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Abstract

Query-adaptive XML indexing has been proposed and shown to be an efficient
way to accelerate XML query processing, because it dynamically adapts to the
workload. However, existing adaptive index suffers from a number of issues, such
as lack of support for general types of XML queries, and unsatisfactory query
and update performances. In this paper, we propose a new query-adaptive index
named AC-Index. It is designed to supports XML path queries with branching
predicates. We propose efficient index construction, query processing, and index
adaptation algorithms for the AC-Index, together with a number of optimiza-
tions to further boost the performance of the index. Our experimental results
demonstrate that the AC-Index significantly outperformed previous approaches
in terms of query processing and adaptation efficiencies.



1 Introduction

XML has become the standard for data representation and exchange on the
Internet. The rapid popularity of XML repositories requires systems that can
store and query XML data efficiently. Among other XML query languages,
XPath [2] is an expressive query language and has been extensively adopted.
The semantics of XPath queries is based on a flexible tree traversal model.
For example, an XPath query //museum[phone] will find all the museums with
phone number information at any level in the XML document tree. Indexing the
structure of XML data is thus an effective way to accelerate query processing,
because it can greatly reduce the search space and also be an integral part
of other XML operations. Researchers have proposed various kinds of XML
indexes [7, 13, 10, 9, 14, 8, 4, 16, 6] to facilitate the query processing. Among
them, adaptive indexes [4, 14, 8, 6] are well-known for their high performances
as they can adapt their structures to suit the query workload.

However, most of the proposed adaptive indexes can only accommodate
a rather limited class of XPath queries efficiently. Little attention has been
given to the problem of building an adaptive index for the more general and
complicated queries. For example, APEX [4] were designed to only support
suffix path queries of the form //l1/l2/ . . . /lk (where li is a tag name) efficiently,
and cannot tackle branching queries. Rewriting is needed to handle path queries
with more than one occurrence of the //-axis. It does not support queries with
branching predicates either.

Another issue of the existing adaptive indexes is the query processing and
adaptation efficiency. For example, query rewriting and multiway structural
join have to be used for queries containing a descendant axis in the middle of
the query expression. The adaptation method for APEX does not make full
use of the current index, and has to traverse the entire XML data tree for each
update. The adaptation method essentially process each node in the XML data
graph individually, thus failing to take advantage of the facts that a group of
“similar” nodes1 can be processed in batches. Some other adaptive indexes,
e.g., A(k)-index and D(k)-index, are intrinsically biased towards more specific
queries; they may also incur frequent global updates if the query workload
changes significantly.

In this paper, we propose the AC-index designed for general types of XPath
queries. The basic idea is to index and manipulate a group of “similar” nodes
together, which, in our case, is designed to be F&B index nodes. We propose
efficient algorithms to constructing the index, update the index to accommodate
frequent queries, and using the index to answer query. Our experiment results
shows that the proposed index significantly outperforms previous approaches in
both query and adaptation efficiencies.

Our contributions of the paper can be summarized as follows:

• We propose an adaptive index that supports arbitrary path queries with
branching predicates. We show that all the issues regarding monitoring
the frequent queries, checking query containment, etc, are more challeng-
ing than, for example, simple path queries without descendant axis or
branching predicates.

1Intuitively, these are nodes that are indistinguishable for the class of queries the index
supports.
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• We propose an efficient query processing and index update algorithms for
the index. Our methods make full use of the existing index for efficient
index update. In addition, the granularity of our update (or validation)
is a group of nodes instead of individual nodes. These design choices
significantly improves the query and update performance of the proposed
index.

• We have conducted extensive experiments to evaluate the performance of
the proposed AC-Index with previous approaches. previous indexes.

The remaining part of this paper is organized as follows. Section 2 introduces
the background knowledge and some related work. In Section 3 we present the
data model and related concepts. Section 4 introduces the data structures of the
AC-Index as well as the construction, update and query processing algorithm
for the index. Several optimizations are discussed in Section 5. Experimental
results are reported and analyzed in Section 6 and Section 7 concludes the paper.

2 Related Work

In the interest of space, we briefly overviews most relevant work in the literature.
Many indexes for XML data have been proposed to support efficient query

processing. They can be categorized into workload-insensitive indexes [7, 13,
10, 9, 14, 16] and workload-adaptive indexes [5, 4, 8, 6]. The focus of [8, 6] is
mainly to avoid over-refinement and thus reduces the size of graph bisimulation-
based indexes [9]. Index fabric [5] mentioned the idea to customize the index
for frequent queries, but without elaborating on it. APEX [4] is a complete
proposal to a fully adaptive index optimized for frequent queries in the workload.
However, APEX is only designed for single-path queries; in addition, its query
adaptation procedure is extremely costly.

Another closely related area is materialized views and semantic caching for
XML queries [3, 1, 11]. The idea is to find a rewriting of the queries using one
of the materialized views for efficient query processing. However, they rely on
the backend XML database to further process the rewritten queries to extract
results from the materialized views.

2.1 XML Caching and Views

Our AC-Index can be seen as a well-organized cache of frequent materialized
views. Much work has been done to provide XML cache/view for XML data-
bases [1, 11]. Among them, [1] proposes a frame using materialized XPath
views to answer queries. They come up with a set of rules for finding contain-
ment matching between query and views, and matching algorithm is provided.
Because each matching process still includes navigation process, this work is
inefficient with a large number of views to compare with. [11] forcusing on
the problem of efficient view selection. They use string-based checking method
which enable filtering out much unconcerned views, by which effcient cache
lookup is achieved. Our work is similiar with [11] in that we also use some
heuristic method to filter out unconcerned queries as much as possible, and
our filtering method make full use of the containment characteristic compared
with [11].
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Figure 3.1: A Running Example

An XML document is usually modeled as an unordered rooted node-labeled
tree, named XML Data Tree. An example of an XML data tree is showed in
Figure 3.1(a). An F&B index is the smallest index that can answer all the
branching queries [9]. The F&B index for the example XML data tree is shown
in 3.1(b). We assign an ID to each F&B index node based on a pre-order
traversal.

A path query containing a combination of the fragments {/, //, [ ]} can be
expressed as a labeled pattern tree. For example, we show the pattern tree for
//b[h/f ]/d//k as pt2 in Figure 3.1(c). In both the query processing and adap-
tation phases of the AC-Index, we need to perform containment test between
XML path queries. Consider two path queries, p1 and p2, p1 contains p2, if
there exists an homomorphism from the pattern tree of p1 to that of p2 [12].
For instance, consider the pattern tree pt1 and pt2 shown in Figure 3.1(c) for
path queries //b//k and //b[h/f ]//d/k. Figure 3.1(c) shows a homomorphism
from pt1 to pt2, in which all query nodes in pt1 (b and k) are mapped to the
corresponding nodes with the same labels in pt2, and all the paths in pt1 sub-
sume those in pt2 (e.g., b//k subsumes b//d/k). For the class of XPath queries
we consider in the paper, polynomial algorithm exists to test the containment
relationship between two XPath queries [17].

4 The AC-Index

In this section, we give an overview of the system architecture and introduce
the data structures, initialization, query processing, and adaptation methods
for the proposed AC-Index.

4.1 System Architecture

The architecture of the AC-Index system is shown in Figure 4.1. There are four
main components: (a) the initialization module constructs the initial AC-Index.
(b) The query processing module accepts the query pattern trees and execute
the queries on top of the AC-Index. (c) The query statistics module maintains
important system statistics, e.g., (approximate) frequencies of queries. (d) The
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Figure 4.1: System Architecture

adaptation module adapts the AC-Index to the current workload to improve
query performance.

Our AC-Index can also be viewed as a “secondary index” that sits on top of
an F&B index (the shadowed triangle in the figure). The goal of the AC-Index
is exactly to create a small and adaptive index that answers a sizeable portion
of the query workload efficiently.

4.2 Data Structures

An F&B index for the XML data is a fine partition of nodes according to their
incoming and outgoing paths, such that it can answer all the branching queries.
However, an F&B index is query-independent and could be over-refined and
thus sub-optimal for a given query workload. For example, answering the query
//e using the example F&B index in Figure 3.1(b) requires a traversal of the
complete F&B index index.

The basic idea of our AC-Index is to group F&B index nodes according to
the frequent queries in a given workload, such that the query results can be
efficiently retrieved across a few nodes in the AC-Index. A straight-forward
solution is to keep a list of frequent queries, together with their corresponding
lists of F&B index nodes in their results. However, this solution suffers from
the following problems:

• Low space utilization: it is not uncommon that two different queries will
have overlapping query results. If the same elements are stored multiple
times in the index, significant amount of space would be wasted.

• Slow response time: sequential search has to be used when answering
queries, and this solution obviously does not scale well with the number
of frequent queries in the workload.

• Unable to answer non-identical queries: only identical queries can be an-
swered in this simple solution.

Our AC-Index is designed to address all the above issues by (a) organizing the
frequent queries in a non-redundant way leveraging the containment hierarchy
among queries; (b) designing efficient lookup methods to locate relevant queries;
and (c) being able to answer a larger class of queries efficiently by novel query
processing techniques.

More specifically, the AC-Index consists of three parts: an F&B index for
the XML data, an array of groups of F&B index nodes (named IGroups) and a
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Figure 4.2: An Example AC-Index (‘⊥’ stands for a NULL pointer. subQs is
a list of pointers pointing to QTable.id; groups is a list of pointers pointing to
IGroup.id; IGroup is a list of pointers pointing to nodes in the F&B index)

query table (named QTable). Figure 4.2 shows the example AC-Index adapted
for the frequent query //c//d.1

The F&B index is built in the initialization step of the AC-Index for the XML
document. The IGroups is an array of groups of F&B index nodes. Intuitively,
each group belongs to at least one query as part of the query result(s). One
property that will become obvious later is that all the F&B index nodes within
the same IGroup will either be accessed together for a query or none of them
will be accessed. The QTable records a list of frequent queries. Each entry
of the QTable consists of three fields: Query, subQs and groups. The Query
field keeps the queries as plain strings. The subQs field is a list of child queries
that are immediately contained by the current query. This design eliminates
the data redundancy problem and also facilitates containment checking which
is frequently used in query processing and adaptation processes. The groups
field is a list of pointers, each of which points to one group in the IGroup table.
The F&B index nodes associated with groups fields are those that belong to the
current query but not belonging to any of its descendant queries. We remark
that the reason for having the IGroup table is that it is possible for a group of
F&B index nodes to be shared among multiple queries.

Let Result(Q) be the result of a query in the form of a list of its correspond-
ing F&B index nodes. Our design of the index has the following property for
every query in the QTable:

Result(Q) = (∪Qi∈Q.subQsResult(Qi)) ∪ Q.groups (4.1)

Example 1 Figure 4.2 shows the ACIndex for the example XML data tree in
Figure 3.1(a). For the 4th query, //d, its subQs field is nonempty and points
to the 6th query, //c//d. In addition, its IGroups field points to the 4th group
in IGroup, which is essentially the F&B index node numbered (11) in the F&B
index. Similarly, query //c//d does not have any child query, and has only the
6th group in IGroup as its result. According to Equation (4.1), the result of
query //d is F&B index nodes 11, 4, and 8.

1The rest queries (i.e., //tag) are added in the initialization phase (See Section 4.3).
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Algorithm 1 FindMatch (Qn)

1: mincost←∞
2: for all query Qi in the QTable do

3: pos← LastMatch (Qn, outputNode(Qi))
4: (prefix, suffix) ← SplitQuery (Qn, pos) {We find the last occurrence

of outputNode(Qi) in Qn and thus split Qn into two parts. }
5: if Qi contains prefix then

6: Qup
c ← GetComposingQuery (Qi, prefix)

7: Qdown
c ← suffix

8: if EstimateCost (Qi, prefix, suffix) < mincost then

9: mincost← EstimateCost (Qi, prefix, suffix)
10: return Qi that achieves the mincost

Algorithm 2 ExecQuery (Qn, Qm, Qup
c , Qdown

c )

1: for all F&B index node n ∈ Result(Qm) do

2: valid← Eval (n, Qup
c )

3: if valid = TRUE then

4: Output Eval (n, Qdown
c )

4.3 Initializing the AC-Index

The initialization phase is similar to that of the APEX [4]: we add a list of
hypothetical queries in the form of //tag to the index. The difference is that
the unit of manipulation in our AC-index is F&B index nodes instead of each in-
dividual elements in the XML document. The purpose of inserting such queries
is to ensure that there always exists a query in the AC-index that contains any
new queries.

The algorithm to build the initial AC-Index is rather straight-forward: (a) first
we builds the full F&B index, (b) then we combine all the F&B index nodes
with the same tag name into a group and put them into the IGroup table.
(c) finally, we insert all the query //tag into the QTable, and link them to the
corresponding IGroup entries.

4.4 Query Processing

Given a new query Qn, if it is identical to one of the existing queries in
the AC-Index, it can be easily answered by fetching its result in a recursive
manner, according to Equation (4.1). A feature of the AC-Index is that it may
efficiently answer queries that does not exactly match the materialized queries,
thus significantly boosts the performance of the system. We introduce two such
strategies in the following.

Utilize Matching Queries The first approach is based on the idea that a
materialized query, Qm might offer some clues to finding the result of a new
query Qn, provided that Qm matches Qn. We use the following example to
illustrate the intuition behind the “match” concept and the query processing
method.
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Example 2 Consider Qn = //a[./b]/c/d/e and Qm = //a/c/d. The prefixes
of depth 3 for Qn and Qm are //a[./b]/c/d and //a/c/d, respectively. Although
they are not identical, it is obvious that the former is contained in the latter. The
suffix of the query Qn queries is ./e. The observation is that we can answer Qn

by Qm by refining Qm’s result by an upward composing query2 Qup
c = .\.\[./b]

(where \ denotes the parent axis in XPath), and then evaluation a downward
composing query Qdown

c = ./e for the qualified results after the previous step.

We summarize the query processing algorithm using matching queries in the
general case in Algorithms 1 and 2. We first invoke FindMatch to find the an
existing frequent query, Qm that has the minimum estimated cost to answer the
new query Qn, we then invoke ExecQuery using Qm on top of the F&B index.
Note that answering path queries using an F&B index, i.e., the Eval, is well
studied in [9, 16]. In FindMatch, for each query Qi in QTable, we compare
it against the new query Qn (Lines 3–4) and find the upward composing query
and downward composing query (Lines 6–7) if Qi matches Qn (Line 5). The
algorithm to obtain the composing query is due to [17]. Last, we select the
Qi that “best” matches Qn in terms of the expected query processing cost for
the two composing queries. Currently a näıve cost estimator is used that only
takes into consideration the complexities of the composing queries. It is part of
our future work to investigate and incorporate more accurate cost estimation
methods into this work.

Utilizing Query Containment Relationships The second approach is
based on the idea that a materialized query, Qp might contains a superset of
query result of a new query Qn.

Example 3 Consider Qn = //a[./b]/c/d/e and Qp = //a//e. It is obvious that
Qp ⊇ Qn. Thus we can obtain the result of Qn by validating Qp’s result against
Qn. The validation is essentially evaluating an upward composing query Qup

c =
.\d\c\a[./b], and has been implemented in function Eval (See Algorithm 2).
On the other hand, if we have another query Q′

p = //a[./b]/c//e, it is obvious
that since Qp ⊇ Q′

p ⊇ Qn, we should answer Qn using the minimal query that
contains Qn, i.e., Q′

p.

In order to find the minimal query3, Qp, that contains the new query, Qn, we
just start with the query //tag, where tag = LastNode(Qn), and recursively
descend to its first child node that contains Qn.

4.5 Adapting the AC-Index to the Query Workload

The AC-Index is a workload-aware index and will adapt to new frequent queries
and remove infrequent queries from its data structure, based on the informa-
tion collected by the query statistics module. This is supported by two basic
operations: inserting a query, and deleting a query.

2Given two queries X and Y , a composing query of X to Y is a query C such that C◦X = Y
[11].

3That is, it is a query that contains Qn and none of its descendant queries (in the QTable)
contains Qn.
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Algorithm 3 UpdateIndex (Qn, Qp)

1: todo← {Qp} ∪ sibling(Qp)
2: for all query Qi ∈ todo do

3: UpdateQuery (Qi, Qn)
4: Qp.subQs← Qp.subQs ∪Qn

Algorithm 4 UpdateQuery (Q, Qn)

1: if Qn contains Q then

2: for all queries Q′ that is a parent of Q do

3: Q′.subQs← Q′.subQs ∪Qn

4: Qn.subQs← Qn.subQs ∪Q {No need to descent into Q′’s child queries}
5: else

6: for all IGroup g in Q.groups do

7: if g ⊆ Result(Qn) then

8: for all queries Q′ that contains a reference to g AND Q′ 6= Q do

9: Q′.subQs← Q′.subQs ∪Qn

10: Qn.groups← Qn.groups ∪ g
11: else if g partly overlaps with Result(Qn) then

12: Append a new group g′ = g ∩Result(Qn) to IGroup table
13: for all queries Q′ that contains a reference to g AND Q′ 6= Q do

14: Q′.groups← (Q′.groups− g) ∪ g′

15: Qn.groups← Qn.groups ∪ g′

16: g ← g ∩ g′

17: for all sub-query Qj ∈ Q.subQs do

18: UpdateQuery (Qj , Qn) {Recursive call is needed as Q’s child queries

might overlap with Qn}

Insert New Frequent Queries The main task here is to adjust the contain-
ment hierarchy for queries in QTable to accommodate a new query Qn. We first
find a minimal query, Qp, that contains Qn; this can be done using the same
procedure as described in Section 4.4. Next, we need to insert Qn as a child
query of Qp, and adjust the contents of existing queries as we need to ensure
there is no duplicates. Lemma 1 helps us to limit the scope of the update. Al-
gorithm 3 thus updates the AC-Index in a top-down, recursive manner for all
the affected queries.

Lemma 1 Consider inserting a new query Qn under another query Qp. Denote
the sibling queries of Qp as sibling(Qp) (i.e., the queries correspond to the
sibling nodes of Qn in the AC-Index), then it is sufficient to adjust queries that
are descendants of Qp or any query in sibling(Qp).

The main work horse of the insertion algorithm is UpdateQuery (Algo-
rithm 4). It needs to handle several cases. The first case is when Qn contains
Q according to the containment test, we only need to insert Qn between all the
parent query of Q and Q (Lines 2–4). The second case is when Result(Qn) and
Result(Q) partially overlaps. Note that Result(Qn) has already been computed
as a list of F&B index nodes either by our AC-Index or by the F&B index. We
need to iterate through all the IGroups in Q (Lines 6–16), perform split if nec-
essary (Line 12), and link the IGroups to the appropriate queries (Lines 8–10,
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and 13–16, for two different cases). Finally, we recursively update all the child
queries of Q (Lines 17–18). We use the following example to further illustrate
the algorithm.|} ~���� ���~� ������� ��� ⊥ ���� ���
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Figure 4.3: The AC-Index After Inserting Query //b[//e]//d

Example 4 Consider the AC-Index shown in Figure 4.2. If we want to insert a
new frequent query Qn = //b[//e]//d, whose result is F&B index nodes {8, 11},
we first locate Qp as the 4th query, //d. Since //d’s sibling queries are non-
overlapping with Qn, we only need to update //d and its own descendant queries
(i.e., only //c//d in this example). The only IGroup for //d is 11, and it is a
subset of Qn, and we only needs to add 11 to Qn.groups (Lines 8–10). Next,
we descend to the child query //c//d, whose result is F&B index nodes {4, 8}.
We need to create a new group g′ = {8, 11} ∩ {4, 8} = {8} (Line 12), and then
update the groups information of both //c//d and Qn (Lines 13 – 16). The final
AC-Index after update is shown in Figure 4.3.

Delete Old Infrequent Queries When a query cease to be frequent among
the recent N queries, we have to delete it from the AC-Index. The main task is
to adjust the queries and groups associated with the query to be deleted (Qd).
In the interest of space, we briefly outline the procedure: we first find all the
parent queries that contains Qd in their subQs fields; we then copy Qd.subQs
and Qd.groups to the result of Qd’s parent queries; after that, we can safely
remove Qd.

5 Further Optimizations

A number of optimizations have been identified and integrated to the AC-Index.
In the interest of space, we only briefly introduce two optimizations here.

Filtering Checking containment relationship between two path queries is a
relatively expensive operation. In addition, this operation is frequently called
in query processing and adaptation algorithms (See Algorithms 1 and 4). We
employ several simple tests to filter out cases where two queries definitely do
not have containment relationships, and thus boost the performance. To test if
Q contains q, we first perform the following tests:

• output node test : the output nodes of Q and q must be identical.

9



• query size test : let the total number of nodes in the pattern tree of a query
Q be size(Q), then we test if size(Q) ≤ size(q).

• main query path test : in the pattern tree for query Q, we denote the length
of the path from the root of the tree to the output node as main query
path length, len(Q), then we test if len(Q) ≤ len(q).

We only invoke the query containment test [17] after Q and q pass all the above
test. The correctness of the filtering tests can be derived directly from the
pattern tree homomorphism.

Fast Index Adaptation Another time-consuming operation in updating the
index is the intersection of a new query Qn with the IGroups of existing queries
in the index. While the UpdateQuery (Algorithm 4) is easy to understand
and implement, we can devise a more efficient algorithm by performing multiple
F&B index nodes intersections simultaneously. The basic idea is to first collect
all the IGroups that needs to be intersected with Result(Qn), then perform all
the intersections in the same time in a sort-merge fashion. More specifically,
we maintain all the F&B index nodes in the IGroups sorted and thus only
need to build a minheap out of all the participating IGroups. A single pass
over Result(Qn) can compute all the intersection results with the help of the
minheap.

6 Experimental Evaluation

In this section, we report experimental results conducted on AC-Index (ab-
breviated as AC). The system we selected for comparison is APEX index [4]
(abbreviated as APEX), as APEX is most closely related to our AC-Index and
it is also one of the best query-adaptive indexes. We implemented all the al-
gorithms in Java 1.4. All the experiments were conducted on a PC of 3.2GHz
CPU, 2GB memory, and 80G hard disk. The operating system is Windows XP.
We measure the elapsed time of all systems in terms of query processing time
and update time. The dataset we used is XMark[15] — a widely used bench-
mark dataset modeling an auction site. We generate datasets of sizes 20M, 50M
and 100M.

We generated three kinds of query workload named PCP, Path, and Twig.
PCP workload includes queries that begins with a self-or-descendant axes (//)
following by a path expression consisting of only parent-child axes (/). Path
workload includes single path queries (i.e., //-edge can appear anywhere in the
query). Twig workload is the most general workload allowing also branching
queries. Note that APEX cannot support Twig workload.

In the interest of space, we omit the details of the query workload generation
methods. Essentially we generated random, non-empty queries according to
the workload characteristics. In each workload, we have a number of frequent
queries1 and they collectively accounts for 80% of the queries. All workloads
have 500 queries and are divided into 5 batches2. In order to simulate the
situation where frequent query distribution might vary over time, we fine tune

1i.e., whose frequency is above a minsup threshold.
2APEX cannot accommodate frequent updates. Therefore, we use a large batch size.
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Figure 6.1: Experiment Results

the query workloads such that the common frequent queries in two adjacent
batches are only 40%.

Query Performance We measure the query performances of APEX and AC
against a 100M XMark dataset. For each indexes (I), we apply three variations:
(a) I0: we construct the initial index, but does not adapt it to the query work-
load; (b) I: after each batch of queries, we adapt the index to the past workload;
(c) I-opt: we adapt the index to thenext batch of workload. We note that I0 is
the baseline performance of a non-adaptive index, and I-opt is an offline optimal
adaptive index. Measuring the performance of I0 and I gives us a better picture
of how I performs.

The query performances for different workloads are shown in Figures 6.1(a), 6.1(b)
and 6.1(c). We can draw the following observations:

• The adaptive versions of the indexes outperform their static versions (for
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both APEX and AC). This is expected as adaptive index can reduce the
query processing time of frequent queries.

• The performances of both indexes are close to their optimal versions.
There are still some fluctuations which are mainly due to the change of
the frequent query distributions – indexes adaptive to the current batch
of queries are still sub-optimal for the next batch of queries.

• The optimal versions of the indexes can greatly outperform their static
versions. Hence, if the distribution of frequent queries are stable, both
index would approach the performance of their optimal versions.

• The average query time quickly drops after the first adaptation and re-
mains fairly stable in the subsequent updates. This shows that both in-
dexes can quickly adapts to the query workload and start to perform quite
well even if there are small fluctuations in the query workload.

• Obviously, AC outperforms APEX, especially for the Path workload. This
is because APEX cannot deal with queries in the Path workload directly,
and have to decompose queries into several fragments and then perform
multiple joins to obtain the query results.

• For the Twig queries, AC’s performance is between AC0 and AC-opt.
This is expected as we have only 40% of the queries that are common to
adjacent batches of queries. Hence, AC adapts to the 80% of the queries,
but only half of them are frequently issues in the next batch. This also
shows that if the frequent query distribution is stable, AC can approach
the performance of AC-opt, which greatly reduces the query processing
time for frequent branching queries.

Update Performance We show the adaptation efficiency of APEX and AC
for different workloads in Figure 6.1(d). We can draw the following observations:

• AC significantly outperforms APEX in update performance. This is mainly
because APEX need to traverse the entire XML data tree for each and
every update. In contrast, our AC-Index uses the query hierarchy to nar-
row down the update scope and rearrange F&B index nodes instead of its
extents.

• The average adaptation time for the three workload load is generally or-
dered as PCP < Path < Twig. This is expected as both the containment
checking and cost of updating queries and their associated IGroups be-
come more and more expensive in that order. Although not shown here,
we note that the optimized update method (See Section 5) contributes
significantly to the update efficiency under the Twig workload, where the
query containment hierarchy is the most complicated.

• The adaptation time for AC is only a small fraction of the query time.
So even if we include the cost of update into the AC’s query time, it still
outperforms both the static AC (AC0) and APEX.
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Scalability We use the same set of query workloads on three sets of XMark
datasets with different sizes (20M, 50M, and 100M). We show the scalability
results of APEX and AC in Figures 6.1(e) and 6.1(f), respectively. We can
draw the following observations:

• Both APEX and AC needs more time for query processing and adaptation
with the increase of the data sizes.

• Since at least the sizes of the query results are increasing, we expect at
least a linear increase in query times. The query time of APEX seems to
be increasing more rapidly with the size than AC does. A similar trend
can be observed regarding the adaptation time of both systems too.

7 Conclusions and Future Work

In this paper, we introduce the AC-Index, which is a workload-adaptive in-
dex for XML branching queries. The AC-Index organizes frequently occurring
queries and their results in the query workload as in a hierarchical and non-
redundant way. Efficient index construction, query processing and adaptation
algorithms have been proposed. The effectiveness of the proposed index has
been demonstrated in the experiment.

As one of the future work, we plan to incorporate a cost-based query process-
ing module into the index. The basic idea is to take into consideration both the
frequencies of the queries and their processing costs. Another future work is to
generalize the index to support values-based predicates in the query as well as
aggregate queries.
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