
Message Correlation for Conversation

Reconstruction in Service Interaction

Logs

Hamid R. Motahari Nezhad, Regis Saint-Paul, Boualem Benatallah

School of Computer Science and Engineering
The University of New South Wales

Sydney, Australia
{hamidm|regiss|boualem}@cse.unsw.edu.au

Fabio Casati, Periklis Andritsos

University of Trento
Trento, Italy

{casati|periklis}@dit.unitn.it

Technical Report

UNSW-CSE-TR-0709

March 2007

Abstract

The problem of understanding the behavior of business processes and
of services is rapidly becoming a priority in medium and large companies.
To this end, recently, analysis tools as well as variations of data mining
techniques have been applied to process and service execution logs to per-
form OLAP-style analysis and to discover behavioral (process and protocol)
models out of execution data. All these approaches are based on one key
assumption: events describing executions and stored in process and service
logs include identifiers that allow associating each event to the process or
service execution they belong to (e.g., can correlate all events related to the
processing of a certain purchase order or to the hiring of a given employee).
In reality, however, such information rarely exists.

In this paper, we present a framework for discovering correlations among
messages in service logs. We characterize the problem of message correlation
and propose novel algorithms and techniques based on well-funded princi-
ples and heuristics on the characteristics of conversations and of message
attributes that can act as identifier for such conversations. As we will show,
there is no right or wrong way to correlate messages, and such correlation
is necessarily subjective. To account for this subjectiveness, we propose an
approach where algorithms suggest candidate correlators, provide measures
that help users understand the implications of choosing a given correlators,
and organize candidate correlators in such a way to facilitate visual explo-
ration. The approach has been implemented and experimental results show
its viability and scalability on large synthetic and real-world datasets. We
believe that message correlation is a very important and challenging area of
research that will witness many contributions in the near future due to the
pressing industry needs for process and service execution analysis.

1 Introduction

The problem of understanding the behavior of information systems and the
processes and services they support is rapidly becoming a priority in medium
and large companies. This is demonstrated by the proliferation of tools for
the analysis of process executions, service interactions, and service depen-
dencies and by recent research work in process data warehousing and pro-
cess discovery. Indeed, the adoption of business intelligence techniques for
business process improvement is the primary concern for medium and large
companies [7].

The opportunity for such analysis comes with the increased automated
support, which corresponds to the ability to observe (collect events on) ex-
ecutions and interactions, thereby building information sources that can be
used for the analysis. Typical applications consist in monitoring process and
service executions, deriving statistics such as average process durations, or
identifying steps in the process where the most time is spent (bottlenecks).
Recently, variations of data mining techniques have also been applied to
process and service execution logs to achieve important results such as (i)
process and protocol discovery [20, 14] and (ii) root cause analysis for per-
formance or quality degradations in process and service executions [18, 6].

All these approaches and solutions to business process and service anal-
ysis are based on one key assumption: events describing executions include
an instance ID which identifies the set of events that belong to the same
execution (also called case) of a process or service, e.g., belong to the pro-
cessing of the same purchase order. Without this element that correlates
events, execution analysis is difficult if not impossible. In such situations,
we are neither able to compute basic statistics such as average process du-
rations (e.g., we cannot find the average time elapsed between event A and
B in a process because we cannot say which pairs A,B belong to the same
process execution), nor to perform more complex tasks such as process and
protocol discovery.

In reality, the situations in which these correlators are present are very
limited, which means that the applicability of previous research (including
the one by the authors in [14]) is also limited. In process execution, instance
IDs are essentially present only for those processes supported by a workflow
management system (WfMS), and specifically for that part of the business
process supported by the WfMS. Today a small percentage of processes are
supported by a WfMS and even in those cases only a small portion of the
entire business process is WfMS-based. Hence, process analysis today is lim-
ited to the portions of the processes supported by the WfMS. Taken from the
services side, the problem is similar: when studying conversations among
services (a conversation is a sequence of message exchanges between parties
for achieving a certain goal, e.g., completing a purchase order), we rarely
find conversation identifiers in web service execution logs. Only if the ser-

1

vice implementation is tightly coupled with the logging infrastructure (e.g.,
if IBM WebSphere Integration Developer and IBM Process Server are used
together [15]), then it is possible that identifiers are included. However, in
many cases the logging infrastructure is offered as a standalone product (as
in the case of HP SOA Manager and CA SOA Manager) that is not linked
to individual service implementations. In these cases, the information about
identifiers is not known to the logging infrastructure, but is hidden some-
where in the exchanged messages. In fact, this is one of the main obstacles
that the authors faced on integrating automated process/protocol discov-
ery solutions in HP SOA Manager, which is a monitoring and management
infrastructure for Web services, and was one of the motivations of this work.

This paper tackles the problem of discovering correlations among mes-
sages exchanged by services. Specifically, our goal is that of correlating
and grouping messages based on the conversation they belong to. This is
equivalent to deriving some conversation IDs to label each message. In par-
ticular, we define the problem of message correlation, we present algorithms
for correlation, and we show how to perform semi-automated correlation by
leveraging user input as part of the correlation process.

Message correlation is challenging for several reasons. First, the def-
inition of what constitutes a conversation is subjective. As an example,
consider the interactions of a game service with its clients (players). One
may be interested in grouping the messages based the session identifier into
different sessions, in each players may play several games. Another may be
interested to group the message based on the game identifier regardless of
individual players involved. A third analyst may be interested in group-
ing the same messages based on player identifiers regardless of sessions and
games that they have been involved in.

Even if the problem was clearly defined, we would still have to face the
challenge of how to perform correlation. Simple approaches such as only
looking at temporal vicinity cannot be applied, as we may have dozens of
concurrent conversations at each point in time, and as the time gap between
two invocations of a service in the context of a same conversation can range
from seconds to days. Looking at message content is also far from trivial,
as there is no obvious choice for identifying message attributes that can
act as correlators, and as the correlation logic can be quite complex. For
example, messages that are related to the same purchase order processing
may all share the same order identifier, but it can also be that some messages
include order identifiers, others include payment identifiers, but they are all
related to the same order processing. In addition, not a single attribute
but a set of attributes may be used to correlate messages to one another
in a same conversation. Even if we knew that there is in the dataset a
(set of) attribute(s) that can act as correlator, finding the appropriate one
is not trivial, as there are many attributes that could be used as a basis
for partitioning messages into conversations (e.g., consider the game service

2

Front-end

Refinement

operations

Visual Rule

Exploration

Composite

Rule

Inference

Atomic

Rule
Inference

Back-end

User Driven Exploration & Refinement

Attribute

Pruning

Rule Summarization Log tables

Candidate Correlation Rule Inference

Figure 1: Overview of the correlation discovery process

data introduced above).
A final challenge consists in understanding how we can leverage possible

user knowledge in performing the correlation and how we can guide users
in the choice of a partitioning that is consistent with the user’s correlation
needs (which in turn depend on the kind of analysis to be performed on the
correlated sets).

In general, performing message correlation therefore requires exploring
different combination of a large number of message attributes and various
possible correlation logics without a clear and formally identifiable goal.

In this paper, we propose a set of algorithms and techniques for message
correlation. Figure 1 shows an overview of our proposed solution. It con-
sists of two components: a back-end component that automatically discovers
candidate correlators and a front-end component that provides a visual envi-
ronment to explore the discovered correlations and refine them interactively.
This paper, and the proposed solution, provides the following contributions:

1. We define and characterize the problem of message correlation, illus-
trating the different natures of the correlation problem and introduc-
ing the notion of correlation dependency, which identifies whether two
messages are related, and why they can be considered as being re-
lated. These dependencies are expressed by means of rules, which are
functions over message attributes.

2. We identify classes (patterns) of rules that can be used to define de-
pendencies. For example, a simple rule is to identify correlation de-
pendencies based on whether an attribute A has the same value in two
messages, but more complex rules are possible. The identification of

3

these classes is based both on common ways of performing correlation
as well as on recommendations by standardization proposals for how
services should perform correlation.

3. We present a method for discovering correlation rules based on a level-
wise approach [12]. We present a set of algorithms to analyze logs of
messages and derive, for each rule class, a set of candidate rules that
identify correlation dependencies among messages. We first exclude
from the analysis those attributes that are irrelevant for correlation
purposes, and then leverage the remaining attributes to derive the
rules (steps attribute pruning and atomic rule inference in Figure 1).
The algorithms operate based on (i) criteria and heuristics on the
typical characteristics of conversations, and (ii) criteria and heuristics
on typical characteristics of attributes whose values can be used as
discriminators for defining membership of messages to conversations
(and that therefore can be used to define correlation rules). As a
simple example of such heuristics, we assume that a log will not contain
as many conversations as there are messages, and will also not be
composed of just one conversation comprising all messages. We expect
that if a correlation rule exists, it will identify correlations to generate
a proper partition of the log, where the number of conversations is
more than one but less than the number of messages.

The correlation dependency may be expressed using by a composi-
tion of rules rather than by a single atomic rule. For example, some
messages within the same conversation are correlated via the orderID,
others via a paymentID (step composite rule inference in Figure 1).
We introduce an approach for atomic rule composition using conjunc-
tive and disjunctive operators.

4. Due to the subjective nature of the correlation problem, the set of
candidate rules is derived in a conservative manner, meaning that the
algorithm tries to capture a wide range of correlation rules potentially
of interest. To help the user in exploring the discovered rules, we define
metrics computed based on the statistics of the conversations that are
result of using a given rule to group messages in the log. We present a
visual environment, in which rules are represented in a lattice. We also
allow the user to refine the discovered correlation rules that leads to
adding/removing rules to/from the set of discovered rules. In addition,
we allow for the user knowledge to be incorporated into the correlation
discovery approach as part of heuristics that drive the discovery.

In this paper, we also substantiate the arguments by means of exper-
iments on real and synthetic datasets and we discuss our implementation.
We believe that the proposed correlation discovery framework can have a

4

significant impact, also outside the area of services and conversations. For
example, analogous concepts can be applied to correlation among process
execution data (service messages are not significantly different from pro-
cess execution events, and the problem of subjective interpretations of what
constitutes a business process also applies), and hence can enable business
process correlation and analysis throughout heterogeneous enterprise sys-
tems.

The reminder of the paper is structured as follows: Section 2 introduces
some definitions and concepts and defines the correlation discovery prob-
lem. Section 3 presents our approach for automated discovery of correlation
rules. In Section 4 we present our implementation and experimentations,
conducted over three interaction logs. We discuss related work in Section 5.
Finally, we conclude and discuss the future work in Section 6.

2 Message Correlation Problem

2.1 Web Service Logs

Messages are exchanged between services to fulfill a goal, e.g., to place a
purchase order, receive an invoice, pay for good, and finally arrange for
shipping. Taken together, these messages form a conversation that achieves
a single business transaction. At any given time, there might be several
ongoing conversations, corresponding to several clients interacting simulta-
neously with a service.

Messages exchanged during service conversations can be logged using
various infrastructures [4]. For simplicity, we define in this article a generic
log model where each message is logged as an event e, represented by a tuple
of a relation L = {e1, e2, . . . , em}, and ei ∈ A1 × A2 × · · · × Ak, where k is
the number of attributes and m is the number of events. An event may have
several attributes, corresponding to the attributes of the message exchanged.
We denote by e.Ai, 1 ≤ i ≤ k, the value of attribute Ai of event e. We further
assume that each event e has at least three other attributes: the timestamp
at which the event is recorded (e.τ), the sender of the message (e.s), and the
receiver (e.r). In the following, we use interchangeably message—the actual
document exchanged between services—and event—their representation as
tuples in the log.

Note that web service interactions usually involve structured (XML)
messages (of different types, and hence with different attributes) organized
in sections such as an header and one or more body parts. A preprocessing
ETL-like is required to extract features from XML documents and represent
them as event tuples (see Section 4). The attributes A1× . . .×Ak represent
here the union of all the message attributes that belong to the different mes-
sage types. Each message (event) will only have a subset of these attributes.
We assume that there are some attributes that allow to determine if any two

5

message belong to the same conversation. We call such attributes correla-
tor attributes, and the dependencies (relationships) defined over correlator
attributes as correlation rules.

2.2 Correlation Rules

In this paper, we define a correlation of messages in a service log as a parti-
tion of log L into a collection of conversations c1, c2, . . . , where each conver-
sation ci is a sequence of events (each corresponding to a message), denoted
ci = 〈e1, e2, . . . 〉. Note that, as we stressed in the introduction, correlation
has a degree of subjectivity, so there is no “right” or “wrong” partitioning.
The key toward a “good” partitioning lies in finding a way to group mes-
sages based on their relationship, for the sake of facilitating service execution
analysis and protocol discovery.

The approach we follow is based on deriving a set of correlation rules,
which are functions over pairs of correlator attributes for event pairs (ex, ey).
Correlation rules specify whether events belong to the same conversation. A
correlation rule R can alternatively be seen as a relation over L × L where
(ex, ey) ∈ R if and only if ex and ey are correlated. In general, a correlation
rule can be defined as an arbitrary function over a pair of events. The precise
form of a rule depends on the specific domain for which the rule is defined.
We call atomic a rule defined on only one pair of attributes. For example,
an atomic rule may specify an equality relationship between attributes Ai

and Ai in (ex, ey), represented as ex.Ai = ey.Aj . A rule can be composite
when it is made of a conjunction or disjunction of atomic rules.

The correlation discovery problem is the problem of inferring, from the
data present in the log, how to correlate messages, that is, inferring the
correlation rule definition. In this paper, we perform message correlation
for the purpose of conversation discovery (reconstruction).

To derive correlation rules for messages, we first explore the different
forms that correlation rules may take. In the context of message correlation,
we leverage the different patterns in which dependency between messages
manifests itself in service logs. This patterns are defined based on analysis
of standard proposals and service implementations. Doing so, we restrict the
rules to follow a relatively small set of corresponding rule patterns. Then,
we analyze the log based on heuristics, that capture the subjective aspect of
correlation to derive the candidate correlation rules and to determine which
patterns can be applied.

2.3 Correlation Rule Patterns

In this section, we describe the correlation patterns commonly used for mes-
sage correlation in web services.

Key-based Correlation. In many cases, conversations among services

6

are characterized by the fact that all messages have the same value for certain
attributes. For example, when services adopt web services standards such as
WS-Coordination, WS-Conversation or WS-CDL all messages may include
a standard-specified attribute —typically called (conversation or instance)
identifier— that acts as the correlation element. Even when these standards
are not used, there may be an attribute that characterize the conversation.
For example, messages related to a procurement conversation will likely
have the same order ID, or the same pair 〈supplierID, orderID〉. Standard
proposals such as WS-BPEL allow for specifying a given (set of) attribute(s)
as correlator. In WS-BPEL the definition of correlation sets may be used
for this purpose.

Based on this observation, we define the key-based correlation pattern,
where some attributes of messages, called keys, are used to uniquely identify
a conversation. As per keys in relational databases, correlation keys can be
simple (single attribute) or composite (multiple attributes). For example, in
the log presented in Figure 2(a), messages can be correlated using the simple
key on attribute ConvID. In this case, the log contains two conversations
c1 = 〈e1, e3, e6〉 and c2 = 〈e2, e4, e5〉. Figure 2(b) presents a log where
correlation may be using a composite key on attributes CustID and OID,
resulting in conversations c1 = 〈e1, e3〉, c2 = 〈e2, e5〉 and c3 = 〈e4, e6〉.
However, contrary to the traditional concept of key in database, the value
of a key attribute is not unique per tuple in L but only it is unique per
conversation. Nevertheless, we do not know which events in L form a same
conversation a priori. As a consequence, it can not be known a priori if
correlation has to be done using this composite key or with either of the
simple keys CustID and OID. All these three rules are valid candidate
rules for correlating this log.

msg ConvID
e1 m1 1
e2 m1 2
e3 m2 1
e4 m2 2
e5 m3 2
e6 m3 1

(a)

msg CustID OID
e1 m1 c1 o1
e2 m1 c2 o1
e3 m2 c1 o1
e4 m1 c2 o2
e5 m2 c2 o1
e6 m2 c2 o2

(b)

Figure 2: (a) ConvID as a simple key, (b) CustID and OID as composite keys

Rules corresponding to key-based correlation are of the form:

(ex, ey) ∈ R⇔ ex.Ai = ey.Ai ∧ ex.Aj = ey.Aj ∧ . . .

where Ai, Aj , . . . are the attributes composing the key.
Reference-based Correlation. Messages in a conversation may be

related via links (references) that connect each message with a previous one
in the same conversation. For example, a reply message is often correlated

7

with the request message (most reply messages in Web services contain a
reply to attribute that links to the request). As another example, again
taken from the procurement domain, all messages related to the purchase
of a good will carry either the order ID, or the invoice ID, or both. In
this case there is no common key (the invoice ID appears only in the later
messages in the conversation), but there is always a way to link all messages
in the conversation (except the first) to a previous one. For example, there
is typically a message which includes both order ID and invoice ID, acting
as bridge and closing the missing link in the link chain. This correlation
pattern is supported by BPEL and can be defined using correlation sets.
It also could be implemented using RelatedTo attribute in WS-Addressing
standard that allows to refer to message ID (MsgID) of a previous message.

To account for this form of correlation, we introduce the reference-based
pattern, in which messages of a conversation (except for the first one), are
linked with a preceding one via a reference attribute. This pattern may have
various sub-patterns. For instance, each message is linked to the preceding
one in a conversation (chain). In Figure 3(a), events form the sequence
〈e1, e3, e5〉 where events of the pair (e1, e3) are linked by a common value
on attribute OID (Order Id) and the pair (e3, e5) by a common value on
attribute IID (Invoice Id). Another sub-pattern is the one where all mes-
sages are linked to the first message. For instance, in Figure 3(b), events e3
and e5 can both be correlated with event e1 since their value on attribute
Ref is equal to that of e1 on attribute OID.

Note that the attribute used for reference-based correlation may change
during a conversation. Furthermore, even the value used for reference corre-
lation may be common only to pairs of messages, not to the entire conversa-
tion. Hence, key-based correlation is not a particular case of reference-based
correlation. Similarly to key-based correlation, references may be defined
over more than one attribute.

If the key attribute(s) is known, then reconstructing the conversations
in a key-based correlation consists in a standard GROUP BY operation. In
reference-based correlation, this is not the case and a transitive closure of
the relation between attributes has to be computed.

msg OID IID PID
e1 m1 o1
e2 m1 o2
e3 m2 o1 i1
e4 m2 o2 i2
e5 m3 i1 p1
e6 m3 i2 p2

(a) chain

msg OID Ref
e1 m1 o1
e2 m1 o2
e3 m2 o1
e4 m2 o2
e5 m2 o1
e6 m2 o2

(b) tree

Figure 3: Reference-based correlation

8

For the chain example of Figure 3(a), a possible correlation rule would
be Rchain : ex.OID = ey.OID ∨ ex.IID = ey.IID. It would be Rtree :
ex.OID = ey.Ref for the tree example of Figure 3(b).

Time constraints on correlation. In some cases, it is not sufficient to
specify a correlation rule using equalities of attribute values to distinguish
between conversations. For example, in the case of a key-based correlation,
key values may be reused (recycled) over time and, thus, a key value uniquely
identifies a conversation only within a certain time window. Intuitively,
messages that are close in time have higher probability of being logically
related (be dependent). Hence, the correlation logic may have to include
temporal vicinity between events (though this is rarely a rule that can be
used by itself, since time can aid the definition of correlation but can rarely
be used as the only correlator, especially when it is possible to have many
concurrent conversations between a service and a same client).

Correlation rules would have to account for this situation with an ad-
ditional condition on the time difference between two messages, e.g. R :
|ex.τ − ey.τ | ≤ θ, where θ represents a maximal time separation between
two messages of a same conversation. It is also possible to specify the maxi-
mum duration of a conversation (the different of time between the first and
the last message of a same conversation). WS-CDL standard proposal sup-
ports definition of time constraints on correlation rules. We do not discuss
this issue further in this paper.

Combination of the above patterns. In general, correlation rules
may include a combination of atomic rules, of the same or of different pat-
terns. For instance, messages may first be correlated in a key-based way
while customer query for product catalogs or product description. Then,
after an order is placed, subsequent messages are correlated with reference
to that order. We discuss composition of rule patterns in Section 3.3.

3 Automated Discovery of Correlation Rules

The automated correlation rule discovery consists of three steps: (i) can-
didate attribute selection, which introduces techniques to select attributes
of L; (ii) atomic rule discovery, in which candidate attributes from the pre-
vious step are used to identify atomic candidate rules; (iii) composite rule
discovery, in which techniques for composing atomic rules are presented. We
adopt a level-wise approach [12] for generating, pruning and exploring the
space of potentially interesting correlation rules.

3.1 Candidate Attribute Selection

All attributes of log L are initially considered as candidates. Then, we
apply a number of heuristics to prune obvious non-candidates. Here, we first
discuss the heuristics and then explain the attribute selection techniques.

9

3.1.1 Heuristics

From the correlation patterns identified in Section 2.3, it can be seen that
attributes used in key-based correlation or reference-based correlation are
both some sort of “identifier” (code) attributes. While there can be a variety
of identifier domains (e.g. string for login names, or integer for customer
codes), these attributes share some common aspects, in particular with re-
spect to identifiers that are potentially interesting for correlation purposes:

1. The domain is nominal (string or number). When a number is used, it
is typically an integer. This allows to exclude for example attributes
containing floating point values. Similarly, free text attributes can be
excluded. In our approach, we differentiate the free text from string
identifier on the basis of the length of the string, and also the number
of words by setting a threshold (see Section 4).

2. The number of distinct values is rather large, as it needs to discrimi-
nate among many different entities, e.g., orders, invoices, or payments.
When the number of values is small (e.g., identifiers of the banks that
a company uses for payments), these identifiers are often used in con-
junction with other (more discriminating) identifiers to form, for in-
stance, a composite key. Hence, it is reasonable to avoid considering
attributes whose domain is too small when compared to the dataset
size. Furthermore, in general, the number of distinct values is not fixed
and depends on the log size (the higher the number of conversations,
the higher the number of distinct order IDs).

3. Values are repeated in the dataset. To be useful for correlation pur-
poses, a same value has to appear in at least in two messages (reference-
based correlation). Values that are unique in the dataset may reflect
partial conversations (i.e. only the first message has been logged) but
if a majority of the values of an attribute appear only once (in this
attribute or others) then it is more likely that this attribute is not an
identifier useful for correlation.

3.1.2 Correlator Attribute Selection

We now show how the above heuristics are put at work in identifying can-
didate correlator attributes in a key or reference based correlation rule.

First, we eliminate any attribute whose type is either floating point or
that contains long strings. We have set the threshold for what constitutes a
long string arbitrarily to 100 characters. Note that other methods could be
used to more precisely differentiate between free text and potential correla-
tors such as, for instance, analyzing the content of the text. Alternatively, a
manual selection of the attributes could prove very effective and would not
be too time consuming.

10

Then, we count the number of distinct values of each attribute Ai relative
to the total number of values (distinct ratio(Ai) = d/n, where d is the
number of distinct values, and n denotes the total number of non-null values
for this attribute). distinct ratio(Ai) defines a measure to decide if an
attribute is a non-candidate. In fact, based on the heuristics above, there
are two types of attributes that are not interesting:

• Attributes with categorical domains: Their characteristic, compared
with free text or identifiers, is to have only few distinct values. We
identify them by setting an arbitrary threshold called lowerThreshold
that defines a minimum for distinct ratio.

• Attributes that do not have repeated values: according to heuristics,
values of candidate correlator attributes have to be repeated some-
where in the dataset, either in the same attribute or in another one.
We can expect that most distinct values will appear at least twice
since they correlate at least two messages. In the case of value re-
peated in a same attribute, distinct ratio will be well below one. On
the other hand, if values repeat in other attributes, then we should
observe a large number of tuples with a null (empty) value on that
attribute. Indeed, if all value are non-null and they do not repeat, this
attribute would lead to correlate messages in conversations of a sin-
gle message. Hence, we can set an upper threshold for distinct ratio
(called upperThreshold hereafter) assorted with a condition on the
ratio of null values to the number of non-null values.

Thresholds are difficult to set. However, we only need to eliminate at-
tributes that are obviously non-candidate. Therefore, we can adopt a pes-
simistic approach and set these thresholds to the lowest (resp. highest)
extreme values so to reject only attributes for which the classification is
clear (See section 4 for how these values are set). Such way of settings does
not create problems as we accept more irrelevant attributes, however, it does
not impact significantly the performance of the process nor its final result.

3.2 Atomic Rule Discovery

In the previous subsection, we identified the candidate correlator attributes.
In this section, we present an approach for discovering atomic candidate
correlation rules. The atomic rule discovery process is based on finding the
intersection of distinct values of attribute pairs in L. We then present an
approach based on some general heuristics to prune non-candidate atomic
rules.

11

3.2.1 Candidate Discovery Approach

As the focus of this paper is on discovering key-based and reference-based
rule patterns for conversation reconstruction, as the first step, we look for
atomic candidate rules of form R : ex.Ai = ey.Aj , 1 ≤ i ≤ j ≤ k over
event pairs (ex, ey) ∈ L2. Such rules define equality relationships between
pairs of attributes for each event pair (ex, ey). To identify whether a given
candidate rule holds, we need to compute the support of each rule. The
support shows the number of pairs (ex, ey) for which the values of attributes
ex.Ai and ey.Aj are equal. A high support implies that the correlation rule
holds for a large subset of the dataset and that equal values found in these
two attributes is not a mere coincidence.

If the support of a given rule R is non zero, then it means that there are
values that appear in both attributes Ai and Aj in L, i.e., the intersection
of values of Ai and Aj is not empty. So, instead of actually computing the
support of rules, which would be computationally expensive, we compare the
sets distinct(Ai) and distinct(AJ) of distinct values of Ai and Aj respec-
tively. Moreover, distinct(Ai) was already computed during the candidate
attribute identification phase (see previous section) for all attributes and so,
in our implementation, these sets are computed only once. An initial list of
candidate rules is produced from all the pairs (Ai, Aj), 1 ≤ i ≤ j ≤ k such
that |distinct(Ai) ∩ distinct(Aj)| > 0 holds. For example, for the table in
Figure 3(b), the discovered rules and their support are: OID = OID : 2,
IID = Ref : 2.

3.2.2 Heuristic-based Atomic Rule Pruning

We use the following heuristics to decide if a rule is a non-candidate: If at-
tributes Ai and Aj define a reference-based correlation (R : ex.Ai = ey.Aj),
then it is likely that, typically, values in Aj also appear in Ai, and vice versa.
If by contrast Ai and Aj have only few distinct values in common and many
that are different, then we can conclude that this pair is not correlated, and
the relationship among this two attributes is only incidental. So, it does not
form a valid rule and it can be removed from the list of candidate correlation
rules.

In order to reflect this idea, we define a measure of attribute-pair inter-
estingness denoted by Ψ(Ai, Aj):

Ψ(Ai, Aj) =
|distinct(Ai) ∩ distinct(Aj)|

max(|distinct(Ai)|, |distinct(Aj)|)

Ψ(Ai, Aj) is defined over [0, 1] with 1 (resp. 0) indicating a pair of
attributes that share a large number (resp. only few) of their values. We
set a threshold ψ and prune all rules for which Ψ(Ai, Aj) < ψ. Note that
this measure is used only for pairs (Ai, Aj) with i 6= j. Indeed, attributes

12

e1 e2 e3 e4
≺ ≺ ≺

R1 R1

R3 R4

R2 R4

Figure 4: Rules graph of candidate rules

not pruned in the attribute pruning step (Section 3.1) are already shown as
candidate for a key-based correlation.

3.3 Composite Rule Discovery

Correlation rules may not always be atomic, but composed of several atomic
rules to form composite rules (see Section 2.3). In this paper, we examine two
types of composition operators: conjunctive (∧), used for representing keys
defined on more than one attributes, and disjunctive (∨), used to identify
conversations where messages are not all correlated using the same rule.

In order to discover all the candidate composite rules, we take as input
the candidate atomic rules inferred in the previous section and proceed in
the following steps:

1. We build a list of candidate conjunctive rules. This is done by testing
the possible combinations of atomic rules and pruning obvious non-
candidate combinations. After this step, conjunctive rules are treated
as atomic rules.

2. The candidate atomic are combined in disjunctions and organized in
a lattice structure.

Before presenting these two steps, we discuss how rules are used to partition
a log and define a series of metrics used to characterize a log partition.

3.3.1 Partitioning the Log

In order to illustrate how correlation rules (atomic or composite) partition
the log into conversations, we will represent the relationships among events
as a graph GR = (L, R). In this graph, nodes represent events and there is
an edge from event ex to event ey if and only if (ex, ey) ∈ R. Building edges
in this way for candidate atomic rule in GR, we obtain a labeled multigraph
called rule graph denoted by G. For example, assume that we have a log L
containing four events L = {e1, e2, e3, e4}, and that we have discovered four
atomic rules R1, R2, R3, R4, a possible rule graph for this log is illustrated
in Figure 4.

13

Partitioning a log L with a correlation rule R consists of identifying the
set of conversations CR(L) = {c1, c2, . . .}, ci ⊆ L such that{

∀ci ∈ CR(L), ex ∈ ci ⇔ ∃ey, (ex, ey) ∈ R ∨ (ey, ex) ∈ R
∀ci, cj ∈ C2R(L), i 6= j ⇔ ci ∩ cj = ∅

Thus, identifying the conversations CR can be formulated as identifying the
connected components of GR. For example, correlating the rule graph pre-
sented in Figure 4 using rule R1 produces two connected components, each
of length 2 and we have

CR1 = {〈e1, e2〉, 〈e3, e4〉} .

The problem of identifying the connected components of a graph is well-
investigated in the literature [2]. In the database context, this problem
consists in identifying the transitive closure of a query. Since we can not be
sure that the components do not have cycles, we chose to implement this
decomposition using a breadth-first search approach. In order to optimize
this processing time as well as the count of distinct values of attributes that
is used in Section 3.1 and 3.2, we first index separately each attribute of the
log. With this setting, our experiments have shown that partitioning the
log is very fast (see Section 4).

A number of metrics can be defined to characterize a partition CR in a
concise way:

• AvgLen(CR),MinLen(CR) andMaxLen(CR(L)) represent respectively
the average, minimum and maximum length of conversations in con-
versation CR;

• ConvCount(CR) represents the number of conversations. It is equal
to |CR|;

• UncorrelatedCount(CR) represents the number of messages that are
not related to any other message according to R.

In the following, we explain how these metrics are used to reduce the
search space for candidate composite rules.

3.3.2 Conjunctive Rules

Composite keys are defined by equality of values on more than one at-
tributes. For example, if purchase order numbers are uniquely assigned on
a per customer basis, it is not sufficient to consider only the purchase or-
der number to correctly correlate messages. It is necessary to use both the
purchase order number and the customer number to relate a message to the
correct conversation (see Figure 2(b)). The operator ∧ defined hereafter will
be used to express this type of situation.

14

Consider two correlation rules R1 and R2. The composite rule R1∧2 =
R1 ∧R2 is defined as follows:

(ex, ey) ∈ R1∧2 ⇔ (ex, ey) ∈ R1 ∧ (ex, ey) ∈ R2

⇔ (ex, ey) ∈ R1 ∩R2

in this expression, R1 and R2 are both atomic rules and they each express
that events ex and ey are equal on some attributes.

We need to identify all the candidate conjunctive rules. The number
of possible conjunctions from r atomic rules is large, i.e., 2r − 1. In the
following we propose three criteria that allow to avoid computing a large
portion of them:

Attribute definition constraints: Taken individually, R1 and R2

could represent a key or reference based correlation. Thus, each of the at-
tributes used in R1 and R2 may be undefined for some events (see Figure 3).
However, when considered together in a conjunction, a new constraint ap-
pears: attributes of R2 have to be defined whenever the attributes of R1 are
defined. More formally, a general expression of R1∧2 is of the form

(ex, ey) ∈ R1∧2 ⇔ ex.Ai1 = ey.Aj1 ∧ ex.Ai2 = ey.Aj2 .

The above constraint implies that for any message of the log, attribute
Ai1 is defined if and only if Ai2 is also defined and that Aj1 is defined if and
only if Aj2 is also defined. Thus, conjunctions are only valid for rule pairs
that satisfy this constraint, i.e., they are defined only on the same set of
messages.

Identifiers have repeating values: A conjunctive rule results in a
new identifier (for a reference or a key) built using the attributes of each
atomic rule. Using heuristics similar to those in section 3.1, we know that
identifiers have to appear in more than one message to be valid. For example,
the correlation rule R1∧2 defined above is valid only if most of the pairs of
values that are defined on attributes (Ai1 , Ai2) also appear in at least one
other message on attribute (Aj1 , Aj2) in any order.

Inclusion Property. In graph G, if the set of edges of rule R1 is
included in those of rule R2, i.e., R1 ⊂ R2:

∀(ex, ey) ∈ R1 ⇒ (ex, ey) ∈ R2

then, we have R1∧R2 = R1. Hence, it is not needed to compute R1∧R2.
Furthermore, if R1 = R2, i.e.,

∀(ex, ey) ∈ R1 ⇔ (ex, ey) ∈ R2

then, R1 and R2 partition the log in the same way, so it is enough to
compute the log partitioning for one of them and then to extend the result

15

to the other. This implies that one further rule is punned from the set of
rules that its conjunction with other rules to be computed.

Monotonic property of partitioning metrics: An important prop-
erty of metrics of a partition is the monotonicity with respect to the con-
junctive operator. A conjunctive operator is indeed an intersection of the
relations defined by the two rules. Hence, applying a conjunction will either
leave unchanged or reduce the number of neighbors of a message, i.e., the
number of messages to which it is related. This makes conversations build
on conjunctive rules both shorter and more numerous than conversations
built on the atomic rules and we have

MinLen(CR1∧2) ≤ min(MinLen(CR1),MinLen(CR2))
ConvCount(CR1∧2(L)) ≥ max(ConvCount(CR1(L)),

ConvCount(CR2(L)))

With the exception of conversations that are partially logged, most of
the conversations should have a length of two or more. In other words, the
number of conversations should be less than half of the number of messages.
Thus, if a pair of rules does not satisfy the above criteria, it is unnec-
essary to compute their conjunction. Since ConvCount is monotonically
non-increasing with conjunctive, it is not necessary to examine conjunctions
of bigger size (with more rules) when these rules themselves do not satisfy
this criteria.

The criteria are applied after the first three criteria since it requires to
actually partition the log, which is more computationally expensive than
testing for existence of values in an attribute (a selection operation) as in
the first two criteria.

The set of candidate conjunctive rules is the set of possible conjunctive
rules for which all the above three criteria hold. Note that for all these
criteria, if the constraints do not hold for a conjunction of two rules, then it
will not hold for conjunctions of a larger number of rules.

3.3.3 Disjunctive Rules

Disjunction of rules are useful for expressing situations where messages are
not correlated always the same way throughout a conversation. This is the
case, for example, when an invoice message references a purchase order num-
ber while a payment message references the invoice number (see Figure 3(a)).
To correlate these three messages, we need to define two rules.

Given two atomic or conjunctive rules R1 and R2, the disjunctive rule
R1∨2 is defined as follows:

(ex, ey) ∈ R1∨2 ⇔ (ex, ey) ∈ R1 ∨ (ex, ey) ∈ R2

⇔ (ex, ey) ∈ R1 ∪R2

16

Since disjunctions are built based on both atomic and conjunctive rules,
it is not possible to apply any attribute level criterion to reduce the search
space.

Inclusion Property: If relation R1 is included in R2, i.e., R1 ⊂ R2,
then, we have R1 ∨ R2 = R2. Hence, it is not needed to compute R1 ∧ R2.
Furthermore, when R1 = R2, as stated before, R1 and R2 partition the log
in the same way and R1∧R2 = R1 = R2. Hence, so it is enough to compute
the log partitioning for one of them and then to extend the result to the
other.

Monotonic property of partitioning metrics: The partitioning
metrics are also monotonic with respect to the disjunctive operator: the
more we have rules in a disjunction, the more each message becomes con-
nected with others and the longest are the conversations in the corresponding
partition. We have:

MaxLen(CR1∧2) ≥ max(MaxLen(CR1),MaxLen(CR2))ConvCount(CR1∧2) ≥ max(ConvCount(CR1), ConvCount(CR2))

A disjunction of rules is said to be valid if it leads to a partitioning of
the log in at least two conversations. Since ConvCount is monotonically
non-decreasing with disjunction, it is not necessary to examine disjunction
comprising more rules when these rules themselves do not satisfy this crite-
ria.

In theory, if there are r candidate atomic rules, then there are cr = 2r−1

possible conjunctive rules. Let dr denote the number of possible disjunctive
rules, we have dr = 2cr+r−1, as conjunctive rules are considered atomic.
However, as we will see in the experiments (Section 4), applying the intro-
duced criteria and heuristics shrinks this search space significantly.

3.3.4 Rule Lattice

When composing together in disjunctive form both atomic and conjunctive
rules, we can organize rules in a lattice structure to facilitate user navigation.
An example of rule lattice is illustrated in Figure 5.

The bottom layer of nodes corresponds to both the atomic and con-
junctive rules identified in Sections 3.2 and 3.3.2. Each higher level layer
represents a combination of the lower level rules. Nodes that are shown in
dark gray are nodes that are not computed. They correspond to two types
of rules:

• Rules combining one or more lower level composite rules found invalid.
Suppose that rule R2 ∨ R3 (highlighted in Figure 5) is computed and
that the corresponding partitioning CR2∨3 produces a single conversa-
tion comprising all the messages of the log. Extending this disjunction
to additional rules will always result in the same conversation due to
monotonicity property (see Section 3.3.3) and thus it is unnecessary
to compute it.

17

R1 ∨ R2 ∨ R3 ∨ R2∨3

R1 ∨ R2 ∨ R3 R1 ∨ R2 ∨ R2∧3 R1 ∨ R3 ∨ R2∧3 R2 ∨ R3 ∨ R2∧3

R1 ∨ R2 R1 ∨ R3 R1 ∨ R2∧3 R2 ∨ R3 R2 ∨ R2∧3 R3 ∨ R2∧3

R1 R2 R3 R2∧3

∅

Figure 5: Candidate Correlation Rule Lattice

• Rules combining disjunction and conjunction of a same atomic rule.
For example, the correlation rule R2 ∨R2∧3 is equivalent to the corre-
lation rule R2. They are not useful since conjunctive and disjunctive
operators are here associative (they correspond to intersection and
union of relations).

With this simple example, it can be seen that as soon as a rule is iden-
tified as invalid, this propagates to the upper levels of the lattice. In the
next section, we present our experiments and in particular, we discuss the
number of composite rules that were actually computed. This number is
very low when compared to the number of possible combinations.

4 Implementation and Experiments

We have implemented the correlation discovery approach presented in this
paper in a prototype tool as part of a larger project, called ServiceMosaic,
a framework for analysis and management of Web service interactions. It
has been implemented using Java 5.0 as Plug-ins in Eclipse framework, and
with PostgreSQL 8.2 as the database engine. All the experiments have been
performed on a notebook machine with 2.3 GHz Duo Core CPU, and 2GB
of memory.

4.1 Datasets

We have conducted the experiments on both synthetic and real-world datasets,
described next.

18

Dataset Retailer Robostrike PurchaseNode

of messages 10 32 26
of events 2,800 4,776,330 50,806
of attributes 15 98 26

Table 1: Characteristics of the datasets

4.1.1 Synthetic Dataset

We used the interaction log of a Retailer service, developed based on the
scenario of WS-I1 (the Web Service Interoperability organization). In this
dataset, the log is collected using a real-world commercial logging system
for Web services (HP SOA Manager2). The Retailer service is implemented
in Java and uses Apache Axis as SOAP implementation engine and Apache
Tomcat as Web application server.

Table 1 shows the characteristics of this dataset. The log has 2800 tuples,
each corresponding to an operation invocation. These messages form 480
conversations and are correlated using a key-based approach. HP SOA Man-
ager records information organized in 13 attributes. Examples of attributes
are SequenceID, ServiceName, Operation, Timestamp, RequestSize, and
ResponseSize. In addition, we also extracted two attributes from the body
of XML messages, namely RequestID and ResponseID. In fact, both
RequestID and ResponseID contain the same value and each value is a
conversation identifier.

4.1.2 Real-world Datasets

We used two real-world datasets: the interaction log of a multi-player on-
line game service called Robostrike3, and a workflow management system log
corresponding to a purchase order management system, called PurchaseN-
ode.

Robostrike service exposes 32 operations invoked by sending/receiving
XML messages. Table 1 presents the statistics of this dataset. The log con-
tains more than 4, 700, 000 events. In a pre-processing stage, we extracted all
the attributes of all messages. To this end, the XML schema was flattened
and each element was given a distinct element name.

The PurchaseNode dataset was originally organized into two tables: one
for the workflow definitions and the other for the workflow instances (execu-
tion data). The workflow definition table defines 14 workflows using different
combinations of the 26 workflow tasks. For this experiment we joined the
two tables, based on workflow identifier, to produce a log of 50, 806 records.

1www.ws-i.org
2managementsoftware.hp.com/products/soa/
3www.robostrike.com

19

Dataset Retailer Robostrike PurchaseNode

initial # of attribute 15 98 26
attributes after pruning 2 13 3
of atomic rules 3 31 6
of atomic rules after pruning 3 8 4
of discovered composite rules 4 57 3

Table 2: The performance of the automated correlation discovery process

By using this dataset we also test the applicability of the approach to work-
flow data.

4.2 Automated Correlation Rule Discovery

We ran experiments to validate the performance of the proposed approach
on large datasets. We separately report the results of each of the three steps
of the correlation discovery process.

4.2.1 Candidate Attribute Selection

In this step, we compute the distinct ratio defined in Section 3.1.2. On
the basis of a LowerThreshold (resp. UpperThreshold) of distinct ratio, we
select attributes that have neither too much nor too many) distinct values
(see Section 3.1.2). Our purpose in this experiment is twofold: (i) validate if
this heuristics are effective to identify non-correlator attributes even in the
case of a pessimistic setting of thresholds, and (ii) verify the time needed to
compute this ratio for all attributes.

Table 2 shows the summary of the result of applying this attribute selec-
tion approach to the datasets. In this settings, we used upperThreshold =
0.9 and lowerThreshold such that the number of distinct values is at least
15 (i.e. we assume the dataset contains at least 15 conversations). This set-
ting is designed to prune only attributes which are obvious non-candidate
since other steps of the process can further, and more precisely (i.e. without
requiring threshold settings) identify attributes which are not correlators.

For PurchaseNode, out of 26 attributes, 21 attributes are pruned on
lowerThreshold, and one attribute based on upperThreshold. Only 3 at-
tributes remained. For the Robostrike dataset, out of 98 attributes there
were 13 attributes that were selected. Finally, from theRetailer dataset only
2 attributes out of 15 were selected, namely RequestID and ResponseID.

Computation is performed with simple requests. For one million records
taken from the Robostrike dataset, computing distinct ratio for all the 98
attributes took 19 minutes. Note that we perform this evaluation on a table
where each attribute is indexed.

20

0

100

200

300

400

500

600

1000 2000 3000 4000 5000

Number of events

T
im

e
(S

ec
)

Robostrike
PurchaseNode

Figure 6: The execution of time of composite rule discovery

4.2.2 Atomic Rule Inference

The approach presented in Section 3.2.2 for rule inference is based on identi-
fying the number of shared values between distinct values of different pairs of
attributes. The execution time for computing the intersection of attributes
is rather small. For example, for the Robostrike dataset and for 1,000,000
records, the execution of this step takes slightly more than 400 seconds. The
experiments show that this time is linearly increasing with the growth in the
dataset size.

For the PurchaseNode dataset, out of 6 candidate atomic rules, 4 remain
after pruning. In case of the Robostrike dataset, 31 rules were discovered,
out of which 8 identified as candidate atomic correlation rules. Finally, for
the Retailer dataset, all three candidate atomic rules qualified. These re-
sults are summarized in Table 2. It should be noted that for the computation
of atomic rules in all these experiments, the entire logs were used (e.g., 4
millions events for the Robostrike dataset).

4.2.3 Discovery of Composite Rules

Figure 6 shows the execution time of the algorithm for computing the com-
posite rules based on atomic rules in the three datasets, with various dataset
size. It takes just under 10 minutes to compute the composite rules for 5000
events in the Robostrike dataset. The execution time of the algorithm for
the Retailer dataset for 2800 events present in this table takes 5 seconds.

It is interesting to note that the dataset size does not notably impact
the number of composite rules discovered. For the Robostrike dataset, from

21

the 8 atomic rules discovered in the previous step, the theorical number of
combination of rules was 28 (considering only disjunctions). After comple-
tion of the discovery process, this number was only 57. Then, we performed
a similar computation with 500, 000 and then with 1, 000, 000 events on this
same Robostrike dataset. This tenfold increase in size does not impact
significantly the number of correlation rules discovered: the results were re-
spectively 58 and 59, among which 57 are the same as the 57 rules discovered
with 5000 events.

For theRetailer dataset, which follows a key-based correlation, all atomic
rules discovered are keys. The key to choose depends on the application of
the correlation. For PurchaseNode, the rule discovery process correctly
identified FlowInstanceID as a key attribute. This key however is only
one of the 7 possible correlations.

The results of the correlation discovery are more interesting on the
Robostrike dataset. The various rules discovered correspond to various
levels of analysis of the game. For instance, it is possible to correlate as
conversation a single game, or a long session that comprises several games.
Another correlation is possible at the user level, regardless of his session.
Finally, the algorithm identified a surprising correlation based on chat con-
versations among groups of players. These correlation mixes key-based and
reference-based correlation. For instance, messages during a game refer to
the game number while messages regarding a single player are of key type,
based on her user id.

In the next section, we discuss how the computation of metrics for each
rule allows to explore the set of discovered rules to look for the desired
correlation.

4.3 User Driven Exploration and Refinement of Correlation
Rules

In this section, we present the front-end component of the system in two
parts: correlation rule summarization, and refinement interface (see Fig-
ure 1).

4.3.1 Correlation Rule Summary

The discovered rules can be structured in a lattice, as discussed in Sec-
tion 3.3.4, which facilitates navigation among candidate rules. To help users
identify interesting correlation rules, each node is displayed with a summary
that describes the properties of its corresponding correlation rule. The sum-
mary comprises the following information:

• Metrics: These correspond to the aggregate values defined in Sec-
tion 3.3.1. We also display an histograms that shows the distribution
of conversation lengths.

22

• Description: The rule definition is displayed as in the notation similar
to that used in this paper (the difference is that we only display the
attribute names). When attribute names carry some semantic, these
rules are interesting in themselves and help understand the nature of
conversation discovered. These in particular proved useful in the case
of the game dataset to differentiate among the 57 candidate rules.

4.3.2 Refinement Interface

We propose two refinement operations that allow users to further expand or
reduce the search space. Following refinement operations are available:

• Users can propose new rules to be examined. This operation is han-
dled by adding a new atomic rule to the set of existing atomic rules.
Adding this atomic rule automatically updates the lattice to generate
additional nodes corresponding to composition of this rule with other
atomic rules.

• Users can propose to remove a rule from the lattice. This operation
updates the lattice to remove composite rules built by composition of
this rule.

4.3.3 User Domain Knowledge

We observe that the user may have some domain knowledge to help in
reducing the space of possible correlations, i.e., to do not computing some
nodes in the lattice or to identify interesting rules for the user. There are
various types of user knowledge information, among which the most general
ones include:

• The average number of conversation per day. For example, the user
may be able to tell how many purchase order are lodged per day.

• The average/minimum/maximum number of messages per each con-
versation, if possible;

• an estimate of the number of conversation in the given log; This and
above two items help in deciding on interestingness of a discovered
rules.

• Attributes that potentially are (not) used for correlation; This is help-
ful for attribute pruning step.

• the rule pattern that is used for correlation of the log.

23

• The user may have a log with millions of records. However, parsing
all events in the system after a certain number of events may not lead
to discovering further rules. For the sake of processing time, users can
suggest to use part of log, for instance, all messages between a certain
period of time, e.g., 3 months, if it is assumed that there are enough
conversations and also the longest possible conversation will not take
more than 3 months.

Our framework allows to incorporate above domain knowledge as part
of heuristics used during discovery. In particular, if the user knows the
correlation rule pattern that is used for correlating the messages in the log,
it has the following implications on the discovery approach:

Key-based Pattern. This knowledge helps in two ways. First, we
can define an additional heuristics that helps in pruning non-candidate at-
tributes: the property of a key-based attribute is that is has some non-null
value over all messages in the log. So, among candidate attribute with
proper set of distinct values we only consider the ones that the number of
their values is equal to the number of messages in the log. This reduce the
candidate space significantly.

As discussed in Section 2.3, the key is either simple or composite. Discov-
ered atomic rules are candidate for simple keys. As the second implication
of this knowledge, for discovering composite key attributes, we only need
to apply the conjunctive operator (∧) on atomic rules. This means that
the search space for composite rules is significantly reduced. If there are r
atomic candidate rules, then the number of possible composite (conjunctive)
rules is cr = 2r−1. Note that cr � dr (see Section 3.3.3).

Reference-based Pattern. Knowing the the log is correlated using
a reference-based pattern helps in further pruning non-candidate attributes
based on the heuristics that for key-based attributes the number of values
is equal to the number of messages in the log (having non-null values in all
messages). This means that we also prune the attributes that are candidate
for key-based correlation. However, the method for computing composite
keys is the same, as it is possible to use both conjunctive and disjunctive
rules. Conjunctive rules allow for discovering composite reference attributes,
and disjunctive are required to discover composite correlation rules to allow
each pair of messages in a conversation to be correlated using a different
rule.

5 Related Work

There is a large body of related work in the database area. In this section,
we discuss how our work differentiates from other research.

Functional dependencies and composite keys. The problem of
correlation dependency analysis is related to that of discovering functional

24

dependency. In functional dependency inference [10, 16] the problem is to
identify properties of the form A→ B, where A and B are sets of attributes
of the relation, that hold for all or a well defined subset of tuples of this
relation. Discovering a functional dependency is interesting as it reveals an
implicit constraint over attribute values of tuples, which are not expressed in
the schema. The main difference of this problem and correlation discovery is
that correlation is not expressed over the tuples of a database but among the
tuples and at the conversation level, which is not known a priori. Messages of
a log may include valid functional dependencies, but these dependencies do
not reveal anything about the conversations. Indeed, each group of messages
that form a conversation exhibit a very strong dependency, however, this
dependency is formed after conversations are known, i.e., the correlation
rule is discovered.

The problem of discovering (composite) keys in relational databases [17]
is related to that of message correlation: both seek to identify a collection of
attributes that identify individual instances. However, two major differences
make the solution to the former unsuitable for the latter. First, the validity
of candidate composite keys can be assessed objectively since, by definition,
each key value shall identify a unique instance. By contrast, there are only
heuristics—but no definite criteria—to decide on the validity of correlation
of messages. Second, keys are only one of the various rule patterns (see
Section 2.3) that may be used for the correlation of messages.

Association Rule Mining. Association rule mining techniques iden-
tify values that co-occur frequently in a data set [8]. Such rules identify, for
example, the likelihood of a customer that bought product A, to also pur-
chase product B, or what other set of products a customer is likely to buy,
given that she bought product D. Although such rules have links to the no-
tion of correlation and implication (causality), some correlation patterns can
not be identified using this approaches. Consider the case of reference-based
correlation where a pair of attributes is used to link messages in a chain.
For this two attributes, which can be defined for all tuples, values never
appear concurrently in the same event. Moreover, on the overall database,
each value occurs only twice, one in each message of the chain, and hence
is not frequent. Another intuition is that for item set to be frequent, the
collection of possible values have to be defined on a finite, and relatively
small, domain. In the case of correlation rules, we are looking for attribute
that express identifier, i.e. values that repeat at most in message of a single
conversation (unless recycled).

Classification and clustering. Conversations could be seen as classes
and the correlation problem could then be thought of as a classification
one[1]. However, classification approaches assume a fixed (and rather small)
number of classes while conversations come in unbounded and unknown
number, depending mainly on the size of the log considered. Moreover, clas-
sification approaches rely on pre-classified instances to infer the classification

25

function. In our work, conversations to be used as training examples are not
available. Note that inferring the correlation rules from a collection of con-
versation instances, if available, would be an interesting and complementary
problem to explore.

One might also argue that correlation could be formulated as a clustering
problem [9]. In clustering, the relationship between members of a cluster
is their relative proximity according to some distance measure. However,
messages of a same conversation may be very different (e.g. a purchase order
and a payment message) while messages of two distinct conversation may
be very similar (e.g. two purchase orders for the same products). Hence,
clustering approaches—as well as other similarity-based approaches such
as, e.g., Record Linkage[5]—could only be used provided a suitable and
very ad-hoc distance measure has first been defined. Defining this measure
is equivalent to identifying how to correlate messages; the purpose of this
paper.

Session reconstruction. Web usage mining has raised the problem of
session reconstruction. A session represents all the activities of a user in a
Web site during a single visit. In this problem, however, the problem is not
to identify how to correlate events in the log (this is typically done using the
IP address) but how to decide on the boundaries of the session, i.e. after how
much delay of inactivity would one consider that the same IP corresponds to
a different user, or to the same user with discontinued activity. In many web
services, using other types of information, e.g., identifiers, is more common
for message correlation, or at least time is used in conjunction with other
information. For instance, the WS-CDL standard proposal supports the
usage of time with identifier-based correlation of messages in Web services.

Application dependency. Correlation is often cited in the context
of dependency discovery, where the task is to identify whether some events
may depend on some others. However, correlation in that context bears a
different meaning than the one intended in this paper. It refers to a tem-
poral dependency between events where, for example, an event is a cause
that triggers one or more subsequent events. Examples of approaches in
this category include several statistical approaches to numerical time se-
ries correlation [11] or event correlation for root cause analysis [19]). In
this paper, correlation means grouping messages that belong to the same
conversation. Although there might be a causal dependency between these
messages (discussed hereafter), it is only incidental.

Message correlation in Web services. Correlation patterns in ser-
vice workflows is studied in [3]. However, no automated support for message
correlation is proposed. The work on service workflow discovery also charac-
terizes the problem of time-based session reconstruction for Web services [4]
and examines the possibility of adapting approaches of session reconstruction
in Web usage mining to this problem. However, proposing an automated
approach remains as future work. The need for automated approaches to

26

message correlation has first been recognized in [13] where a real situation
on how to correlate messages is presented.

6 Conclusions and Future Work

In this paper, we have presented concepts, as well as a framework and a set
of tools for discovering correlations in service logs, in order to reconstruct
conversations. We introduced the notion of correlation dependency among
messages in relational logs, where individual events correspond to tuples of
a relation, and provided a framework to define, discover and heuristically
explore possible correlation rules.

The framework can be extended in many directions. These extensions
make it possible to adapt this correlation discovery framework in various
contexts. We highlight below some future research directions.

Rule language. A lot of work has been done in the record linkage commu-
nity to uncover relationships among seemingly separate entities. Users might
be interested in discovering non-trivial correlation properties within collec-
tions of logs. The rule language used in this article is one of the most basic
and can be extended in several directions to handle various situations. For
instance, the equality between values can be replaced by a similarity func-
tion. Such rules would replace the current graph structure with a weighted
graph and the problem of identifying disconnected components is replaced
by that of identifying weakly connected components, i.e. components such
that the aggregate of their relationship weights is below some threshold.

Heuristics. Depending on the context, heuristics can be modified to ei-
ther enlarge or restrict the search space. For instance, in this paper, we lim-
ited the search space by taking into account the order relationship between
log messages. In the context of web-services choreography, several logs may
be involved and will first need to be integrated and then correlated. During
log integration, it would be very difficult to keep a satisfying ordering of the
messages since separate logs may have separate clocks. Richer relations can
be used to replace ≺ and ≈ in order to reflect whether messages belong to
the same or a different original log.

Time-based rule patterns. Note that discovering rule patterns based on
the values of a time attribute is the subject of future work. One might need
to define some functions over the time attributes of events in order to create
log partitions. This way, events that share the same values of the attribute
but are very far apart in terms of time (e.g., larger than a user provided
threshold or a threshold discovered from the body of messages) cannot to be
considered members of the same partition. Finally, one could also consider
the partitioning of a log as a post-processing step, where events of each
partition have a time difference larger than the average time difference of
the events across all partitions of the log.

27

Imperfect data. Service log events may contain imperfections [14], e.g.
incomplete conversations and noisy data in that there are missing events
and/or event attribute values. Such imperfections may make the message
correlation problem harder. We are planning to investigate extensions of
our approach to tackle the problem of imperfect logs.

7 Acknowledgments

The authors would like to thank Pierre Buraud for his help in implementa-
tion of the approach presented in this paper.

References

[1] R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and A. Swami. An interval
classifier for database mining applications. In L.-Y. Yuan, editor, Pro-
ceedings of the 18th International Conference on Very Large Databases,
pages 560–573, San Francisco, U.S.A., 1992. Morgan Kaufmann Pub-
lishers.

[2] A. V. Aho, J. E. Hopcroft, J. Ullman, J. D. Ullman, and J. E. Hopcroft.
Data Structures and Algorithms. Addison-Wesley, 1983.

[3] A. Barros, G. Decker, M. Dumas, and F. Weber. Correlation patterns
in service-oriented architectures. In Proceedings of the 9th Interna-
tional Conference on Fundamental Approaches to Software Engineering
(FASE). Springer Verlag, March 2007.

[4] S. Dustdar and R. Gombotz. Discovering web service workflows us-
ing web services interaction mining. International Journal of Business
Process Integration and Management (IJBPIM), Forthcoming.

[5] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record
detection: A survey. IEEE Transactions on Knowledge and Data En-
gineering, 19(1):1–16, 2007.

[6] D. Grigori, F. Casati, U. Dayal, and M.-C. Shan. Improving business
process quality through exception understanding, prediction, and pre-
vention. In The VLDB Journal, pages 159–168, 2001.

[7] G. Group. Gartner exp report. In
www.gartner.com/pressreleases/asset14367811.html, 2006.

[8] J. Hipp, U. Güntzer, and G. Nakhaeizadeh. Algorithms for association
rule mining - a general survey and comparison. SIGKDD Explorations,
2(1):58–64, 2000.

28

[9] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice
Hall, Englewood Cliffs, 1988.

[10] J. Kivinen and H. Mannila. Approximate inference of functional depen-
dencies from relations. In ICDT ’92: Selected papers of the fourth in-
ternational conference on Database theory, pages 129–149, Amsterdam,
The Netherlands, The Netherlands, 1995. Elsevier Science Publishers
B. V.

[11] H. Mannila and D. Rusakov. Decomposition of event sequences into
independent components. In Proc. of SIAM-SDM01, January 2001.

[12] H. Mannila and H. Toivonen. Levelwise search and borders of theories
in knowledge discovery. Data Min. Knowl. Discov., 1(3):241–258, 1997.

[13] H. Motahari, B. Benatallah, and R. Saint-Paul. Protocol discovery from
imperfect service interaction data. In Proceedings of the VLDB 2006
Ph.D. Workshop. ceur-ws.org/Vol-170, September 2006.

[14] H. Motahari, R. Saint-Paul, B. Benatallah, and F. Casati. Protocol dis-
covery from web service interaction logs. In ICDE 07: Proceedings of
the IEEE International Conference on Data Engineering. IEEE Com-
puter Society, April 2007.

[15] W. Pauw and et. al. Web services navigator: Visualizing the execution
of web services. IBM System Journal, 44(4):821–845, 2005.

[16] J.-M. Petit, F. Toumani, J.-F. Boulicaut, and J. Kouloumdjian. To-
wards the reverse engineering of denormalized relational databases. In
ICDE ’96: Proceedings of the Twelfth International Conference on Data
Engineering, pages 218–227, Washington, DC, USA, 1996. IEEE Com-
puter Society.

[17] Y. Sismanis, P. Brown, P. J. Haas, and B. Reinwald. Gordian: Efficient
and scalable discovery of composite keys. In VLDB, pages 691–702,
2006.

[18] M. Steinle, K. Aberer, S. Girdzijauskas, and C. Lovis. Mapping moving
landscapes by mining mountains of logs: Novel techniques for depen-
dency model generation. In VLDB, pages 1093–1102, 2006.

[19] M. Steinle, K. Aberer, S. Girdzijauskas, and C. Lovis. Mapping moving
landscapes by mining mountains of logs: Novel techniques for depen-
dency model generation. In VLDB, pages 1093–1102, 2006.

[20] W. van der Aalst and et. al. Workflow mining: a survey of issues and
approaches. DKE Journal, 47(2):237–267, 2003.

29

