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Abstract

With increasing complexity of chip architecture and growing pressure for
short time to market, hardware module reuse is common practice. However,
in the absence of module interface standards, use of pre-designed modules in
a ”plug and play” fashion usually requires a mediator between mismatched in-
terface protocols. Though several approaches to such mediation have been pro-
posed, automation of protocol converter synthesis is yet to be realized. In this
work we focus on the framework of state based protocol models. We present
a formalism for modeling bus based communication protocols, the notion of
compatibility and a protocol converter. Using this formalism, we provide al-
gorithms for checking compatibility and demonstrate the process of automatic
converter synthesis for commercial bus protocols.
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1 Introduction

Aimed at accelerating the design phase and increasing system reliability, the use
of pre-designed and pre-verified modules known as Intellectual Properties (IPs) for
System-on-Chip (SoC) architecture is a natural choice. With this module reuse
approach, a system can be built using modules that were developed separately and
that will often endorse different interface protocols. For such modules to be able
to communicate correctly, there is a need for unique glue logic (also referred to
as transducer, converter, wrapper or bridge) to be introduced to mediate between
them. A general bus-based SoC architecture is illustrated in Figure 1.
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Figure 1: A typical SoC architecture

Much research has been dedicated to ”the converter synthesis” problem of SoC
communication, from attempts to standardize interface protocols [2,6,15,19], through
methodologies for reusable design of IPs [17], research on the design of glue logic,
some for specific protocols [5,8,9], some of a more general approach [10–13,16,20–23].
Attempts have been made to automate the process of generation of glue logic at dif-
ferent levels [1, 3, 4, 11, 12,20–22].

Different approaches and models have been investigated for automation of con-
verter synthesis: Timing diagrams [7], data queuing [13,23], message sequencing [22],
FSM based protocol modeling [1, 3, 4, 11, 12,21] and more.

In our work we focus on protocol compatibility and automatic synthesis of pro-
tocol converters in the framework of FSM based protocol modeling. We present a
simple and powerful formal model for on-chip communication protocols that enables
for the first time detailed modeling of complex commercial bus protocols and allows
analysis of protocol compatibility and the automatic synthesis of a correct by con-
struction converter at an abstraction level that is low enough to enable automatic
translation to Hardware Description Language (HDL).

1.1 Related Work

The problem of automatically synthesizing a mediator for mismatched protocols has
been addressed in the literature from different perspectives. We focus on work done
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in the context of hardware design.
In early work [7] timing diagrams of the protocols were used as inputs and spec-

ification of a transducer was produced by constructing event graphs, requiring de-
signers to provide information for correct merging of the graphs, with a requirement
that data channels have the same name.

In [1] a protocol converter was constructed from a cross product of state machines
that represent the protocols to be matched. The result was presented via a simple
example. This approach was later extended in [3,4,12] and is the foundation of our
work.

Later work [18] decomposes a sequential protocol into five basic operations and
a protocol behavior is organized as ordered sets of guarded executions. An interface
is then constructed by matching sets that transfer the same amount of data.

Mapping of any given protocol into a standard communication scheme is pre-
sented in [24], but the presented scheme requires that a protocol be either a sender or
a receiver. The scheme can be applied in a multi-party communication environment
but the solution is quite expensive, as there is a six-cycle latency between a data
read and write and an internal arbiter is used that significantly increases the amount
of logic in the system. This work was extended in [13, 23] by using protocol flow
graph specifications to synthesize interfaces, which use queues and internal control
logic to regulate buffering. The model requires the existence of specific channels and
behaviors in the protocols to be matched.

All of the above mentioned work contributed to the evolution of solutions to the
converter synthesis problem, but was preliminary, was not and probably could not
be tested on realistic or commercial protocols.

An interface synthesis algorithm for mismatched synchronous protocols specified
as regular expressions is provided in [21]. Their technique cannot be easily extended
to different kinds of data and clock speed mismatches. In later work, Passerone et
al. [20] stated that the above methods lack a mathematically sound formalization
and attempted a game theoretic formalization. The synthesis procedure is defined
as a winning strategy in a game held between a protocol and a converter and it
is illustrated with an example that handles reordering of data. No algorithm is
presented, so it is unclear how the proposed technique can be applied to any two
arbitrary protocols.

A formalism for dealing with hardware interfaces as well as an algorithm for
wrapper synthesis are proposed in [11,12]. The protocols in this work are represented
as two FSMs and the outcome of the algorithm is a third FSM to be used as the
wrapper for either of the protocols. Some methods for dealing with mismatched
data types and clock periods are also presented though they are not integrated into
the proposed algorithm.

Another approach presented in [22], focuses on a framework of message sequence
charts. Its input is protocols represented as Message Sequence Charts, and the
converter replies to messages from both protocols. The presented work handles only
matched data types and it is not clear if it can handle complex protocols that have
branching.

In [3,4] once again a product of an FSMs is used to construct a protocol converter,
and in addition, the product is optimized for bandwidth.
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The authors of [14] seem to have adopted the approach presented in [11,12] and
in [14] they demonstrate its implementation over a great simplification of AMBA
AHB and VCI BVCI.

Recent work [25] relies on [11,12] as well and shows how working in a higher level
of abstraction reduces the size of models and therefore simplifies the generation of
a converter at the cost of going further away from the desired hardware description
converter.

In all previous work mentioned above, modeling of the protocols was done either
in a high level of abstraction or with different levels of simplifications, and either
way could not have result in complete automatic synthesis. The simple and powerful
formalism that we propose in this work allows, for the first time, precise modeling
at a low level of abstraction that can handle complete and complicated commercial
protocols and can easily (and even automatically) be translated into HDL.

In vast majority of the discussed work, the definition of protocol compatibility
is neglected or wrongly assumed to be trivial, and discussion of a protocol converter
is introduced without a criteria as for when such a converter is needed. We propose
for the first time a general and intuitive definition for protocol compatibility in the
context of ensuring continuous data flow between two protocols. We then formalize
the notion of compatibility and propose an algorithm for checking compatibility as
well as a formal definition for the protocol converter synthesis problem.

1.2 Motivating Examples

Consider the following scenario: a slave designed to interface with an AMBA APB
bus needs to be integrated to a system working with an AMBA ASB bus.

A timing diagram of a write operation of ASB is given in Figure 2 while a timing
diagram of ABP is given in Figure 3 (both taken from [6]).

Other than the different Signal naming between the two protocols, ASB is a much
more complicated protocol than ABP and requires a slaves that supports ”slave
response” which APB does not have. Clearly the two protocols are incompatible
and a protocol converter needs to be introduced in order to have the module work
correctly in the system.

We propose models for APB and ASB slave write operation interfaces as depicted
in Figure 4, note that ASB is active on both edges of the clock while APB is active
only on clock rise, which complicates the APB model, in the same way that different
clock frequencies effect the model as suggested in [11]. The notation of the models
is explained in details in section 2 but the incompatibility of the two models can be
seen easily.

In ABP, a slave is idle as long as it is not selected. Once the PSEL and WRITE
controls are high a write transfer of two clock cycles begins.

The ASB model represents the protocol that a slave needs to react to (the way
a slave sees the behavior of the system). The system can stay idle until it chooses
to initiate a write transfer by asserting the DSEL and BWRITE control, at the
same time it puts an address on the bus as well as some other controls. Once the
slave responses with a DONE or LAST the data to be written is put on the bus.
(for more details on ASB we refer the reader to [6])
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Figure 2: ASB slave timing diagram
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Figure 3: APB slave timing diagram
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2 Formal Definitions

2.1 A Protocol

We model protocols as synchronous finite state machines with bounded counters
that communicate using channels. Channels are of two types, control and data. A
protocol can test for the existence or absence of a value on a control channel, denoted
by c? and c# respectively and write to a control channel, denoted by c!. A protocol
can also read values from or write values to a data channel, denoted by d? and d!
respectively. A channel action is a read, a write or a value test on a channel. Let
AΣ denote the set of possible actions on a set of channels Σ.

Bounded counters are used to monitor the number of data items written or read
in a finite burst. A counter is associated with each data channel. The counter value
is changed (that is, incremented or reset) when a new data is written to or read
from a channel. Counters provide expressivity and brevity:

• Between two changes to the counter value, any read or write indicates data
repetition. This feature could not previously be modeled.

• As many protocols support bursts of various lengths, explicitly representing
them would result in a large FSM. Using bounded counters allows for smaller
models.

Let K be a set of counters. The set of counter actions AK = {reset(k), k++, k =
v|k ∈ K, v ∈ N} are a reset, increment or test for equality with some natural number.
A protocol performs channel and counter actions.

Definition 1 (Protocol) A protocol P is a finite state machine with bounded coun-
ters (Q, C, D, K,→, qs, qf ), where Q is the set of states, C = CI∪CO is a set of input
and output control channels, D = DI∪DO is a set of input and output data channels,
K = {kd|d ∈ D} is a set of bounded internal counters with one for each data channel
(|K| = |D|), qs is the initial state and qf is the final state. Let AP = AC ∪AD ∪AK

be the set of actions on the control channels (AC), data channels (AD) and counters
(AK) of P . The transition relation of the protocol is →⊆ Q × P(AP ) × Q (where
P(AP ) is the powerset of AP ).

2.2 Parallel Composition

We are interested in the behavior of protocols executing concurrently. This
behavior is described by the parallel composition of the protocols. We define a
binary predicate may to identify transitions that may occur together and use this
predicate to define the parallel composition operator.
Definition 2 (may) The predicate may(S1, S2) is true for two actions S1 and S2 iff
for every control channel c ∈ C:

if c? ∈ S1, then c! ∈ S2, if c# ∈ S1, then c! /∈ S2,
if c? ∈ S2, then c! ∈ S1, if c# ∈ S2, then c! /∈ S1.
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Definition 3 (Parallel Composition) The parallel composition P1‖P2 of two pro-
tocols P1 = (Q1, C1, D1, K1,→1, q1s, q1f ) and P2 = (Q2, C2, D2, K2,→2, q2s, q2f ) is
a finite state machine with bounded counters (Q1 ×Q2, (C1 ∪C2) \ (C1 ∩C2), (D1 ∪

D2) \ (D1 ∩ D2), K1 ∪ K2,→, (q1s, q2s), (q1f , q2f )), where (q1, q2)
S

−→ (q1′, q2′) is

a transition of P1‖P2 iff q1
S1−→1 q1′ and q2

S2−→2 q2′ are transitions of P1 and P2

respectively, such that may(S1, S2) is true and S is the set of actions occurring in
S1 ∪ S2 excluding complementary actions.

2.2.1 An example

Considering the two protocols P1 and P2 as presented in Figure 5, under a mapping
of the channels c1 ⇔ c2, a1 ⇔ a2, d1 ⇔ d2, the parallel composition of the two
protocols according to definition 3 is illustrated in Figure 6.
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Figure 5: The protocols. ci is a control channel, ai and di are data channels
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Figure 6: The parallel composition of the two protocols

2.3 Paths

A path in a protocol P is a sequence of states and transitions

π = q0
S1−→ q1 . . .

Sk−→ qk

such that for all 0 ≤ i < k, qi
Si−→ qi+1 is a transition in P .
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• Let Paths(P, qj , qk) denote the set of paths in P from state qj to state qk.

• Define New(π, d) = {i ∈ N|0 < i ≤ k and reset(kd) ∈ Si or kd + + ∈ Si} as
the set of indices on a path at which new data is either written or read on
channel d.

• Let |π| denote the number of transitions in path π.

• For a path π in a finite state machine P1‖P2, there exist paths π1 and π2 in
P1 and P2 (implied by the definition of parallel composition).

• A cycle is a path such that q0 = qk.

• equivalent cycles: two cycles of length k, π1 = q10
S11−→ q11 . . .

S1k−→ q10 and

π2 = q20
S21−→ q21 . . .

S2k−→ q20 are equivalent cycles iff for some integer ℓ, for

1 ≤ i ≤ k : q1i−1
S1i−→ q1i = q2(ℓ+i−1)mod(k)

S2(ℓ+i)mod(k)
−→ q2(ℓ+i)mod(k).

2.3.1 Operations Over Paths

For two paths π1 = q10
S11−→ q11 . . .

S1k1−→ q1k1 and π2 = q20
S21−→ q21 . . .

S2k2−→ q2k2

• π1 ∩ π2 is the set of states (Qπ1∩π2) and transitions (→π1∩π2) such that
q ∈ Qπ1∩π2 iff q ∈ π1 and q ∈ π2, and

q0
S

−→ q1 ∈→π1∩π2 iff q0
S

−→ q1 ∈ π1 and q0
S

−→ q1 ∈ π2.

• π1 + π2 is defined for the following cases:

1. For π1, π2 such that q1k1 = q20

π1 + π2 = q10
S11−→ q11 . . .

S1k1−→ q1k1
S21−→ q21 . . .

S2k2−→ q2k2

(π1 + π2 6= π2 + π1).

2. For π1, π2 such that π2 is a cycle and π1 ∩ π2 6= ∅, for a state qm = q1i =
q2j ∈ π1 ∩ π2,

π1+π2 = q10
S11−→ q11 . . .

S1i−→ qm

S2j
−→ q2j+1 . . .

S2j−1
−→ qm

S1i+1
−→ q1i+1 . . .

S1k1−→
q1k1

(since π1 ∩ π2 may have more than one state, π1 + π2 may result in more
than one path)

for all other cases π1 + π2 is not defined.

• α × π (or απ) is defined for cycles only and is the same as
∑α

i=1 π.

• π1 ⊆ π2 is true iff all transitions of π1 are in π2 in the same order as they
appear in π1.
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2.4 Constructing Paths(P, qs, qf )

For a general protocol P that has cycles, Paths(P, qs, qf ) is an infinite group, made
of a finite set of direct (acyclic) paths and a set of cycles that can be added to the
direct paths any number of times. The group can then be represented symbolically
as a finite set of symbolic paths where for a path π1 and a cycle π2 the symbolic
path π1 +απ2 represents all paths made of π1 and any number of repetitions of cycle
π2.

In order to extract the sets of direct paths and possible cycles, we use a repre-
sentation similar to a computation tree, spanning every possible transition from the
initial state (the root of the tree) such that every final state is a leaf of the tree and
every state that already exists on its path from the root is a leaf. The tree is of
finite depth (≤ |Q|)

In such a tree every final state leaf represents a direct path from initial to final
state and every other leaf represents a cycle in the graph (it is possible that several
leaves represent the same cycle in the graph). In a case where the initial and final
states are not the same, an additional tree needs to be created for all paths beginning
and ending in the final state and all of its paths should be added to the list of cycles.

2.4.1 An example

The computation tree of the ASB model from Figure 4 is presented in Figure 7

0

0

1 2

3 5

42

2 1

6

0

0

Figure 7: The computation tree for ASB

DirectPaths = { π1 = 0
Tau
−→ 1

Tau
−→ 0, Cycles = { π4 = 2

S7−→ 3
S8−→ 2,

π2 = 0
S1−→ 2

S2−→ 4
S3−→ 1

Tau
−→ 0, π5 = 2

S2−→ 4
S9−→ 2,

π3 = 0
S1−→ 2

S4−→ 5
S5−→ 6

S6−→ 0 }
where:

S1 = ”DSEL! BWRITE! BA! (++) BSIZE!”,
S2 = ”BLAST‖BDONE‖BERROR? SDEL! BWRITE! BA! BSIZE!”’,
S3 = ”BD! (++)”,
S4 = ”RETNEXT? DSEL! BWRITE! BA! BSIZE!”,
S5 = ”DSEL! BWRITE! BA! BSIZE!”,
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S6 = ”RETRACT? DSEL! BWRITE! BA! BSIZE!”,
S7 = ”BWAIT? DSEL! BWRITE! BA! BSIZE!”,
S8 = ”DSEL! BWRITE! BA! BSIZE!”.
S9 = ”DSEL! BWRITE! BA! (++) BSIZE! BD! (++)”,

Once the two sets DirectPaths and Cycles are computed, the construction of
Paths(P, qs, qf ) can be done as described in Algorithm 1:

Algorithm 1 ComputePaths(P, qs, qf )

Paths(P, qs, qf ) = DirectPaths;
PendingStates = DirectPaths;
for all π ∈ PendingStates do

i = 1;
for all c in Cycles do

if c * π and c ∩ π 6= ∅ then
add π + αic to Paths(P, qs, qf );
add π + αic to PendingStates;
i++ ;

end if ;
remove π from PendingStates;

end for;
end for;

And in our ASB example:

Paths(ASB, 0, 0) = { π1 , π2 , π3 ,
π2 + α1π4 , π2 + α1π5 , π2 + α1π4 + α2π5 ,
π3 + α1π4 , π3 + α1π5 , π3 + α1π4 + α2π5 }

αi ∈ N, > 0

3 Compatibility

We focus on compatibility with respect to ensuring data flow between a pair of
protocols. The parallel composition of two protocols describes the possible states
they may be in when run concurrently. To ensure correct data flow between these
protocols some constraints must be satisfied:

• Data is read by one protocol only when written by the other.

• A given data item is read exactly once.

• No undefined behaviors can be reached, and every transaction can terminate
within finite time (equivalent to a finite number of transitions).

For notational simplicity, in the following definition, we assume that there is
exactly one data channel d that is written to by P1 and read from by P2, as illustrated
in Figure 8. We define compatibility in terms of constraints over paths in the parallel
composition of two protocols.
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Definition 4 (Compatibility) Two protocols P1 and P2 are compatible iff:

1. Paths(P1‖P2, (q1s, q2s), (q1f , q2f )) is not empty.

2. For any path π ∈ Paths(P1‖P2, (q1s, q2s), (q1f , q2f )) corresponding to the

paths π1 = q1s

S1
1−→ q11 . . .

S1
k−→ q1f in P1 and π2 = q2s

S2
1−→ q21 . . .

S2
k−→ q2f in

P2, the following hold:

(a) if d? ∈ S2
i then d! ∈ S1

i .

(b) |New(π1, d)| = |New(π2, d)|.

(c) Let i1 < i2 · · · < in be the sorted sequence of indices in New(π1, d) and
j1 < j2 · · · < jn be the sequence of sorted indices in New(π2, d). For
indices ℓ it holds that jℓ−1 < iℓ ≤ jℓ < iℓ+1 where 1 ≤ ℓ ≤ n and j0

is defined as 0 and in+1 is defined as k + 1 (where k is the number of
transitions in the path).

3. For any state (q1, q2) ∈ P1‖P2 such that Paths(P1‖P2, (q1s, q2s), (q1, q2)) is
not empty, it holds that Paths(P1‖P2, (q1, q2), (q1f , q2f )) is not empty.

The first requirement for compatibility is that Paths(P1‖P2) is not an empty set.
This ensures that the protocols can execute together from initial to final states. If
the set of paths in P1‖P2 is not empty, we require that every path from the initial to
the final state should satisfy three conditions. (a) Only valid data is read. (b) The
same number of distinct data items are written and read by the two protocols in any
path to the final state. (c) The third condition ensures the first two constraints of
correct data flow. A new data item is written only after the previous one has been
read. The same data item is not treated as distinct data items if read multiple times.
The last requirement is needed to guarantee the absence of undefined behaviors and
the finite length of transactions - Every state that can be reached should have a
path to the final state. In a general case where there is more than one data channel,
condition 2 should hold for every channel independently.

3.1 Checking Compatibility

For two protocols P1 and P2 a compatibility check can be done as in Algorithm 2
In the example of P1 and P2 the parallel composition demonstrated in Figure 6

will fail the transition check, as the transition from state (0, 2) to state (0, 0) has a
read operation that does not have a corresponding write operation clause 2a in the
compatibility definition and line 3 in Algorithm 3, and therefore, the two protocols
will be found to be incompatible.
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Algorithm 2 Compatible(P1, P2)

1: Compute P1‖P2; {include only reachable states and transitions}
2: if CheckTransitions(P1‖P2) == FALSE then
3: return FALSE;
4: end if ;
5: Compute Paths(P1‖P2, (q1s, q2s), (q1f , q2f ));
6: if Paths(P1‖P2, (q1s, q2s), (q1f , q2f )) = ∅ then
7: return FALSE;
8: end if ;
9: if (states of P1‖P2) 6= (states of Paths(P1‖P2, (q1s, q2s), (q1f , q2f ))) then

10: return FALSE;
11: end if ;
12: for all π (symbolic path) in Paths(P1‖P2, (q1s, q2s), (q1f , q2f )) do
13: if CheckPath(π, P1‖P2) == FALSE then
14: return FALSE;
15: end if ;
16: end for;
17: return TRUE; {the protocols are compatible}

Algorithm 3 CheckTransitions(P = (Q, C, D, K,→, qs, qf ))

for all t ∈→ do
for all d ∈ D do

if ”d?” ∈ t and ”d!” /∈ t then
return FALSE;

end if ;
end for;

end for;
return TRUE; {all transitions have passed the check}
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Algorithm 4 CheckPath(π, P = (Q, C, D, K,→, qs, qf ))

π is of the form π0 + α1π1 + . . . + αnπn

CheckedPath = π0 + π1 + . . . + πn; {no need to check for α > 1}
k = |CHeckedpath|;
πP1 is the projection of CheckedPath on P1

πP2 is the projection of CheckedPath on P2

for all d ∈ D do
if d is input to P2 then

Compute New(πP1 , d) = {i1 < i2 · · · < in1};
Compute New(πP2 , d) = {j1 < j2 · · · < jn2};

else
{d is input to P1}
Compute New(πP1 , d) = {j1 < j2 · · · < jn1};
Compute New(πP2 , d) = {i1 < i2 · · · < in2};

end if
if |New(πP1 , d)| 6= |New(πP2 , d)| then

return FALSE;
else

n = |New(πP1 , d)|;
j0 = 0;
in+1 = k + 1;
for all ℓ such that 1 ≤ ℓ ≤ n do

something
if (jℓ−1 ≥ iℓ) or (iℓ > jℓ) or (jℓ ≥ iℓ+1) then

return FALSE;
end if

end for;
end if

end for;
return TRUE;
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In the example of ASB and APB protocols, due to the severe incompatibility
of the protocols, even with channel mapping of PSEL ⇔ DSEL, PWRITE ⇔
BWRITE, PADDR ⇔ BA, PWDATA ⇔ BD, the reachable component of the
parallel composition is as illustrated in Figure 9. This would pass the transitions
check but will fail the check that all reachable states can reach the final state, as in
line 9 in Algorithm 2 (state (2, 1) can be reached from the initial state but does not
have a path to the the final state)

0,0

1,1

Tau

Tau

2,1

DSEL!, BWRITE!, 
BA!++, BSIZE!

Figure 9: The parallel composition of ASB and APB

4 Converter Synthesis

If two protocols are incompatible, a converter has to be synthesized. In a similar
manner to that of direct inter module communication, to ensure correct data flow
between two protocols P1, P2 communicating through a converter some constraints
must be satisfied:

• Data is read by one protocol (/the converter) only when written by the con-
verter (/a protocol).

• A given data item is read exactly once.

• Every data item written by P1(/P2) to the converter will be written by the
converter to P2 (/P1).

• Only the protocols (P1, P2) can write new data items in the system. (i.e. every
data item written by the converter was previously written by a protocol)

• No undefined behaviors can be reached, and every transaction can terminate
within finite time (equivalent to a finite number of transitions).

For notational simplicity, in the following definitions, we assume that there is
exactly one data channel d1 that is written to by P1 and read from by the converter
and a corresponding channel d2 that is written by the converter and read by P2, as
illustrated in Figure 10.

P2

d2

M

d1

P1
controls controls

Figure 10: System structure
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Definition 5 (Converter Synthesis Problem) Given two incompatible protocols
P1 and P2, synthesize a finite state machine with bounded counters M satisfying the
following:

1. P1 and M are compatible.

2. P2 and M are compatible.

3. For any path πm ∈ Paths(M, qms, qmf ) the following hold:

(a) |New(πm, d1)| = |New(πm, d2)|.

(b) let i1 < i2 · · · < in be the sorted sequence of indices in New(πm, d1) and
j1 < j2 · · · < jn be the sequence of sorted indices in New(πm, d2). For
indices ℓ it holds that jℓ−1 < iℓ ≤ jℓ < iℓ+1 where 1 ≤ ℓ ≤ n and j0

is defined as 0 and in+1 is defined as k + 1 (where k is the number of
transitions in the path).

The first two requirements guarantee that data items are read exactly once, only
when written and no undefined behaviors can be reached (corresponding to the first,
second and fifth constraints for correct data flow). The third requirement relates to
a notion of fairness/robustness on behalf of the converter - guaranteeing that the
converter passes all given data and does not make up data on its own (corresponding
to the third and fourth constraints).
In a general case where there are more data channels, constraint 3 should hold for
every pair of mapped channels independently.

4.1 Guidelines for the construction of a correct converter

Automatic construction of a protocol converter, given the models of the protocols
P1 and P2 and data channels mapping information will include the following steps:

1. Construct a product finite state machine M⋆ = (Q1 × Q2, (C1 ∪ C2), (D1 ∪

D2), K1 ∪ K2,→, (q1s, q2s), (q1f , q2f )), where (q1, q2)
S

−→ (q1′, q2′) is a tran-

sition of P1‖P2 iff q1
S1−→1 q1′ and q2

S2−→2 q2′ are transitions of P1 and P2

respectively, channel directions are inverted and S is the set of actions com-
plementary to all actions occurring in S1 ∪ S2.

M⋆ includes all possible pairs of transitions and therefore describes the most
general behavior of the two protocols in parallel. Out of M⋆ we are interested
only in states and transitions that can be reached in a run beginning at the
initial state, and therefore construct M = (QM , (C1∪C2), (D1∪D2), K1∪K2,→
, (q1s, q2s), (q1f , q2f )), where state (q1, q2) ∈ QM iff Paths(M⋆, (q1s, q2s), (q1, q2))

is not empty, and a transition (q1, q2)
S

−→ (q1′, q2′) is a transition of M iff
(q1, q2) ∈ QM .

2. Pruning of M while keeping M to be compatible with the protocols, to resolve
any nondeterminism that is not derived from buffering aspects.

We propose the following converters to the examples given in this report: Figure
11 illustrate the converter for P1 and P2, while Figure 12 provides the model for
AMBA ASB to AMBA APB slave protocol converter, for write operations.
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Figure 11: A suggested converter for protocols P1 and P2
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Figure 12: A suggested ASB to APB converter
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5 Conclusions

In this report we have presented a general and comprehensive framework for mod-
eling hardware protocols and for addressing the problem of protocol compatibility
and protocol converter synthesis. The framework is the first to allow precise and
detailed modeling of commercial protocols in a low abstraction level, and enables
direct translation to HDL. We have presented a general definition for protocol com-
patibility and the protocol converter synthesis problem, formalize it and provide
algorithms for automatic compatibility check. We have demonstrated the process
of compatibility check and converter synthesis with commercial protocols AMBA
ASB and AMBA APB, demonstrating that the framework is easily adaptable and
practical for use with existing protocol specifications.
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