
WS-Policy4MASC – A WS-Policy Extension Used in the Manageable and
Adaptable Service Compositions (MASC) Middleware

Vladimir Tosic 1,2, Abdelkarim Erradi 1, Piyush Maheshwari 1,3

1 School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
2 Department of Computer Science, University of Western Ontario, London, Ontario, Canada

3 IBM India Research Lab, New Delhi, India

vladat@computer.org, aerradi@cse.unsw.edu.au, pimahesh@in.ibm.com

UNSW-CSE-TR-0705
Technical Report, January 2007

School of Computer Science and Engineering
The University of New South Wales

NSW 2052, Australia

mailto:pimahesh@in.ibm.com
mailto:aerradi@cse.unsw.edu.au
mailto:vladat@computer.org

Abstract

WS-Policy4MASC is a new XML language that we have developed for policy specification in the
Manageable and Adaptable Service Compositions (MASC) middleware. It can be also used for other Web
service middleware. It extends the Web Services Policy Framework (WS-Policy) by defining new types of
policy assertions. Goal policy assertions specify requirements and guarantees (e.g., maximal response time)
to be met in desired normal operation. They guide monitoring activities in MASC. Action policy assertions
specify actions to be taken if certain conditions are met or not met (e.g., some guarantees were not satisfied).
They guide adaptation and other control actions. Utility policy assertions specify monetary values assigned
to particular situations (e.g., execution of some action). They can be used by MASC for billing and for
selection between alternative action policy assertions. Meta-policy assertions can be used to specify which
action policy assertions are alternative and which conflict resolution strategy (e.g., profit maximization)
should be used. In addition to these 4 new types of policy assertions, WS-Policy4MASC enables
specification of additional information that is necessary for run-time policy-driven management. This
includes information about conditions when policy assertions are evaluated/ executed, parties performing this
evaluation /execution, a party responsible for meeting a goal policy assertion, ontological meaning,
monitored data items, states, state transitions, schedules, events, and various expressions. We have evaluated
feasibility of the WS-Policy4MASC solutions by implementing a policy repository and other modules in
MASC. Further, we have examined their usefulness on a set of realistic stock trading scenarios.

1. Introduction and Motivation

In the area of management (monitoring and control) of networks and distributed systems, policy-driven
management [1] has caught considerable attention during the last decade. A policy can be defined as a
collection of high-level, implementation-independent, operation and management goals and/or rules
expressed in a human-readable form. Policies can be viewed as decision-making guidelines for operation and
management of a system. A policy-driven management system refines these high-level goals and rules into
many low-level, implementation-specific, actions controlling operation and management of particular system
elements. For example, a policy could be used to: ensure compliance, configure behavior, or achieve
adaptability. Several classifications of policies exist. We find the classification from [2] particularly useful. It
differentiates action policies (describing actions to be taken in a particular state), goal policies (describing
desired states of the system), and utility function policies (defining value of each possible state).

During the last several years, there has also been significant progress on developing technologies for
Extensible Markup Language (XML) Web services. These technologies are based on widely used industrial
standards SOAP, the Web Services Description Language (WSDL), and the Web Services Business Process
Execution Language (WSBPEL). In spite of achieved results, there are still many open issues related to
practical uses of Web services. Many of these issues are associated with management, particularly control of
the execution, of Web services and Web service compositions. Management is needed to achieve correct
operation, recover from faults, optimize performance, increase security, perform accounting, and achieve
maximal benefits from the managed systems. One of the prerequisites for performing management of Web
services and Web service compositions is existence of a machine processeable and precise format for
description of monitored requirements, guarantees, capabilities, and control actions. A number of languages
have recently appeared to address some aspects of this need, usually specification of quality of service (QoS)
requirements and guarantees. Some of these languages are accompanied by corresponding management
middleware. For example, this is the case with the Web Service Level Agreement (WSLA) [3], the Web
Services Management Language (WSML) [4], the Web Service Offerings Language (WSOL) [5], the Web
Services Agreement Specification (WS-Agreement) [6], the Web Services Policy Framework (WS-Policy)
[7, 8], and the Web Service Constraint Language (WS-CoL) [9]. However, Web service management is a
complex area and the past results have predominantly addressed (simpler) monitoring or QoS-based selection
of Web services and less (more challenging) control (e.g., adaptation). Further, they have mainly
concentrated on management of individual Web services, while challenges of management of Web service
compositions are relatively under-explored. In addition, the current solutions are almost exclusively focused
on optimization of technical QoS metrics (e.g., response time) and provide only a very simple treatment of
tangible business metrics (e.g., profit) without examining non-tangible business metrics (e.g., customer
retention).

Our work aims to go beyond the past approaches to control of Web services and Web service
compositions and provide additional agility and self-adaptation capabilities driven by maximizing business
value. To achieve this, we have decided to leverage achievements of policy-driven management. We have
examined a number of requirements for policy-driven management of Web services and Web service
compositions and concluded that the none of the past languages and middleware tools fully addresses them.
(A detailed list of language-related requirements can be found in [10], while a brief summary of some of
them in [11].) To address these requirements, we have been developing our policy-driven Web service
management middleware Manageable and Adaptive Service Compositions (MASC) [12, 13, 14, 10]. It
provides monitoring of Web services and Web service compositions, a wide range of dynamic (run-time)
adaptation mechanisms (to handle business exceptions, versioning, faults, performance problems),
coordination of adaptation actions between the SOAP messaging layer and the process orchestration layer,
and the capability to select between alternative control actions in a way that will maximize tangible and
intangible business value in various ways. The latter three features are distinctive characteristic of MASC
compared to the related work. Further, MASC builds on the established policy-driven management principles
[1]. In particular, description of monitoring and control aspects (e.g., what are possible faults and how to
handle them) is externalized from business process (e.g., Web service composition) descriptions into
separate policies. This externalization yields higher degree of flexibility, promotes reusability and
contributes to keeping the specification of the base process simpler and easier to maintain. Another
distinctive characteristic of MASC is that it leverages and extends the power and flexibility of the brand new
Microsoft .NET 3.0 platform [15], particularly its components the Windows Workflow Foundation (WF) and
the Windows Communication Foundation (WCF). Since WF uses the Extensible Application Markup

Language (XAML) for description of Web service compositions (processes, workflows) instead of
WSBPEL, MASC also uses XAML. This is in contrast to the other Web service management middleware
tools, which are based on Java and WSBPEL. This difference in underlying technology caused some
architectural uniqueness of our solutions.

WS-Policy4MASC is our novel language for description of policies used in the MASC middleware and,
thus, for its automatic configuration. As we will explain in this paper, it is our domain-independent extension
of WS-Policy [7, 8], which is an industrial specification standardized by the World Wide Web Consortium
(W3C). While we have examined extending other Web service management languages (particularly, WS-
Agreement) and other policy-driven management languages, we have found that WS-Policy is most suitable
for the MASC middleware and is widely used in practice. WS-Policy4MASC is, in principle, a powerful
general language for specification of various Web service management policies. However, during our
development of the language details we put an emphasis on supporting aspects that differentiate MASC from
other Web service middleware. Particularly, our language enables detailed specification of information for
various types of adaptation of Web service compositions and for selection between alternative control
actions based on various strategies for maximization of monetary and intangible business values.
Consequently, WS-Policy4MASC provides a number of solutions that are not present in past related works.

This paper presents the WS-Policy4MASC language. In this section, we have briefly introduced the area
of policy-based Web service management and motivated our development of the language. The following
section summarizes the main related work, putting particular emphasis on WS-Policy. An overview of WS-
Policy4MASC is given in Section 3. This section has 4 subsections. Subsection 3.1 introduces the main
constructs, such as goal/ action/utility/meta- policy assertions. Subsection 3.2 provides examples of these
constructs. Subsection 3.3 lists different dynamic adaptation actions that can be expressed in the WS-
Policy4MASC language and executed by the MASC middleware. The last subsection (3.4) explains how
WS-Policy4MASC utility policy assertions and meta- policy assertions are used for selection between
alternative control actions based on various strategies for maximization of monetary and intangible business
values. Then, we present an overview of the MASC middleware architecture and its .NET 3.0
implementation in Section 4. In the last Section 5, we summarize conclusions and outline our ongoing and
future work.

2. Related Work

The main related work to our project is the Web Services Policy Framework (WS-Policy) [7, 8], an
industrial specification standardized by the World Wide Web Consortium (W3C). It defines an extensible
container to hold domain-specific policy assertions. It also provides a general framework for attaching
attributes/metadata to services and for placing range of interaction constraints with respect to various aspects,
such as security (e.g., encryption type, authentication mode) or reliable messaging. It is intended as a
complement to WSDL and WSBPEL.

In the WS-Policy model, a policy is defined as a collection of policy alternatives, each of which is a
collection of policy assertions. WS-PolicyAttachment defines a generic mechanism that associates a policy
with subjects to which the policy applies, such as WSDL elements or Web service registry information.
Various policy subjects are possible, such as service, endpoint, operation, message, or message part. A policy
scope is a set of policy subjects to which a policy may apply.

WS-Policy has a number of good features. For example, it is flexible and extensible – policies can be
specified both inside and outside WSDL files. Further, it has some reusability mechanisms, such as inclusion
and grouping of policies. Nevertheless, it must be noted that WS-Policy is only a general framework, while
the details of the specification of particular categories of policies will be defined in specialized languages –
domain-dependent extensions of WS-Policy. Currently, only extensions for security, reliable messaging, and
a few other management areas that were not the focus of our project had been published. WS-
PolicyAssertions can be used for the formal specification of functional constraints, but the contained
expressions can be specified in any language. It is not clear whether and when some specialized languages
for the specification of quality of service (QoS) policies, prices/penalties, and other management information
will be developed. Some unification and standardization of common elements, such as expressions, of
various WS-Policy languages would reduce the overhead of supporting this framework. Further, WS-Policy
does not detail where, when, and how are policies monitored and evaluated. Since many policies have to be
monitored and controlled during run-time, WS-Policy needs better support for management applications,
including explicit specification of such management information. Consequently, we had to develop a new
domain-independent WS-Policy extension, which we named WS-Policy4MASC.

The WS-Policy specification is currently evolving within the W3C standardization process [7]. We have
decided to work with the past stable version described in [8], but plan to align our WS-Policy4MASC with
new WS-Policy versions once they are stable.

Another important related work is Web Service Constraint Language (WS-CoL) [9], a domain-
independent WS-Policy extension for specifying client-side monitoring policies, particularly those related to
security. At deployment time, WS-CoL constraints attached to a process are translated into WSBPEL invoke
activities that call the Monitoring Manager to evaluate the monitoring policies and detect anomalous
conditions. This approach is similar to ours in that monitoring policies are specified externally rather than
being embedded into the process specification. It achieves the desired reusability and separation of concerns.
However, it only provides support for monitoring and focuses mainly on security. It does not provide full
support for adaptation and business-driven management that are distinctive characteristics of our research.

The Web Services Policy Language (WSPL) [16], developed at Sun Microsystems, is a WS-Policy
competitor. It is suitable for specifying a wide range of policies, e.g., acceptable and supported encryption
algorithms or privacy guarantees. While there are some conceptual similarities with WS-Policy, the syntax of
WSPL is a subset of the Extensible Access Control Markup Language (XACML). WSPL's key strength is its
ability to support negotiation of mutually acceptable policies that represent intersection of two source
policies. However, WSPL is not as popular as WS-Policy and it did not become a standard.

Another recent research trend to address adaptation issues is augmenting Web services middleware with
autonomous behavior capabilities such as self-healing and self-configuring [17, 18, 19]. For example, IBM’s
Policy Management for Autonomic Computing (PMAC) [19] is a policy driven framework intended to
simplify creation, storage, distribution, and execution of policies. It uses the Autonomic Computing Policy
Language (ACPL) as the underlying policy language. ACPL is a strongly-typed XML-based language for
specifying policy rules and expressions. Its key concepts are: scope, condition, decision and business value.
The scope specifies the policy subject. The condition expresses when a policy is to be applied. The decision
describes observable behavior or desired outcome of a policy in the form of a management action or a
configuration profile. The business value expresses utility functions to make economic trade offs between
policy alternatives. We found ACPL tightly coupled to PMAC and hence more suitable for configuring
resources and managing applications. It offers limited support for monitoring and adaptation of Web service
compositions. Furthermore, the policy subject is specified within the policy definition and this hinders the
policies reusability and maintainability. On the contrary, WS-Policy offers more flexibility and has better
acceptance by industry. Our work belongs to this emerging autonomic Web services research area, but has
unique characteristics, outlined in the previous section.

Over the last decade, multiple approaches have been suggested for specifying policies for different
application domains. Most of these proposals target network management, security, privacy, and trust. For
example KAoS [20] enables specification and enforcement of authorization and obligation policies for Grid
Computing and Semantic Web services. Our approach targets monitoring and adaptation of Web services
and Web service compositions. Consequently, it is closest to a few works that have appeared in this area. For
example, the proposed policy-driven Web service transactional frameworks (e.g., [21]) only address
coordination of activity termination and possibly compensation to ensure that participating Web services
reach consistent states after a failure. Our work complements them with suitable repair policies. However,
we have only studied policy-driven local repair and adaptation strategies.

There is a body of work on policy refinement and policy conflict detection and resolution. Our MASC
middleware supports basic policy refinement via mapping WS-Policy4MASC assertions into calls to MASC
middleware management interfaces. In MASC, policy conflict detection and resolution uses WS-
Policy4MASC meta-policies that describe how to maximize business value. However, we left design-time
analysis of policies to detect and resolve policy conflicts for future work. We plan to reuse and/or adapt
existing solutions in this area, e.g., [22].

3. Overview of WS-Policy4MASC

WS-Policy4MASC extends WS-Policy by defining XML schemas with new types of WS-Policy policy
assertions. (These are not domain-specific policy assertions because WS-Policy4MASC constructs can be
used for representing functional constraints, QoS, adaptation, security, prices, and other information.) There
are no changes to WS-Policy constructs (e.g., <wsp:Policy>, <wsp:All>, and <wsp:ExactlyOne>), so these
constructs can be used with WS-Policy4MASC in exactly the same way as for any other WS-Policy policy
assertions. WS-Policy4MASC policy assertions can be attached to WSDL constructs (e.g., endpoint,
operation, message) and WSBPEL or XAML constructs (e.g., process, sub-process, activity).

MASCPolicyAssertion

GoalPolicyAssertion ActionPolicyAssertion UtilityPolicyAssertion MetapolicyAssertion

When

0..*

-EvaluationPrecondition

1

BooleanExpression

0..*
-Condition1

MonitoredDataItem1..*
-ExpressionVariable

0..*

0..*

-EvaluationPrecondition 1

0..*

-EvaluationPrecondition

1

Actions

1 -ActionsList1

ArithmeticWithUnitExpression

0..* -MonetaryValue1

0..*

-Referenced

1

State Event

0..*

-TriggerEvent 1..*

StateTransition0..*

-NewState

1

0..*
-TransitionPrecondition1

0..*

-PreviousState 1..*

Figure 1. Some relationships between the main WS-Policy4MASC constructs

3.1. Main Constructs in WS-Policy4MASC

WS-Policy4MASC constructs can be classified into "real" policy assertions and other constructs. There
are 4 types of "real" policy assertions:
(1) Goal policy assertions specify requirements and guarantees to be met in desired normal operation (e.g.,
response time of a particular activity has to be less than 1 second). In MASC, they guide monitoring
activities.
(2) Action policy assertions specify actions to be taken if certain conditions are met (e.g., some guarantees
were not satisfied). For example, these actions can be removal, addition, replacement, skipping, or retrying
of a sub-process (or individual activity) or process termination. In MASC, they guide adaptation and other
control actions (and a few aspects of monitoring, such as monitored data exchange).
(3) Utility policy assertions specify monetary values assigned to particular situations (e.g., execution of some
action). They can be used by MASC for billing and for selection between alternative action policy assertions.
(4) Meta-policy assertions can be used to specify which action policy assertions are alternative and which
conflict resolution strategy should be used.

It should be noted that the WS-Policy4MASC use of the terms “goal policy assertion” and “utility policy
assertion” is somewhat different from the terms “goal policy” and “utility policy” used by [2]. A WS-
Policy4MASC goal policy assertion specifies a condition (requirement or guarantee) to be
achieved/met/satisfied, while a goal policy in [2] specifies a desired state (situation) of the system. While a
complete desired state of the system is not denoted by an individual WS-Policy4MASC goal policy
assertion, it is determined by a combination of all WS-Policy4MASC goal policy assertions valid at the same
time. This difference could be viewed as consistent with the WS-Policy distinction between the terms
“policy” and “policy assertion”. Analogously, an individual WS-Policy4MASC utility policy assertion does
not denote a complete utility value associated to a particular system, but a combination of all WS-
Policy4MASC utility policy assertions valid at the same time determines a complete utility value. A utility
policy in [2] specifies utility value associated to a particular state (situation) of the system, while in WS-
Policy4MASC a utility can be associated not only to staying in a state for some time, but also to state
transitions, execution/non-execution of action policy assertions, satisfaction/non-satisfaction of goal policy
assertions, and other events. However, the meaning of the WS-Policy4MASC term “action policy assertion”
can be considered the same as the meaning of the [2] term “action policy”. They both represent a set of

actions to perform if particular conditions are met.
In addition to these 4 new types of "real" policy assertions, WS-Policy4MASC enables specification of

additional information that is necessary for run-time policy-driven management. Some of this information
(e.g., which party performs evaluation/execution of a policy assertion, which party is responsible for meeting
a goal) is specified in attributes of the above-mentioned "real" policy assertions. Much more information is
specified in additional WS-Policy4MASC constructs, specifying monitored data items, states, state
transitions, schedules, events, scopes, and various expressions (Boolean, arithmetic, arithmetic with units,
string, date/time/duration). These "other" constructs are also implemented as WS-Policy policy assertions
from the syntax viewpoint (although they are not policy assertions from the semantic viewpoint), in order to
support reusability and ease automatic code generation (this will be elaborated below). Probably the most
important of them is the <When> construct that specifies when something (e.g., evaluation of a goal policy
assertion or execution of actions in an action policy assertion) should take place. It contains information
about one or more states in which this occurs, one or more events (e.g., Web service operation executed) that
can (each individually) trigger this occurrence, and an optional additional Boolean condition to be satisfied
(it can be used for filtering). The emphasis in this paper will be on explaining the 4 types of "real" policy
assertions, while details of the other WS-Policy4MASC constructs can be found in the on-line language
documentation [10].

Note that simplicity of automatic code generation from XML schemas into C# classes and reusability of
specification elements had significant influences on the design of our language. For example, we avoided the
<choice> element in XML schemas for WS-Policy4MASC because it resulted in C# classes that were
difficult to understand and handle. A drawback of our approach is that many WS-Policy4MASC supporting
constructs (e.g., event definitions) are specified as WS-Policy policy assertions, leading to specifications that
are somewhat verbose. However, we hope that, in the future, WS-Policy4MASC files will be generated by
graphical tools, so this verbosity of WS-Policy4MASC files will not be a strain for humans.

Some relationships between the main WS-Policy4MASC constructs are shown in the UML diagram in
Figure 2. Due to the space constraints, the figure does not show all existing constructs and relationships.
Goal policy assertions, action policy assertions, utility policy assertions and meta-policy assertions are
subtypes of the abstract policy assertion construct MASCPolicyAssertion. It defines common attributes, such
as policy assertion ID and party that performs execution/evaluation. The 4 policy assertion types have
additional attributes and elements. The former 3 types of policy assertions reference a <When> element
describing in which state(s) and on occurrence of which event(s) a policy assertion should be processed. A
goal policy references a Boolean expression with the condition to be evaluated – only if the given expression
evaluates to “true” the goal was achieved/met/satisfied. An action policy assertion references a group of
actions that are to be executed. A utility policy assertion contains an arithmetic with (currency) unit
expression that determines associated monetary value. A meta-policy assertion does not reference a <When>
element, but a set of mutually conflicting policy assertions. It contains information about a conflict
resolution strategy (this will be explained in Subsection 3.4).

3.2. WS-Policy4MASC Examples

Figure 2 illustrates some of the WS-Policy4MASC constructs on a simple example. A weather report Web
service has one operation: Integer weatherTemperature(String postalCode). Figure 2 shows how WS-
Policy4MASC can be used to specify the post-condition that the result represents temperature in Celsius
degrees and that it should be between -70C and 50C. WS-Policy4MASC policy assertions and other
constructs are specified within a WS-Policy element (its attributes defining namespaces are omitted in Figure
2 for brevity). First, the <MonitoredDataItem>, <MonitoredDataItemCollection>, and <ActionGroup>
constructs specify that the message part "weatherTemperature" is monitored and expressed in Celsius
degrees. (For the above-mentioned reasons, this specification is verbose.) Definitions of states and event
follows, but they are omitted from Figure 1. Then, a <When> construct referring to the state "Executing" and
the event "MessageToBeSent" is defined. The subsequent action policy assertion specifies that when this
event happens in this state, monitoring of the message part "weatherTemperature" is performed by the
provider Web service. This action policy assertion is used to configure MASC monitoring modules.
Definition of the Boolean expression "LimitsOfValidWeatherTemperature" is omitted from Figure 2 for
brevity. This is a complex expression that specifies that values of the monitored data item (the message part
"weatherTemperature") must be between -70C and 50C. The above-mentioned <When> construct and
Boolean expression are referenced in the definition of the subsequent goal policy assertion, which is also
used to configure MASC monitoring modules. This goal policy assertion specifies that when the event

"MessageToBeSent" occurs in the state "Executing", then the provider Web service should evaluate the
mentioned Boolean expression. It also states that the provider is responsible for meeting this goal. In a
separate file, a WS-Policy policy attachment element defines that this defined policy is applied to the reply
message of the current weather report Web service. This information is also omitted from Figure 2 for
brevity.

<!-- WS-Policy policy element (namespaces are omitted) -->
<wsp:Policy wsu:Id="CanadianWhetherReport-Output" ...>
<!-- Definition of monitored data items -->
 <masc-gp:MonitoredDataItem MASCID="Temperature-Weather-
InCelsius" MessagePartName="weatherTemperature" ValueData
Type="xs:integer " Unit="ontology1:Celsius"/>
 <!-- Definition of monitoring data collection actions -->
 <masc-ap:MonitoredDataItemCollection MASCID="MonitoringOf
Temperature-Weather-InCelsius">
 <masc-gp:MonitoredDataItemRef To="tns:Temperature-Weather
-InCelsius"/>
 </masc-ap:MonitoredDataItemCollection>
 <!-- Definition of action groups -->
 <masc-ap:ActionGroup MASCID="Monitoring">
 <masc-ap:MonitoredDataCollectionRef To="tns:MonitoringOfTe
mperature-Weather-InCelsius"/>
 </masc-ap:ActionGroup>
 <!-- Definitions of states and events (omitted) -->
 ...
 <!-- Definition of When constructs -->
 <masc-se:When MASCID="Executing-MessageToBeSent">
 <masc-se:AllowedStates>
 <masc-se:StateRef To="tns:Executing"/>
 </masc-se:AllowedStates>
 <masc-se:PossibleTriggerEvents>
 <masc-se:EventRef To="tns:MessageToBeSent"/>
 </masc-se:PossibleTriggerEvents>
 </masc-se:When>
 <!--Definition of action policy assertions configuring monitoring-->
 <masc-ap:ActionPolicyAssertion MASCID="MonitorResultValue"
ManagementParty="MASC_WSPROVIDER">
 <masc-se:WhenRef To="tns:Executing-MessageToBeSent"/>
 <masc-ap:ActionGroupRef To="tns:Monitoring"/>
 </masc-ap:ActionPolicyAssertion>
 <!-- Definition of Boolean expressions (omitted) -->
 ...
 <!-- Definition of goal policy assertions -->
 <masc-gp:GoalPolicyAssertion MASCID="ValidWeatherTempera
ture" ResponsibleParty="MASC_WSPROVIDER" ManagementPa
rty="MASC_WSPROVIDER">
 <masc-se:WhenRef To="tns:Executing-MessageToBeSent"/>
 <masc-ex:BooleanExpressionRef To="tns:LimitsOfValidWeather
Temperature"/>
 </masc-gp:GoalPolicyAssertion>
</wsp:Policy>

Figure 2. Examples of WS-Policy4MASC constructs

3.3. Supported Adaptation Actions

Specification of Web service requirements/guarantees for monitoring activities was enabled by a number
of past languages, such as WSLA, WSML, WSOL, and WS-CoL. In this area, WS-Policy4MASC offers
only minor advantages. However, one of the distinctive characteristics of WS-Policy4MASC is built-in
support for a diverse range of common Web service composition adaptation actions. We focused on actions
that are both useful and practical in handling frequently occurring adaptation needs, such customization
(including versioning) and corrective adaptation for fault management. Most of these adaptation actions are
executed by the process orchestration layer of MASC, although some of them are executed by the SOAP
messaging layer of MASC (without an intervention by the process orchestration engine), as discussed in
[13].

Actions supported by the WS-Policy4MASC language and the MASC middleware can be grouped into:
1) monitored data collection (using logging, measurement, calculation); 2) monitored data transfer (using

special push or pull operations); 3) cancellation of previously scheduled actions or events; 4) middleware
configuration adaptation (e.g., changing parameters of used WS-* protocols); 5) messaging adaptation (data
flow adaptation at the SOAP messaging layer, e.g., message transformation); 6) process instance structure
adaptation (e.g., replacing a sub-process); 7) process instance execution adaptation (e.g., process
termination); 8) activity instance execution adaptation (e.g., skipping an activity); 9) policy assertion
adaptation (e.g., deactivating a policy assertion).

We have also considered supporting some other actions, but left them for future work. Due to the space
constraints, we will list only the actions for the last 4 groups. Details about how some of these actions are
implemented in the MASC middleware are discussed in [14].

The support for process instance structural adaptation includes a number of actions. The first is removal
of a specified block of activities (or one activity) from the base (adapted) process. The second is addition of
an external known process at a specified point of the base process. The third is addition of a single call to a
known external Web service at a specified point of the base process. The fourth is searching a specified Web
service directory with specified parameters for an external process or Web service operation that, when
found, is added at a specified point in the base process. The fifth is a replacement of a specified block of
activities with an external known process. The sixth is a replacement of a specified block of activities with a
single call to a known external Web service. The seventh is searching a specified Web service directory with
specified parameters for an external process or Web service operation that, when found, replaces a block of
activities in the base process. While replacement could be relatively easily modeled as a removal plus an
addition, we decided to model it explicitly because it is a common case and because its meaning is hidden
when it is modeled with two separate constructs.

The support for process instance execution adaptation includes actions for process termination, process
suspension, and process resumption.

The support for activity instance execution adaptation also includes many actions. The first is cancellation
of the currently executing activity. The second is skipping the next activity that was supposed to be executed.
The third is skipping a block of activities from the next activity to a specified activity. The fourth is
rescheduling of the next activity for some (specified) later point in the process execution. The fifth is
compensation of the last executed activity (assuming that its compensation operation is known). The sixth is
process-level retrial of the last activity (e.g., if it was not completed). The seventh is suspension of the
currently executing activity (this suspends its thread, but not the other threads in the process). The eight is
resumption of a specified previously suspended activity.

The support for policy assertion adaptation contains actions for deactivation and activation of individual
policy assertions. We plan to add priorities to policy assertions, so we will also add an action to change these
priorities during run-time.

3.4. WS-Policy4MASC Support for Business-Driven Web Service Management

A particular novelty of WS-Policy4MASC are utility policy assertions and meta-policy assertions, so we
will describe them in more detail here. (Some aspects were also discussed in [11].) Utility policy assertions
enable providing monetary amounts (specified as general expressions involving numbers with currency
units) to <When> constructs that contain information about allowed states, trigger events, and optional
filtering conditions. For example, it is possible to specify amounts paid when goal policy assertions are met
(or not met) or when action policy assertions are executed. Since all real monetary transactions require two
parties, two attributes enable specification of the beneficiary party and the paying party. A positive monetary
amount means that the beneficiary party receives payment from the paying party, while a negative amount
denotes that the beneficiary party has to pay the paying party. In the former case, the beneficiary party has a
benefit, while in the latter it has a cost. This is inverse for the paying party. The sum of (positive) benefits
and (negative) costs is a profit. While it is mandatory to specify a beneficiary party, specification of a paying
party is optional. If it is missing, this means that the specified monetary amount is not a real scheduled
payment, but an estimate of some possible future business value from one or several paying parties. An
additional Boolean attribute specifies whether the given amount is tangible (i.e., a real monetary amount
paid) or intangible (i.e., a monetary estimate of some other business value, such as customer satisfaction). In
a future version of WS-Policy4MASC, it will be possible to also specify schedules of future payments
(currently, only one payment is specified per utility policy assertion), probability that an estimated future
business value will be realized, and confidence in the precision of monetary estimates of intangible business
values. It is also possible that a separation between various intangible business values will also be supported
later.

A meta-policy assertion lists several conflicting action policy assertions and a conflict resolution strategy
when some of them are triggered simultaneously. At this time, we have focused on strategies that choose
only the best (as defined under some criteria) among the listed alternatives. In the future, we will also
research strategies that allow conditional execution of more than one alternative. The WS-Policy4MASC
language is extensible, so one can add new strategies. We have defined several strategies using various
maximizations of business values. Further, we have designed MASC middleware support (e.g., algorithms
and data structures) for these strategies and started implementing them in our MASC prototype (the
MASCPolicyDecisionMaker module). The strategies are classified along 3 mutually orthogonal dimensions:

1. 'Only immediate' vs. 'long-term': For all strategies, it is possible to specify an optional ending event
until which monetary values are added. If it is not specified, only immediate monetary implications of
actions specified in the listed action policy are added. However, if such an ending event is specified, then a
discrete event simulation is started and monetary implications of actions that are triggered by executing
previously simulated actions are also calculated and added, until the specified ending event (or some
specified limit of the number of counted values) is reached. Note that in the current MASC prototype, such
discrete event simulations are not yet implemented, but they are planned for near future work.

2. 'Both agreed payments and estimated future business values' vs. 'only agreed payments': One group of
strategies adds all agreed payments and estimated future business value and compares the results between
alternative action policy assertions to choose only the best one. Another group of strategies adds only agreed
payments, but if difference between two (or more) such sums is less or equal some specified amount, then
the strategy separately adds estimated future business values and uses this as a tiebreaker. In the future, we
will also develop strategies that will take into consideration probability of estimated future business values.

3. 'Both tangible and intangible' vs. 'only tangible' vs. 'only intangible': One group of strategies adds all
tangible and intangible business values and compares the results between alternative action policy assertions
to choose only the best one. Another group of strategies adds only tangible business values, but if difference
between two (or more) such sums is less or equal some specified amount, then the strategy separately adds
intangible business values and uses this as a tiebreaker. Conversely, yet another group of strategies adds only
intangible business values, but if difference between two or more such sums is less or equal some specified
amount, then the strategy separately adds tangible business values and uses this as a tiebreaker. The latter
group of strategies is used when market share, customer retention, customer satisfaction and/or other
intangible business metrics are more important than immediate profit. In the future, we will also develop
strategies that will take into consideration confidence in the precision of monetary estimates of intangible
business values.

Since these 3 dimensions are mutually orthogonal, a strategy specifies behavior along each dimension,
e.g., 'only immediate' (dimension 1), 'only agreed payments' (dimension 2), and 'only tangible' (dimension 3).
This produces 2*2*3=12 combinations. For the 4 combinations with 'only agreed payments' along dimension
2 and either 'only tangible' or 'only intangible' along dimension 3, it is also necessary to specify which
dimension is used as the first tiebreaker, which produces 2 variations per combination. This means that,
currently, the total number of strategies that we have defined is 12+4=16.

We will also consider adding the fourth dimension: 'benefits and costs' vs. 'cost limit'. Here, benefits,
costs, and profit are from the viewpoint of the beneficiary party. Currently, all our strategies are in the former
group because we add all positive and negative monetary values and choose an alternative with the highest
total profit. However, in some cases alternatives with too high costs are not acceptable (e.g., due to a lack of
current funds) even if they bring higher long-term profit, so the 'cost limit' group of strategies seems useful.

Figure 3. Conceptual architecture of MASC

4. Use of WS-Policy4MASC in the MASC Middleware

This section presents the architecture of the MASC middleware, with an emphasis on modules that
facilitate policy-driven management of Web service compositions representing business processes
(workflows). Additional details can be found in [12, 14]. The MASC architecture, shown in Figure 3
incorporates both platform-independent components and platform-specific ones. The former can be
leveraged regardless of the SOAP messaging engine and the process orchestration engine used. The latter
execute adaptation actions through transforming WS-Policy4MASC policy assertions into either .NET 3.0
platform-specific commands (i.e., API calls to the WF orchestration engine, the WCF SOAP messaging
engine, or one of their custom extensions) or actions over messages exchanged between the composed Web
services.

Within the MASC middleware, WS-Policy4MASC policy assertions are stored in an in-memory policy
repository. It is a collection of instances of policy classes generated automatically from the WS-
Policy4MASC schema, using an XML-schema-to-classes generator (in our .NET 3.0 and C#-based prototype
of MASC, we used the XSD tool from .NET 3.0). When MASC starts, our MASCPolicyParser within it
imports WS-Policy4MASC files, creates instances of corresponding policy classes, and stores these instances
in the policy repository.

The SOAPMessageLoggingService and the QoSMeasurementService monitor the messages exchanges
between the composed Web services and collect monitoring information, such as values of message parts
and measured QoS metrics. This information is stored in the Monitoring Database. Using this information,
the MASCMonitoringService evaluates goal monitoring policies to detect adaptation triggers and events of
interest. When they happen, the MASCMonitoringService generates an event (with all necessary information,
e.g., process instance ID and monitored data values) to the MASCPolicyDecionPoint. The
MASCPolicyDecionPoint determines adaptation action policy assertions to be applied and submits them to
the MASCAdaptationCoordinator for execution. If there are several alternatives, it chooses the one to
execute, based on WS-Policy4MASC meta-policy and utility policy assertions and built-in strategies for
maximization of business value. In a future MASC version, MASCPolicyDecionPoint will be extended with
evaluation of pre-conditions and constraints associated with adaptation actions to ensure correctness of both
the adaptation actions and the state of the adapted process.

The MASCAdaptationCoordinator coordinates the execution of adaptation actions between the SOAP
messaging layer and the process orchestration layer. Management actions can adapt a single process
instance, several instances of the same process schema, or instances of different process schemas. The
adaptation at the process orchestration layer is managed by the MASCAdaptationService. It is implemented
as a WF runtime service and exposes a set of management interfaces that abstract interactions between the
MASC’s decision making components and the WF runtime. The MASCAdaptationService’s management

interfaces correspond to the adaptation actions supported by WS-Policy4MASC. Their implementation maps
these actions into WF extension commands and API calls to .NET 3.0 libraries.

We have evaluated feasibility of the WS-Policy4MASC solutions by implementing a policy repository and
other modules in MASC. Further, we have examined their expressiveness, effectiveness, and usefulness on a
set of realistic stock trading scenarios, described in more detail in [12, 14]. We have written WS-
Policy4MASC files for some of the scenarios in order to check whether and how various adaptation needs
can be expressed in our language. In addition, we have implemented and studied some of the scenarios with
our prototype of the MASC middleware. For example, in some experiments MASC dynamically adapted a
base business process for national stock trading with support for international stock trading. In other
experiments, we periodically injected random exception events at various stages of the stock trading process
to study behavior of the system (with and without MASC) in response to faults or QoS changes of
constituent services. In some experiments, we measured the overhead introduced by MASC on overall
response time. The conducted experiments were completed successfully and demonstrated feasibility and
usefulness of the MASC approach in adding dynamic adaptation capabilities to existing Web services
compositions, guided by declarative policies specified in WS-Policy4MASC. MASC has provided a solution
for policy-driven static and dynamic adaptation without any changes to the base process definition,
implementations of the used Web services, or the implementation of .NET 3.0 technologies. All that is
needed for adaptation is a WS-Policy4MASC document describing policy assertions to be enforced. When a
WS-Policy4MASC document changes, these changes are automatically enforced the next time adaptation is
needed, with no need to restart any software component.

5. Conclusions and Future Work

We argue that an extended WS-Policy can play a key unifying role in annotating WSDL and WSBPEL
Web service descriptions with various rules and support for Web service management (monitoring and
control), such as service customization/versioning, fault management, and QoS management. Our WS-Policy
extensions for the specification of goal policy assertions, action policy assertions, and utility policy
assertions address the same needs as WSLA, WSOL, WS-Agreement, and WS-CoL. Thus, our work enables
that an XML Web service composition can be comprehensively described using only WSDL, WSBPEL, and
our WS-Policy4MASC. However, WS-Policy4MASC provides a number of solutions that are not present in
related works, such as specification of information for various types of adaptation of Web service
compositions and for selection between alternative control actions based on various strategies for
maximization of monetary and intangible business values. We have defined and started implementing 16
such strategies.

We have completed definition of the main XML schemas for WS-Policy4MASC. Our initial focus was on
supporting monitoring and dynamic adaptation through WS-Policy4MASC goal policy assertions, action
policy assertions, and related constructs (e.g., describing when something occurs). Once this was completed,
our focus shifted to supporting business-driven management of Web services through using WS-
Policy4MASC utility policy assertions and meta-policy assertions to select between alternative action policy
assertions. The main item for our ongoing work is further development of the proof-of-concept prototype
implementation of the MASC middleware that uses WS-Policy4MASC policy assertions. While we already
have a working prototype [12, 14], we use an iterative development process to add new features into it (and,
sometimes, the MASC architecture) and evaluate them on case studies. In some cases, changes to the MASC
architecture require changes to the WS-Policy4MASC schemas (language grammar), so our language will
continue to evolve.

Acknowledgments. This work is a part of the research project “Building Policy-Driven Middleware for
QoS-Aware and Adaptive Web Services Composition” sponsored by the Australian Research Council (ARC)
and Microsoft Australia through the ARC Linkage Project LP0453880. We also thank A/Prof. Boualem
Benattallah for insightful discussions and his comments.

References

[1] Sloman, M. 1994, 'Policy driven management for distributed systems', J. of Network and Systems
Management, Plenum, Vol. 2, No. 4, pp. 333-360.

[2] Kephart, J.O. and Walsh, W.E. 2004, 'An Artificial Intelligence Perspective on Autonomic Computing
Policies', in Policy 2004, IEEE, pp. 3-12.

[3] A. Keller, and H. Ludwig 2003, 'The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services', J. of Network and Systems Management, Plenum, Vol. 11, No 1, pp. 57-
81.

[4] Sahai, A., Machiraju, V., Sayal, M., van Moorsel, A., and Casati, F. 'Automated SLA Monitoring for
Web Services', in DSOM 2002, LNCS, Springer, No. 2506, pp. 28-41

[5] Tosic, V., Pagurek, B., Patel, K., Esfandiari, B., and Ma, W. 2005, Management Applications of the Web
Service Offerings Language (WSOL), Information Systems, Elsevier, Vol. 30, No. 7, pp. 564-586.

[6] Ludwig, H., Dan, A. and Kearney, R. 2004, 'Cremona: An Architecture and Library for Creation and
Monitoring of WS-Agreements', in ICSOC'04, ACM, pp. 65-74.

[7] W3C Web Services Policy Working Group 2006, Web Services Policy (WS-Policy) 1.5, Nov. 2006,
www.w3.org/TR/ws-policy/

[8] Schlimmer, J. (ed.) 2004, 'Web Services Policy Framework (WS-Policy)', version: Sept. 2004,
www6.software.ibm.com/software/developer/library/ws-policy.pdf

[9] Baresi, L., Guinea, S. and Plebani, P. 2005, 'WS-Policy for Service Monitoring', in TES 2005, Norway,
LNCS, Springer, Vol. 3811, pp. 72-83.

[10] A. Erradi (ed.) 2006, 'Manageable and Adaptable Service Compositions (MASC)',
masc.web.cse.unsw.edu.au/

[11] Tosic, V., Erradi, A., Maheshwari, P. 2007, ' On Extending WS-Policy with Specification of XML Web
Service Semantics, Monitoring, and Control Driven by Business Value', submitted for publication.

[12] Erradi, A., Maheshwari, P. and Tosic, V. 2006, 'Policy-Driven Middleware for Self-Adaptive Web
Services Composition', in Middleware 2006, LNCS, Springer, Vol. 4290, pp. 62-80.

[13] Erradi, A., Maheshwari, P. and Tosic, V. 2006, 'Recovery Policies for Enhancing Web Services
Reliability', in ICWS'06, IEEE.

[14] Erradi, A., Tosic, V. and Maheshwari, P. 2007, 'MASC – Middleware for Adaptive .NET 3.0 Composite
Web Services', submitted for peer-review.

[15] Microsoft 2006, Microsoft .NET Framework 3.0 Community (NetFx3), www.netfx3.com
[16] Anderson, A.H. 2004, 'An Introduction to the Web Services Policy Language(WSPL)', in Policy 2004,

IEEE, pp. 189-192.
[17] Pautasso, C., Heinis, T. and Alonso, G. 2005, 'Autonomic Execution of Service Compositions', in

ICWS'05, IEEE.
[18] Verma, K., Doshi, P., Gomadam, K., Miller, J. A. and Sheth, A. P. 2006, 'Optimal Adaptation in Web

Processes with Coordination Constraints', in ICWS 2006, IEEE.
[19] IBM 2006, 'Policy Management for Autonomic Computing', www.alphaworks.ibm.com/tech/pmac
[20] Uszok, A., Bradshaw, J. M., Johnson, M., Jeffers, R., Tate, A., Dalton, J. and Aitken, S. 2004, 'KAoS

policy management for semantic Web services', IEEE Intelligent Systems and Their Applications, IEEE,
Vol. 19, No. 4, pp. 32-41.

[21] Tai, S., Mikalsen, T., Wohlstadter, E., Desai, N. and Rouvellou, I. 2004, 'Transaction policies for
service-oriented computing', Data & Knowledge Engineering, Vol. 51, No. 1, pp. 59-79.

[22] Agrawal, D., Giles, J., Lee, K.-W. and Lobo, J. 2005, 'Policy Ratification', in POLICY 2005, pp. 223-
232.

