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Abstract

In today’s Web, many functionality-wise similar Web services are offered through
heterogeneous interfaces (operation definitions) and business protocols (ordering
constraints defined on legal operation invocation sequences). The typical approach
to enable interoperation in such a heterogeneous setting is through developing
adapters. There have been approaches for classifying possible mismatches be-
tween service interfaces and business protocols to facilitate adapter development.
However, the hard job is that of identifying, given two service specifications, the
actual mismatches between their interfaces and business protocols.

In this paper we present novel techniques and a tool that provides semi-automated
support for identifying and resolution of mismatches between service interfaces
and protocols, and for generating adapter specification. We make the following
main contributions: (i) we identify mismatches between service interfaces, which
leads to finding mismatches of type of signature, merge/split, and extra/missing
messages; (ii) we identify all ordering mismatches between service protocols and
generate a tree, called mismatch tree, for mismatches that require developers’ input
for their resolution. In addition, we provide semi-automated support in analyzing
the mismatch tree to help in resolving such mismatches. We have implemented
the approach in a tool inside IBM WID (WebSphere Integration Developer). Our
experiments with some real-world case studies show the viability of the proposed
approach. The methods and tool are significant in that they considerably simplify
the problem of adapting services so that interoperation is possible.



1 Introduction

While standardization in Web services has proved effective for integration at the
lower levels of interoperability stack, interoperation at the level of service inter-
faces and business protocols is still a challenge due to the heterogeneity of ser-
vice specifications, developed by different teams or companies. Service interfaces
(often syntactically specified in WSDL [26]) declare all operations of a service.
Business protocols define ordering constraints on the allowed operation invocation
sequences [5, 4, 8]. In today’s Web, services that are similar in terms of functional-
ity are offered through different interfaces and protocols. The default approach for
a company, using one of such services, in switching to another similar service is to
develop new clients for the new service. This approach is often time consuming,
costly and does not always allow for reusing previous implementations.

An alternative to developing new clients is that of developing service adapters.
Service adaptation refers to the process of generating a service (the adapter) that
mediates the interactions among two services with different interfaces and proto-
cols so that interoperability can occur. Adaptation has received a significant atten-
tion in different areas including software component integration (e.g., [30, 29, 6]),
process integration ([20]), and recently in the Web services area [22, 12, 11, 17,
7, 3]. It has been also accepted as a common practice to facilitate interoperation
of heterogeneous applications in commercial products, e.g., in BEA WebLogic
Adapters [2], and IBM WebSphere Integration Developer (WID)[15].

In the literature, many approaches (e.g., [11, 17], including some by the au-
thors, e.g., [3]) attack the problem by identifying possible classes of mismatches
between service interfaces and protocols and by suggesting ways to resolve mis-
matches in each class. As an example, we present below some of the most common
mismatch classes [3]. We denote by SP the service provider and SC the service
clients to be adapted:

• message signature. Message m in SP (corresponding to the request of a
certain functionality1) has a different name and/or data types in the interface
of SC.

• message split/merge. Message m in SP corresponds to (can be invoked by
combining) messages m1, m2, ..., mn in SC, or vice versa.

• missing/extra messages. One or more messages in SP do not have any cor-
respondence in SC, or vice versa.

• message ordering. The protocol definition of SP may expect a message m in
a different order with respect to what sent by SC, or vice versa.

There are two subtypes of ordering mismatch: unspecified reception, in which
one party sends a message while the other is not expecting it; and deadlock, i.e.,

1Receiving (sending) a message corresponds to invoking an operation (its reply, respectively).
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Figure 1: Ordering Mismatches: (a) unspecified reception, (b) deadlock, (c) an
adapter for protocols in (a)

the case where both parties are waiting to receive some message from the other. To
illustrate the concepts, consider the protocols of SP and SC in Figure 1(a): SC sends
message b (shown by a -b), while SP does not expect to receive it (unspecified
reception). In Figure 1(b) instead, SC expects to receive message ack after sending
a (shown by +ack), while SP is waiting to receive b (+b). This is a deadlock case.

Adaptation in case of unspecified reception could be automatically handled as
an adapter for protocols in Figure 1(a) can receive b, buffer it and send it to SP
after exchanging a (e.g. see [30]). Figure 1(c) shows the adapter for protocols in
Figure 1(a), in which +〈SC,b〉means adapter receives message b from service SC.
However, adaptation in a deadlock case is a challenging task and requires extra
knowledge (e.g., construction of messages ack or b in the adapter) to resolve the
deadlock.

While identifying classes of possible mismatches between service specifica-
tions is important (as studied in [11, 17, 3]), the problem of service adaptation is
not really addressed until we can assist developers in comparing two services, iden-
tifying which types of mismatches there are, and in developing the adapter. Ap-
proaches for automatic adapter generations for software component models [30, 6]
and service protocols [7] exist. While they do provide interesting insights into
the problem, they make the following assumptions regarding two key issues: (i)
they assume there is no mismatch at the interface-level, or the interface mappings
have been provided by the developer, and (ii) if there are interactions which lead to
deadlocks, such interactions are considered as not adaptable. However, our exper-
iments show that: first, the interactions of many real-world services may result in
deadlocks; and second, careful analysis of some of such cases reveals that they are
in fact adaptable (see e.g., the real-world example in Section 2).

In this paper, we present a method and tool that provides semi-automated sup-
port to mismatch identification and adapter generation. We aim at identifying and
resolution of both interface-level and protocol-level mismatches and at providing
a platform that can generate adapters semi-automatically and have them refined by
the user in terms of deadlock resolution to generate the final adapter specification.
Specifically, we make the following contributions in this paper:

• We provide a model for service adapters, which consists of interface map-
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pings, and the adapter protocol. The adapter protocol represents the mes-
sage exchanges of adapter with adapted services, and actions that instruct
the adapter how to utilize interface mappings before/after each message ex-
change (Section 3.1).

• We provide semi-automated support to identify interface-level mismatches
and identify the input for mapping functions that resolve those mismatches.
We do this by leveraging approaches in XML schema matching [23], but
we refine and extend them by considering, beyond message types, the con-
textual information provided by the service schema (the WSDL document).
This enables a significant increase in precision for mismatch detection and
resolution (Section 4).

• We provide automated support for identification of protocol-level mismatches,
and generate adapter, if there is no deadlock. In addition, and most impor-
tantly, we propose a way to handle deadlock situations. We generate a tree,
called mismatch tree for all mismatches that result in a deadlock. A mis-
match tree provides a concise representation of all deadlocks and messages
involved in each deadlock. Then, we make suggestions to resolve each dead-
lock by analyzing service interfaces, protocols and execution logs, if avail-
able. The combination of the concise tree representation and the suggestions
for deadlock resolution assist the user in the decision makings leading to the
generation of the final adapter (Section 5).

• We present an implementation of the approach in a tool, which assists users
in the process of interface mappings, mismatch tree generation and analysis,
and generation of adapter specifications. The tool has been implemented
inside IBM WID (WebSphere Integration Developer) and in the context of
Wombat project [19]. We experimentally validated our approach in both
synthetic and real-world scenarios (Section 6).

Finally, in Section 7 we discuss related work and present the concluding re-
marks.

2 A Motivating Example

As a motivating example, we consider an adaptation task for services in the man-
agement of shopping carts. XWebCheckOut2 and Google Checkout3 are commer-
cial checkout services. They provide a facility for sellers to manage the orders
that they receive on their own websites. The only major difference between these
two services is that Google Checkout also provides an administration website for
buyers (people who do shopping on sellers’ websites). Buyers register their details

2www.xwebservices.com/Web Services/XWebCheckOut/
3code.google.com/apis/checkout/
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with Google and manage their orders through that website. In XWebCheckOut,
sellers provide administration support for buyers in sellers’ websites. Some APIs
are provided by XWebCheckOut to facilitate this task, for which there is no coun-
terpart in Google APIs. Other than this, the two services offer similar functionali-
ties, but through different interfaces and protocols.

Assume that XWebCheckOutClient (for short CO Client) is a seller and a
client of XWebCheckOut. For some reason (e.g., XWebCheckOut rises service
fees), the client decides to either replace XWebCheckOut or extend its offering
with Google Checkout APIs. Ideally, CO Client would like to adapt its implemen-
tation to interact with Google Checkout, as opposed to developing a new client
from scratch (see Figure 2).
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Figure 2: CO Client to replace XWebCehckout service with Google checkout
APIs using adapters

These two services provide similar APIs for order creation and management,
payment processing, and order cancellation. However, there are differences in the
interface definition (message names, number, and types) and how they exchange
messages to fulfill a functionality. For example, Figure 3 shows the protocols of
the two services for placing an order. Using existing approaches to adaptation,
besides the problem of having to derive interface mappings ”by hand”, it would
not be possible to derive adapters for these protocols. This is because their inter-
action results in deadlock, as in states 2 the CO Client service expects to receive
message AddOrderResponse, which is not supported by Google, while Google
expects the message Notification-Acknowledgment in state iv. Hence, their
interaction leads to deadlock. However, the services are in fact adaptable (by con-
struction of above two messages in the adapter). In the following we show how
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both the interface and protocol adaptation problems can be addressed in this exam-
ple and in general.

3 Adapter Generation Principles

In this section, we first present a definition for service adapters, and then we give
an overview of our approach in this paper.

3.1 Service Adapters

We introduce concepts and definitions to provide a formal basis to service adapta-
tion. We begin with the interface definition, which is essentially a simple formal-
ization of WSDL. An interface I of a Web service SP, denoted by Is, is defined as
follows:

Definition 3.1. An interface Is is a triplet P = (D, M, O), where D is the set of
(XML) data types of the service, O is the set of operations supported by the service,
M is the set of messages exchanged as part of operation invocations, in which:

• a message m has optionally i≥ 1 parts, represented as m =< d1,d2, ...,di >,
m ∈M,d j ∈ D,1≤ j ≤ i

• o =< mreq,mres,m f >, that is, o ∈ O is an operation associated to at least a
request message mreq or to a response message mres (or both) and possibly a
fault message m f .

Next, now we extend the notion of mapping between component interfaces in
[30] for Web services.

Definition 3.2. Given interfaces Is =(Ds,Ms,Os) of service SP and Ic =(Dc,Mc,Oc)
of service SC, an interface mapping IM<s,c> from SP to SC is a set of functions
such that: m← f unc(X), m ∈Ms and where the input X is either a set of messages
{m′|m′ ∈Mc}, or a constant value, or an empty set.

The interface mapping IM<s,c> may contain more than one mapping functions
for a given message m ∈ Is, or may not contain any function for another message
m′ ∈ Is. This definition allows for specifying 1− 1 mappings (to resolve message
signature mismatches) and 1− n mappings (resolving message split/merge mis-
matches) between messages of the two interfaces. Based on messages mappings
in IM<s,c> we can establish the mappings between operations Os and Oc in Is and
Ic. Finally, we define the the interface mapping IMA for the adapter as the union of
mappings from interface Is to Ic, and from Ic to Is, that is IMA = IM<s,c>∪ IM<c,s>.
We use im to refer to a given mapping function for message m in IMA.

We adopt finite state machines (FSM) as the modeling formalism for business
protocols [14, 4]. FSM is a well-known paradigm, easy to understand and for-
malize for developers, and widely used for modeling business interactions [8, 18].
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Finally, it is a quite familiar notation for developers by resemblance to UML state
diagrams and UML state charts commonly used for modeling software business
processes, and it is also supported inside IBM WID.

Definition 3.3. A business protocol is a tuple P = (S, s0, F, M, T ), where S is
the set of states of the protocol, M is the set of messages supported by the service,
T ⊆ S2×M is the set of transitions, s0 is the initial state, and F represents the finite
set of final states.

We define the notion of adapter for service protocols by extending the proposal
of [30] for software components as follows. An adapter is analogous to protocol
model where states are pairs of states of the services to be adapted, transitions are
labeled with a message along with the message target (SP or SC). In addition,
adapters have actions. Actions are associated to transitions and allow adapters to,
for example, store messages (to handle ordering mismatches) or to apply message
transformations by utilizing mapping functions.

Definition 3.4. The protocol of an adapter A (denoted by PA) for adapting inter-
actions between Ps and Pc is a protocol with the following extensions:

• MA = Ms∪Mc.

• Each state sA of PA is a pair 〈ss,sc〉, in which ss (sc,respectively) indicates
the corresponding state of Ps (Pc, respectively) while adapter is in state sA.
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• Each transition tA of adapter is shown in form of +/−〈sA, s′A, partner, m〉, in
which + (or−) specify that the adapter A is receiving (sending, respectively)
message m from (to) partner service, and takes the adapter from state sA to
s′A. The parameter partner can be one of SP or SC.

• A transition tA may be associated to actions “save (m)” and “activate (m)”
after receiving a message m; to actions “synthesize (m,im)” , im ∈ IMA be-
fore sending a message m, and to action “inactivate (m)” after sending a
message m.

The optional actions allow to instruct the adapter to use interface mappings
information with each transition. save(m) instructs the adapter to save message m
inside the adapter. For each message m ∈ MA, an activity flag is kept inside the
adapter, and activate(m) (inactivate(m)) actions sets/unsets the activity flag of a
message m to true in the adapter to show if the adapter has received the message.
Finally, Synthesize(m, im) instructs the adapter to use the interface mapping im
information to construct m.

However, to generate the required actions associated to each transition in the
adapter, it is not enough to only have interface mappings. This is because interface
mappings do not contain the information on which point in the interactions and on
how to use a given mapping. For example, we may like to enforce that for a given
message m to use mapping im1 in one part of interactions, and im2 in another part.
So, we need to define rules that governs where and how to use a specific interface
mappings. The general forms of rules is as follows:

Definition 3.5. A ruleset RA = {r1,r2, ...,rn}, n > 0 is a set of rules r in the form of
〈m, im, activation-type, usage-type〉. The activation-type specifies at which point in
interaction a given mapping for a message is synthesized and activated. This field
can take one of the following values:

• on-reception: activate m on receiving it. This is the default value.

• before-sending: use the interface mapping im to synthesize m before sending
it.

• in-state 〈ss,sc〉: use interface mapping im to to synthesize m while in state
〈ss,sc〉.

The usage-type specifies how many time to use a given mapping or message
before inactivating it. It takes one of the following values:

• zero-times: message m should not be used after it is received (it is an extra
message).

• one-time: use interface mapping im to synthesize m once and then inactivate
it. This is the default value.
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• unlimited: never inactivate a message m synthesized using mapping im.

• after-sending m’: after message m′ has been sent, message m is inactivated.

• in-state 〈ss,sc〉: message is inactivated in state 〈ss,sc〉.

Definition of rules was first introduced in [30]. Here, we made two contri-
butions in addition to this work: (i) we extended the language for rule definition,
as we could not define some rules like “invalidate m after sending m′ or in state
〈ss,sc〉 as a part of interface rules, (ii) we abstracted the rules away from the details
of interface mappings and also adapter specifications, so rules can be defined sep-
arately and supplied to the adapter generation algorithm. This simplifies the job of
the developers in defining rules.

Finally, given the above definitions, an adapter is defined as follows:

Definition 3.6. An adapter A for protocols Ps and Pc is specified with a tuple
A=(PA,IMA).

To conclude this section, an adapter A is specified with the protocol of the
adapter (PA) and the set of interface mappings IMA, and the set of actions associated
to each transition in the adapter that specifies how to use interface mappings. The
set of rules RA are needed during the adapter generation phase to help in generation
of actions, however, rules are not part of adapter specification.

As discussed before, unlike existing approaches for automated adapter gener-
ation in [30, 7, 6], we do not assume the the interface mapping IMA is provided,
but we propose an approach to help the developer in providing interface mappings.
In our approach interface mappings is performed in a two-step process: (i) iden-
tifying interface matching, which is the process of identifying the relationships
between messages in Is and Ic. This includes identifying relationships between the
data types of messages in the two interfaces. The purpose of this step is to find
the set X of parameters of the function f unc(X) that generates m; (ii) Specifying
mapping functions. In this step, the mapping function f unc(X) that returns m is
specified. We propose a methodology to help the user in performing the first step,
as discussed in Section 4. The second step is performed by the adapter developer,
as discussed in Section 6. The identification of the matching between data types of
messages in X and message m is the most important part in specifying f unc(X).

3.2 Approach Overview

Adapting heterogeneous services is generally a hard problem. We approach it by
trying to ”‘encode”’ the approach humans take when developing adapters by hand.
We do this by trying to manually adapt service protocols in the Google checkout
example and by recording our reasoning principles and methodology. We make the
following observations in such a practice, which constitute the building blocks for
the process of adapter generation we propose, as depicted in Figure 9:
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1. The adaptation process starts by finding the correspondence between mes-
sages of services. In terms of adaptation, this translates into identifying mismatches
of types of message signature, split/merge, and extra/missing.

2. Once message mappings are known, experts would examine all possible
message exchanges between two services based on protocol definitions. During
this phase, all protocol-level mismatches will be identified: (i) finding all ordering
mismatches of type unspecified receptions between protocols, and generating the
adapter specification for them; (ii) identifying all interactions that result in dead-
locks and messages that are engaged in deadlock.

3. For each deadlock, experts try to gather some evidence (see below) to con-
clude if the deadlock can be resolved by construction of messages that are respon-
sible for the deadlock. If such evidence is found, then the corresponding interface
mappings are added to the set of plausible interface mappings, and the correspond-
ing rules are generated.

4. Evidence ranges from one or some of the following, which most rely on
analyzing interface and protocol specifications of services: (i) inspecting the con-
tent of required messages by looking at WSDL/Schema definition. In some cases,
the required message, typically of type of acknowledgment or response messages,
are of empty contents, or the expected values for various elements in the message
is given through an enumeration. (ii) experts may look at the log of previous in-
teractions of the services (or the client, depending on which side the adapter is
generated), if available, to see which data/values are exchanged for the required
elements. (iii) experts may also consider the service protocol and the interface (or
those of the client, depending on which side the adapter is generated) to see if some
other operation(s) could be invoked, i.e., their input is available in the adapter, for
which their outputs provide the required elements of data.

4 Interface-Level Mismatches

Given two service interfaces Is and Ic and protocols Ps and Pc, the goal is to find
the matching between messages in interfaces Is and Ic. In this phase, we do con-
sider not only the information in Is and Ic, but also the ordering constraints that
protocols define. We argue that interface matching cannot be addressed properly
without considering the ordering constraints, as well, since e.g., a given mapping
function m← f unc(m1,m2) may seem possible by looking at the interface-level
information, but considering the protocol information, the adapter may not have
received m1 and m2 when it is needed to synthesize m. In the following, we present
a semi-automated approach for identifying a set of initial matchings based on in-
formation at the interface-level, and then discuss in Section 4.2 how we improve
the matching results based on protocol-level information.
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Figure 4: AddOrderRequest and its candidates for matching in Google checkout
APIs

4.1 Interface Matching

As mentioned before, we base our interface matching on approaches in schema
matching [23]. The reason is that like approaches in schema matching, we are in-
terested in finding the matching between the data elements in the schemas of two
services. This helps us to find the relationships between messages of Web services.
Schema matching is a hard problem. In general the results on large and arbitrary
schemas (of services) may not be always useful [24]. Fortunately, we have addi-
tional information compared to schema matching approaches in service interfaces,
which are message and operation definitions, that act as additional constraints. We
use the following heuristics based on message and operation definitions to increase
the precision of matching in the matching of schema definitions of any two service
interfaces:

Pair-wise matching of schemas of messages. Our experiments with schema
matchers show that usually we do not get precise matching results using the whole
schemas of two services at once. Working on service (WSDL) interface allows us
to break down the problem of schema matching into matching schemas of individ-
ual messages of two schemas. We identify fragments of schemas to be compared
at each step. We perform such comparison for all pairs of messages from the two
interfaces. This results in increasing the precision of each matching, however, the
number of required matchings increases from one to the Cartesian product of num-
ber of messages in the two interfaces. We believe that is an acceptable overhead to
achieve higher precision.
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To illustrate the approach, let’s consider the schema of <Order> in XWe-
bCheckout and its corresponding matches in Google APIs depicted in Figure 4.
We used COMA++ [9]4 to find the matching between the whole schema of XWe-
bCheckout and that of Google Checkout. The only matched elements where <address>
in <Billing> and <Shipping> to <address> data type in Google. However, in
pair-wise comparison of <Order> (schema of AddOrderRequest message) the re-
sult was more precise. The relationships between messages Place-Order and
New-Order-Notification are captured as depicted in Figure 4. These two schemas
are the closest to <Order> in the schema of Google Checkout with the matching
score of 0.29 and 0.55, respectively. This is because the parameter of AddOrderRequest
is of type Order, which has the following schema elements: Order_ID, Shopper_ID,
Basket, Shipping, Billing, Credit_Card, Receipt, and comments (Figure 4).
Basket contains all items that are ordered by buyers. Shipping and Billing spec-
ify the shipping and billing addresses, respectively. In Google, new-order-notification
contains almost all the data types in Order, however, Order and Place-Order are
matched only in Shopper_ID, Buyer-ID, and Basket, Shopping-Cart.

Finally, we used the observation that if some parts of a message are matched
with elements in one message and some other parts of the same message are
matched with elements of other messages, then it is an indication of a merge/split
mismatch (1-n matching).

Incorporating message name into the schema. Our experiments also show
that if we incorporate the message name into the schema for that message, it in-
creases the precision of mappings. This is performed through creating a new com-
plex XML element, named after the message, and includes the schema of the mes-
sages. This is considered in Figure 4.

Considering the message type. An indication that helps in reducing the num-
ber of required pair-wise message matchings is considering the message type, i.e.,
if a message is an input or output of an operation definition. When generating
adapters for compatibility (adapting a client to work with a given service), we
only check the matching between output (input) messages of each operation of
the client interface with the input (output, respectively) messages in the service
interface. When generating adapters for replaceability (developing the adapter to
make the specification of a service similar to another given service) we check only
matching between the input (output) messages of operations of a service with the
input (output, respectively) in the other service interfaces.

In Figure 4 we have the interfaces of the two services XWebCheckout and
the Google Checkout. Without considering the operation definitions, the match-
ing results in Figure 4 suggest that message new-order-notification is the
best match for message AddOrderRequest based on the matching score. How-
ever, if we consider the operation definition constraints on mappings, we observe
that AddOrderRequest is an input message for AddOrder operation, while mes-

4available at dbs.uni-leipzig.de/de/Research/coma.html COMA++ is one of the best available
schema matchers that enjoys from combining several available methods for schema matching
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DeleteOrder
ProcessPayment

XWebCheckout Google Checkout API
Place-Order

Cancel-Order

Charge-Order

…

New-Order-Notification

Figure 5: Operation mapping between XWebChecoutClient and Google checkout
APIs

sage new-order-notification is an output message in a notification operation
with the same name. On the other hand, Place-Order message is the input of
Place-Order operation. So, considering the operation definitions we conclude
that the only AddOrderRequest is a possible match for Place-order, although it
has a smaller matching score.

The following algorithm summarizes our interface matching method, in which
I1 and I2 denote the WSDL interface of two services:

Algorithm 1 Interface Matching Algorithm
Require: I1, I2
Ensure: Message Matching between I1, I2

1: XSDm ← XML schema of message m in I1 (I2)
2: for message m ∈ I1 do
3: for message m′ ∈ I2 do
4: match(XSDm,XSDm′ ) considering message types (input/output)
5: end for
6: end for
7: Perform 1-n message matching

Figure 5 shows the matches for some of the operations in the two interfaces
for Google and XWebCheckout. The result of matching indicates all operations
required by CO Client are covered by Google except two operations, which are
LoadOrder and UpdateOrder. In fact, these two operations are used by CO Client
in its Website to allow buyers to load and update orders. However, since Google
provides a separate website for buyers, these two operations are not needed to be
invoked. On the other hand, there are many messages in the Google interface that
do not have a match in CO Client, e.g., new-order-notification. This is an
extra message in the Google interface.

4.2 Applying Ordering Constraints

As discussed before, it may not be always possible to use all matching results that
are generated based only on the interface information during the adapter gener-
ation. This becomes clear by considering the ordering constraints that two ser-
vices impose on the exchange of messages. We refer to such matches as non-
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plausible matches. As an example, let’s consider the protocol definitions SP and
SC in Figure 1(b). Interface matching results for these protocols specifies that mes-
sage <SC,ack> is matched to message <SP,ack>. However, considering ordering
constraints, we observe that the message <SP,ack> is not received by the time that
<SC,ack> is needed, so this mapping is not plausible. So the mapping function of
message <SC,ack> cannot take the set X identified in this step.

So, we need to verify the interface matchings generated based on the infor-
mation level information, and identify the set of not plausible interface mappings
using the ordering constraints defined in protocols. This has to be done before pro-
ceeding to ask the user to generate the interface mapping functions that take the
input X and transform it to message m, as otherwise such mapping functions will
be useless. However, there may be other possible matching (e.g., a different set X)
that makes the mapping possible.

Among all types of possible mismatches that we studied in the paper, deci-
sion making regarding if we need to develop mapping functions for extra/missing
messages in the two interfaces also could not be answered without considering
the protocol-level information. This is because the protocol-level information will
clarify if and at what state during the interactions such messages are required.
For example, there are many messages in the Google interface, e.g., message
merchant-calculation-results, which is not communicated with CO Client,
and also New-Order-Notification, which is sent as a part of placing order but
client does not require it. However, Notification-acknowledgment should be
provided for a successful interaction with Google, so a mapping is required to be
provided. Answering all of these questions requires protocol-level analysis. In the
next section, we present our approach for providing above mentioned analysis.

5 Protocol-level Mismatches

After applying the interface matching techniques, we get the matching between
messages of Is and Ic, and so the interface mapping IMA. Given IMA, in this section,
we use the protocol definitions Ps and Pc of the two services to find all protocol-
level mismatches. As discussed before, there are two types of mismatches at the
protocol-level: unspecified reception, and deadlock. Handling unspecified recep-
tion mismatches could be performed automatically (see e.g., [30, 6, 7]). Thus we
do not discuss this aspect further. However, handling mismatches with deadlock is
challenging, and has not been addressed before. As we explain in the following,
this type of mismatch is caused by either the lack of required interface mappings in
IMA, or non-plausible interface mappings in IMA. In fact, we only understand these
two cases by considering the protocol-level information. In this section, we pro-
pose techniques to identify such mismatches, represent and analyze them to help
the user in providing new interface mappings in IMA or refining existing interface
mappings in IMA, if possible, to avoid the deadlocks during adapter generation
process.
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We perform protocol-level analysis through simulating the adapter generation
process, which explores all possible message exchanges between the two services
according to Ps and Pc. So, in the following we first present an algorithm for adapter
simulation. Then we discuss our approach for providing a concise representation
of all mismatches with deadlock, and analyzing them to make suggestions to the
developer to resolve such mismatches. Suggestions are in form of identifying the
input X for the mapping functions that enable construction of the messages that are
engaged in each deadlock.

5.1 Adapter Simulation

The following algorithm (Algorithm 2) simulates the interactions between two pro-
tocols in an adapter starting from a given state of the adapter (e.g., 〈spinit ,ssinit〉,
which corresponds to the initial states of protocols Ps and Pc). The input of the
algorithm is protocols Ps, Pc, and interface mapping IMA between Is and Ic. The
output of this algorithm is protocol PA. It also identified deadlock cases, and al-
low for handling them (variables MT and StackIn f o are introduced in the next
sections).

Algorithm 2 SimulateInteraction
Require: StackIn f o,Ps,Pc, IMA
Ensure: PA,MT

1: Q← StackIn f o.Q
2: while Q 6= ∅ do
3: sA← dequeue(Q)
4: Out← FALSE
5: if (s′A, t ′A)← TransitionOut(sA,Ps) & s′A 6= sA then
6: enqueue(Q,s′A);
7: AddTo(PA,s′A, t ′A)
8: Out← T RUE
9: end if

10: if (s′A, t ′A)← TransitionOut(sA,Pc) & s′A 6= sA then
11: enqueue(Q,s′A);
12: AddTo(PA,s′A, t ′A)
13: Out← T RUE
14: end if
15: if Out == FALSE then
16: identi f yNonPlausibleMappings()
17: handleDeadlockState(sA,stackIn f o.MT currentState)
18: end if
19: end while

The variable Q implements a queue structure that is a list to keep track of
all possible state sA of the adapter. For each sA, function TransitionOut(sA,Px),
Px = Ps, or Px = Pc, checks if there are possible message exchanges between the
service and the adapter, or the state sA is a deadlock state (Out == False). A state
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is a deadlock state if there is no possible message exchange between the service
and any of the two services SP and SC in that state. This happens if both services
are waiting to receive some messages that the adapter can not synthesize. If one
of the following two conditions holds it means that a transition out of sA exists and
the adapter transits from state sA to s′A:

• Px is ready to send a message, so the adapter receives it, generates s′A, and
corresponding t ′A, and the set of actions for t ′A (saving the message in the
adapter, and activating its flag).

• Px is ready to receive a message m that is associated to a mapping im : m =
f unc(m′1, ...,m

′
k), and all input messages m′1, ...,m

′
k, k > 0 are received in the

adapter (their activation flags are equal to True). So, the adapter generates
s′A, and corresponding t ′A, and the actions to synthesize m.

If outgoing transitions are found for a state sA, then the new states of s′A are put
in Q, and s′A and corresponding t ′A are added to PA. Otherwise, sA is a deadlock
state. In existing approaches for automatic adapter generation [30, 6, 7], deadlock
states are removed from the adapter, i.e., such interactions are not supported by
the adapter. However, in the following we propose an approach to give the user an
opportunity to examine if the adaptation is possible or not (line 17 of Algorithm 2),
which is detailed in the next section). The complete adapter simulation process
is presented in Section 5.3, after all necessary procedures are introduced in the
following.

5.2 Handling Mismatches with Deadlock

As discussed before, mismatches with deadlock are due to one of the following two
cases: (i) provided mapping im for a message m is non-plausible, or (ii) there is
no mapping provided for a message m that is required during the interactions (e.g.,
for a missing/extra message). To illustrate the approach, let’s consider protocols
SP and SC in Figure 6(a), in which their interactions result in deadlock as both are
waiting to receive some messages in states 1 and 1′, respectively (SP is waiting
for message a and SC for message c). We propose the following two approaches
for dealing with such situations: (i) progressive user interaction, (ii) mismatch tree
generation.

5.2.1 Progressive User Interaction

In this approach, as soon as the algorithm finds a deadlock state (line 17 of Algo-
rithm 2), we prompt the user with messages that are responsible for the deadlock.
For example, for protocols SP and SC in Figure 6(a), when adapter is in state
〈1,1′〉, we prompt the user and ask for the mappings function for one of messages
〈SP,a〉 or 〈SC,c〉 to resolve the deadlock. To facilitate decision making for the
developer, we provide information on how it might be possible to construct each
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Figure 6: (a) ordering mismatch with deadlock (b) the mismatch tree for SP and
SC

of these messages based on available evidences (See section 5.3.1). The developer
may confirm that it is feasible to provide a mapping for one of these messages. In
this case, the process of adapter generation proceeds until finding the next deadlock
state. However, the developer may acknowledge that no mappings could be pro-
vided for any of these messages, then this deadlock state is tagged to be removed
from the adapter during the adapter generation.

This approach is simple, however, it has two main disadvantages: (i) it may in-
volve too many interactions with the developer, (ii) more importantly, as the future
message exchanges of two protocols after the deadlock point is not taken into the
account, the developer may not make the best decision. For example, assuming that
for resolving the deadlock in Figure 6(a) it is possible to provide mapping functions
for any of 〈SP,a〉 or 〈SC,c〉 and the developer selects to provide for 〈SP,a〉, then
the next deadlock occurs between 〈SP,b〉 and 〈SC,c〉. However, if the developer
had decided to provide mappings for 〈SC,c〉, then no more deadlocks would have
occurred.

5.2.2 Mismatch Tree Generation

Motivated by the goal of providing a finding all deadlock cases between two proto-
cols, in this approach, we perform a what-if analysis for each deadlock case, in the
sense that: assuming that a mapping could be provided for each of the messages
engaged in the deadlock, then how the message exchanges between two protocols
proceed until the exchange ends up in final states in both protocols. Based on the
result of this analysis, we build a tree, which is called a mismatch tree (MT ). A MT
represents all possible deadlocks between two protocols, and the messages that are
engaged in each deadlock. For example, the MT for SP and SC in Figure 6(a) is
depicted in Figure 6(b). It states that in state 〈1,1′〉 of adapter (state 1 of SP and
1′ of SC, respectively), there is a deadlock that messages <SP,a> and <SC,c> are
involved in it. From the deadlock resolution point of view, this node represents
a choice (or-condition), in which if a mapping for either of <SP,a> or <SC,c> is
provided the deadlock is resolved. It also shows all future deadlocks that would
occur in each path of the tree. For example, if the developer provides a mapping
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for <SP,a>, then the next deadlock occurs in state 〈2,1′〉, which represents a choice
between <SP,b> and <SC,c>.

In general, MT is an AND-OR tree. An AND-Node does not represent a dead-
lock case itself, but specifies that all deadlock cases that are children of this node
should be resolved. The root of MT is an example of an AND-Node. The outgoing
edges of an AND-Node do not have any label, but they are linked to other AND-
Node or OR-Node. On the other hand, an OR-Node refers to a deadlock case. This
type of node has one outgoing edge corresponding to each message that is engaged
in the deadlock. It has one edge in the case that one of the services SP or SC is in a
final state and the other requires the message on the label of the edge. Otherwise,
it has more than one edges that specifies at least one of the messages should be
provided to resolve the deadlock cases. The label of an OR-Node consists of the
name of a pair of states of the service and the client, in which a deadlock occurs.
The label of outgoing edges of an OR-Node represent the name of messages that
are engaged in the deadlock. See Figure 7 for the general representation of a MT ,
in which both nodes of types AND-Node and OR-Node are present. In this per-
spective, MT in Figure 6(b) is a subtree that shows the messages that are engaged
in the deadlock that occurs in state 〈1,1′〉 of the adapter. The advantage of MT is
that it represents all possible deadlocks in a concise form, and allows the developer
to make informed decisions.

Algorithm 3 shows the process for handling deadlock states in the adapter. For
each deadlock state, since it is one of the possible deadlocks, we create a leaf node
in MT for an AND-Node (line 1) (e.g., when currentMT state is its initial state).
This is to specify that all the deadlock cases that occur should be resolved. Then,
for the present deadlock cases, it checks the service and the client states from the
adapter state sA. If the service (the client, respectively) is not in a final state, then
it calls updateMT for updating MT to create required nodes to show messages that
are engaged in the deadlock.

To perform the what-if analysis for each deadlock case, we need to keep track
of deadlock states, and also keep information regarding the messages that are en-
gaged in the deadlock. To implement this idea, we use structure called StackInfo,
and inserting it inside a stack. In the next algorithm 5 we show how this informa-
tion is used to perform the what-if analysis.

Algorithm 4 shows how MT is updated for each deadlock case, and also the
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Algorithm 3 handleDeadlockState
Require: sA,currentMT State
Ensure: Revised MT

1: newMT state← createLeafInAND-NODE(currentMTstate, sA)
2: if !(sA.ServiceStateisFinalState) then
3: updateMT (sA,newMT state,sA.ServiceState);
4: end if
5: if !(sA.ClientStateisFinalState) then
6: updateMT (sA,newMT state,sA.ClientState);
7: end if

corresponding StackInfo for all messages that are engaged in each deadlock is
built, and inserted into the stack. This algorithm creates an edge from currentMT state
for each outgoing transition t from the partyState (either client or the service state)
that require a messages msg to fire (i.e., transitions having a message with a ”+” as
the label, e.g., +msg). All of these edges are children of an OR-Node to represent
a choice to resolve the deadlock (line 2).

Algorithm 4 updateMT
Require: sA,currentMT state, partyState
Ensure: Revised MT,Stack

1: for each t ∈ partyState.TransitionsrRequireMessages do
2: newMT state← createLeafInOR-NODE(currentMTstate,sA, t.msg);
3: newQ.enquqe(sA)
4: StackIn f o.Q← newQ
5: StackIn f o.msg← t.msg
6: StackIn f o.MT state← newMT state
7: Stack.push(StackIn f o)
8: end for

5.3 Complete Adapter Generation Process

Algorithm 5 shows the complete process of adapter simulation, and shows how the
what-if analysis for each deadlock case is performed using the combination of a
stack, and a queue structure. The behavior of the algorithm is captured in the fol-
lowing: (1) It generates the adapter specification for interactions that do not lead
to deadlocks; (2) For interactions that lead into deadlock, and for each messages
that are engaged in each deadlock case, it assumes that the messages could be con-
structed, then monitors how the interactions of the two service proceeds until the
algorithm finishes in final states in both service and client protocols. The algorithm
uses a queue to keep track of all states of the adapter to fulfill the first goal. It uses
a stack structure to keep track of all deadlock states for the second goal. Each stack
element, called StackInfo, contains the adapter state sA which represents the state
of the service and client protocols at the time that the deadlock happens, and also
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the name of the message (msg) that should be assumed it could be constructed.
Each element StackInfo (except the initial one) instruct the algorithm to assume
that a given message msg is provided, and so the deadlock could be resolved by
provision of message msg. Then, the adapter simulation process starts from state
sA (the input of SimulateAdapter is StackInfo), which was the deadlock state, and
continues the adapter simulation process, which in turn updates the stack, MT , and
the adapter specification PA.

Algorithm 5 Adapter Simulation Process
Require: Ps,Pc, IMA
Ensure: PA,MT

1: Q←{〈init, init〉}
2: StackIn f o.MT currentState←MT.initState
3: StackIn f o.Q← Q
4: Stack.push(StackIn f o)
5: while Stack 6= ∅ do
6: StackIn f o← Stack.pop()
7: PA,MT ← SimulateInteraction(StackIn f o,Ps,Pc, IMA)
8: end while

5.3.1 Evidences

Determining if a given message m engaged in a deadlock could be constructed in
the adapter or not is a very difficult task, and depends on many factors including
the state in which the interaction between two services is, and also the semantics of
messages. In the following, we discuss some of the evidences that can be used for
identifying messages in common deadlocks appear in Web services interactions:

Interface-based inference. For a given message m from interface I, which is
a label of an edge in MT , we can perform the following analysis on interface I to
find indications that might help to construct m:

(i) Messages with empty content. By inspecting the schema of message m,
we may observe that it is an empty message. This is specially the case for some
acknowledgment and response messages.

(ii) Analyzing the messages of the same interface. If the data structure of a
message m is not empty, then we analyze the relationship between data structure
m, and those of all messages m1, ..., mk, k > 0, of the same interface I, that has
been received before the deadlock point in the adapter. If elements of m could be
matched to elements of any of above messages, we may be able to construct this
message from those messages. This technique is also helpful on some response
and acknowledgment messages that return some order-number, serial-number that
is previously exchanged between services. In this case, the probability that m could
be constructed is considered as the similarity score of elements of m to existing
messages in the adapter from interface I.

(iii) Enumeration with default. In some schema definitions, e.g., in Google
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APIs, the expected values for some data types are given through enumeration. It
may be possible for the adapter to continue interactions with a service using some
default values from such a list.

(iv) Acquiring m through operation invocation. In some cases, we may observe
that message m from interface I1 that is required in MT has a mapping to a mes-
sage m′ from the partner interface I2. And, m′ is the output message of operation
o〈m′′,m′〉 with input message m′′. And, we observe that we can construct m′′ from
the messages that already have been received by the adapter. This allow to get m
through invoking operation o. The weight of m in MT is a product of matching
score of m and m′, and also the matching score of m′′ to messages in the adapter.

Log based value/type inference. If the log of previous interactions of the
service that we are developing the adapter in that service side is available, e.g., in
case of CO Client, it keeps the log of its previous interactions with XWebCheckout.
Then, this log is used to infer the data types/values exchanged for specific elements
in the required message m. For example, we may observe that a fixed value for data
elements of m is exchanged, or it is part of previous messages exchanged between
services. As another example, we used this evidence to adapt a client of version
1 of XWebCheckout service to use version 2 of this service. The main difference
between these two versions is in the schema definitions: version 1 uses simple data
types and all inputs are defined as strings, while in version 2 complex XML types
are used to declare the expected schemas. Analysis of log of client made it clear
that exchanged contents in messages of version 1 of the service are in XML format
and conform to the XML schemas in the second version, with few exceptions.
However, by considering only the schema definitions we could not make such an
inference.

Developer Input. As discussed, determining if a given message m could be
constructed in the adapter or not is very difficult and depends on many factors that
may not be captured by any of above evidences. For this reason, we also rely on
the input by the adapter developer to identify if it is feasible to provide a mapping
function to construct a message m in the adapter or not.

5.3.2 Analyzing Mismatch Tree Using Evidences

As discussed before, we assign a weight to each edge in the tree based on the
analysis of available evidences to show the probability that the message on the
edge could be constructed. So, the complete representation of each message on
edges of MT is in the format of <P,m,ρ>, in which P denotes the protocol name,
m the message name, and ρ is the probability that message m can be constructed
based on evidences Figure 7. This probability takes values between 0 and 1, in
which value 0 specifies that we do not have any indication that this message could
be constructed, while 1 suggests that this message could be constructed based on
available evidences. At this stage, we end up with a weighted tree, in which each
edge has a weight between 0 and 1. For each deadlock case in this weighted MT
(i.e., for each subtree corresponding to one children of the root node of MT ), we
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are interested to find the shortest path, i.e., with the minimum number of messages,
that maximizes the probability that the deadlock could be resolved by constructing
messages that are engaged in the deadlock. The probability that we can construct
one message is independent from the probability of the construction of any other
messages. So, we can define the probability that each deadlock case is resolved
using the set of messages in a specific path as the product of the weights of each
edge in that path. Then, we rank different paths in each subtree (corresponding
to each deadlock case). The result of this ranking is a list, in which the top path
corresponds to the best shortest path in the weighted subtree, that we suggest to
the adapter developer.

5.3.3 Mismatch Tree for the Running Example

Let’s consider very simple protocols of CO Client and Google Checkout depicted
in Figure 3. In Figure 4 we concluded that Place-Order message is a plausi-
ble matching for AddOrderRequest message in CO Client. However, there is no
matchings for messages New-order-notification and Request-Received in
CO Client, and also no matching for AddOrderResponse in Google Checkout.
Figure 8 shows the mismatch tree MT generated for these two protocols. The first
mismatch with deadlock occurs in state 〈2, iv〉 between messages AddOrderResponse
and Notification-Ack. If a mapping for either of these messages could be
provided, then there will be another deadlock case which shows the other mes-
sage is still required (in states 〈3, iv〉 and 〈2,v〉). Since Request-Received and
New-order-notification are of type of extra messages they do not create any
deadlock, but the adapter could receive them. However, after receiving Notification-acknowledgment,
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it needs to send message Notification-Ack to the Google. This has been cap-
tured by the mismatch tree.

To assign weight to different paths of MT in Figure 8, in the first step, we ana-
lyzed the WSDL interfaces of CO Client and Google Checkout. Notification-acknowledgment
has a serial-number element as its content. Considering the relationship between
these messages and New-order-notification reveals that it is an element of this
message that is sent by Google Checkout, and so we estimate that the probability
of provision of this content as 1. In case of CO Client, inspecting the content of
message AddOrderResponse shows that it is an empty message. So, in this spe-
cial case, the probability of construction of this messages is also estimated to be 1.
Based on this analysis, the adapter developer can create the required mappings in
IM to resolve the deadlock.

To summarize, the adapter simulation process in the algorithm 5 generate one
of the following results for any given protocols Ps and Pc and interface mappings
IM: (i) it outputs that there is no adaptation required, and protocols successfully
interact (if there is no protocol-level mismatches); (ii) adaptation is required, but
there is no deadlock interactions (there are mismatches of type of unspecified re-
ception), and generates the adapter protocol (PA); (iii) the adaptation is required,
and there are deadlock interactions. For deadlock interactions, the mismatch tree
MT is generated for further analysis (line 17). Based on analysis of MT the devel-
oper may updates interface mappings IM to resolve some deadlocks, or tag some
of the deadlocks as non-resolvable. In the next run of the algorithm, it removes all
the deadlock states tagged as non-resolvable.

6 Implementation and Experiments

The approach presented in the paper has been implemented inside IBM WID (Web-
Sphere Integration Developer), which is an Eclipse-based IDE for development of
composite applications based on SCA (Service Component Architecture) architec-
ture [25], and in the context of Wombat project for analysis of service interac-
tions [19]. Figure 9 shows the architecture of the tool. Services and the adapter
have been implemented as service components in SCA, the interface mapping com-
ponent uses InterfaceMap components in IBM WID to implement mappings. The
mismatch tree editor is implemented by extending the state machine editor in WID
to represent mismatch trees, and the backend to check for evidences. Mapping
functions could be implemented as XQuery, XSLT or even plain Java functions.
Interface mapping editor allows developers to create new and also edit discovered
mappings. The interface matching component is implemented on top of COMA++
tool [9] (http://dbs.uni-leipzig.de/de/Research/coma.html ).

Our tool also supports defining rules that specify how to use interface mappings
during the adaptation. For example, if two or more mappings are specified for
a given message m, rules specify where to use which one of the mappings, or
to define generalized forms of actions of adapter. For example, by default after
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sending a message m, all set of input messages in X that are used to build m and
m itself is inactivated. However, the developer can define rules to allow a given
mapping to be used in any state that is needed during adapter generation and not to
be inactivated. Rules are represented in XML and implemented following the EMF
(Eclipse Modeling Framework) in Eclipse. The rule editor allows the developers
to edit discovered rules or create new rules for a pair of protocols. The adapter
generation process accepts the rule definitions as the input of the algorithm. Finally,
all algorithmic parts are implemented using Java 1.5.

The result of application of the tool on matching CO Client (in fact XWe-
bCheckout) and Google Checkout APIs for other functionalities (order payment,
shipping, and cancellation) shows that the interactions of the two services results in
deadlocks, and the mismatch tree generation and ranking approach is very useful in
enabling the adaptation between the two services. In addition, we have applied the
tool on a number of other service interfaces and business protocols taken from the
real-world scenarios, e.g., an ATM/Bank interface and protocol definitions [19],
mapping a client of version 1 of XWebChecout service to work with version 2
of the service and the interface and protocol definitions of a purchase order ser-
vice taken from [1]. The lessons learned from these experiments include: (i) in
many services, only a subset of elements of the schema defined for each message
is essential for the proper functioning of the service. Functionality-wise similar
services often declare such essential information in their interfaces. Our interface
mapping methodology proved effective in finding the matching between messages,
and between data types of each message for such parts; (ii) such functionality-
wise similar services often define different ordering constraints on the message
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exchange, and mainly the differences are of type of signature mismatch or hav-
ing extra/missing messages in service interfaces. This later case often leads the
interaction to deadlock.

7 Related Work and Conclusion

The problem of adapting interactions models in software has been studied in dif-
ferent contexts, and more notably in the area of software components (e.g., [30, 6,
29, 16]) and also recently in Web services [3, 12, 11, 17, 7]. There are mainly two
schools of work in this area: The first school of approaches propose techniques
for automatic generation of adapters [30, 6]. All of them tackle ordering mismatch
with unspecified reception, and remove all interactions that lead to deadlock from
the adapter (hence, deadlock situations are not in fact managed). In addition, they
assume there is no mismatch at the interface level, or that interface mappings are
provided. The other school of approaches provide classes of possible mismatches
between interactions models and then propose adaptation templates based on de-
sign patterns or adaptation operations to resolve the mismatches (e.g., [13, 11, 17]).
However, in all of these approaches developers need to manually inspect the pro-
tocols and identify the mismatches.

At the interface level there are two main approaches in the prior art: (i) ap-
proaches for finding similar operations in a repository of service descriptions like
UDDI to a given textual description or to some service operation signature, e.g.,
[10, 27]. However, the objective of these approaches is not to find the exact map-
ping between elements of messages (and operation), but to find a measure of their
similarity typically based on information retrieval techniques. In fact, the pro-
posed techniques are not applicable in interface mapping context as we have only
two service interfaces to map, while e.g., Woogle [10] proposes a clustering-based
approach that requires a repository of service descriptions to be applied as a learn-
ing phase. The second class of prior art propose approaches for adapting a service
WSDL interface to incompatible clients, e.g., [12, 22]. In [22] authors assume
that interfaces of all services that provide a similar functionality are derived from
a common base interface using limited number of derivation actions that allow for
adding or removing parameters to operations, however the operation names remain
the same. We do not make any assumptions on service interfaces. We build on
top of schema mapping approaches [23, 9] and we extend them by considering
protocol definitions to identify the set of relevant mappings in service interactions.
In [12], the author proposes defining service views on top of WSDL interfaces by
altering WSDL interfaces to enable interactions with incompatible services, but no
automatic support for generation of views is proposed.

Semantic Web-based approaches based on ontologies also provide an attractive
alternative for Web service matching (e.g., [1, 21]) and mediation [28]. However,
the limited availability of ontologies in real-world Web services makes it hard to
apply these techniques at this stage. Commercial products, e.g., IBM WID, BEA
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WebLogic or Microsoft Biztalk also provide facilities for manual mediating be-
tween service interface and protocols, however, they offer limited automated sup-
port.

In summary, the innovative contributions of this paper lie in, first, providing
automated support for identification and resolution of interface-level mismatches.
We propose a method to identify parameters of mapping functions that resolve
those mismatches. Second, we provide automated support for adapting behavioral
models in presence of deadlock. Tackling this type of mismatch greatly expands
the range of syntactically incompatible but adaptable services before automatically
concluding that such services are not adaptable. We showed this using a num-
ber of examples and experiments (a case study) in the paper. In doing this, we
exploit domain-specific knowledge available in the context of Web services, e.g.,
in WSDL interfaces, protocol specifications, and execution logs, if available, to
provide above mentioned automated support.

We believe that these results are promising and encouraging. We have expe-
rienced that the problem is real and pressing, and the solution does considerably
simplify adapter development.
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A ATM-Bank Example

As another example, let’s consider the protocols of an ATM service (also referred as
Bank) and client service (also referred to as ATM) as depicted in Figure 10(a), and
Figure 10(b), respectively. The example has been highly simplified for presentation
purposes, but it does exhibits some of the mismatches found in business protocols.

In this example, we assume that the user has already inserted the card into an
ATM machine. Then the client selects the account type by sending a SelectChecking
or SelectSaving message to the service. Then, it anticipates receiving message
ReturnAck, before sending the message that contains user’s PIN (Personal Iden-
tification Number). Following that the client needs to receive a notificaiton of
(ReturnSuccess) or a failure message (ReturnFailure). On the other hand, the
service anticipates to receive PIN information. Then, it issues a ReturnSuccess or
ReturnFailure. According to the service’s protocol, in case of ReturnSuccess,
the client can select the type of account by sending message SelectChecking or
SelectSaving. Finally, the service sends the balance accordingly.

These two protocols are not adaptable using available solutions in the litera-
ture. This is due to an ordering mismatches that results in deadlocks. The order-
ing mismatch relates to the fact that the client sends either SelectChecking or
SelectSaving messages (which is of type of unspecified reception for the ser-
vice), and is waiting to receive ReturnAck. However, the service is waiting to
receive SubmitPIN first. Existing approaches create an empty adapter in this case,
which means adaptation is not possible.

However, further analysis of these protocols reveals that these two protocols
are in fact adaptable. This could be performed if ReturnAck message could be
provided by the adapter, then the client will send SubmitPIN, and the interactions
can go on successfully. Message SelectChecking (or SelectSaving) could be
saved in the adapter to be forwarded to the service, when the service is in state 4 of
the protocol.
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Figure 10: The ATM Service and Client Protocols

B Applying the approach on ATM Example

The ATM service and client share the same interface definitions, except that there
is no match for ReturnAck in the service interface. So, interface mappings in
this case is straightforward for all other messages. As discussed before, for miss-
ing/extra messages, protocol-level analyze makes it clear if they are needed, and at
what state during the interactions. In fact, in this particular case, the protocol-level
analysis shows that this missing message leads the interactions of the two service
to deadlock.

Figure 11 shows the mismatch tree MT for all interactions that result in two
deadlocks between the two services (generated by Algorithm 5). The root node
of MT is an AND-Node). One of the deadlocks occurs in state 〈1, ii〉, and the
other in state 〈1, iii〉. In both cases, messages TransmitPIN and ReturnAck are
responsible for the deadlock. This happens when ATM selects the account type
(saving or checking) and waits for a reply, while the service is waiting to receive
the PIN. Examining the WSDL interface of the ATM we find out that ReturnAck
messages has the a string parameter called account-type, which can get one of the
two values: saving or checking (defined as an enumeration inside the schema).
In this case, this will get a probability 0.5 to construct it (one of the two possible
values). As there is no log of previous communication of ATM is available (we
are considering the compatibility of these two services), so it is not possible to
specify which of the two values are used in which state. This is the reason that
the probability is specified to be 0.5 instead of 1. On the other hand, the proposed
mapping for <Bank,SubmitPIN> of the service is the message <ATM,SubmitPIN>
in ATM client. However, it is not a plausible mapping, because at states 〈1, ii〉,
and 〈1, iii〉 we have not received this message. The parameter of this message is a
numerical value called PIN, for which no indication based on our evidences exists
that it could be constructed, so it gets the probability of 0. In any of these two
deadlock cases, if we assume that message TransmitPIN could be constructed,
then two other deadlocks happen during the interactions of the two services as
depicted in Figure 11, which shows that message ReturnAck is needed to resolve
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Figure 11: Weighted mismatch tree for the ATM service (Bank) and client (ATM)
protocols

the deadlock eventually. However, both of such paths get a probability of zero as
the probability of provision of TransmitPIN is zero.

Based on MT , the adapter developer confirms that is possible to construct
ReturnAck. She specifies two mapping functions for message ReturnAck, one
with the value saving and the other with the value checking for parameter account-type.
The developer also defines the rules, via the rule editor in the tool (see Section C),
to specify where to use each of these mappings. In fact, the first mapping should be
used after receiving message SelectChecking by the adapter, or more precisely
in state 〈1, ii〉, and the next should be used after receiving message SelectSaving
in state 〈1, iii〉. Having these two mapping defined in the adapter, resolves both
deadlock cases, and so makes it possible to generate the adapter specification for
these two protocols.

C Tool Support

The implementation details of the tool has been discussed in Section 6. Figure 9
depicts the architecture of the tool. In this section, we provide some snapshots that
shows the usage of the adaptation tool in the process of adapter generation for the
ATM service and client services.

The ATM service and client are represented as SCA components inside an SCA
module. The implementation of these two services is supplied as state machines
(See Figure 12).

As discussed in Section B, providing the interface mappings are straightfor-
ward, and are implemented using InterfaceMap component in WID. The tool al-
lows the adapter developer to select the two protocols and to check for protocol-
level mismatches by simulating the adapter generation process (See left-hand side
of Figure 12). Doing this, the adapter simulation/generation wizard will be ex-
ecuted (Figure 13). The simulation process ask for a file name for the generated
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Figure 12: The protocols of ATM service and ATM client services
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adapter, if possible to generate (having the default value of GeneratedAdapter.sacl).
A file name for the mismatch tree is also requested, in case that there are deadlocks
so the tree is generated (the default name is PlanTree.sacl.

Figure 13: The adapter simulation wizard

Using this wizard, the developer may optionally provide the name of a file,
in which contains user-defined rules. As discussed before, rules helps the adapter
simulation/generation process to use the interface mappings at the right time. The
result of adapter simulation is one of the followings:

• No adaptation is required, and the two process (services) can successfully
interact.

• Adaptation required for successful interaction of services. However, there is
no interactions leading to deadlock. Then the adapter specification is gener-
ated.

• Adaptation is required for successful interaction of services. There are inter-
actions that lead to deadlock. Then, the adapter specification for all interac-
tions without deadlocks is generated, and for interactions with the deadlock
the mismatch tree is generated.

In this case, the tool specifies that there is no adapter between the two, as all
interactions of the two services result in deadlocks. So, only the mismatch tree is
generated. Figure 14 shows the mismatch tree for ATM service and client.
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Figure 14: The mismatch tree for ATM service and client protocols
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The state machine editor in WID is extended to visualize the mismatch tree.
The weight of each edge in the tree is attached as properties of each transition. For
each deadlock case, if the developer selects the root node for the deadlock tree,
the suggestions for resolution of the deadlock are shown in the properties view
(see Figure 14). In Figure 14, the deadlock that occurs in state 〈InitialState−
SelectSaving〉 is selected. For this state, the tree path of the subtree belong to
this deadlock case are ranked based on the probability that such messages could
be constructed. Based on these results, the developer may define new interface
mappings (e.g., in this case for construction of ReturnAck for each deadlock case).
Finally, the tool allows the developer to define rules on how to use the interface
mappings (See Figure 15). These rules are saved into rules files, which can be used
as the input to the adapter generation process (see Figure 13).

Adapters are specified as SCA components that intermediates the interactions
of ATM service and clients (See top window of Figure 16). In fact, an adapter com-
ponent declares interfaces of both services so other services can call operations on
the adapter, and also import the interfaces of the two services as references, so it
can call operation’s on the ATM service and client components. The implemen-
tation of an adapter is represented as state machines. In this case, after definition
of required interface mappings for ReturnAck and definition of rules on where
to use these mappings, the specification of the adapter state machines is gener-
ated by the tool according to definition 3.6 through adapter simulation/generation
process. Figure 16 shows the adapter state machines that is generated for ATM
service and client. In this case, the adapter generation process uses the rule file
that is defined in Figure 15 as the input and the interface mappings generated for
<Client,ReturnSuccess> to generate the adapter.
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Figure 15: The snapshot of the rule definition editor
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Figure 16: The protocol of the adapter for ATM service and client protocols
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