete Monte-Carlo method, only one or two
of the recursions may be non-trivial. For example,the approxima-
tion of π and the simple option pricing did not make use of the
configuration space. For polymerisation kinetics, the use of a larger
configuration space to run multiple simulations, and thereby reduce
the system size, is an option, as discussed at the end of Section 3.3.
Moreover, in the case of approximatingπ, the chain length was1.
In contrast, the chain length in our production runs with thepoly-
merisation kinetics is in the order of1010, but we only execute one
trial. In applications of financial mathematics it is commonto have
multiple trails, each of which has a chain length greater than 1.

Configurations as represented in the type classConfig, deter-
mine a typeResult for the individual stochastic experiments and
another typeFinal for the final result derived from the different
simulations for all given configurations. Both types dependon the
configuration typecfg; i.e., they are so-called associated types [3].
Individual stochastic experiments are performed byexperiment,
which gets a configuration and a stream of random numbers. In ad-
dition to a result, it produces a possibly altered configuration and
the reminder of the stream of random numbers. Theunfoldr in
simulate chains experiments until one returnsNothing. Finally,
average andmerge combine the results of all trials in a simula-
tion and all simulations in a set of configurations into a compound
results.

3.5 What to specialise

In the case of the computational chemistry simulator, we have three
input parameters: (1) the types of molecules which occur in the
system, (2) a description of all possible reactions and their relative
probability, and (3) the concentration of each reactant.

Knowing the type of reactions and molecules involved makes
it possible to generate efficient representations of the reactions

and the system state. On the other hand, the concentration ofthe
molecules changes constantly, so specialising for the initial state
would not actually allow for any additional optimisations.There-
fore, the system is only specialised for the type of reactions and
molecules. The initial concentration of the reactants is read in sep-
arately at runtime.

Splitting the set of input parameters into these two classesis an
important step when implementing an application followingthis ar-
chitecture. For each parameter, we have to check if (1) knowing the
value of the parameter at compile time enables any optimisations
(2) the optimisations are worth the additional overhead of gener-
ating specialised code. In the chemistry application, thisdecision
is fairly straight forward: even for simple systems, the simulation
runs for several minutes, so even minor optimisations pay off.

Considering the Monte-Carlo skeleton from the previous sub-
section, we see that some simulators run multiple simulations on
a set of configurations. Depending on the variation between these
configurations, it may be worthwhile to generate multiple spe-
cialised simulators.

4. Foreign language interface for plugins
Besides the specialising simulator generator, the other component
of our architecture from Figure 1 that warrants some attention is
the driver. The amount of interaction between the main application
and the generated simulator varies among domains, but loading the
executable code of the specialised simulator into the main appli-
cation usually simplifies matters. In particular, it simplifies a tight
integration between the running simulator and a graphical frontend
displaying the evolving simulation. While exploring a design space
with many very imprecise, but comparatively short-runningsimu-
lations, users often want to see the continuous progress of the sim-
ulation.

7

4.1 Dynamic linking

In the polymerisation kinetics application, we use a small,custom
dynamic linker to dynamically load and link the compiled C code
back into the main Haskell program. It is based on the core of the
dynamic linker described in [15] and provides a simple binding
to the GHC Haskell runtime, implementing a barebones linking
system for C objects, using the four functions:

pluginInit :: IO ()
pluginLoad :: CString -> IO Bool
pluginResolve :: IO Bool
pluginSym :: CString -> IO (Ptr a)

The entire linker and compilation manager is itself just over 100
lines of Haskell code.

When passed an object handle by the compilation manager, a
simulator object is loaded and resolved, and the linker returns a C
function pointer to the C simulator, wrapped as a Haskell value. We
achieve this by the following function, which use the conversion
functionwithCString from the Haskell foreign function interface
(FFI).

loadAndGetSym :: String -> String -> IO (Ptr a)
loadAndGetSym objFile sym =
withCString objFile $ \objFileC ->
withCString sym $ \symC -> do

pluginInit
pluginLoad objFileC
pluginResolve
pluginSym symC

We might call this with

loadAndGetSym "simulator.o" "doSimulate"

.

4.2 Foreign evaluation

Once the C pointer associated with the given symbol is retrieved by
the linker, control can then pass from Haskell to C, by evaluating
the function pointed to by the obtained C pointer. However, we can-
not directly coerce the C function pointer to a normal Haskell func-
tion value, as normal Haskell functions are represented differently.
We can however, throw the function pointer to the C runtime, which
can then execute the function. We do this by calling a C wrapper
apply function, with the function pointer as an argument. The C
functionapply itself is imported into Haskell via the Haskell FFI:

foreign import ccall unsafe "apply.h apply"
apply :: Ptr () -> IO ()

whereapply itself is a function to evaluate its argument:

void apply(void (*f)(void)) {
f();

}

Now, we can evaluate a C function by passing it toapply. Using
the FFI, C functions can also call into Haskell and so realisea two-
way connection between the simulator and the renderer.

5. Parallelisation
Processor technology has, at least for the moment, finally hit the
limit of its ability to speed up sequential programs by increasing
clock rates and similar. Instead, processors increasinglyrely on
explicit, software-controlled parallelism to achieve speed up over
successive generations of architectures—examples, are multi-core
and many-core architectures as well as modern GPUs. Hence, any
method to solve computationally intensive problems needs to ad-
dress parallelisation if it is to be of continuing relevance.

Simple Monte-Carlo methods, such as the approximation ofπ,
are almost trivial to parallelise. The large number of independent
stochastic experiments can be easily distributed over multiple pro-
cessors, as long as we ensure that the statistic properties of our
source of randomness are robust with respect to parallel execution.
The only communication between the parallel threads is at the end
of the simulation when the local results need to be combined into
a global result. This can be achieved using standard parallel reduc-
tion operations (e.g., parallel folds) and will usually notcontribute
to the overall runtime in any significant way.

5.1 Parallel Monte-Carlo methods

Parallel Monte-Carlo methods, such as the option pricing discussed
in Section 3.2, belong to the class of embarrassingly parallel prob-
lems. They require only very little communication and synchroni-
sation, and so eliminate one big problem for efficient parallel exe-
cution. What remains is adequate load balancing; i.e., for complex
options, some stochastic experiments may need more processor
time than others. So, in general, givenP processing elements (PEs)
andN independent stochastic experiments, assigningN/P exper-
iments to each PE may not utilise the parallel machine optimally.
However, given the stochastic nature of the algorithm, we expect
to see a uniform distribution of experiments of different complex-
ity over all PEs, which leads to good load balancing ifN is much
bigger thanP .

Unfortunately, the situation is often more complicated in prac-
tice. Although, approximation by Mont-Carlo methods, in their typ-
ical application areas, usually converges faster than deterministic
numeric approximations, the standard convergence is for complex
problems still not sufficiently fast. In this case,variance reduction
methods are usually used to improve the convergence behaviour of
the algorithm. Some of these methods, such as the additionaluse of
anantithetic pathand the use of acontrol variate, do not interfere
with a parallel implementation. However, others techniques, such
assequential importance sampling, prevent us from generating the
random variables of the different stochastic experiments indepen-
dently. In fact, they may be become sequentially dependent.

5.2 Sequential Monte-Carlo methods

Sequential Monte-Carlo methods are, as their name suggests, not
straight forward to parallelise, especially if the best wayto achieve
convergence fast is to keep tracking one path for a large number of
steps, as is the case in our polymerisation kinetics simulator.

At the end of Section 3.3, we discussed that for polymerisation
kinetics, we can improve the quality of the simulation result in two
ways: by increasing the system size, or by repeatedly simulating
the same system and averaging over the result. The first approach
is not suitable for parallelisation, due to the inherent sequential na-
ture of Markov-chains. However, the second approach, whichis
trivially parallel, is also problematic for our particularapplication:
as it turned out, the systems the Chemists were interested inhad an
unfortunate property. In order to get feasible numbers of molecules
with the lowest concentration in the system, the system sizehad
to be so big that the simulation took hours or more to run on one
processor, and the result of a single simulation already wasof suf-
ficient quality. Fortunately, there is a solution to this problem: the
kinetics simulation (like all non trivial simulations) makes simpli-
fying assumptions about the laws that determine its behaviour. One
of the simplifications in our context is that we abstract overthe po-
sition of the molecule in the system. If two molecules are farapart,
they would, in reality, be less likely to react. Now, we can make use
of this and split the system into several subsystems, run thesim-
ulation of each subsystems independently in parallel on separate
PEs. We only have to make sure that wemix—i.e., gather, average,
and re-distribute—with sufficient frequency to model the Brownian

8

 0

 10

 20

 30

 40

 50

 60

 70

 107 2*107 3*107 4*107 5*107

T
im

e
(s

ec
)

Simulator steps

generic simulator (gcc)
generic simulator (icc)

specialised simulator (gcc)
specialised simulator (icc)

Figure 6. Comparative running times for generic and specialised
polymerisation kinetics

motion of the molecules. In this way, we can parallelise the appli-
cation without compromising the quality of the result. Of course,
the speed up will be slightly less than for a trivially parallel Monte-
Carlo simulation, as the mixing triggers communication. However,
as the benchmarks in the following section show, the parallelisation
is still very good.

Although, our use of regularity averaging over a set of parallel
executing sequential Monte-Carlo simulations was motivated by
the physical intuition of spatial separation and Brownian motion
in a liquid, the same approach to parallelisation is more generally
applicable to sequential Monte-Carlo. Regular averaging over a set
of parallel sequential simulations will improve the accuracy of the
intermediate results and so in many cases accelerate convergence.

6. Results
The initial objective of our computational chemistry project was
simply to implement a fast, parallel simulator. It needed tobe suf-
ficiently generic to support the type of advanced systems, namely
star polymers, that the available commercial simulators could not
satisfactorily run. The commercial simulators did not directly sup-
port reactions involving star polymers, and even though it was pos-
sible to work around this restriction, the simulations justtook too
long. We started by implementing a generic prototype in Haskell.
It quickly became clear that a pure Haskell implementation would
not be sufficiently efficient, as there would always be a certain over-
head. So we implemented a second simulator, in C this time. The
Haskell version relied heavily on algebraic data types, higher order
functions, and pattern matching. In C, the generic simulator was
much more painful to implement, so we opted for a stripped down,
less generic and therefore fairly optimised version of the Haskell
implementation. Even in C, though, it was clear that the costs for
the limited generality were high, which inspired us to explore the
described generative approach.

6.1 Performance of sequential simulator

For the benchmarks discussed in this subsection, we simulated a
simple styrene RAFT (reversible addition fragmentation transfer)
polymerisation, with only linear (single chain) polymers.

Figure 6 compares the running times of the (not fully) generic
C simulator with the specialised code generated and loaded by the
Haskell framework. As we can see, the specialised code is close to a
factor of three faster than the already partially optimisedC version.

The reason for the significant performance difference becomes
clear when we compare the assembly code generated by the C
compiler for the following program fragment, which is part of the
actual reaction application code. First, let us have a look at the C
code, for one particular reaction type in the generic simulator:

int doReact (..) {
...
/* Disproportionation */
if (isPolyMol (*mol1) &&

isPolyMol (*mol2) &&
ms2 &&
isPolySpec (*ms1) &&
isPolySpec (*ms2))

{
*noRes = 2;
initMol (*rmol1, ms1, mol1->len);
initMol (*rmol2, ms2 ,mol2->len);
return (1);

}
...

}

As we can see, the generic polymer simulator must interpret a
data structure representing the various molecule types, handling
them according to general rules. This means a wide range of reac-
tions can be simulated. However, there is a performance cost. This
performance cost is starkly illustrated by comparing the assembly
generated fordoReact() between the generic simulator and the
reaction-specialised version.

In particular, a number of boolean conditions must be satisfied,
to perform the reaction. This involves indirections into the generic
molecule data structure. When the reaction finally takes place, we
must again indirectly update fields of the result structure.

Unsurprisingly, the C compiler3 produces less than ideal as-
sembly for the generic C code, with less than ideal register use,
branches, and too much memory traffic.

doReact:
;;; if (isPolyMol (*mol1) &&

movl (%esi), %edx
movl (%edx), %edx
testl %edx, %edx
jne ..B1.19

..B1.5:
;;; isPolyMol (*mol2) &&

movl (%ebx), %edx
movl (%edx), %edx
testl %edx, %edx
jne ..B1.10

..B1.6:
testl %eax, %eax
je ..B1.10

..B1.7:
;;; ms2 &&
;;; isPolySpec (*ms1) &&

movl (%ecx), %edx
testl %edx, %edx
jne ..B1.10

..B1.8:
;;; isPolySpec (*ms2)) {

movl (%eax), %edx
testl %edx, %edx
jne ..B1.10

;;; /* Disproportionation */
..B1.9:

;;; *noRes = 2;
movl 36(%esp), %edx

3 Intel C compiler, which outperformed GCC in our tests.

9

movl $2, (%edx)

;;; initMol (*rmol1, ms1, mol1->len);
movl 28(%esp), %edx
movl %ecx, (%edx)
movl 4(%esi), %ecx

;;; initMol (*rmol2, ms2 ,mol2->len);
movl 32(%esp), %esi
movl %ecx, 4(%edx)
movl %eax, (%esi)
movl 4(%ebx), %eax
movl 32(%esp), %ebx
movl %eax, 4(%ebx)

;;; return (1);
movl $1, %eax
popl %ebx
popl %esi
ret

The situation is vastly different once we specialisedoReact()
body to the reaction at hand. Rather than employ generic struc-
tures and logic for interpreting the reaction rules, we are able to
encode the specific, statically-known reaction cases and results as
C enumerations. As a result we get an efficient implementation of
the doReact () logic as a switch. The various results are stati-
cally known, and may also be encoded in simple atomic types, lead-
ing to much improved register utilisation. Here we see the online-
generated code for the same reaction as above, specialised for a
particular system:

switch (reactionIndex) {
...
case dispro:

no_of_res = 2;
spec1_ind = D;
spec2_ind = D;
rl1 = mol1_len;
rl2 = mol2_len;
break;

...

This code fragment is compiled to almost optimal assembly, a
simple vectored jump for the switch, and 4 instructions to perform
the reaction:

movl ..1..TPKT.11_0.0.10(,%ebp,4), %edx
jmp *%edx

..1.11_0.TAG.5.0.10:

..B7.26:
movl $2, %edx
movl $4, %ebp
movl $4, %ecx
jmp ..B7.38

Comparing the two assembly code fragments, it becomes obvious
why the generated code easily outperforms the hand written generic
C simulator as shown in Figure 6.

The Monte-Carlo method we used for our implementation has
been applied before, for example in [6]. The specialised version of
our generator outperforms the implementation described in[6] by a
factor of 2.6 on an AMD Athlon 64 3200+. That is, the performance
in [6] is comparable to that of our generic simulator.

6.2 Performance of parallel implementation

Let us now have a look at the performance of the parallel code.
Parallelism is implemented using standard MPI [8] library calls.
As MPI libraries are available for virtually all multiprocessor ma-
chines, the code can run on most architectures. Figure 7 and 8
show the absolute running times and speedups respectively of

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 1 2 3 4 5 6 7 8
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

T
im

e
(s

ec
on

ds
)

Processing elements

8x single core distributed Pentium 4 cluster (1010 particles)
8x ONE core of dual-core AMD Opteron shared memory (1010 particles)

8x single core distributed Pentium 4 cluster (109 particles)
8x ONE core of dual-core AMD Opteron shared memory (109 particles)

1 core of dual-core AMD Opteron (1010 particles)

Figure 7. Run time of generated simulator on cluster and shared
memory systems

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8
 1

 2

 3

 4

 5

 6

 7

 8

R
el

at
iv

e
S

pe
ed

up

PE

8x single core distributed Pentium 4 cluster (1010 particles)
8x ONE core of dual-core AMD Opteron shared memory (1010 particles)

8x single core distributed Pentium 4 cluster (109 particles)
8x ONE core of dual-core AMD Opteron shared memory (109 particles)

Figure 8. Speedup on shared memory and cluster systems

the specialised, parallel simulator code, both on a clusterand a
shared memory machine. The cluster is a commodity Linux clus-
ter, containing a mixture of 2.6Ghz and 3.2Ghz Pentium 4S pro-
cessors. The shared memory machine contains eight AMD Athlon
64 3200+, 2.2Ghz processors. Even though they run on a lesserfre-
quency, they are faster than the cluster nodes, as they have abigger
first and second level cache, and higher memory bandwidth. We
ran both simulations with109 and1010 on both architectures. Due
to the better hardware architecture, the shared memory machine
outperformed the cluster on both benchmarks (Figure 7). Both ar-
chitectures show excellent speedup for the1010 benchmark. The
109 system is too small for the communication and synchronisation
overhead to pay off (Figure 8 & Figure 9).

6.3 Comparison with PDE Solver

Finally, we compared the running time of of various specialised
polymer simulators against the leading commercial packagePREDICI
(version 6.36.1, produced by Computing in Technology (CiT)
GmbH) [23, 22], running the same reaction. PREDICI is not a
Monte-Carlo simulator—it calculates the distributions bysolving

10

 40

 50

 60

 70

 80

 90

 100

 110

 1 2 3 4 5 6 7 8

pa
ra

lle
l e

ffi
ci

en
cy

number of processors

109 particles, cluster

1010 particles, cluster

109 particles, shared memory

1010 particles, shared memory

Figure 9. Comparative efficiencies of shared memory and dis-
tributed simulations

the partial differential equations (PDE) that describe thesystem
and the reactions. Therefore, the result of a PREDICI run canbe
regarded as the correct distribution (as modelled by the system), not
an approximation. For1010 particles, the simulation results were
identical to those of PREDICI. For109 particles, the results di-
verged when we used more than eight processors. We used a more
complicated system star RAFT system for the benchmarks in this
subsection. For the simple styrene RAFT that we used for the pre-
vious set of benchmarks, PREDICI’s performance is comparable
to the Monte-Carlo simulator in [6]; i.e., our specialised simulators
still outperform it by more than a factor of two. On even simpler
systems, PREDICI is more efficient then our Monte-Carlo system.
This is not surprising, as PDE solvers usually perform better than
Monte-Carlo simulators for simple systems. Monte-Carlo simu-
lators show their strength when the simulated systems get more
complex and the degrees of freedom increase.

We compared PREDICI against the specialised simulator, com-
piled with the Intel C compiler. Moreover, we ran our parallelised
simulator on a variety of cluster configurations, using the MPI
implementation MPICH [14], with varying particle counts. The
columns of Figure 10 list the results for the following benchmarks:

1. PREDICI, on a 3.4Ghz single core Windows XP machine

2. Specialised polymer MC simulator, on a 3.2Ghz Linux Pentium
4, 1010 particles

3. Specialised polymer MC simulator, on a 3.2Ghz linux Pentium
4, 109 particles

4. Specialised polymer MC simulator, 8 node cluster,1010 parti-
cles,

5. Specialised polymer MC simulator, 16 node cluster,1010 parti-
cles,

6. Specialised polymer MC simulator, 8 node cluster,109 parti-
cles.

For a fair comparison with PREDICI, we need to consider the runs
with the 1010 particles. Figure 10 shows the results on a linear
as well as a logarithmic scale. Our specialised Monte-Carlosim-
ulator clearly outperforms PREDICI already with one cpu. More-
over, our Monte-Carlo simulator scales well with increasing node
count and so is able to exploit current clusters and the emerging
many-core architectures. Parallelisation of PDE solvers is not an

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

(1) PREDICI (2) MC 1010 (3) MC 109 (4) MC 1010 / 8 (5) MC 109 / 8 (6) MC 1010 / 16

si
m

ul
at

io
n

tim
e

/ s
ec

on
ds

101 s

102 s

103 s

104 s

105 s

(1) (2) (3) (4) (5) (6)

Logarithmic scale

Figure 10. Comparative running times for commercial PDE versus
our parallelising MC simulator

easy task. This in combination with the fact that the advantage of
Monte-Carlo methods increases with the complexity of the simu-
lated molecules and reactions makes Monte-Carlo methods a very
attractive option in numerically intensive applications that can be
modelled by stochastic experiments. On top of this, our novel gen-
erative approach to Monte-Carlo simulators improves the running
time significantly while simultaneously supporting a widerrange of
chemical systems—e.g., our system is the only one that can directly
simulate star polymers.

7. Related Work
7.1 Partial evaluation

Partial evaluators for C, such as C-Mix [1], has similar objectives
as the work presented here, namely to achieve high-performing, yet
easily maintainable code. It is also similar in that it relies on the C
compiler to apply standard optimisations which have been enabled
by the specialisation. However, there are also a number of signif-
icant differences: In contrast to our approach it is neitherpossible
nor necessary in C-Mix to provide domain specific specialisation
information to the tool. This can be an advantage, since the imple-
menter of the generic code need not be concerned about possible
specialisations. However, as the computational chemistryexample
demonstrates, it also has serious drawbacks: the most effective op-
timisations in the specialised code were a consequence of the cus-
tomised data structures and jump tables used, both of which could
not have been automatically deducted from the generic simulator.
Furthermore, the use of C-Mix is not transparent to the user.In
our approach, the user does not need to have the source code ofthe
generator, and (as long as there is a C compiler available on the sys-
tem) needs not be aware at all that the specialisation is happening
behind the scenes because the C code is compiled and dynamically
linked back into the executable of the simulator. Also, implement-
ing the fully generic simulator in C would have been a major effort
compared to the Haskell implementation—as mentioned before, we
heavily relied on higher-order functions, pattern matching and al-
gebraic data types, all language features not or not particularly well
supported in C.

Other partial evaluators, such as Tempo [4], focus on different
application areas, such as systems programming.

Using C++ templates as a substrate for partial evaluation, as
in [18], allows the addition of domain specific information,and it

11

would be interesting to investigate if it is possible to get similar
results as we have with our approach. However, it would definitely
be necessary to push the limits of C++ template programming,a
technique which can be fairly tricky and error prone. As withC-
Mix, however, the user of the simulator would have to have access
to the source code, and instantiate, compile and link the program.

7.2 Generative programming

Generative programming also targets a similar problem, and, for
example [21], employ a meta-language to describe the generating
component, whereas we use an existing general purpose language,
Haskell, which because of its support of higher-order functions and
user defined operators, is a good substrate for the simple EDSL we
use.

FFTW [7] shares with our approach, the idea to use a func-
tional language to generate highly optimised low-level code. In
fact, FFTW has clearly been an inspiration in that matter. This
is, however, where the similarity ends. FFTW provides a library,
whereas we presented an application architecture. FFTW also used
dynamic code optimisation, whereas our approach is purely static.
Furthermore, the type of specialised algorithms are ratherdifferent.

7.3 Polymerisation kinetics

The Monte-Carlo strategy we use for the simulation of the poly-
merisation models is similar to the one method used by [16], [6],
[13], and [9]. Although [6] use multiple machines to run indepen-
dent simulations at the same time, to increase the accuracy of the
result, no one has implemented a parallel version of a singlesimu-
lation. In Subsection 6.2, we compared the performance of [6] with
our system.

8. Conclusion
We presented a software architecture based on specialisingsim-
ulation generators for numerically intensive simulationsemploy-
ing Monte-Carlo methods. We discussed how various Monte-Carlo
methods can be mapped to this design, including a detailed descrip-
tion of a polymerisation kinetics simulation. We benchmarked the
polymerisation kinetics simulator in detail and found thatit is much
fast than all competing software products. At the same time it han-
dles a wider range of chemical processes. In other words, we use
functional programming to reconcile high performance and gen-
erality in simulators based on Monte-Carlo simulation. Moreover,
we have successfully parallelised the kinetics simulation, which re-
quired a new technique as the simulation is based on a Markov-
chain. This makes out approach future proof in the light of the cur-
rent trend in hardware to add extra parallelism instead of increasing
single-threaded performance.

References
[1] H. M. Arne J. Glenstrup and J. P. Secher. C-Mix – specialization of

C programs. InPartial Evaluation: Practice and Theory, 1999.

[2] H. Chaffey-Millar, D. B. Stewart, M. Chakravarty, G. Keller, and
C. Barner-Kowollik. A parallelised high performance montecarlo
simulation approach for complex polimerization kinetics.Submitted
to Macromolecular Theory and Simulations, 2007.

[3] M. M. T. Chakravarty, G. Keller, and S. Peyton Jones. Associated type
synonyms. InICFP ’05: Proceedings of the Tenth ACM SIGPLAN
International Conference on Functional Programming, pages 241–
253, New York, NY, USA, 2005. ACM Press.

[4] C. Consel, L. Hornof, J. L. Lawall, R. Marlet, G. Muller, J. Noy,
S. Thibault, and E.-N. Volanschi. Tempo: Specializing systems
applications and beyond.ACM Computing Surveys, vol 30(no 3),
September 1998.

[5] K. Czarnecki and U. W. Eisenecker.Generative programming:
methods, tools, and applications. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 2000.

[6] M. Drache, G. Schmidt-Naake, M. Buback, and P. Vana. Modeling
RAFT polymerization kinetics via Monte Carlo methods: cumyl
dithiobenzoate mediated methyl acrylate polymerization.Polymer,
2004.

[7] M. Frigo and S. G. Johnson. The design and implementationof
FFTW3.Proceedings of the IEEE, 93(2):216–231, 2005. special issue
on ”Program Generation, Optimization, and Platform Adaptation”.

[8] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg,
W. Saphir, and M. Snir.MPI: The Complete Reference, volume
2—The MPI-2 Extensions. The MIT Press, second edition, 1998.

[9] J. He, H. Zhang, and Y. Yang. Monte carlo simulation of chain
length distribution in radical polymerization with transfer reaction.
Macromolecular Theory and Simulation, 4:811–819, 1995.

[10] P. Jäckel.Monte Carlo methods in finance. John Wiley and Sons,
2002.

[11] N. D. Jones, C. K. Gomard, and P. Sestoft.Partial Evaluation and
Automatic Program Generation. Prentice Hall International, Hemel
Hempstead, Hertfordshire, UK, 1993.

[12] S. R. Ladd. Acovea (analysis of compiler options via evolutionary al-
gorithm). http://www.coyotegulch.com/products/acovea/,
2007.

[13] J. Lu, H. Zhang, and Y. Yang. Monte carlo simulation of kinetics and
chain-length distribution in radical polymerization.Macromolecular
Theory and Simulation, 2:747–760, 1993.

[14] MPICH. Argonne national laboratory.http://www-unix.mcs.
anl.gov/mpi/mpich/, 2007.

[15] A. Pang, D. Stewart, S. Seefried, and M. M. T. Chakravarty. Plugging
Haskell in. InProceedings of the ACM SIGPLAN Workshop on
Haskell, pages 10–21. ACM Press, 2004.

[16] S. W. Prescott. Chain-length dependence in living/controlled free-
radical polymerizations: Physical manifestation and monte carlo
simulation of reversible transfer agents.Macromolecules, 36:9608–
9621, 2003.

[17] C. Robert and G. Casella.Monte Carlo Statistical Methods. Springer
Verlag, second edition, 2004.

[18] T. L. Veldhuizen. C++ templates as partial evaluation.In Partial
Evaluation and Semantic-Based Program Manipulation, pages 13–
18, 1999.

[19] T. L. Veldhuizen and D. Gannon. Active libraries: Rethinking
the roles of compilers and libraries. InProceedings of the SIAM
Workshop on Object Oriented Methods for Inter-operable Scientific
and Engineering Computing (OO’98), 1998.

[20] T. L. Veldhuizen and D. Gannon. Active libraries: Rethinking
the roles of compilers and libraries. InProceedings of the SIAM
Workshop on Object Oriented Methods for Inter-operable Scientific
and Engineering Computing (OO’98). SIAM Press, 1998.

[21] E. Visser. Meta-programming with concrete object syntax. In
D. Batory, C. Consel, and W. Taha, editors,Generative Programming
and Component Engineering (GPCE’02), volume 2487 ofLecture
Notes in Computer Science, pages 299–315, Pittsburgh, PA, USA,
October 2002. Springer-Verlag.

[22] M. Wulkow. The simulation of molecular weight distributions in
polyreaction kinetics by discrete galerkin methods.Macromolecular
Theory Simulation, 5:393–415, 1996.

[23] M. Wulkow. Predici. http://www.cit-wulkow.de/tbapred.
htm, 2007.

12

