Generative Code Specialisation
for High-Performance Monte-Carlo Simulations

Don Stewart
Hugh Chaffey-Millaf
Gabriele Kellet
Manuel M. T. Chakravarty
Christopher Barner-Kowollik

!Programming Languages and Systems
School of Computer Science & Engineering
University of New South Wales
Email: {dons,keller,chak}@cse.unsw.edu.au

2Centre for Advanced Macromolecular Design
School of Chemical Sciences and Engineering
University of New South Wales
Email:h.chaffey-millar@student.unsw.edu.au
c.barner-kowollik@unsw.edu.au

UNSW-CSE-TR-0710
April 2007

THE UNIVERSITY OF
NEW SOUTH WALES

S
3

School of Computer Science and Engineering
The University of New South Wales
Sydney 2052, Australia

Abstract

We address the tension between software generality andrpeice in the do-
main of scientific and financial simulations based on Monéel&Cmethods. To
this end, we present a novel software architecture, ceatmchd the concept of a
specialising simulator generatpthat combines and extends methods from gen-
erative programming, partial evaluation, runtime codeggation, and dynamic
code loading. The core tenet is that, given a fixed simulainfiguration, a gen-
erator in a functional language can produce low-level chae is more highly
optimised than a manually implemented generic simulater.algo introduce a
skeleton, or template, capturing a wide range of Monte-@Oathods and use it
to explain how to design specialising simulator generadois how to generate
parallelised simulators for multi-core and distributedsmory multiprocessors.
We evaluated the practical benefits and limitations of oyreach by applying
it to a highly relevant problem in computational chemisiviore precisely, we
used a Markov-chain Monte-Carlo method for the study of aded forms of
polymerisation kinetics. The resulting implementatiore@xes faster than all
competing software products, while at the same time alsogbeiore general.
The generative architecture allows us to cover a wider rarfigiemical reac-
tions and to target a wider range of high-performance achites (such as PC
clusters and SMP multiprocessors).

We show that it is possible to outperform low-level languagédth functional
programming in domains with very stringent performanceunesments if the
domain also demands generality.

Generative Code Specialisation
for High-Performance Monte-Carlo Simulations*

Don Stewart
Gabriele Keller ~ Manuel M. T. Chakravarty

Programming Languages and Systems
School of Computer Science and Engineering
University of New South Wales

{dons,keller,chak}@cse.unsw.edu.au

Abstract

We address the tension between software generality andrperf
mance in the domain of scientific and financial simulationsela
on Monte-Carlo methods. To this end, we present a novel softw
architecture, centred around the concept spacialising simula-
tor generator that combines and extends methods from generative
programming, partial evaluation, runtime code generatonl dy-
namic code loading. The core tenet is that, given a fixed simul
tor configuration, a generator in a functional language cadyxce
low-level code that is more highly optimised than a manuatly
plemented generic simulator. We also introduce a skeletotem-
plate, capturing a wide range of Monte-Carlo methods andtuse
to explain how to design specialising simulator generagashow

to generate parallelised simulators for multi-core andrithisted-
memory multiprocessors.

We evaluated the practical benefits and limitations of our ap
proach by applying it to a highly relevant problem in compiotzal
chemistry. More precisely, we used a Markov-chain MonteleCa
method for the study of advanced forms of polymerisatiorekin
ics. The resulting implementation executes faster thancatipet-
ing software products, while at the same time also being mene
eral. The generative architecture allows us to cover a watgge of
chemical reactions and to target a wider range of high-pedoce
architectures (such as PC clusters and SMP multiprocgssors

We show that it is possible to outperform low-level langusage
with functional programming in domains with very stringquer-
formance requirements if the domain also demands generalit

Keywords Generative programming; code specialisation; runtime
code generation; high-performance computing; monte cadth-
ods.

* This work was funded by the UNSW FRGHigh Performance Parallel
Computing for Complex Polymer Architecture Design.

Hugh Chaffey-Millar
Christopher Barner-Kowollik

Centre for Advanced Macromolecular Design
School of Chemical Sciences and Engineering
University of New South Wales

h.chaffey-millar@student.unsw.edu.au
c.barner-kowollik@unsw.edu.au

1. Introduction

The tension between software generality and performanespis-
cially strong in computationally intensive software, sashscien-
tific and financial simulations. Software designers will alyuiaim
to produce applications with a wide range of functionalithjch in
the case of simulations means that they are highly paraisebées
and, ideally, target different types of high-performaneedware.
Scientific software is often used for new research tasksfiand-
cial software is often employed for new products and new etark
In both cases, there is a high likelihood that the boundagyre¥i-
ous uses will be stretched. However, generality often conitsa
performance penalty, as computations become more intatjye
require more runtime checks, and use less efficient datetgtas.

As an example, consider a computational chemistry sinarati
using a Monte Carlo method, that in its innermost loop reguiist
selects a random chemical reaction from a set of possibitioea.

The probability of the selection is determined by the cotraion

of available reactants and the relative probabilities afheaf the
reactions. If we aim for generality, the code will have thpataility

to handle a wide range of reactions. These reactions and thei
probabilities will be stored in a data structure that theecodll
have to repeatedly traverse when making a selection and when
updating the level of concentration of the various reastanhis

is an interpretative process whose structure is not untikedf an
interpreter applying the rules of a term rewriting systepeaedly

to the redexes of a term. The more general the rules handldteby
interpreter, the more interpretative overhead we get, haddss
rewrites will be executed per second.

On the other hand, to maximise performance, we need to elimi-
nate all interpretative overhead. In the extreme we havegram
that hard codes a single term rewriting system; i.e., we demp
the term rewriting system instead of interpreting it. We transfer
that idea to the chemistry simulation by specialising timeusator
so that it only applies a fixed set of reactions. Such spsaitdin
can have a dramatic impact on simulators, where a relatgsrab|
part of the code is executed very often and even the minofiinef
ciency of a few additional cpu cycles can add significantlyhte
overall running time of the application. As giving up on geality
is not an option, and we cannot expect the user to manually spe
cialise and optimise the simulation program for the exaattiens
and input parameters of a particular simulation, we inseggaly
the compilation model to high-performance simulations.

In programming languages the move between interpreter and
compiler is well known from the work on partial evaluatiori]1
More generally, research on generative programming [5]sstid

optimising libraries [19] introduced approaches to codecigisa-
tion in a range of application areas, including numericaitgnsive
applications [7, 20]. Much of this work is concerned withyitng
general libraries that are specialised at compile timehispaper,
we transfer these ideas from libraries to applications amdbine
them with runtime code generation and dynamic code loading.
More precisely, we introduce a novel software architecfare
simulators based on Monte-Carlo methods. This architechased
on generative code specialisation, uses functional pnogriag to
overcome the tension between generality and performanee in
way that is transparent to the end user. Specifically, weempht
a specialising simulator generatan a functional language and
use it to generate highly optimised C code specialised fecifip
simulator configurations. Our software architecture ustarsdard,
optimising C compiler together with Haskellfreign function
interfaceand a variant of our previous work [15] on dynamically
loaded plugins to compile and load the generated simulator i
the main application for execution and rendering of the &atinn
results.

over. This principle can be applied to any system that we oaghein
in terms ofprobability density functions (PDFsJhis includes the
numerical approximation of many purely mathematical catss
with no apparent stochasticity or randomness, such as sppat
ing the value ofr or the numerical integration of complex func-
tions [17].

Monte-Carlo methods use probability density functionsrieed
the sampling during a simulation. This can be the repeataf ev
uation of a function at random points, for example to integia
numerically, or it can be a sequence of system state chaegels,
of which occurs with a certain probability. As an example lof t
latter, consider studying reaction kinetics in computadiochem-
istry, where the system is characterised by the likelihobdazh
simulated chemical reaction in a given system configuration

In any case, to exploit the law of large numbers, all MontelCa
simulations have to repeat one or more stochastic experareen
large number of times as well as tallying the many results, an
possibly continuously evolving some system state and ctenpu
variance reduction information. In fact, with increasiragrplexity

We capture the essence of a wide range of Monte-Carlo methodsof the system and with increasing need for precision, mock an

in the form of a skeleton; i.e., a template expressed by adigss
and a parametrised function. We discuss the design of disauia
simulator generators and the parallelisation of the géedraim-
ulators for Monte-Carlo methods captured by the skeletooreM
over, we demonstrate the practical relevance of the skelatal
our software architecture by concrete applications frorrfae and
computational chemistry. In particular, we implementedmputa-
tional chemistry application that simulates polymerisatkinetics
by way of a Markov-chain Monte-Carlo method. The resultimg i
plementation executes faster than all competing softwaréyets,
while at the same time also being more general. The generativ
architecture allows us to cover a wider range of chemicaitieas
and to target a wider range of high-performance architest(such
as PC clusters and SMP multiprocessors).
In summary, our main contributions are the following:

o A software architecture using generative code speciaisébr
computationally intensive simulations based on MonteleCar
methods (Section 2).

e A skeleton and a generative specialisation framework for
Monto-Carlo methods and its instantiation to a Markov-nhai
Monte-Carlo simulator for polymerisation kinetics (Seati3).

¢ Foreign language plugins for Haskell (Section 4).

o A parallelisation strategy for Markov-chain Monte-Carlettn-
ods (Section 5).

¢ A detailed performance evaluation of our Monte-Carlo senul
tor for polymerisation kinetics, which shows that the apgli
tion of methods from functional programming can lead to code
that is significantly more efficient than what can be achieved
with traditional methods and imperative languages (Sed@jo

As already mentioned, we build on a host of previous work from
generative programming, partial evaluation, runtime cgeeera-
tion, and dynamic code loading. We discuss this related vasrk
well as other work on polymerisation kinetics in Section 7.

2. A generative code specialisation architecture

Simulations based on Monte-Carlo methods are very populdei
study of complex systems with a large number of coupled @sgre
of freedom, this includes applications ranging from coraganal
physics (e.g., high energy particle physics) to financiahmaatics
(e.g., option pricing). The underlying principle is ttav of large
numbers;that is, we can estimate the probability of an event with
increasing accuracy as we repeat a stochastic experimentaod

more stochastic experiments need to be performed. Thidyhigh
repetitive nature of Monte-Carlo simulations is one of the key
points underlying the software architecture that we areuabo
discuss.

The second key point is that, in many application areas, Bont
Carlo simulations should come with a large configurationcepa
For example, in reaction kinetics, we would like to handleidew
variety of chemical reactions and, in financial modelling,would
like to model complex of financial products. In fact, to exgloew
chemical processes and new financial products, we defimitzd
to (a) repeatedly alter configurations and experimentatjylaze
a design space; and (b) have short turn-arounds in an ititerac
system. We certainly cannot afford to modify the source axfaeir
simulator—in fact, many users in application areas usingéo
Carlo simulation won't have the expertise to even recomitite
simulator. On the other hand, when the user found a pointen th
design space that they want to simulate in more detail, alation
may run for hours or even days.

In summary, the two crucial properties of Monte-Carlo siaaul
tions guiding the following discussion are thus:

e Property 1:The simulation repeats one or more stochastic ex-
periments and associated book keeping a large number of.time

e Property 2:It simulates complex systems with a large number
of degrees of freedom and a rich configuration space.

2.1 The classical approach: a simulator in C, C++, or
Fortran

As discussed, Monte-Carlo methods are typically used inptex
systems with a large number of degrees of freedom, where they
require a many repetitions of a stochastic experiment tdeaeh
numeric accuracy. For example, sophisticated simulatiorthe
domain of polymerisation kinetics can take days to execut@ o
uniprocessor. Hence, manually optimised simulator cogelow-
level languages like C, C++, and Fortran is the state of theaad
the use of functional languages in many domains where Monte-
Carlo simulations are applied is out of the question, untass
same level of performance can be achieved. Even a 50% imcreas
in running time is not acceptable when a program runs for.days
While Property 1 encourages the use of a low-level language,
the amount of optimisations that can be performed in a lowgte
language is limited by Property 2. A simulator in a low-lelaat-
guage must be sufficiently generic to handle a large confiigmra
space in which it has to evaluate functions with a large numbe
of inputs. In other words, the code in the repeatedly execirte

Configuration Simulation result

| !

Driver

1001101010
001011010

Simulator
1010101011
0011011

Specialising

simulator Renderer

generator

— 7

C compiler
-march

Figure 1. Architecture for generative simulators

ner loop will be complex and possibly traverse sophistitatata
structures. However, given the number of repetitions, epthcy-
cle counts significantly towards the final running time. Auttial
instructions required to implement a more general solugan to
notable inefficiencies compared to specialised implentiems

To illustrate this situation, consider reaction kinetigaia. Each
reaction occurs with a probability that depends on the ix@aion-
centration of the various reactants. If it occurs, it wilhsome one
or more reactants and release new reactants into the soldtio
Monte-Carlo simulator will have to keep track of these carice
tions and the associated reaction probabilities. It haglect re-
actions according to the implied probability distributibmction.
The reactions have to be modelled in a data structure andahe m
variations we allow, the more interpretative the procegkérinner
loop will be. In other words, the larger the configurationasgahe
slower the simulator.

This situation calls for a generative approach. The simulat
has a large configuration space and its inner loop will be ueec
many times for a single configuration, making it worthwhite t
specialise the inner loop for one configuration, effectivgiving
us a custom simulator for one problem, before executinghits T
specialisation has to be transparent to the user and, asuaesded
previously, has to occur in an interactive environment. ¢é¢enve
propose the use of online generative code specialisatianig, in
dependence on user input, the application specialisami¢s core
to produce highly optimised code and dynamically loads amic|
that code into the running application. As we will see in 881t8.4,

depending on the type of Monte-Carlo method used, we may have

to generate one or more specialised simulators per exeasted
level simulation.

2.2 From Haskell to C to a C generator

Writing a new Monte-Carlo simulator using this architeetis a
three-step process:

1. Implement gorototype simulatoin a functional language like
Haskell as an executable specification and to explore afigen
designs.

2. Manually specialise for one or more concrete parametiéngs
and translate into C to explore possible low-level optirtiises.
This involves selecting appropriate imperative data $tines.
The C program, which we call thepecialised simulatgiis val-
idated against the functional prototype. (Instead of Qylemges
like C++ or Fortran may of course also be used.)

3. Rewrite the prototype simulator asimulator generatoin the

functional language, such that when fed with the same param-

eter settings it produces the specialised generator we aignu
implemented in the previous step.

The generator is actually a three-tier architecture. Attibt#om,
we have a set of generic combinators producing C constreiut$,
as type declarations, initialisers, control structures] ao forth.
These are reusable between different simulators. On tofheof t
generic combinators, we implement domain-specific contbisa
For example, for polymerisation kinetics, we have comlarsat
creating the representation of a reaction or applying ati@ac
We implement the simulator generator with these domaiwifipe
combinators.

The code generated by the simulator generator can be \edidat
against the functional prototype and the C implementatidme
later is often more convenient for debugging purposes,isg#sier
to compare the internal states of the two implementations.

The concrete specialisation strategy is, in fact, dompégtiic
and can require a rather complicated separation of spedaiiain
time versus runtime data. In Section 3, we will come back i® th
point and describe two general specialisation strategiesedl as
detail the strategy that we used for the polymerisationtiégaeFor
the moment, it suffices to say that in the simulator for polsisze
tion kinetics, we specialise on the possible reactions lagid prob-
abilities in dependence on the concentration of the retxtdihis
forms the basis for the computation of the probability disttion
functions in this application.

Figure 1 illustrates the overall architecture with the damr
generator at the very left. The generated C code is passettitcea
that we discuss next.

2.3 Runtime compilation, loading, and simulator execution

The driver in the middle of Figure 1 is responsible for tugnthe

C source of the specialised simulator into executable code&ing
that code, and passing the results to the third componertieof t
architecture, theenderer.

Unlike specialising generators for specific problems, sash
FFTW [7], we generate machine-independent C code, ratlaer th
native code. Our experience is that, while implementingspe-
cialising simulator generator, we are still exploring andfigant
design space for the core data structures and algorithmo Toisl
we need a light weight approach to code generation, that sriake
as simple as possible to perform structural changes to therge
ated code. Our three-tier architecture for the simulatoreggtors
simplifies this process.

To compile the C code, we use a standard C compiler, such as
GNU'’s gcc or Intel's icc. We require high-performance, so we
rely on state-of-the-art optimising C compilers that magywaith
machine architectures. In fact, access to low-level ankitature-
specific optimisations is another important reason for girey
C code, rather than attempting to directly generating patode.
For example, it would be extremely difficult to beatc with
the instruction scheduling for floating-point computatiaon In-
tel processors. Given the long running times of typical Ment
Carlo simulations, we can even amortise time consuming ¢éomp
lation with costly optimisations enabled. To generate goode,
the driver passes simulator-specific and hardware-spékifis to
the C compiler. Another option to improve the compiled cadle f
ther, which we have only lightly explored, would be to usel$oo
like Acovea [12], a simulated annealer, to breed a best fittfer
compiler flags.

In addition to the simplification of data and control strues
explicitly performed by the specialising simulator gerterathe
C compiler can exploit the fact that many of the variableshaf t
generic simulator are now embedded as constants. This teads
additional constant folding, loop unrolling, and loop \a@gation.

At this point it would be possible to run the generated siraula
as a separate process. However, we found it advantageoys to d
namically load and link the compiled simulator into the mapli-

concentrafion
/mol L~

14000

7
2755377
JONNSSSST58058875565552 77>
NSt
s
I

7000

l':’
4
(5555555
(555552
2905529955290
A4S T
S
L27555275
275522277]],
25554
2244

04

04

7758255527
X7
ANS5224 o

77
7755275
NSS555545 75
S
e

NSSZo%
s
I,}Xo“:&
NS
NS

10000

7500

1

800 simulated time
/ seconds

degree 200 0
of

polymerisation

Figure 2. Molecular weight distribution during polymerisation

cation. This is especially valuable during the exploratiod design

phase of the simulator user. The loaded code can be moréytight

integrated with the renderer, which may for example graghic
animate a running simulation. Moreover, depending on tleeifip
Monte-Carlo method, the generated simulator will still &aun-
time arguments and be executed repeatedly by the driveramger
of argument values. We will return to this point in Sectiomhere
we discuss the foreign language interface that connectsdime
piled C code of the simulator with the main application.

2.4 Processing results

The results of a simulation can, of course, be used in a variet

of ways. In particular, they can be visualised online or oéliln

an exploratory context, a user may run a few approximatet shor

running simulations that are visualised online, until tHad a
system configuration that they want to explore in more defsil
this point, they will start a long running simulation whosetal

set will be dumped to disk. An example visualisation from our

simulator for polymerisation kinetics is in Figure 2. An iorpant
property in polymerisation is the concentration of molesulvith
particular chain lengths of a synthesised polymer. Therggraph
plots this concentration in dependence with the simulabea t
elapsed since the start of the chemical process, where #ia ch
length is indirectly given by the molecular weight of the yrokr
molecules.

2.5 Summary

In summary, Figure 1 outlines an architecture for implerimgnt
high-performance Monte-Carlo simulators as lightweigfigrac-
tive applications. Instead of achieving high-performahgémple-
menting in a low-level language, we achieve even higheroperf
mance by generating specialised low-level code in a funatitan-
guage. In the next section, we will see that this approachiespp
to a wide range of Monte-Carlo methods and that functional la

guages are a good match to the task of implementing generativ

code specialisers.

3. Generative Monte-Carlo Methods

After covering specialising simulator generators in thevjpus
section, we are now going to discuss the generative spsatiain of
Monte-Carlo methods at three concrete examples. We wilirsgte
for specialisation to be worthwhile, simulations need qpxform
sufficiently complicated operations during stochasticegkpents
and (b) have a number of input parameters that are fixed feaat |
part of one simulation. We call such methagisnerative Monte-

Carlo methodsGiven that Monte-Carlo methods are typically used
for complex systems with a large number of degrees of freedom
practically useful Monte-Carlo methods usually meet these
criteria. To clarify the general structure of Monte-Carl@tirods
and to highlight the points of opportunity for specialisati we
will discuss a general Monte-Carlo simulation skeletorerathe
concrete examples.

3.1 Computingm

The probably simplest Monte-Carlo method is that to comjgute
approximation ofr. We know that the area of a circleis = mr2.
Hence,r = A/r?;i.e.,m/4 is the probability that a point picked

at random out of a square of side length is within the circle
enclosed by that square. As explained in the previous sedtie
fundamental idea underlying Monte-Carlo methods ig$timate

the probability of an event with increasing accuracy by epey

a stochastic experiment over and ovdere the stochastic exper-
iment is to pick a point in the square at random, and we use that
experiment to approximate the probability that picked flie in-

side the circle. By multiplying that approximated probéapilvith

4, we approximater.

The following Haskell functionpiMC implements this idea. It's
first argument is a stream of randdmubles from the interval
[-1,1] and the second one is the number of random points to be
picked.

piMC :: [Double] -> Int -> Double
piMC rs n =
let within = [point
| point <- take n (points rs)
, inCircle point]

hits = fromIntegral (length circlePoints)
in
hits / fromIntegral n * 4
where
points (x:y:rs) = (x, y) : points rs

inCircle (x, y) = sqrt (x*x + y*xy) <= 1.0

Although, the computation of illustrates the Monte-Carlo princi-
ple very well, it is not a particularly efficient method of cpating

«. Itis also not really amenable to code specialisation. rdtie the
only variables in the code are the number of stochastic expets

to perform and the random values. For specialisation to bsefa
simulation must be parametrised by a significant number i@&pa
eters, which may be numeric or have a complex structure. We ca
methods, such as that computingsimple Monte-Carlo methods
Simple methods perform little work per stochastic experitand
have few, or no, configuration parameters.

3.2 Modelling financial products

Monte-Carlo methods are routinely used in finance to soleb{pr
lems, such as the arbitrage-free pricing of derivatived.[$0ich
problems can often be expressed in terms of partial diffexlen
equations, but when the degrees of freedom (i.e., the diorens
ality) is large, non-stochastic methods often converge/lgland
require large amounts of memory. If the desired value (tree,
valuation of a derivative) can be expressed as the probabilia
stochastic experiment, a standard alternative is the uadviafinte-
Carlo method.

The basic idea is the same as in the previous computatian of
but there are two big differences:

1. Where the only arithmetic in the computation ofis the
Pythagoras test/z2 + y? < 1, a single stochastic experi-
mentin valuating complicated derivatives involves alreadyyver
complex computations. Moreover, these derivatives uglml

data Config = Config { -- simulation configuration:

samples :: Int, -

initialPrice :: Double, --

drift : Double, --

volatility :: Double, --

strike :: Double --
}

optionMC ::

optionMC rs n tT

let pricePaths
results

(Config samples stockO dr vo strike)

| prices <- pricePaths]
in
exp (-dr * tT)
where

sum results / fromIntegral n

samples to take over lifetime of stock
initial stock price

percentage drift of GBM

percentage volatility of GBM

option strike price

[Double] -> Int -> Double -> Config -> Double

[map (stock tT) path | path <- take n (paths rs)]
[0 ‘max‘ ((sum prices / fromIntegral samples) - strike)

-- sets of random variables of variance tT and mean O

paths rs = let (path, rs’) = splitAt samples rs

in

map (sqrt tT *) path : paths rs’

-- calculate stock price as geometric Brownian motion (GBM)

stock tT wt

stockO * exp ((dr - vo * vo / 2) * tT + vo * wt)

Figure 3. Monte-Carlo estimate

of the price of an Asian option

volve a significant number of dependent assets, each of which some of the arithmetic operations by performing constalalirfg.

has their own variables. So, instead of scalars (or in the chs
m, pairs), we have to manipulate entire matrices of parameter
for a single experiment.

2. Where a single random point in the approximation afiready
gives us the outcome of one stochastic experiment, contgtica
derivatives usually require us to evolve a set of assets over
a time interval in discrete steps; e.g., for an Asian option t
sample its price once a week or month.

Let us consider a simple and well-understood form of option,
namely an Asian call option. The code for a Monte-carlo estém
of the pricing of an Asian option is in Figure 3. The code u$es t
local functionstock to calculate future stock prices on the basis of
their initial price and a standard model based on geometowB-

ian motion (GDM) that is parametrised lyift andvolatility. The
last parameter oftock, namelywt, is a random variable drawn
from a normal distribution with mean 0 and varianeg which

is the expiration time of the option. To value an Asian optioe
need to sample it a number of times during its lifetime. Thenu
ber of samples, callesamples in the code, determines how many
random numbers we need to obtain per stochastic experivént.
use the local functiopaths to chop the input stream of random
numbersrs into sublists of just enough random numbers for each
stochastic experiment.

Based on these functiongricePaths calculates the stock
prices of the Asian option at all sample points (using ondistub
per stochastic experiment). Out of these prieesults computes
the obtained wins per stochastic experiment—we perforsuch
experiments. The results of all experiments are combinettheo
final estimate in the body of theet expression.

Although this is a simple derivative, we obviously already-p
form much more work per stochastic experiment than in the ap-
proximation ofr; in fact, the amount of work depends on the con-
figuration parametesamples, which fixes the path length per ex-
periment. The functiomptionMC has a number of configuration
parameters, and excepimples, these parameters are determined
by the option that we are modelling. ihitialPrice, drift,
volatility, andstrike are known, we can obviously remove

Moreover, ifsamples is statically known, we can unroll the recur-
sion (or in a C program, the loop) that traverses the path ci ea
experiment. Given a C version of the option simulator witraedh
coded configuration, any optimising C compiler will perfothe
constant folding. However, it is already less likely thatill unroll
the loop traversing each path.

More complex derivatives consist out of a number of simpler
derivatives that are often highly correlated. As a reswitnecom-
puting properly distributed random variables already imes com-
plex matrix operations. Moreover, the random variablesia path
may form a more complex Markov chain, which requires more so-
phisticated computations. All in all, the code quickly gstsfi-
ciently complex that the limited optimisations of a C corepivill
not be able to adequately specialise the code for a givengroafi
tion. In contrast, a specialising simulator generator ¢dirgener-
ate a highly specialised form of the simulator, includingadplised
data structures.

Despite the differences in complexity, the actual Montel€Ca
method used irptionMC is essentially the same as the one we
used to approximate. We call it aparallel Monte-Carlo method,
as the individual stochastic experiments—i.e., the coatprns
leading to one element of theesults list—are independent. We
only need to combine the results of the individual stoclkastper-
iments at the end to compute the final result.

3.3 Modelling polymerisation kinetics

Our largest example, a simulator for polymerisation kicgtiis
much to big to present the Haskell code in a paper. Insteadyilve
simply describe the application and our implementatioatsgy in
more detail here. The details from a Chemist’s perspectivehe
found in a companion paper [2].

The kinetics simulator models two classes of moleculesp&m
molecules and polymers. Simple molecules are uniquelyachar
terised by their name, whereas polymers also have a chajthlen
and in the case of star polymers, actually a set of chain hesnays-
sociated with each molecule. A reaction can consume up to two
molecules, and produces up to two new molecules. Reactias t
involve polymers are usually parametrised over the chaigthre

Reactions
update System
Pp+Pm—Pp g probabilities
I4+-Ppm— P 4y, (1)
Pm—Qm /\J\
pick update
random s{stem
molecule
(4)

\ /
pick randomm\/

Figure 4. Structure of the Monte-Carlo simulator for polymerisa-
tion kinetics

For example, a reaction might consume a polymRewith a chain
lengthn and another of the same type with chain lengthand pro-
duce a new polymer molecule of the same type with chain length
n + m, which we denote here &, + P,, — P,tm. The sim-
ulation keeps track of the actual number of each type of nuiéec

in the system. A single simulation step consists of the failhgy
substeps, as displayed in Figure 4:

1. Determine the probability of each reaction. The prolighdf
each possible reaction is the product of the relative pritibab
and the current concentration of the reactants involved.

. Randomly pick a reaction according to their probability.

For example, in Figure 4, the result of this random choice
might be the reaction?, + P,, — P,4+m. Note that the
reaction is specific w.r.t. the type of molecules involvedf b
is parametrised by their chain length.

. Randomly pick the molecules involved in the reaction-is-th
step is trivial for simple molecules. For polymers, it mayé&o
be taken into account that polymers with different chairgtas
react with different probability.

For the reactionP,, + P,, — P,+,» We have to pick two
random chain lengtm and m. The probability depends on
the number of molecules of each chain length currently in the
system, adjusted by a factor in case the chain length infagenc
the reactivity of a molecule.

. Update the system state, that is, the concentration cfcutds

kinetics encodes the set of possible reactions and mokeduie
the specialised simulator. Hence, in the emitted C codetices
and molecules are simply represented by scalar values, anray
of scalars in the case of star polymers. The lookup tableshem
be implemented as simple arrays.

Moreover, the Haskell prototypes makes extensive use ef pat
tern matching to process the data structures. In conttastspe-
cialised simulator generator turns this into simple C siwitate-
ments over the scalar values representing the various mekec
and reactions. Note that this isn't easy to achieve in a gei@r
simulator that reads a molecules and reactions configaratiaun-
time, as C switch statements can only use constants as tete la
We will come back to this point when discussing the benchmark
results in Section 6. However, the specialising simulaemaya-
tor is still written in Haskell and it still uses all the comiences
of parametrised user-defined data structures and pattetchma
ing to represent configurations and to traverse them to gémer
the C code. Hence, we combine not only generality with high-
performance, but we also maintain programmer convenience.

The more molecules we have in the system, the more accurate
the result of the simulation will be, and the more reactiores w
have to simulate for a fixed amount of system time. Another way
to improve the quality of the result is to run the same sinotat
several times and calculate the average. However, it istitapbto
keep in mind that running the same simulation ten times veil) im
general, lead to a result of the same quality as a single ationlof
a system ten times the size, since the concentration of séthe o
reactants is so low, that, for small systems there would ¢ttean
one molecule available and the fact that the simulationdsrdie
would distort the result.

Generally, we call Monte-Carlo methods that evolve a system
state sequentially as a chain of stochastic experimgstgsential
methods As just discussed, we can sometimes split one long chain
into a few parallel, but shorter chains.

3.4 A Monte-Carlo skeleton

Monte-Carlo methods come in a large number of flavours arid var
ants, some of which are not widely publicised outside theaom
in which they are used. This makes it difficult to generaligerall
Monte-Carlo methods. However, we believe that the funcgon
from Figure 5 captures many, maybe most, Monte-Carlo method

and time. We have to delete the molecules consumed by the commonly used. The function is parametrised by a type oksyst

reaction from the system, and the product of the reactiod, an
increment the system clock.

For our example reaction, this means that we need to remove

one molecule of eact?, and P,, from the system and add
P,.+m. When adjusting the system time, we need to take the
size of the system, i.e., overall number of molecules, imto a
count, as well as the probability of the reaction. Since wesha
on average, ten times more reactions in a system with ten mil-
lion molecules than with one million, the increment of theei
stamp in the larger system would, for the same reaction, only
be one tenth of that of the smaller system.

For each of these substeps, it is essential that the repagisenof
the system state supports the following operations vergieffily:

e The mapping of a reaction to the reactants involved.

e The mapping of a molecule type to the number of molecules of
that type in the system.

¢ Updating the molecule count.

In the Haskell prototype of the simulator, both moleculed st
actions are modelled using parametrised user-defined yia¢s.t
However, our specialising simulator generator for polyisaion

configurations that is a member of the type cléwsfig of Monte-
Carlo simulator configurationsBefore we look at the type class
in more detail, it is useful to consider the general struciofrthe
skeleton. It nests three levels of standard recursive risaise

1. Configuration spaceThe outermost recursion is a simple map
over the list of configurationsfgs. It is realised by the list
comprehension forming the body of the functimhand applies
the local functiorsimulate to each configuration.

2. Number of trials:The middle recursion is again a map; this one
is over the number of random generageeds requested by the
current configuratiorfg. It is realised by the list comprehen-
sion in simulate, and the number ofeedss determined by

chains cfgin pickSeeds.

Chain lengthiThe innermost recursion is realised bywaifoldr
in the body ofsimulate’s comprehensioA.

3.

10ur definition of sequential methods does not exactly cdmeiith the
term “sequential Monte-Carlo” as found elsewhere in thexditure.

2Unfolding is part of Haskell's standard list librarynfoldr ::
Maybe (a, b)) -> b -> [a].

(b —>

class Config cfg where
type Result cfg

type Final cfg
chains :: cfg -> Int -- number of chains
experiment :: (cfg, [Double]) -- omne

-> Maybe (Result cfg, (cfg, [Doublel]))

:: cfg -> [[Result cfgl]
[(cfg, [Result cfgl)]

->
->

average
merge Final cfg
mc :: Config cfg --
=> [Cfg] _
-> [Seed] -
-> Final cfg
cfgs seedPool =
merge [(cfg, simulate cfg seeds)
where

mc

[Result cfg]

-- result of individual experiments
-- combined result of simulation at multiple configurations

stochastic experiment

—-- combine chain results
-- merge multiple sumulations

type of Monte-Carlo configurations
set of configurations to simulate
stream of random generator seeds

| (cfg, seeds) <- pickSeeds cfgs seedPool]

-- pair each config with as many seeds as there are chains in that config

pickSeeds [] _ =[]
pickSeeds (cfg:cfgs) seeds
let (chainSeeds, seeds’)
in
(cfg, chainSeeds)

: pickSeeds cfgs seeds’

-- run the simulator on one configuration
simulate cfg seeds =

splitAt (chains cfg) seeds

average cfg [unfoldr experiment (cfg, seedToStream seed) | seed <- seeds]

Figure 5. Generic Monte-Carlo skeleton

Depending on the concrete Monte-Carlo method, only one or tw
of the recursions may be non-trivial. For example,the axipra-
tion of = and the simple option pricing did not make use of the
configuration space. For polymerisation kinetics, the dselarger
configuration space to run multiple simulations, and thgrelduce
the system size, is an option, as discussed at the end 0b66&c8.
Moreover, in the case of approximating the chain length was.
In contrast, the chain length in our production runs with piogy-
merisation kinetics is in the order ®0'°, but we only execute one
trial. In applications of financial mathematics it is commniorhave
multiple trails, each of which has a chain length greaten tha
Configurations as represented in the type classfig, deter-
mine a typeResult for the individual stochastic experiments and
another typeFinal for the final result derived from the different
simulations for all given configurations. Both types dependhe
configuration typefg; i.e., they are so-called associated types [3].
Individual stochastic experiments are performedeRperiment,
which gets a configuration and a stream of random numbersl-In a
dition to a result, it produces a possibly altered configaraaind
the reminder of the stream of random numbers. Theoldr in
simulate chains experiments until one retumisthing. Finally,
average andmerge combine the results of all trials in a simula-
tion and all simulations in a set of configurations into a comql
results.

3.5 What to specialise

In the case of the computational chemistry simulator, weliaree
input parameters: (1) the types of molecules which occuhén t
system, (2) a description of all possible reactions and tleative
probability, and (3) the concentration of each reactant.

Knowing the type of reactions and molecules involved makes
it possible to generate efficient representations of thetiees

and the system state. On the other hand, the concentratithre of
molecules changes constantly, so specialising for th&irstate
would not actually allow for any additional optimisatiorhere-
fore, the system is only specialised for the type of reastiand
molecules. The initial concentration of the reactantsaslii@ sep-
arately at runtime.

Splitting the set of input parameters into these two classas
important step when implementing an application followthig ar-
chitecture. For each parameter, we have to check if (1) kmgpétie
value of the parameter at compile time enables any optiioisat
(2) the optimisations are worth the additional overhead exfeg-
ating specialised code. In the chemistry application, deisision
is fairly straight forward: even for simple systems, the diation
runs for several minutes, so even minor optimisations phy of

Considering the Monte-Carlo skeleton from the previous- sub
section, we see that some simulators run multiple simulatian
a set of configurations. Depending on the variation betwheset
configurations, it may be worthwhile to generate multiple-sp
cialised simulators.

4. Foreign language interface for plugins

Besides the specialising simulator generator, the otheponent
of our architecture from Figure 1 that warrants some atenis
the driver. The amount of interaction between the main appbn
and the generated simulator varies among domains, butigaaie
executable code of the specialised simulator into the mjli-a
cation usually simplifies matters. In particular, it sinfigls a tight
integration between the running simulator and a graphrcaiténd
displaying the evolving simulation. While exploring a dgsspace
with many very imprecise, but comparatively short-runnéngu-
lations, users often want to see the continuous progre$edim-
ulation.

4.1 Dynamic linking

In the polymerisation kinetics application, we use a sntalstom
dynamic linker to dynamically load and link the compiled Gleo
back into the main Haskell program. It is based on the corbef t
dynamic linker described in [15] and provides a simple bigdi
to the GHC Haskell runtime, implementing a barebones ligkin
system for C objects, using the four functions:

pluginInit : I0 O

pluginLoad :: CString -> IO Bool
pluginResolve :: IO Bool

pluginSym : CString -> I0 (Ptr a)

The entire linker and compilation manager is itself justrol@0
lines of Haskell code.

Simple Monte-Carlo methods, such as the approximation, of
are almost trivial to parallelise. The large number of instegent
stochastic experiments can be easily distributed overipheilpro-
cessors, as long as we ensure that the statistic propeftiesr o
source of randomness are robust with respect to paralleliére.
The only communication between the parallel threads iseaetid
of the simulation when the local results need to be combinga i
a global result. This can be achieved using standard phradlac-
tion operations (e.g., parallel folds) and will usually gontribute
to the overall runtime in any significant way.

5.1 Parallel Monte-Carlo methods

Parallel Monte-Carlo methods, such as the option pricisgudised
in Section 3.2, belong to the class of embarrassingly pnabb-

When passed an object handle by the compilation manager, alems. They require only very little communication and synocti-

simulator object is loaded and resolved, and the linkernsta C
function pointer to the C simulator, wrapped as a Haskell@alVe
achieve this by the following function, which use the cosien
functionwithCString from the Haskell foreign function interface
(FFI).

loadAndGetSym :: String -> String -> I0 (Ptr a)
loadAndGetSym objFile sym =
withCString objFile $ \objFileC ->
withCString sym $ \symC -> do
pluginInit
pluginlLoad objFileC
pluginResolve
pluginSym symC
We might call this with

loadAndGetSym "simulator.o" "doSimulate"

4.2 Foreign evaluation

Once the C pointer associated with the given symbol is retddy

the linker, control can then pass from Haskell to C, by ewaiga
the function pointed to by the obtained C pointer. Howevercan-
not directly coerce the C function pointer to a normal Hasfkeic-

tion value, as normal Haskell functions are representddrdiitly.

We can however, throw the function pointer to the C runtimaciv
can then execute the function. We do this by calling a C wrappe
apply function, with the function pointer as an argument. The C
functionapply itself is imported into Haskell via the Haskell FFI:

foreign import ccall unsafe "apply.h apply"
apply :: Ptr () -> 10 O

whereapply itself is a function to evaluate its argument:

void apply(void (*f)(void)) {
£0;
}

Now, we can evaluate a C function by passing itpply. Using
the FFI, C functions can also call into Haskell and so realisgo-
way connection between the simulator and the renderer.

5. Parallelisation

Processor technology has, at least for the moment, finallyhbi
limit of its ability to speed up sequential programs by iragiag
clock rates and similar. Instead, processors increasirgjly on
explicit, software-controlled parallelism to achieve egpeip over
successive generations of architectures—examples, dteaore
and many-core architectures as well as modern GPUs. Hemge, a
method to solve computationally intensive problems needzdt
dress parallelisation if it is to be of continuing relevance

sation, and so eliminate one big problem for efficient petake-
cution. What remains is adequate load balancing; i.e.,doratex
options, some stochastic experiments may need more porcess
time than others. So, in general, givBrprocessing elements (PES)
and N independent stochastic experiments, assigiNiig® exper-
iments to each PE may not utilise the parallel machine ogiyma
However, given the stochastic nature of the algorithm, waeek

to see a uniform distribution of experiments of differentgex-

ity over all PEs, which leads to good load balancingvifis much
bigger thanP.

Unfortunately, the situation is often more complicated iag
tice. Although, approximation by Mont-Carlo methods, iaitttyp-
ical application areas, usually converges faster thanrméatestic
numeric approximations, the standard convergence is fioiptax
problems still not sufficiently fast. In this casariance reduction
methods are usually used to improve the convergence behaio
the algorithm. Some of these methods, such as the additiseaf
anantithetic pathand the use of aontrol variate do not interfere
with a parallel implementation. However, others techngjugich
assequential importance samplingrevent us from generating the
random variables of the different stochastic experimaemigpen-
dently. In fact, they may be become sequentially dependent.

5.2 Sequential Monte-Carlo methods

Sequential Monte-Carlo methods are, as their name suggexsts
straight forward to parallelise, especially if the best wagchieve
convergence fast is to keep tracking one path for a large ruoth
steps, as is the case in our polymerisation kinetics simulat

At the end of Section 3.3, we discussed that for polymensati
kinetics, we can improve the quality of the simulation resutwo
ways: by increasing the system size, or by repeatedly stingla
the same system and averaging over the result. The first agpro
is not suitable for parallelisation, due to the inherenusedjal na-
ture of Markov-chains. However, the second approach, wtich
trivially parallel, is also problematic for our particulapplication:
as it turned out, the systems the Chemists were interestsatlian
unfortunate property. In order to get feasible numbers demdes
with the lowest concentration in the system, the system lsimb
to be so big that the simulation took hours or more to run on one
processor, and the result of a single simulation alreadyof/asf-
ficient quality. Fortunately, there is a solution to this lgem: the
kinetics simulation (like all non trivial simulations) me simpli-
fying assumptions about the laws that determine its bebavi@ne
of the simplifications in our context is that we abstract abherpo-
sition of the molecule in the system. If two molecules areafaart,
they would, in reality, be less likely to react. Now, we carksase
of this and split the system into several subsystems, rumsithe
ulation of each subsystems independently in parallel omrsep
PEs. We only have to make sure thatmix—i.e., gather, average,
and re-distribute—uwith sufficient frequency to model thexBnian

70

T T T

T
generic simulator (gcc)
generic simulator (icc)
specialised simulator (gcc) ===+

60 L specialised simulator (icc) = = = - i

50 B

40 - p

Time (sec)

30 - 1

20

10

o k=T | | L
107 2+107 3+107 44107
Simulator steps

54107

Figure 6. Comparative running times for generic and specialised

polymerisation kinetics

motion of the molecules. In this way, we can parallelise thglia
cation without compromising the quality of the result. Oficse,
the speed up will be slightly less than for a trivially pagaMonte-
Carlo simulation, as the mixing triggers communicationwdweer,
as the benchmarks in the following section show, the paisdkion
is still very good.

Although, our use of regularity averaging over a set of palral
executing sequential Monte-Carlo simulations was manaby
the physical intuition of spatial separation and Browniaotion
in a liquid, the same approach to parallelisation is moresgaly
applicable to sequential Monte-Carlo. Regular averagireg a set
of parallel sequential simulations will improve the acayraf the
intermediate results and so in many cases accelerate gemoer.

6. Results

The initial objective of our computational chemistry prdjevas
simply to implement a fast, parallel simulator. It needetbecsuf-
ficiently generic to support the type of advanced systemmeha
star polymers, that the available commercial simulatordccaot
satisfactorily run. The commercial simulators did not dilke sup-
port reactions involving star polymers, and even thougtai ywos-
sible to work around this restriction, the simulations jiegik too
long. We started by implementing a generic prototype in ldbsk
It quickly became clear that a pure Haskell implementatiambe/
not be sufficiently efficient, as there would always be a cedeer-

head. So we implemented a second simulator, in C this time. Th

Haskell version relied heavily on algebraic data typeshéigrder
functions, and pattern matching. In C, the generic simulatas
much more painful to implement, so we opted for a strippedrdow
less generic and therefore fairly optimised version of thaskell
implementation. Even in C, though, it was clear that the cémt
the limited generality were high, which inspired us to explthe
described generative approach.

6.1 Performance of sequential simulator

For the benchmarks discussed in this subsection, we sieauat
simple styrene RAFT (reversible addition fragmentati@nsfer)
polymerisation, with only linear (single chain) polymers.

Figure 6 compares the running times of the (not fully) generi
C simulator with the specialised code generated and loagléokb
Haskell framework. As we can see, the specialised codess ttoa
factor of three faster than the already partially optimi€agersion.

The reason for the significant performance difference besom

clear when we compare the assembly code generated by the C

compiler for the following program fragment, which is pafttioe
actual reaction application code. First, let us have a lddkeaC
code, for one particular reaction type in the generic sitonia

int doReact (..) {

/* Disproportionation */

if (isPolyMol (*moll) &&
isPolyMol (*mol2) &&
ms2 &&
isPolySpec (*msl) &&
isPolySpec (*ms2))

*noRes = 2;
initMol (*rmoll, msl, moll->len);
initMol (*rmol2, ms2 ,mol2->len);
return (1);

)

As we can see, the generic polymer simulator must interpret a
data structure representing the various molecule typesiling
them according to general rules. This means a wide rangeaof re
tions can be simulated. However, there is a performance Tbhist
performance cost is starkly illustrated by comparing treeatbly
generated fodoReact () between the generic simulator and the
reaction-specialised version.

In particular, a number of boolean conditions must be satlsfi
to perform the reaction. This involves indirections inte tieneric
molecule data structure. When the reaction finally takesepleve
must again indirectly update fields of the result structure.

Unsurprisingly, the C compilérproduces less than ideal as-
sembly for the generic C code, with less than ideal regisser, u
branches, and too much memory traffic.

doReact:

HE if (isPolyMol (*moll) &&
movl (hesi), %hedx
movl (Yedx) , ‘hedx
testl %hedx, ‘hedx
jne ..B1.19

.B1.5

HHH isPolyMol (*mol2) &&
movl (%ebx) , %edx
movl (%edx) , %edx
testl %hedx, Yedx
jne ..B1.10

.B1.6
testl fheax, %heax
je ..B1.10

..B1.7:

1 ms2 &&

HHH isPolySpec (*msl1) &&
movl (%hecx) , %edx
testl %edx, ‘hedx
jne ..B1.10

.B1.8

HHH isPolySpec (*ms2)) {
movl (Yeax), %edx
testl %edx, ‘hedx
jne ..B1.10

HHH /* Disproportionation */

..B1.9:

HH *noRes = 2;
movl 36 (%esp), %edx

3Intel C compiler, which outperformed GCC in our tests.

movl $2, (Yhedx)
53 initMol (*rmoll, msl, moll->len);
movl 28 (%hesp), %hedx
movl hecx, (%hedx)
movl 4(%esi), hecx
533 initMol (*rmol2, ms2 ,mol2->len);
movl 32(%esp), %hesi
movl %hecx, 4(%edx)
movl %heax, (%esi)
movl 4(%ebx), %heax
movl 32(%esp), %ebx
movl %heax, 4(%ebx)

return (1);

movl $1, %eax
popl hebx
popl hesi

ret

The situation is vastly different once we special&gReact ()
body to the reaction at hand. Rather than employ generic-stru
tures and logic for interpreting the reaction rules, we die &
encode the specific, statically-known reaction cases asdtseas

C enumerations. As a result we get an efficient implementaifo
the doReact () logic as a switch. The various results are stati-
cally known, and may also be encoded in simple atomic types;|
ing to much improved register utilisation. Here we see thaen
generated code for the same reaction as above, speciatised f
particular system:

switch (reactionIndex) {

case dispro:

no_of_res = 2;
specl_ind = D;
spec2_ind = D;
rll = moll_len;
rl2 = mol2_len;
break;

This code fragment is compiled to almost optimal assembly, a
simple vectored jump for the switch, and 4 instructions tdgren
the reaction:

movl ..1..TPKT.11_0.0.10(,%ebp,4), %edx
jmp *Jedx
..1.11_0.TAG.5.0.10:
..B7.26:
movl $2, %edx
movl $4, ebp
movl $4, Yecx
jmp ..B7.38

Comparing the two assembly code fragments, it becomes abvio
why the generated code easily outperforms the hand writtaaric
C simulator as shown in Figure 6.

The Monte-Carlo method we used for our implementation has
been applied before, for example in [6]. The specialisedivarof
our generator outperforms the implementation describgg] ioy a
factor of 2.6 on an AMD Athlon 64 3200+. That s, the performan
in [6] is comparable to that of our generic simulator.

6.2 Performance of parallel implementation

Let us now have a look at the performance of the parallel code.
Parallelism is implemented using standard MPI [8] libragfi
As MPI libraries are available for virtually all multiprosgor ma-

5000 T 5000

T T T T T
8x single core distributed Pentium 4 cluster (1015 particles)
8x ONE core of dual-core AMD Opteron shared memory (10~ particles)
8x single core distributed Pentium 4 cluster (109 particles)

8x ONE core of dual-core AMD Opteron shared memory (1(}0 particles)
1 core of dual-core AMD Opteron (10" particles)

4500 4500

4000 4000

3500 3500
3000 3000

2500 2500

Time (seconds)

2000 2000

1500 1500
1000 1000

500 500

Processing elements

Figure 7. Run time of generated simulator on cluster and shared
memory systems

T T T T
8x single core distributed Pentium 4 cluster (1018 particles)
8x ONE core of dual-core AMD Opteron shared memory (10~ particles)
8x single core distributed Pentium 4 cluster (10, particles) **
8x ONE core of dual-core AMD Opteron shared memory (10° particles) >

Relative Speedup

PE

Figure 8. Speedup on shared memory and cluster systems

the specialised, parallel simulator code, both on a cluster a
shared memory machine. The cluster is a commodity Linux-clus
ter, containing a mixture of 2.6Ghz and 3.2Ghz Pentium 4S pro
cessors. The shared memory machine contains eight AMD Athlo
64 3200+, 2.2Ghz processors. Even though they run on a lieeser
guency, they are faster than the cluster nodes, as they hrggex
first and second level cache, and higher memory bandwidth. We
ran both simulations with0° and10'° on both architectures. Due
to the better hardware architecture, the shared memory ineach
outperformed the cluster on both benchmarks (Figure 7} Bot
chitectures show excellent speedup for 198° benchmark. The
10° system is too small for the communication and synchrornigati
overhead to pay off (Figure 8 & Figure 9).

6.3 Comparison with PDE Solver

Finally, we compared the running time of of various spes&di
polymer simulators against the leading commercial packR&REDICI
(version 6.36.1, produced by Computing in Technology (CiT)

chines, the code can run on most architectures. Figure 7 and 8GmbH) [23, 22], running the same reaction. PREDICI is not a
show the absolute running times and speedups respectifely o Monte-Carlo simulator—it calculates the distributions $mtving

10

110 T T T T T T

parallel efficiency

60 B

10° particles, cluster
50 r 10* particles, cluster
10° particles, shared memory

10%° particles, shared memory == == = -
T T T

L L L
1 2 3 4 5 6 7 8
number of processors

40

40000 T T T T T T

35000 - q
Logarithmic scale

10°s p— T T T T T
30000 g

10"s 3
25000 q

r

20000

simulation time / seconds

E
E
)

15000

(€3] 2 3 (] (5 (6
10000 R
5000 |]
== — L ==
(1) PREDICI (2)MC10*° (3)MC10° (4)MC 10'°/8 (5) MC 10°/8 (6) MC 100/ 16

Figure 9. Comparative efficiencies of shared memory and dis-

tributed simulations

the partial differential equations (PDE) that describe shistem
and the reactions. Therefore, the result of a PREDICI runbean
regarded as the correct distribution (as modelled by thesysnot
an approximation. Fot0'° particles, the simulation results were
identical to those of PREDICI. For0® particles, the results di-

Figure 10. Comparative running times for commercial PDE versus
our parallelising MC simulator

easy task. This in combination with the fact that the ad\gaaf
Monte-Carlo methods increases with the complexity of timeusi
lated molecules and reactions makes Monte-Carlo methodsya v
attractive option in numerically intensive applicatiohgttcan be
modelled by stochastic experiments. On top of this, our hgee-

verged when we used more than eight processors. We used a morerative approach to Monte-Carlo simulators improves timsing

complicated system star RAFT system for the benchmarksisn th
subsection. For the simple styrene RAFT that we used for e p
vious set of benchmarks, PREDICI's performance is comparab
to the Monte-Carlo simulator in [6]; i.e., our specialisédslators
still outperform it by more than a factor of two. On even sigpl
systems, PREDICI is more efficient then our Monte-Carloeyst
This is not surprising, as PDE solvers usually perform lpéktan
Monte-Carlo simulators for simple systems. Monte-Carloisi
lators show their strength when the simulated systems ge¢ mo
complex and the degrees of freedom increase.

We compared PREDICI against the specialised simulator; com
piled with the Intel C compiler. Moreover, we ran our partisied
simulator on a variety of cluster configurations, using theIM
implementation MPICH [14], with varying particle countshd
columns of Figure 10 list the results for the following bemarks:

1. PREDICI, on a 3.4Ghz single core Windows XP machine

2. Specialised polymer MC simulator, on a 3.2Ghz Linux Remti
4,10 particles

3. Specialised polymer MC simulator, on a 3.2Ghz linux Remti
4, 10° particles

4. Specialised polymer MC simulator, 8 node cluster® parti-
cles,

5. Specialised polymer MC simulator, 16 node clustet’ parti-
cles,

6. Specialised polymer MC simulator, 8 node clusté’, parti-
cles.

For a fair comparison with PREDICI, we need to consider tmsru
with the 10'° particles. Figure 10 shows the results on a linear
as well as a logarithmic scale. Our specialised Monte-Csirte
ulator clearly outperforms PREDICI already with one cpu.rito
over, our Monte-Carlo simulator scales well with incregsitode
count and so is able to exploit current clusters and the aénterg
many-core architectures. Parallelisation of PDE solvemsat an

11

time significantly while simultaneously supporting a widenge of
chemical systems—e.g., our system is the only one that cectli
simulate star polymers.

7. Related Work
7.1 Partial evaluation

Partial evaluators for C, such as C-Mix [1], has similar ahjes
as the work presented here, namely to achieve high-penfigrnjet
easily maintainable code. It is also similar in that it relan the C
compiler to apply standard optimisations which have beebkeal
by the specialisation. However, there are also a numbemoffsi
icant differences: In contrast to our approach it is neiffessible
nor necessary in C-Mix to provide domain specific specitiisa
information to the tool. This can be an advantage, sincentipe-
menter of the generic code need not be concerned about |[gossib
specialisations. However, as the computational cheméstaynple
demonstrates, it also has serious drawbacks: the mostieffep-
timisations in the specialised code were a consequence afuth:
tomised data structures and jump tables used, both of wioighi c
not have been automatically deducted from the generic sitaul
Furthermore, the use of C-Mix is not transparent to the user.
our approach, the user does not need to have the source ctige of
generator, and (as long as there is a C compiler availablesosyts-
tem) needs not be aware at all that the specialisation iseméipgp
behind the scenes because the C code is compiled and dyfigmica
linked back into the executable of the simulator. Also, iempént-
ing the fully generic simulator in C would have been a majforef
compared to the Haskell implementation—as mentioned befoe
heavily relied on higher-order functions, pattern matghémd al-
gebraic data types, all language features not or not péatlgwvell
supported in C.

Other partial evaluators, such as Tempo [4], focus on differ
application areas, such as systems programming.

Using C++ templates as a substrate for partial evaluatisn, a
in [18], allows the addition of domain specific informatiamd it

would be interesting to investigate if it is possible to getikar
results as we have with our approach. However, it would defini
be necessary to push the limits of C++ template programnang,
technique which can be fairly tricky and error prone. As with
Mix, however, the user of the simulator would have to haveeasc
to the source code, and instantiate, compile and link thgrpr.

7.2 Generative programming

Generative programming also targets a similar problem, &ord
example [21], employ a meta-language to describe the gémgra
component, whereas we use an existing general purposeaigegu
Haskell, which because of its support of higher-order fiomst and
user defined operators, is a good substrate for the simplé. RS
use.

FFTW [7] shares with our approach, the idea to use a func-
tional language to generate highly optimised low-level ecolth
fact, FFTW has clearly been an inspiration in that matteiis Th
is, however, where the similarity ends. FFTW provides aalijpr
whereas we presented an application architecture. FFTé\akd
dynamic code optimisation, whereas our approach is putatics
Furthermore, the type of specialised algorithms are ratifierent.

7.3 Polymerisation kinetics

The Monte-Carlo strategy we use for the simulation of the/pol
merisation models is similar to the one method used by [H]], [
[13], and [9]. Although [6] use multiple machines to run ipea-
dent simulations at the same time, to increase the accufatye o
result, no one has implemented a parallel version of a ssigie-
lation. In Subsection 6.2, we compared the performance] ofifé
our system.

8. Conclusion

We presented a software architecture based on speciabgimg
ulation generators for numerically intensive simulati@mploy-
ing Monte-Carlo methods. We discussed how various MontdeCa
methods can be mapped to this design, including a detaiksttige
tion of a polymerisation kinetics simulation. We benchneatthe
polymerisation kinetics simulator in detail and found tihét much
fast than all competing software products. At the same ttrhan-
dles a wider range of chemical processes. In other words,s&e u
functional programming to reconcile high performance ard-g
erality in simulators based on Monte-Carlo simulation. btiver,
we have successfully parallelised the kinetics simulatidrich re-

quired a new technique as the simulation is based on a Markov-

chain. This makes out approach future proof in the light efchbr-
rent trend in hardware to add extra parallelism insteadayeiasing
single-threaded performance.

References

[1] H. M. Arne J. Glenstrup and J. P. Secher. C-Mix — speadilin of
C programs. IrPartial Evaluation: Practice and Theory1999.

[2] H. Chaffey-Millar, D. B. Stewart, M. Chakravarty, G. Ket, and
C. Barner-Kowollik. A parallelised high performance mongglo
simulation approach for complex polimerization kinetiG&ibmitted
to Macromolecular Theory and Simulatiqriz007.

M. M. T. Chakravarty, G. Keller, and S. Peyton Jones. Assted type
synonyms. INCFP '05: Proceedings of the Tenth ACM SIGPLAN
International Conference on Functional Programmimgges 241—
253, New York, NY, USA, 2005. ACM Press.

C. Consel, L. Hornof, J. L. Lawall, R. Marlet, G. Muller, Bloy,
S. Thibault, and E.-N. Volanschi. Tempo: Specializing eyst
applications and beyondACM Computing Surveysol 30(no 3),
September 1998.

3

—

[4

[l

12

[5] K. Czarnecki and U. W. EiseneckerGenerative programming:
methods, tools, and applicationsACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 2000.

[6] M. Drache, G. Schmidt-Naake, M. Buback, and P. Vana. Niode
RAFT polymerization kinetics via Monte Carlo methods: cuimy
dithiobenzoate mediated methyl acrylate polymerizati®olymer
2004.

[7] M. Frigo and S. G. Johnson. The design and implementation
FFTW3.Proceedings of the IEED3(2):216—-231, 2005. special issue
on "Program Generation, Optimization, and Platform Adagte.

[8] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, Bzbétg,
W. Saphir, and M. Snir.MPI: The Complete Referenceolume
2—The MPI-2 Extensions. The MIT Press, second edition, 1998

[9] J. He, H. Zhang, and Y. Yang. Monte carlo simulation of ioha
length distribution in radical polymerization with traesfreaction.
Macromolecular Theory and SimulatipA:811-819, 1995.

[10] P. Jackel.Monte Carlo methods in financeJohn Wiley and Sons,
2002.

[11] N. D. Jones, C. K. Gomard, and P. Sestd?artial Evaluation and
Automatic Program GenerationPrentice Hall International, Hemel
Hempstead, Hertfordshire, UK, 1993.

[12] S. R. Ladd. Acovea (analysis of compiler options vialetionary al-

gorithm). http://www.coyotegulch. com/products/acovea/,
2007.

[13] J. Lu, H. Zhang, and Y. Yang. Monte carlo simulation afddics and
chain-length distribution in radical polymerizatioMacromolecular
Theory and Simulatiqr2:747-760, 1993.

[14] MPICH. Argonne national laboratoryhttp://www-unix.mcs.
anl.gov/mpi/mpich/, 2007.

[15] A. Pang, D. Stewart, S. Seefried, and M. M. T. Chakravdetugging
Haskell in. InProceedings of the ACM SIGPLAN Workshop on
Haskell pages 10-21. ACM Press, 2004.

[16] S. W. Prescott. Chain-length dependence in livingticdied free-
radical polymerizations: Physical manifestation and racrrlo
simulation of reversible transfer agenfglacromolecules36:9608—
9621, 2003.

[17] C. Robert and G. CaselldMonte Carlo Statistical MethodsSpringer
Verlag, second edition, 2004.

[18] T. L. Veldhuizen. C++ templates as partial evaluatidn. Partial
Evaluation and Semantic-Based Program Manipulatipages 13—
18, 1999.

[19] T. L. Veldhuizen and D. Gannon. Active libraries: Retking
the roles of compilers and libraries. Rroceedings of the SIAM
Workshop on Object Oriented Methods for Inter-operable&dic
and Engineering Computing (00’98)998.

[20] T. L. Veldhuizen and D. Gannon. Active libraries: Retking
the roles of compilers and libraries. Rroceedings of the SIAM
Workshop on Object Oriented Methods for Inter-operable&dic
and Engineering Computing (OO’983IAM Press, 1998.

[21] E. Visser. Meta-programming with concrete object aynt In
D. Batory, C. Consel, and W. Taha, editoBenerative Programming
and Component Engineering (GPCE'Q2plume 2487 of_ecture
Notes in Computer Sciencpages 299-315, Pittsburgh, PA, USA,
October 2002. Springer-Verlag.

[22] M. Wulkow. The simulation of molecular weight distritions in
polyreaction kinetics by discrete galerkin methot#&acromolecular
Theory Simulation5:393—-415, 1996.

[23] M. Wulkow. Predici. http://www.cit-wulkow.de/tbapred.
htm, 2007.

