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Abstract

Understanding the business (interaction) protocol supported by a service is very
important for both clients and service providers: it allows developers to know how
to write clients that interact with a service, and it allows development tools and
runtime middleware to deliver functionality that simplifies the service development
lifecycle. It also greatly facilitates the monitoring, visualization, and aggregation
of interaction data.

This paper presents a framework for discovering protocol definitions from real-
world service interaction logs. It first describes the challenges in protocol discovery
in such a context. Then, it presents a novel discovery approach, which is widely
applicable, robust to different kinds of imperfections often present in real-world
service logs, and helps to derive protocols of small sizes, thanks to heuristics.
As finding the most precise and the smallest model is algorithmically not feasi-
ble from imperfect service logs, finally, the paper presents an approach to refine
the discovered protocol via user interaction, to compensate for possible impreci-
sion introduced in the discovered model. The approach has been implemented and
experimental results show its viability on both synthetic and real-world datasets.



1 Introduction and Motivations

A trend that is gathering momentum in Web services is to include as part of the
service description not only the service interface (WSDL) but also the business
protocol supported by the service. A business protocol is the specification of all
possible conversations that a service can have with its partners [4, 8]. A conversa-
tion consists of a sequence of messages exchanged between two or more services
to achieve a certain goal, for example to order and pay for goods.

Modeling business protocols brings several benefits to Web services: (i) it pro-
vides developers with information on how to program clients that can correctly
interact with a service; (ii) it allows the middleware to verify that conversations are
carried on in accordance with the protocol specifications, thereby relieving devel-
opers from implementing the exception handling logic; (iii) it allows the middle-
ware to check if a service is compatible (can interact) with another or if it conforms
to a certain standard, thereby supporting both service development and binding [8];
(iv) it provides the basis for monitoring and analyzing conversations, as the avail-
ability of a model can greatly facilitate the exploration and visualization of conver-
sation logs (logs storing messages exchanged among services). In Web services,
standard languages and tools are also being developed to allow for specification of
service interaction models (e.g., WS-BPEL and WS-CDL). Following our previ-
ous work [8], we adopt final state machines (FSM) as a formalism for protocols,
where states denote the possible stages a service may go through during a conver-
sation, and where transitions are associated with messages with the meaning that
in a given state only messages coupled to outgoing transition are accepted by the
service (e.g., see Figure 3).

This paper investigates the problem of discovering protocol models by analyz-
ing real-world service conversation logs [30, 31]. There are several reasons why
protocol discovery is needed:

1. Protocol definition: In real-world settings, the protocol definition may not
be available. This can happen for various reasons: for example, the service
has been developed using a bottom-up approach, by simply SOAP-ifying
a legacy application for which the protocol specification was not available;
Even when the protocol information is documented, like in Google Check-
out service1, the protocol specification need to be extracted from the textual
description, which is not as precise as a formal model. In addition, the doc-
umentation may not be consistent or has not been kept updated with the
service implementation.

2. Discovering cross-service protocols: To be able to analyze a set of Web
services, sometimes we are interested in finding protocols that span across
Web services. For example, in a typical ordering procedure, several web ser-
vices of the client communicate with several web services of the seller (e.g.,

1code.google.com/apis/checkout/developer/index.html
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there are quotation services, ordering services, payment services, etc). Even
if protocol specifications are available for each individual services, what is
important here is to understand the protocol model governing the overall in-
teraction among the partners, for example as that can be taken as the basis
for monitoring and analyzing executions or because it may lead the provider
to understand the specifications of what can be a single, unified order man-
agement Web service.

3. Protocol verification, conformance checking and evolution: Protocol discov-
ery is useful to verify if the designed protocol is faithfully followed in the
service interactions. Similarly, conformance of service implementation with
specifications issued by standardization body or industry consortium can be
checked [2]. Finally, as the implementation of service evolves, the protocol
definitions become increasingly incorrect. Automated protocol discovery
helps in maintaining a correct and up-to-date protocol definition.

1.1 In Search of a Protocol Discovery Problem Statement

Ideally, if we had a perfect log, i.e. a log that includes all possible conversations
modulo loop (complete log) and that is not affected by noise (noiseless log, i.e. a
log in which the conversations as logged are in fact those that occurred), the prob-
lem could be defined as follows: find the model of smallest size that can accept
all and only the conversations in the log. Given two models that can describe the
same log, the smaller one is generally preferable as it easier to understand for users.
For example, if state machines are used, the smaller size model is the one with a
smaller number of states. The smallest possible model has only one state, called
the flower model. For instance, Figure 1(a) shows the flower model for messages a,
b, c, d. However, it is likely to be over-generalized as it accepts any conversations
consisting of a, b, c, d some may not be present in the log, and so it is not useful.
On the other hand, it is possible to build a state machine that has a path for each
distinct conversation in the log, called the glove model (or the prefix tree). Such a
model would be so complex having too many states. It is likely to be an overfit: it
is too precise since it accepts only the conversations in the log. However, the set of
supported conversations is infinite given that protocols allow loops. So, this model
is not useful either. It has been shown that finding the minimal model that fulfill
the requirement of above problem is undecidable [20,21], nevertheless, probabilis-
tic and algorithmic approaches for finding an approximate for the minimal model
exist [33].

However, the problem formulated as such is unrealistic for real-world service
logs. As widely observed [24, 29, 34, 36, 42], real-world logs are imperfect, i.e.
both incomplete and noisy (e.g., do not record some messages). Experiments with
commercial logging tools, e.g., HP SOA Manager, also confirm that it frequently
happens that noise is introduced in the logging process. The problem is that even
a small level of imperfection (small noise level, or quasi complete logs) causes an
explosion in the number of states. The impact of noise on complexity is intuitive:
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Figure 1: (a) flowermodel protocol for messages a,b,c,d, (b) FSM to be discov-
ered, (c) the same FSM in absence of some conversations

actual protocol model are typically fairly simple, and hence allow a limited set
of conversations (modulo loops). However, when noise is present (e.g., messages
may be logged in the wrong temporal order, or may be missing), even a small level
of noise may create over time a large number of conversations hence leading to
a more complex model. The model we obtain from an imperfect log is not only
inaccurate, but may be very complex.

The issue for incompleteness is more subtle but equally problematic. Consider
the service protocol depicted in Figure 1(b). Conversations allowed by this protocol
include ad, abcd, abd, acbd and acd. If the log does not contain conversations
such as acbd (and generally ac + b + d), the discovery algorithm will infer the
protocol depicted in Figure 1(c). This protocol conforms with the conversations
found in the log, i.e. it correctly accepts all the logged conversations and rejects
the conversation acbd. Such a precision, however, leads to discovering a more
complex protocol (i.e. has more states and transitions) than the real protocol.

The above observations show that proposing a solution for discovering proto-
cols from imperfect logs is not trivial. An algorithm that guarantees minimality
cannot be devised, while precision can be at odds with complexity due to log in-
completeness, and in any case the presence of noise means that we can never be
sure that the discovered model is accurate.

1.2 Contributions

The key contributions of this paper are proposing a framework, algorithms and
tools to support the discovery of protocol models from imperfect service logs. We
focus on addressing the above mentioned problems in a three-stage approach de-
picted in Figure 2.

Protocol Discovery Framework. We characterize the different dimensions of
the problem of protocol discovery for Web services. We describe and discuss the
different conceptual components that need to be part of every solution to discover
protocol models from real-world service message logs.

Identifying Noisy Conversations. Noise in conversations is usually infrequent
and random. A known approach to deal with noise in logs is to use a frequency
threshold to filter noisy data [3, 12, 38]. However, the challenge is to determine
an appropriate frequency threshold. In some contexts (e.g. when the error rate of
the logging infrastructure is known) it is possible to rely on a manual setting of
this threshold [3, 12, 38]. We propose in Section 4 a quantitative measure and an
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Figure 2: Stages of the proposed protocol discovery approach

effective algorithm to determine which conversations are noisy by automatically
computing a noise threshold.

In a nutshell, we proceed by analyzing the frequency distribution of unique
conversations (more accurately, subsequences of conversations). Since noise is ran-
dom, it creates new message sequences, different from each other (as it is unlikely
that the same error occurs in the same place), and also often different from those
usually produced by the service. This means that many of those noisy sequences
will have a same and very low frequency. In contrast, the correct sequences have
varied and higher frequencies. We rely on this difference in terms of distribution to
decide on a frequency threshold. In our experiment, this approach led to correctly
identify noisy conversations with a precision above 90% in logs containing from 0
to 30% of noise (Section 7).

Protocol Discovery. We propose a protocol discovery algorithm that aims at
discovering a simple (small-sized), precise model, and that can cope with the prob-
lem caused by log incompleteness mentioned above. The proposed algorithm first
constructs a over-generalized, simple model of the target protocol, by analyzing
message sequences in the log. Then, it progressively refines and extends the initial
model to ensure that conversations considered noisy or not present in the log are
not accepted by the discovered model to improve the precision of discovered model
(See section 5).

The proposed algorithm also caters for log incompleteness by using a number
of heuristics to predict missing conversations. These heuristics exploit domain
knowledge and statistical properties of the conversations in the log to infer that
certain conversations are missing. For example, if it becomes known, e.g., through
statistical analysis, that a given operation can be invoked at any time, e.g., the
operation CheckBalance in a shopping service, it is possible to infer additional
correct conversations that are not recorded in log. Doing so, our approach allows
discovering simpler models, which are closer to the designed protocol models. To
the best of our knowledge, no existing model discovery approach considers the
issue of log incompleteness.

Protocol Refinement. Log imperfections makes it in general impossible for
an automated approach to always derive simple, precise and correct protocol mod-
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els. We propose a novel approach to visual, interactive and user driven protocol
refinement (Section 6) to compensate for errors made during discovery step. User-
driven refinement is a challenging task: it is unrealistic to ask users to go through
all conversations in the log, inspect them and refine the protocol to correct possi-
ble mistakes because conversation logs can be very large in size. We propose two
mechanism to make the protocol refinement simple and effective (Figure 2):

• We augment discovered protocol with various meta-data including (final)
state and transition support to represent uncertainty due to log imperfection.
The purpose of this refinement is to improve the precision of discovered
protocols by updating the discovered model to exclude conversations that
should not have been accepted. The metadata help in identifying incorrect
conversations that are mistakenly accepted by the discovered model.

• We present an approach for analyzing all conversations that are in the log, but
can not be accepted by the discovered model, to compensate for mistakes due
to exclusion of correct but infrequent conversations. This approach is based
on defining: (1) a notion of distance between protocol model and excluded
conversations, and (2) manipulation operations that make modifications in
the model so it accepts these conversations. We show that the refinement
process can be facilitated by having users analyze manipulation operations
rather than conversations.This refinement helps in improving the recall of
the discovered model, i.e. the percentage of correct conversations that are
accepted by the model.

Protocol Discovery Tool. The final contribution of this paper is implement-
ing the proposed approach in a tool and validating the approach via experiments
performed actual service execution logs (Section 7). The tool is part of ServiceMo-
saic project [8, 31], a platform for model-driven analysis and management of Web
service protocols.

The paper is structured as follows. In Section 2 we give basic definitions and
characterize imperfections in service logs. In Section 3 we propose a framework
consisting of different components, which are required in any protocol discovery
solution. Section 4 presents our approach for identifying noisy conversations. In
Section 5, we present the protocol discovery algorithm. The proposed protocol
refinement approach is explained in Section 6. Implementation and evaluation of
the proposed approaches are discussed in Section 7. Related work is presented in
Section 8. We conclude and introduce areas of future work in Section 9.

2 Preliminaries and Assumptions

2.1 Modeling Business Protocols

Following our previous works [8], we choose to model business protocols as de-
terministic Finite State Machines (FSM) as it is a well-known paradigm with es-
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tablished formal foundations, and it is simple and suitable for modeling reactive
behaviors. We stress however that many of the concepts presented here apply re-
gardless of the chosen protocol formalism.

Definition 2.1. A business protocol is a tuple P = (S,s0,F,M,T ), where S is the
set of states of the protocol, M is the set of messages supported by the service,
T ⊆ S2×M is the set of transitions, s0 is the initial state, and F represents the finite
set of final states. A transitions from state s to state s′ triggered by the message m
is denoted by the triplet (s,s′,m).

In FSM-based protocol models, states represent the different phases through
which a service may go during its interactions with a client (i.e. during a con-
versation). Each state is labeled with a logical name, such as PO Submitted. A
protocol has one initial state and one or more final states. Transitions are labeled
with message names, with the semantics that the exchange of a message (with the
conversation in a given state) causes a state transition to occur. FSM used to rep-
resent protocols are deterministic, meaning that for any given message, there is at
most one corresponding transition from any given state to the next. A protocol P is
said to accept (resp. reject) the sequence of messages of a conversation c if a path
(necessarily unique) exists (resp. doesn’t exist) from the initial state to one of the
final states.

Example 2.1. Consider a Retailer service that has two types of clients: regu-
lar and premium. A typical conversation of regular clients may start with a re-
quest for the product catalog, followed by an order. Then, an invoice is sent to
clients and, once the invoice has been paid, the requested goods will be shipped.
For premium customers, goods may be shipped immediately after placing an or-
der (the invoice is sent later). The protocol of the Retailer service is depicted
in Figure 3. R-Shipped, and P-Paid are final states (for regular and premium
customers, respectively). In the following, we use shortened forms of these mes-
sages for simplicity: Cat, PO, Inv, Pay, and Ship for getCatalog, submitPO,
sendInvoice, makePayment, and ShippingInfo, respectively.

Note that in general we could choose a finer-grained protocol model where
transitions are not only associated to messages, but also to conditions on message
parameters. For example, we may want to specify that a ShippingInfo message
where parameter shipType has a value of ground may lead to a different state than
when shipType has a value of air. We will briefly touch upon the implication that
this finer-grain model brings to protocol discovery later in this section.

2.2 Service conversation logs

We assume that service (message) logs contain the following information: (i) mes-
sage transfer information (sender, receiver, timestamp), (ii) message name, and
(iii) a conversation ID, which is a way to associate messages to conversations. This
assumption is consistent with the information that can be logged by commercial
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Figure 3: The business protocol of the Retailer service

service monitoring tool [16, 34]. The possible exception is the conversation ID,
which some tools may not log. In such a case, a preprocessing is needed to relate
messages of the log to their corresponding conversation. For example, if standards
such as WS-Coordination or WS-Conversation are used, conversation IDs can be
extracted from SOAP headers of messages. The difficulty of this task can range
from trivial, as in the above example, to challenging (e.g., when information to
use, and how to use them, are unknown and have to be inferred from the log). The
problem of mapping messages to conversations constitutes an independent research
thread in its own right [32].

Definition 2.2. A message log ML is a collection of entries e = (cid,s,r,τ,m),
where cid is the conversation identifier, s and r denote the sender and the receiver
of message m, and τ is the timestamp.

The above definition is introduced to closely model real message logs, which
indeed are tables of entries. However, in the context of protocol discovery, it is
more handy to consider conversations as the basic piece of data. Hence, in what
remains, we will consider conversation logs as our input dataset. Conversation
logs are obtained from message logs by grouping entries by conversation ID and
ordering them by time:

Definition 2.3. A conversation log CL is a collection of conversations CL = {c1,c2, . . . ,cn}.
Each conversation ci ∈CL is a sequence of messages ci = 〈mi

1,m
i
2, . . .m

i
k〉. Conver-

sations in CL are obtained from a message log by grouping entries per conversation
and by ordering them according to their timestamp.

A conversation c can thus be seen as a sequence of symbols—a string—where
each symbol corresponds to a message name.

2.3 Characterizing Imperfection in Service Logs

There are mainly two types of imperfections in service logs: incorrect conversa-
tions, and log incompleteness.
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2.3.1 Incorrect conversations

In service logs, we found that the following types of problems are common:

• missing messages – The logging infrastructure may fail to record one or more
messages of a conversation. For example, for conversation abcde, we may
have acde captured in the log, in which b is missing. This type of error
happens for various reasons, including bugs in the logging infrastructure,
performance degradation, or unexpected interruptions due to malfunctioning
of the underlying software platforms (e.g., operating system crash).

• swapping messages – The order of messages as recorded in the log may
differ from the real ordering of messages as exchanged between services.
For example, for conversation abcde, we may find acbde recorded in the
log, in which the order of b and c is swapped. This type of error may be due
to the granularity of timestamps of messages or performance degradation so
both b and c get the same timestamps, e.g., we have experienced this using
HP SOA Manager [1] due to the performance reason. Also if conversations
are logged on more than one servers, it can be difficult to establish the correct
ordering between messages of the same conversation [34].

• Partial conversations – We call partial a conversation that is interrupted be-
fore its completion. This can be due, e.g., to network failure, client abor-
tion or service execution exceptions. For instance, if abcd is the message
sequence of a complete conversation, the sequence abc represents a par-
tial conversation. Although this problem may seem similar to the missing
message problem, it impacts the protocol discovery in a different way: In
protocols, states in which it is legal to terminate a conversation are marked
as final. For example, in the protocol of Figure 1(c), state 5 is marked final
which indicates that abcd is complete. The presence of a partial conversation
abc in the log could lead a protocol discovery algorithm to mark state 4 as
final while it is not.

We refer to conversations logged with one or more missing or swapped mes-
sages —the first two of the above error types—as noisy conversations. Noisy con-
versations may lead to discover wrong and complex protocols.

2.3.2 Log Incompleteness

In practice, conversation logs are often incomplete, i.e. they do not contain all the
possible conversations allowed by the service protocol. Incompleteness makes it
difficult for a model discovery algorithm to discover simple models, as illustrated
in the example in Figure 1. We present an approach for handling incompleteness
in service log in Section 5.3.
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3 The Protocol Discovery Framework

This section presents the framework we propose for protocol discovery, in which
we identify conceptual components that should be ingredients of any protocol dis-
covery solution. Then, we specify the scope of the solution presented in this paper.

3.1 Phases of the protocol discovery process

The protocol discovery problem has many facets. These facets correspond to the
steps (represented as rounded boxes) of Figure 4, and are briefly described below.
Different solutions can be devised to deal with the problems posed by each of these
steps. However, unless realistic assumptions can be made for why some of these
steps are not needed or not applicable in a certain discovery scenario, an approach
to tackle each of them must be devised.

Log analysis, cleaning and transformation. This step consists in collecting
data from the service interaction logs (also called message logs) and in transform-
ing them into the format supported by the discovery tool. In most cases, a mes-
sage log is essentially a repository that contains the messages sent or received by
the services of a company (typically monitored by the company itself). In devis-
ing a generic protocol discovery solution, it is also important to make reasonable
assumptions on the kind of information present in the logs and verify if these as-
sumptions are satisfied by the log at hand. An important aspect in log analysis is
to measure noise level (i.e. the ratio of incorrect conversations with respect to the
total number of conversations) that is introduced by the logging system. Different
log systems are likely to introduce different kinds of noise and imprecisions, and
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so should be considered in the solution. The output of this step is called conformed
message log, which include messages as well as meta-data about estimated noise
types and levels.

Correlation. Tools that monitor message exchanges among services provide
logs that are a set of messages. To derive protocol models from message logs, we
first need to correlate messages into complete conversations. Once we have conver-
sations, and hence the different paths that have been taken through the protocols,
we can derive the protocol model from this set of paths. In some cases, messages
in the log contain conversation identifiers, which allow to identify each exchanged
message belong to which conversation. Unfortunately, this is rarely the case in
real applications, and even in those rare cases, this would not help if we are inter-
ested in interactions among business services. Therefore, to prepare the data for
model discovery, a mechanism to map messages to the conversation they belong to
must be identified. The output of this step is called correlated message log, or a
conversation log.

It is possible to devise an algorithm to analyze the different messages and deter-
mine that certain message elements are important for conversation correlation. For
example, to finds out that product number, customer ID, and purchase date identify
messages belonging to the same conversation occurring between a customer and a
purchase order submission service, and further that product number, and purchase
date could help in identifying the correlation of messages between the PO service
and the shipper (in BPEL terminology, this is analogous to discovering correlation
sets). We have investigated this problem and proposed a solution for identifying
different ways of grouping messages in a log into conversations, which is presented
in [32].

Transition identification. As mentioned before, transitions between states of
a protocol can depend not only on messages, but also on message parameters. In
fact, transitions in the FSM can be associated not only to the message type, but also
to the content. For example, a message response with parameter approval=yes may
lead to a different state than the same message with parameter approval=no. Hence,
part of the protocol discovery problem consists in discovering which parameters of
which messages (and which values for these parameters) correspond to different
transitions. Furthermore, a protocol model may also allow timed-controlled transi-
tions or other sophisticated modeling constructs [8]. This means that by looking at
a message log and in particular if we limit the analysis to message names and not to
their parameters, we cannot determine which transition each message corresponds
to (and specifically, if two messages with the same name but different parameters
correspond to the same or to different transitions). Hence, part of the protocol dis-
covery problem lies in analyzing the message logs and in mapping each log entry
into a transition, and in also adding possible time-controlled transitions if these are
allowed by the protocol model. The output of this step is called correlated transi-
tion log. At this stage, we have a log that contains conversations composed of an
ordered set of transitions, and we are ready to derive the protocol model.

Protocol discovery algorithm. This is the heart of the protocol discovery
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problem, and it includes several aspects that must be considered. First, there is
the need of defining goals and quality criteria for the discovered model. In general,
deriving a model that can generate the conversations in the log is easy. For example,
we could generate a FSM that has a path for any distinct conversation found in the
logs. This would lead to a protocol that has a huge number of states and transitions.
Alternatively, one could “discover” a flower model, which has one state and a self-
transition for each distinct message name in the log. This model is very simple and
can generate all conversations in the log, but it can also generate any conversations
of any length given that set of messages, which means that the model is not really
providing any useful information. The second aspect is related to how to take into
account incompleteness in the logs. Finally, once the characteristics of the input
and the goal of the output are clear, the algorithm must identify how to derive
high-quality protocol models from potentially noisy logs.

Protocol refinement. The fact that logs can be noisy and incomplete makes it
impossible in the general case to discover the exact protocol model supported by a
service. The protocol discovery algorithm is supposed to take care of doing what-
ever can be done automatically in terms of discovering the best possible protocol
model based on the defined quality criteria, but once a model has been derived,
there is the need of assisting users in refining and correcting the protocol model,
based on knowledge or hypothesis that users may have for some parts of the proto-
col. The challenge here consists in how to measure and rank the possible errors in
the protocol model and in how to progressively guide users through them in a way
that is as simple and as effective as possible, so that corrections can be provided
and the protocol can be refined.

Note that sometimes the above steps can be repeated or executed in a different
order with respect to what presented above. For example, users may be able to
provide knowledge they have on parts of the protocol even before the algorithm
is run, to better guide the algorithm. We also believe that, although the above
discussion focuses on protocol discovery, analogous if not identical steps have to
be performed for other model discovery problems, including for example process
discovery from business process execution logs.

3.2 Scope of the present work

In this paper, we focus mainly on three steps of the above framework: noise analy-
sis in conversation logs, protocol discovery and protocol refinement (see Figure 2).
Hence, we assume that correlation information is available in the logs (we have the
conversation log) and that different message names correspond to different transi-
tions. We do not discover timed transitions or transitions that include conditions
based on message parameters. In other words, we assume that the message log
as written by the logging application is in fact already a correlated transition log.
We have investigated the problem of message correlation and in [32] proposed a
interactive and visual approach for correlation of messages in message logs into
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conversation logs, and we leave transition identification as future work.

4 Identification of Noisy Conversations

4.1 Characterizing noise distribution

As discussed in Section 1.1, conversations in CL could be noisy, i.e. may include
one or more errors (missing message or swapped message). In this section, we seek
to identify noisy conversations. We assume that errors made by logging systems
can be modeled as a Poisson process [28]. In the vocabulary of log, a Poisson
process is defined by the following properties:

• The number of errors in non-overlapping sequences of log entries is inde-
pendent for all sequences;

• The probability of exactly one error on a given sequence is proportional to
the sequence length;

• The probability of two or more errors in a sufficiently small sequence is
essentially null.

The above properties, defined for a message log, are thus assumed to be also valid
when considering sequences of messages of a same conversation.

Note that the above assumption is not always verified: Errors found in service
logs may depend on the current state of the service being logged. For example,
a service operation may require more computing resources than others, impacting
the logging system performance and resulting in an increased error rate for these
operations. If the dependency between messages and errors is too important, our
approach will fail to identify the resulting conversations as noisy. Indeed, the more
deterministic is an error and the more difficult it is to differentiate it from the nor-
mal behavior of a service. For example, if messages a and b are almost always
swapped by the logging system (i.e. although it occurs before, a is almost always
timestamped after b), the protocol will have all the appearance of being ba rather
than the correct ab. Identifying this type of near-deterministic errors in log sys-
tems is not among our claims. Such errors may be identified by applying model
checking tools on the service implementation specifications [42].

4.2 Filtering Noisy Conversations

Coming back to the above assumptions, a first observation is that the longer a con-
versation, the more likely it contains an error. This implies that short sequences
are more robust to noise than long ones. For this reason, it is preferable to base
protocol discovery on sequences of short length, say of length k, rather than on
conversations. An additional merit of this approach is that even very long con-
versations, which are likely to be noisy, consist of several subsequences, most of
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Figure 5: The analysis of logs

them correct. Thus, noisy conversations, too, can contribute to the identification of
correct sequences.

For the size of the sequences, we have learned through experiments (see Sec-
tion 7) that appropriate values typically range between 3 and 5. A smaller value of
k implies too few distinct sequences and this makes it hard to discriminate between
noisy and correct sequences. A greater value of k increases the computational cost
and tends to nullify the benefit of using sequences as opposed to conversations.
We experienced that the value of k = 4 works very well in most situations. This
value can, however, be changed by the user according to the discovery goals and
characteristics of dataset in hand (See Section 7). This may be needed only for
services that have very long conversations with high variability or very low noise.
In the following, we denote by Qk the set of unique sequences of length k found in
the log CL. We use ck to denote all unique sequences of a conversation c.

Example 4.1. Consider conversation c = 〈abcde〉. The sequences of length k = 3,
i.e. c3 = {〈abc〉, 〈bcd〉, 〈cde〉}. Consider now CL = {abcd,acbd,acb}. We have
Q3 = {〈abc〉,〈bcd〉,〈acb〉,〈abc〉,〈cbd〉}.

A second observation is that protocols and services in general are designed by
humans, and hence they tend to be fairly simple models. Even though a protocol
may allow for a wide variety of individual conversations, the number of distinct
individual sequences of small length—corresponding to portions of the protocol—
should remain relatively small. However, by introducing subtle variations within
correct sequences, we can expect the noise to introduce a large number of new
unique sequences. Furthermore, we can expect the frequency of these new se-
quences to be very low, since there is no reason for random and infrequent errors
to affect repetitively a same sequence in the same way.

Intuitively, this means that infrequent message sequences are likely the result
of noise. The challenge lies in defining what “infrequent” means, that is, identify-
ing a frequency threshold, denoted by θk, for sequences of size k. For each distinct
sequence, we compute the support, denoted by supp, as ratio of the number of
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conversations that contain this sequence divided by the total number of conversa-
tions. We use this measure to order the table of n unique sequences (q1,q2, . . . ,qn)
such that ∀i < n,supp(qi) ≤ supp(qi+1) and qi ∈ Qk (Figure 5(a)). Figure 5(b)
represents the histogram of sequence support for the game service conversation
log (details of this dataset is presented in Section 7).

This histogram can be seen as a step function. We call step points m the points
in the ranked histogram where the function has a step (supp(qm) > supp(qm−1)),
i.e. where support value changes. We use l(m) to denote the length of the step
(the number of sequences which have the same support of the previous step point).
Consider now the ratio γm between the relative length of the step l(m)/n (normal-
ized based on the total number of sequences) and the support supp(qm) of the next
step:

γm =
l(m)

n · supp(qm)
This value is rapidly decreasing with m since sequences of higher support are

less likely to share a same support. For some m0, l(m0)/n becomes smaller than
supp(qm0) (i.e. γm0 < 1)), and we set θk = supp(qm0). This approach works well
in different real datasets, besides being consistent with the intuition. In addition,
it is “robust” as the index m for which γm < 0.5 or γm < 2 is about the same (the
difference concerns only a small number of sequences when compared with the
total number).

4.3 Time complexity of the noise identification

The size of the histogram directly depends on the number of unique sequences. In a
protocol involving p different operations, the number of possible unique sequences
is given by pk. This corresponds to a scenario where any operation can follow any
operation. In practice, each operation is followed by only a subset of operations. If
φ denotes the average number of operations that can follow a given operation, an
estimate of the number of unique sequences of length k is given by p.φk−1 where
φ� p. For example, in our experiments (see Section 7), with a protocol of 32 op-
erations, less than 2400 unique sequences of length 4 were observed (Figure 5(b)),
among 25000 conversations in the log. This is much smaller than the 324 ≈ 106

theoretical maximum. In this case, φ≈ 4.22 (See Table 1 in Section 7). Finally, the
number of unique sequences is independent of the size of the dataset (the number
of conversations in CL), i.e., new sequences are found less and less frequently as
the dataset grows. Hence, the time complexity of the noise identification depends
linearly on the number of conversations (as we parse the data only once).

5 Protocol Discovery Algorithm

Let θk to be the noise thresholds for sequences of length k estimated using the
approach presented in Section 4. We denote by Qk

θ
= {q ∈ Qk|supp(q)≥ θk}, the
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Algorithm 1 The Protocol Discovery Algorithm
Require: k (the sequence length), Qk

θ
(the set of correct sequences)

Ensure: DP = (S,s0,F,M,T )
1: Construction of an initial message graph Ginitial from Qk

θ

2: Enhance precision of Ginitial based on Qi
θ
, 3≤ i≤ k

3: Convert Genhanced to DP

4: Minimize DP

set of correct sequences of length k, i.e. the set of sequences which have a support
greater than θk. The set of unique sequences of length k of a given conversations
c is defined as ck = {q ∈ c||q| = k}. Then, we revisit the problem of protocol
discovery as the following:

Problem 5.1. The protocol discovery problem is to find the minimal discovered
protocol (DP) (minimal deterministic finite state machine) that:

(i) DP accepts all correct conversations CCk = {c ∈CL|∀q ∈ ck,q ∈ Qk
θ
}. CCk

specifies the set of all conversations c for which all subsequences of length k of
them (ck) are found in Qk

θ
.

(ii) DP rejects all conversations c /∈CCk.

This problem is a variation of the well-known problem of regular grammar
inference from sample input [33], and it has been proven that there is no efficient
algorithm for finding the minimal DP [20,21]. However, there are two main classes
of approaches for finding an approximate for the minimal model in grammar in-
ference. The approaches in the first class start with a specialized model which is
precise but usually too complex (e.g. a prefix tree). This model is then iteratively
generalized (or simplified) until the desired abstraction level is reached [33]. The
approaches in the second class navigate the search space in the opposite direction,
starting from a generalized model which is not precise but simple (e.g. flower
model), and which is then specialized to enhance its precision [33].

It has been shown that software interaction models are much closer to gener-
alized models than to specialized ones [26]. Several work in software interaction
model discovery take such an approach and start from a simple, over-generalized
model, e.g. [12,14,26]. We have also adopted this approach for protocol discovery.

5.1 Overview of Protocol Discovery Algorithm

Algorithm 1 shows the protocol discovery steps. The inputs of the algorithm are
parameter k and the set of correct sequences Qk

θ
. Its output is a deterministic FSM

representing the discovered protocol (DP). Algorithm 1 has the following four
steps:

Step 1: An initial message graph (Ginitial) is constructed from the set of correct
sequences Qk

θ
. It has one node for each unique message in the log, and directed

edges between nodes are established based on Qk
θ
;

Step 2: Ginitial is overgeneralized, i.e. its precision is low, in the sense that
it accepts some sequences that are not in Qk

θ
. The lack of precision is due to the
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representation of each message by a single node in Ginitial . Hence, when a mes-
sage appears in two or more sequences with different prefix and suffix messages,
its corresponding node accepts all combinations of prefixes and suffixes, some of
which may not be correct sequences. To enhance the precision, separate paths for
correct sequences are created to prevent acceptance of incorrect ones;

Step 3: In a final state machine, edges are labeled by message names. The graph
produced so far considers messages as nodes. In this step, the graph is converted
to an FSM;

Step 4: Finally, the obtained FSM may contain some redundancy in form of
equivalent states, i.e. states with the same output transitions going to the same
target states. Equivalent states can be merged to reduce the size of FSM. The result
of this step is the discovered protocol DP.

Step 1 of the algorithm is performed in a similar way as in the approach of
Cook et. al. [11,12] which is presented for discovering software workflow models
represented as non-deterministic FSMs. In step 2 a new approach for specialization
of the initial model is presented to cater for the requirements of protocols, which
are represented as deterministic FSM (Section 5.2). In step 4 we use algorithmic
minimization techniques to reduce the size of DP. In addition, we present a novel
approach for handling log incompleteness to simplify DP to make it similar to the
real-world representation of DP (Section 5.3).

5.2 Protocol Discovery Steps

5.2.1 Construction of a message graph

In this step, a generalized representation of DP is built as a directed graph called
Ginitial . We consider initially one node in Ginitial for each unique message in the
log. For instance, 5 nodes are created in Ginitial corresponding to Cat,PO,Inv,Pay,
and Ship. Then all sequences q ∈ Qk

θ
are used to connect these nodes in Ginitial .

Assuming that k = 4, for sequence q1 = 〈Cat,PO,Inv,Pay〉 a directed edge from
node Cat to node PO, PO to Inv, etc is created. Figure 6(a) shows the Ginitial built
from the log of the Retailer service shown in Figure 3 using Q4

θ
. Note that there

is no transition from the node Start to PO as the support of sequences with such
transition is below θ4.

5.2.2 Graph precision enhancement

The graph Ginitial is often overgeneralized: it accepts, by construction, all se-
quences of Qk

θ
, but also some sequences which are not in Qk

θ
. We start checking for

such sequences from the smallest length, i.e. i = 3 to k progressively. For example,
for i = 3, Ginitial accepts sequence 〈Start,Cat,Pay〉 which is not in Qk

θ
, and so it

is an incorrect sequence. We call this graph to have a low precision, defined as
the ratio of correct sequences of a length i ≤ k it accepts over the total number of
accepted sequences (modulo loops). The graph has to be modified so that it does
not accept incorrect sequences.
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Figure 6: Applying the discovery algorithm steps on Retailer service log
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Algorithm 2 The Precision Enhancement Algorithm
Require: Initial Graph Ginitial
Ensure: Enhanced Graph Genhanced
1: for i = 3..k do
2: for each node v of Ginitial do
3: IS← IS∪ il(v, i)
4: end for
5: pre f ix← all unique seq[1..(i−1)] in IS
6: for each seq ∈ pre f ix do
7: IE← all v′, (pre f ix,v′) ∈ IS
8: for each node seq[ j] in seq[2..(i−1)], 2≤ j ≤ (i−1) do
9: seq[ j]′ ← copy of seq[ j] in G

10: end for
11: for each node seq[ j] in seq[2..(i−1)], 2≤ j ≤ (i−1) do
12: if j > 2 then
13: create an edge from seq[ j−1]′ to seq[ j]′ in G
14: end if
15: Copy outgoing edges of seq[ j] to seq[ j]′ except the edge from seq[ j] to seq[ j +1]
16: end for
17: copy outgoing edges of node seq[i−1] to node seq[i−1]′ except for edges to nodes in IE
18: remove edge (seq[1],seq[2])
19: add edge (seq[1],(seq[2])′)
20: update IS
21: end for
22: remove all nodes not reachable from Start

23: end for

To address this issue, we propose Algorithm 2 for enhancing the precision of
Ginitial . For each incorrect sequence of length k a new path in the graph is created to
only allow correct sequences to be accepted. The creation of the new path is done
by copying all the middle nodes of the incorrect sequence, i.e. nodes 2..k−1 (e.g.,
second and third nodes in a sequence of length 4), denoted by 2′...(k−1)′. Then,
all the outgoing edges of each node j (2 ≤ j ≤ k) is copied to node j′, except the
edge from j to j+1. Instead an edge is created from j′ to j′+1. The edge between
nodes 1 and 2 is removed and an edge between node 1 and node 2′ is created. Note
that no edge is created from (k− 1)′ to node k. This is to disallow acceptance of
the incorrect sequence.

To demonstrate how Algorithm 2 works, we apply it on Ginitial . First, let’s
consider the above incorrect sequence. A copy of the only middle node, i.e., node
Cat is created and called Cat2 that has the same outgoing edges except for the one
to Pay. Then, the edge from Start to Cat is removed and an edge from Start
to Cat2 is created. The result graph is called Ginitial,1. It does accept the incorrect
sequence <Start,Cat,Pay> (Figure 6(b)). The next incorrect sequence of length
3 is 〈Pay,Ship,Inv〉 which is handled in a similar way by copying Ship node.
The result graph, called Ginitial,2, is depicted in Figure 6(c). Then, we check for
incorrect sequences of the next higher length i≤ k. Here, i = k = 4. The sequence
〈Ship, Inv,Pay,Ship2〉 is incorrect. First, a copy of middle nodes Inv (called
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Inv2) and Pay (called Pay2), and also an edge from Inv2 to pay2 are created.
Node Inv2 can get all the outgoing of Inv, except edge that goes to Pay. In this
case, since this edge is the only outgoing edge of Inv, no outgoing edges is copied
from Inv to Inv2. The same procedure is followed for node Pay2. Next, we
remove the edge from Ship to Inv, and create an edge from Ship to Inv2. Note
that in this procedure, we do not create an edge from Pay2 to Ship2. This means
that from node Ship it is not possible to accept the incorrect sequence anymore
(see Ginitial,3 (also called Genhanced) in Figure 6(e)).

In this algorithm, IS stands for the list of Incorrect Sequences. This list is
computed in lines 1 to 4. il(v, i) denotes the list of incorrect sequences of length i
that can be generated from node v in graph G. The variable pre f ix keeps the set
of all unique prefix sequences of length i− 1 in IS. The purpose of this list is to
perform splitting for all incorrect sequences that share the same prefix at once, so
to minimize the total number of sequence splitting (and so copying) performed.
For instance, for the sequence abcd, the pre f ix is abc. In fact, a new path for all
incorrect sequences with the same prefix (e.g., abcd and abce) is created to handle
all at once. Node seq[i] refers to the ith node in seq. IE stands for Incorrect Edges.
It determines all nodes v for which there is an edge from node seq[i] to v.

It should be noted that a splitting method for enhancing graphs is also proposed
by Cook et. al. in [11, 12] which recommends splitting the node next to the
last node in an incorrect sequence. However, this could not always be applied to
deterministic FSM of service protocols, as it does not allow for removal of the
incorrect sequence when more than one nodes before the last are shared between
correct and incorrect sequences. For example, assume the graph of Ginitial,2 and
the incorrect sequence 〈Ship1, Inv,Pay,Ship2〉. Splitting only the node before the
last, i.e., Pay, results in the graph shown in Figure 6(d). In this graph, the incorrect
sequence still can be accepted. In addition, the node Inv is connected to two nodes
for Pay message which leads to non-determinism after transformation of Genhanced
to FSM. A non-deterministic FSM is not desired for service protocols.

5.2.3 Conversion into a FSM

We convert the enhanced directed graph Genhanced (Figure 6(e)) to a FSM by nam-
ing transitions to the name of their target nodes. The resulting graph is a determin-
istic FSM (Figure 6(f)).

5.2.4 FSM Minimization

The resulting FSM may contain equivalent states, i.e. states with the same outgoing
transitions to the same target states. This is mainly due to two reasons: (i) the graph
constructed in step 1 may not be the minimal form of DP, and (ii) splitting may
cause the generation of equivalent states, i.e. they have the same outgoing transi-
tions, which means that they can be merged without changing the FSM properties.
For example, in Figure 6(f), states s3 and s9 are equivalent. Hence, in this step we
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minimize the FSM without changing the set of conversations it accepts. We use the
Ullman-Hopcroft minimization algorithm [27] for this purpose. Figure 6(g) shows
the minimized discovered protocol for the Retailer service. The final states in
FSM are identified by using all the conversation in the log to specify the states, in
which most of conversations terminate.

5.3 Handling Log Incompleteness

Despite the minimization, experiments (see Section 7) revealed that DPs may be
very large, as in absence of some conversations the algorithm cannot generalize
well. The analysis of protocol models shows that there are operations that are
transparent with respect to a state s, i.e. their invocation, when in state s, does not
cause a transition out of s (e.g., operation CheckBalance in the shopping service).
These are very common in protocols, and can be nicely modeled as self-transitions,
without requiring additional states. However, since the log is not complete, it may
not contain all the distinct message sequences that allow us to infer that the oc-
currence or non-occurrence of the operation indeed does not change what can be
invoked next. Hence, their modeling requires additional states.

In addition, it often happens that transparent operations are pervasive, that is,
they can happen in any state, i.e. are transparent in any state. Think for example
of a search or browse operation while purchasing goods. You can always browse
and search, the constraint is that you order before you pay. Transparency helps us
minimize states, while pervasiveness helps us minimize transitions in the sense that
if an operation can occur always and does not affect the protocol, then we can factor
it out as opposed to drawing it in the detailed protocol model. Although not as
crucial as transparency, this is not a minor benefit, as in real protocol models failing
to recognize pervasive operations cause the model to be very cluttered with arcs and
hence hard to read. Hence, failing to recognize transparency and pervasiveness due
to incomplete logs has a big impact on the quality of the discovered model.

To handle this issue, we propose the following heuristics: we look for trans-
parent and pervasive operations in the initial directed graph G, in which each node
correspond to an operation, in two steps. In the first step, we identify nodes in G
with incoming edges from more than half of the service operations. Such opera-
tions are considered as candidates for pervasive operations. In a second step, we
apply the following condition for each candidate operation o, identified in the first
step: if Pred(o) represents the set of predecessors of o in G (i.e. ∀p ∈ Pred(o),
there is an edge from p to o in G), and Succ(o) represents the set of successors of
a node o (i.e. ∀t ∈ Succ(o) there is an edge from o to t in G), then we should have:
Succ(o) = Succ(p). This condition implies that appearance of operation o after p
does not change its successor operations. We say o is a transparent operation with
respect to p.

Given an incomplete log, meeting the above condition is rarely possible for
operations o and p. So, we use a looser version of this condition that requires
∀t ∈ Succ(o), t ∈ Succ(p), but the reverse condition ∀t ∈ Succ(p), v ∈ Succ(o)
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should hold for at least 90% of operations in Succ(p). This is an approximation to
handle incompleteness of the log, and to allow p to have few successor operations
that are not successors of o in G. After discovering all transparent operations o and
their corresponding predecessors p, we remove the edges from p ∈ Pred(o) to o in
G. Then we apply steps 2 and 3 of the algorithm (splitting and conversion to FSM)
on G. Finally, we put back edges that we removed, as self-transitions labelled
with operation o from node p to p, ∀p ∈ Pred(o). This means that operation o is
transparent for each p. If an o is transparent for all operations p ∈ Pred(o), then o
is called a pervasive operation in DP. In a last step, we convert G to an FSM and
minimize it. Application of these heuristics considerably improves the size of DP
and allows for compensating the imperfection related to incomplete logs.

5.4 Time Complexity of the Algorithm

The initial graph is built in step 1 with one node for each of the p different op-
erations involved in the protocol. Then, this graph is connected according to the
sequences of length k that are found in the set of correct sequences Qk

θ
. This is done

in a single pass through the set Qk
θ
. Step 1 therefore has a complexity in O(|Qk

θ
|).

In order to estimate the complexity of step 2, we need to see how many se-
quences are generated from the initial graph. We used in Section 4 the notation
φ to represent the average number of operations that can follow a given operation
in the log. The initial graph Ginitial is not built from all those sequences but only
from the subset of correct sequences (those in Qk

θ
). Thus, the average arity of each

node in Ginitial is less than φ. We denote by ϕ (ϕ≤ φ) the average arity of nodes in
Ginitial . Using this notation, the number of sequences of length k generated in step
2 is given by pϕk−1.

Step 2 performs splitting operations (nodes) by generating sequences of length
2 < i≤ k, and checking if they are present or not in the list of correct sequences of
length i (Qi

θi
). Generating the sequences is done by traversing the graph and, for

each node, by performing a depth first search stopping at a depth i from the node
(when possible).

A total of pϕi−1 sequences are thus generated and looked up in the list Qk
θ

steps at most which is also the number of sequences to be checked. For checking
if sequences are in the list Qi

θi
, the lookup operation performs very fast since se-

quences in Qi
θi

are stored in an indexed structure with p entries, corresponding to
the p operations that form those sequences, and with i levels. Each lookup then is
performed in O(i). Since we have, i ≤ k, the complexity of this operation can be
bounded by O(k.p.ϕk−1).

Step 3 does not modify the graph that results from step 2. We mentioned this
step so as to ease the description of the overall algorithm, but the graph can be
maintained in memory in a similar way from the beginning, associating labels with
edges rather than nodes.

Finally, in step 4, a minimization of the enhanced graph is performed. The
time complexity of the minimization algorithm we use is O(s2), in which s is the
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number of nodes [27]. In order to compute the complexity of step 4 in terms of
our data size (number of conversations), we need to estimate the number of nodes
in Genhanced . We recall that it is built from Ginitial by performing split operations.
Each split operation adds at most k−2 nodes to the p present in the initial graph.
(To be precise, each split operation creates i− 2 nodes where i varies from 2 to
k). We can estimate the size of the enhanced graph—the graph obtained after all
split operations are applied—by |Genhanced |= p+(k−1).δ where δ represents the
number of split operations.

The number of split operations is determined by the number of sequences gen-
erated by Ginitial that do not belong to Qk

θ
, a rough estimate of which is given by

δ = pϕk−1− |Qk
θ
|. Actually, from what precedes, we have |Qk

θ
| ≈ pϕk−1, which

shows that δ is necessarily small. This is natural since the initial graph was con-
nected using precisely the set of correct sequences Qk

θ
. Estimating more precisely

the number of split operations would require to introduce additional criteria on the
dataset which would not be very intuitive. In our experiments (see Section 7), the
size of the FSM before minimization was comprised between 100 and 200, which
corresponds to between 26 to 60 split operations. The time complexity of step 4
hence is O((p+(k−2).δ)2).

Summing all those steps gives the complexity of the discovery algorithm. It
shows that the algorithm polynomially depends on the maximum sequence length
k, the number p of operations involved in the protocol and the average number φ

of operations that follow a given operation. However, we can see that the size of
the dataset do not impact the time complexity of the algorithm, but only that of
the noise identification algorithm presented in section 4. Experiments in Section 7
show that the algorithm is practically scalable with regard to k, p and φ in real
datasets.

6 User-Assisted Protocol Refinement

6.1 Guiding principles

There are two main reasons why users may require to refine the protocol discovered
after the previous phase: First, due to the presence of noise and the fact that a fre-
quency threshold often does not provide a clear-cut separation between noisy and
correct conversations, the discovered protocol DP may erroneously accept conver-
sations that should not be accepted. Or, vice versa, it may not accept some conver-
sations that it should, because they are infrequent and hence by mistake identified
as noisy. This happens because we do not have a priori knowledge of which con-
versations are noisy and hence we need to estimate a noise threshold. Second,
depending on the intended usage of the discovered protocol, the user may wish to
simplify the model. For example, there may be conversations that, although possi-
ble, are not interesting from a monitoring perspective and hence the user may wish
to remove the corresponding part of the FSM from the model.

We assume the second case could be handled by providing a graphical editor
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and operations to allow removing states and transitions (See Section 7.6). Han-
dling the first case is instead interesting and challenging for two reasons: (i) it is
a common situation that occurs whenever there is noise; and (ii) in large logs the
number of noisy conversations may be very high, even though noise is random and
rare (See Section 4). In practice, it is not uncommon to find thousands of incorrect
conversations in the logs and therefore it is not realistic to ask users to manually
go through all of them and check if they should be accepted or not by the protocol.
Hence, the problem here is how to best help and guide users through the interactive
analysis of conversations, which are estimated to be noisy. We call such conversa-
tions uncertain as we are not sure if they are really noisy or not. To overcome above
issues in discovered protocols, we provide interactive refinement mechanisms for
discovered protocols by featuring: (1) meta-data driven protocol refinement, and
(2) Distance-based interactive protocol refinement.

6.2 Meta-data driven protocol refinement

The goal of this step is to improve the precision of DP by disallowing all conver-
sations that are accepted by mistake. We annotate the discovered protocol model
with various meta-data including transition support (i.e. the percentage of conver-
sations in the log that traverse a transition), final state support (i.e. the percentage
of conversations that terminate in a state relative to the number of conversations
that traverse it) and protocol support (i.e. the percentage of conversations in the
log that are accepted by the protocol). We provide a graphical tool that enables
users to visually browse the discovered protocol and examine associated meta-data
to understand potential errors made during the discovery process and correct them.

Our tool facilitates the protocol browsing by identifying regions of DP that
requires more attention in the sense that we are less certain about their correct-
ness. This is performed by highlighting different levels of transition supports (final
state supports, respectively) using various arrow thickness so that weakly supported
transitions are represented with thinner lines (and brighter colors, respectively).
Stronger a line, we are more certain about it in the model, and darker a state, we
are more confident it is a final state.

To allow for refining DP we provide a set of operations to be applied to DP. In
particular, we define operations that allows for removing a state, removing a tran-
sition, and updating the final state property of states (setting to on/off). Updating
the final state property of a state based on discovered meta-data allows for handling
partial conversations in the log.

6.3 Distance-based interactive protocol refinement

The goal of this step is to help users in allowing correct (but infrequent) conver-
sations in DP that are excluded from it mainly due to setting the noise threshold.
In information retrieval terminology, the goal is to improve the recall. To tackle
this problem, we analyze uncertain conversations in the log based on measuring
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the distance between discovered protocol DP and an uncertain conversation. This
is because conversations are considered as strings of operation names, and DP is
as an accepter for all correct conversations. The possible types of differences be-
tween uncertain conversations and DP are: missing messages, messages swapping,
or additional messages. These correspond to various types of infrequent sequences
that may be correct. However, the first two types are also created due to noise (Sec-
tion 4). This is one of the reason that the refinement step should be user-driven to
distinguish between these cases.

For above reasons, the problem of distance between a conversation and DP is
akin to the problem of identifying edit distance between strings [40], in which dif-
ferences between strings are of type of missing, additional and swapped characters.
In a nutshell, the distance between an uncertain conversation and DP is computed
by counting the number of manipulation operations that have to be performed on
the conversation string to obtain a string that is accepted by DP. For example, a
conversation may be accepted by DP if we manipulate it by adding message mx

between m1 and m2. In this case we applied one operation so the distance is 1.
The reason why the original conversation is not accepted can be either because
the sequence m1,m2 is infrequent (but correct), or because the correct sequence
is instead m1,mx,m2, but mx was not captured due to noise. In the latter case, no
change is needed to DP, but in the first one DP should be amended to allow for the
generation of the m1,m2 sequence.

We also observe that typically the same type of correction (e.g., insertion of
mx) may be proposed by several infrequent conversations that are accepted by DP.
Indeed, the number of different corrections that can be needed is often small com-
pared to the number of conversations that would require corrections to be accepted.
Furthermore, the higher the number of conversations in which a given manipulation
operation is needed, the more likely that the corresponding (original, non manip-
ulated) sequence is relatively infrequent but in fact correct. The combination of
the above observations leads to the idea of managing the refinement process by (i)
guiding users through analyzing possible manipulations (small in number) instead
of the possible conversations (very high in number), and (ii) ranking manipulations
based on how often they occur.

In order to execute the above strategy, we need to: (i) identify the possible
operators that can transform conversations to be accepted by DP, and (ii) identify
the best paradigm to guide users in walking through the different manipulation
operations so to quickly identify which conversations are infrequent but correct
and which are instead noisy. These aspects are discussed below.

6.3.1 Edit distance and manipulation operators

The notion of edit distance has been studied in the past, mainly by Levenshtein,
and here we apply the Levenshtein edit distance [40], which is based on three
operations: insertion, substitution and deletion. Specifically, for conversations we
consider operations swap(c,m1,m2,s), which inverts the order of two messages
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m1 and m2 in a conversation string c, where m1 occurs with the conversation in
state s; insert(c,m1,m2,mx,s), which inserts message mx between m1 and m2 in
conversation c, again taking the occurrence of m1 in state s; and delete(c,mx,s),
which removes message mx in conversation c whenever it is in state s.

The typical approach for computing Levenshtein distance is through dynamic
programming. This leads to a quadratic time complexity on the length of the
conversation. In our context, we compute an approximate distance by leverag-
ing heuristics that yields a linear time. In particular, swap is tried first, insertion
next and the delete the last. This order corresponds to the most number of cor-
rections that are accepted. In fact, swap treats the case where a pair of operations
a and b could be invoked in any order w.r.t. each other, i.e. both ab and ba are
possible, however, one of the orders is more common in the log. Insert operation
handle the cases where it is believed the logging infrastructure missed logging an
operation b in a given sequence ac (so it should have been abc), while ac is also
correct. Conversely, the delete operation compensates for cases where it is possi-
ble to have conversation abc while in the model only ab is allowed. However, the
simplified algorithm does not always guarantee returning the minimum number of
manipulation operations for a given conversation. This is an acceptable approxi-
mation in our case as the intuitions behind the heuristics have been confirmed by
experiments.

Example 6.1. Consider the protocol DP discovered from the log of the Retailer
service in Figure 6(g), and conversation 〈Po,Inv,Pay,Ship〉. The distance of this
conversation with DP is 1, since if we insert a Cat operation in the beginning of
the conversation, it becomes accepted by DP. It is not currently supported by DP,
although, it is a valid conversation of Retailer under the designed protocol of
Retailer in Figure 3.

Cat
start s1 s2

PO
s3

s6

Inv

Ship

Inv

Cat

s7
Pay

s8

s4 s5
Pay Ship

Cat

PO

(a) Insert operation (Cat) in the sequence
〈Po,Inv,Pay,Ship〉

Cat
start s1 s2

PO
s3

s6

Inv

Ship

Inv

Cat

s7
Pay

s8

s4 s5
Pay Ship

Cat s9Ship Pay

PO

(b) Swap operation (Ship and Pay) operations

Figure 7: Refinement operations on DP
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6.3.2 Refinement operations corresponding to manipulation operations

To enable refining discovered protocol models based on manipulation operations
on conversations, we need to define a set of corresponding refinement operations on
the protocol. For example, corresponding to an insert operation in a conversation
(e.g., for conversation 〈Po,Inv,Pay,Ship〉), we should have an add transition oper-
ation that allows adding a transition from the state Start to the state s2 as in Fig-
ure 6(g) (See Figure 7(a)). If the user accepts this change, the transition becomes
part of the model (see Figure 9). Refining based on a delete operation translates in
adding a transition, too. For example, for conversation 〈Cat,Po,Inv,Pay,Cat,Ship〉,
deleting Cat make it accepted by DP. If such a conversation is considered correct,
then refining DP translates in adding a self transition in state s4. For a swap op-
eration, we need to add a state and two transitions. For instance, conversation
〈Cat,Po,Inv,Ship,Pay〉 suggests a swap between Ship and Pay from state s3 in
Figure 6(g). To refine the protocol based on such swap operation, we need to
create a new state, e.g., s9 and two transitions, one from state s3 to s9 for Ship
operation, and the other from state s9 to state s5 (see Figure 7(b)). These consid-
erations make it clear that we need two refinement primitives on the protocol, one
for adding states and the other for adding transitions.

6.3.3 Classification of Uncertain Conversations

Once we have computed the distance for each conversation, the manipulation oper-
ations on each, and also the refinement primitives corresponding to each manipula-
tion operations, we construct an edit distance hierarchy whose nodes represent the
application of one or more edit operators, regardless of the conversation (Figure 8).
For example, a node can be swap(.,m1,m2,s).
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Figure 8: The class hierarchy for classification of uncertain conversations

The cardinality of the node is represented by the number of conversations to
which, if we apply the operators associated to the node, the conversation is trans-
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Figure 9: Discovery and Refinement Editor

formed into one accepted by the protocol. Leaf nodes of the hierarchy are asso-
ciated to only one edit operation and, therefore, identify conversations of distance
1 from the protocol. At higher levels, nodes are associated to progressively more
operations. A parent node includes all the operations of its children nodes. The
rationale behind this hierarchy is that we can guide the user from the bottom to the
top of the hierarchy. The cardinality of each node gives user an intuition of what to
consider first: the operations that are required more often are more likely to affect
conversations that have been incorrectly classified as noisy and hence to be allowed
by the protocol model.

Finally, we provide a visual intractive approach that by selecting each node in
the hierarchy highlights the refinement operations on DP for the user (Figure 9).
The user can browse this hierarchy starting from the leaves, visually examine the
proposed refinement on the protocol, and state whether the refinement operations
on the protocol are correct (the sequence was not noisy) or if instead the sequence
was noisy. For example, refinement operations based on 〈Po,Inv,Pay,Ship〉 allows
inclusion of such conversation in DP, and it is associated to the highest cardinality
node (bottom part of Figure 9). On the other hand, 〈Cat,Po,Inv,Ship,Pay〉may not
be accepted as it is not supported by the designed protocol of Retailer, since it is
the result of a swapping order error. Typically, the large majority of the conversa-
tions incorrectly classified as noisy are accounted for by exploring high cardinality
nodes.
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7 Experiments and Validation

7.1 Quality of discovered protocols

To measure the performance of the algorithm, in experimental settings we assume
that the reference model P (the model actually supported by the service) is known.
We then use the classical recall and precision metrics [5]. Recall is the percentage
of the correct conversations (i.e. conversations accepted by the reference protocol
P) that are also accepted by DP. Precision is the number of correct conversations
accepted by DP divided by the number of all conversations in the log accepted
by DP. Then, we utilize precision, recall and the size of discovered protocols as
indicators of the discovered protocol, and protocol with higher precision and recall
and smaller size are desired.

However, in real-world setting P is unknown and we need to revisit definitions
of precision and recall. In such a context, we use the classical machine learning
approach of k-fold cross validation to split our datasets into learning and testing
sets [5]. Then, we define the precision to be the percentage of conversations in the
testing set that are accepted by DP. We do not use recall measure in this setting, as
it is not clear how to measure it.

7.2 Datasets

We perform experiments on synthetic and real-world datasets:

7.2.1 Synthetic dataset

We simulated the Retailer service (see Figure 3 for a simplified representation
of the Retailer service protocol) to collect the log of its interactions with clients.
For this dataset, although the scenario is synthetic, the log is collected using a real-
world commercial logging system for Web services (HP SOA Manager, available
at managementsoftware.hp.com/products/soa/). Table 1 shows the charac-
teristics of the dataset.

We have implemented Retailer service in Java utilizing Apache Axis as the
SOAP implementation and Apache Tomcat as the Web application server. Ten Java
service clients are deployed to concurrently interact with the Retailer service.
This dataset (consists of 5000 conversations) was imperfect by containing swapped
and missing messages, and also incomplete conversations caused by clients which
left conversations or crashed. We analyzed the log and identified conversations not
accepted by P, and computed the noise level as reported in Table 1. Noise level in
this includes both noisy and incomplete conversations.

7.2.2 Real-world dataset

The second dataset is a real world log of interactions of a multi-player on-line game
Web service called Robostrike (www.robostrike.com) with its clients. This game
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Retailer Robostrike
# of operations (n) 10 32
# of conversations in CL 5,000 25,804
Arity of each operation (φ) 2.5 4.22
Noise level 9.78 ?
Min. length conversation 1 1
Avg. length of conversations 9.45 43.31
Max. length conversation 35 1,921

Table 1: Characteristics of the datasets
service simultaneously manages ongoing conversations with players as clients. The
service has 32 operations, which clients invoke by sending synchronous or asyn-
chronous XML messages. In this dataset, conversations range from very short (1
message) to very long (1,921 messages), depending on the time that clients spend
on playing. The conversations captured in the log can be noisy (as discussed be-
fore) and incomplete (e.g., a client may disconnect at any time). Table 1 presents
the statistics of this dataset. We collected 25,804 conversations over a period of
two weeks. This dataset allows us to evaluate the capabilities of our approach in
discovering precisely unknown and complex protocols and its scalability. To apply
k-fold cross validation, we split 25000 conversations of Robostrike into 5 sets of
each 5000 conversations, and in each experiments used 20,000 conversations as
the learning set and the last set as the testing set to measure the quality of DP.

7.3 Robustness of noise identification approach

The precision and recall of the algorithm on the Retailer dataset is presented in
Figures 10(a) for zero to 30% of noise level. In fact, the actual log contains 9.78%
of noise, and we artificially introduced more random noise (of type of swapping or
removing one or more messages in a connversation) to go up to 30%. As it can be
seen, the level of the noise in the log does not sensibly affect the precision of DP
as it always stays above 90%. However, the recall never reaches 100% as some
correct but infrequent sequences are classified as noisy based on estimated θ. This
is one of the reasons for having a refinement step. We used k=4 as the sequence
length in these experiments. The experimental results also indicate that the ap-
proach is highly scalable in the number of conversations, depicted in Figure 10(f).
The running time increases almost linearly by the conversation size.

7.4 Handling incompleteness in the service log

The direct application of the algorithm (steps 1-4) on Robostrike dataset results
in the average precision of 88.7% and the size of 67.8 states (k = 4). Although
the precision is very good, DP is conceived to be complex for a protocol designer
to work with, due to the high number of states. Then we applied our heuristics
on transparent and pervasive operations on this dataset. The result shows that out
of 32 operations of the service, 9 are transparent in many states of DP and 3 are
pervasive. The DP discovered after applying our heuristics has 37 states. This DP
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also achieves average precision of 86.3, however it is simpler, with less number of
states.

7.5 Impact of the sequence length k on the performance

To evaluate the performance of the algorithm with different k values, we executed
the algorithm for values k = 3,4,5, and 8 on Robostrike dataset with different
conversations size ranging from 5000 to 20,000. In all of these experiments, we
also applied our approach for handling incompleteness. Figure 10(b) shows the
precision values of DP in these experiments. Figure 10(c) illustrates the number
of states for DPs. Figure 10(d) depicts the portion of conversations in the test-
ing dataset that are estimated to contain at least one noisy sequence of length k.
We define a performance trade-off as an indicator of a good k value as follows:
a k value is the best if using it results in a model with a high precision, small
size (denoted by SizeDP) and relatively a smaller portion of conversations are fil-
tered based on noise estimation (denoted by nk). Putting all together, we need to
maximize PrecisionDP/(SizeDP ∗nk). Figure 10(e) illustrates values of this perfor-
mance trade-off for different values of k (we excluded k = 3 from comparison as it
achieves a low precision).

This figure suggests that k = 4 best meets this performance trade-off. The result
is consistent with the intuition as well, as for k = 3 we underestimate noise (a small
portion of sequences is identified as noisy), and so we split less sequences. This
results in a small model that has a good recall but low precision, as the variability
of sequences can not be captured with this value of k. For higher k values (k = 5,8),
the precision gets better and better but at the expense of generality of the model.
In fact, for such k values, many of sequences are considered as noisy, so we build
the model out of small number of sequences. So, we end up with a small model
that does not have a good recall but achieves a high precision. In conclusion,
we recommend a value of k = 4 for protocol discovery in our approach, but if
any particular factor, e.g., the size or precision is more important for a discovery
task, then the user can use this behavior of the algorithm as a guideline to set the
appropriate k value.

7.6 Refinement of the Discovered Protocol

As discussed before, it is unlikely that an automated approach discovers a model
with hundred percent precision and recall. Achieving this goal requires help from
the user. In this section, we explain our experiments on improving the precision
and recall of discovered protocols via our refinement techniques, i.e. (i) meta-
data driven refinement, and (ii) classification of differences between discovered
protocols and uncertain conversations (see Section 6).
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7.6.1 Meta-Data Driven Refinement

The discovered protocol DP for Retailer includes a transition called ShippingInfo
from state Start to state ShippingInfo (see Figure 9). However, this transition
should not be included in DP as it is not a part of reference model P in Figure 3.
It introduced because the sequence 〈Cat,Ship,Inv,Pay〉 is mistakenly classified
as a correct sequence by the noise estimator, as the support of this sequence, in
which Inv and Ship messages are disordered, is 0.025 (see Figure 5(a)). This
value is above the estimated noise threshold, i.e. 0.018, for sequences of length
4 in this dataset. Computing the metadata for this transition in DP, it support is
supp = 0.0025 (because some conversations that contain this sequence also con-
tain other incorrect sequences so that they are not accepted by the model). This
support is below the noise threshold. We identify this transition as “weak” and
display it with dashed line in our tool.

7.6.2 Distance-based Protocol Refinement

The result of analyzing uncertain conversations for Retailer dataset shows that
the edit distance hierarchy has 16 first level classes (leaves) and a total of 25 classes.
Classes at each level are ranked based on the number of conversations that will be
accepted by DP by applying the proposed changes. Selecting the highest cardi-
nality class in the leaves suggests adding transition SubmitPO from state Start
to state SubmitPO in the protocol. This is a desired suggestion (see Figure 3),
however, it has been excluded from DP during discovery due to low support of
relevant sequences. By inspecting the first 5 classes with the highest cardinalities
in the hierarchy, 83% (5 out of 6) of the transitions that were missing in DP of
Retailer were examined for inclusion. This number is very small compared to
421 conversations of Retailer that would have been examined without using the
distance hierarchy. For the Robostrike dataset (k = 4) there were 1947 uncertain
conversations. The class hierarchy for this conversations consists of 55 classes in 7
levels. The first level (leaves) has 29 classes. The 5 highest cardinality classes con-
tain 262, 237, 152, 130, and 126 conversations. Our refinement approach reduces
the task of inspecting 1947 conversations manually to inspecting high cardinality
classes at 7 levels, which is small relative to the number of uncertain conversations.

8 Related Work

The general problem of inferring a model from data samples has been studied in
different contexts including grammar inference (e.g., [15, 33]), frequent pattern
mining from database (e.g., [18]), schema discovery (e.g., [9, 19]) and process
discovery from the software/workflow logs (e.g., [3, 6, 13, 25, 38, 42]). We study
related work with respect to handling imperfection in model discovery considering
the three stages of protocol discovery: noise identification and handling, model
discovery, and model refinement.
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8.1 Noise Identification and Handling

In the area of model discovery, the existence of noise in data is recognized in
process discovery research [3,12,29,36,38]. Most of process discovery approaches
use a frequency threshold to filter noise in a pre-processing step [3,12,36,38]. This
is performed by manually setting a frequency threshold. In particular, the approach
of Cook et. al. [12] assumes manual provision of a cut-off threshold. Agrawal
et. al. [3] compute the noise threshold based on assumption that error rate of the
logging infrastructure is given. Wil van der Aalst et al. in [38] assume a noise
factor with the default value of 0.05. In [36] the need for automatically learning it
in process logs is acknowledged.

In this paper, we have presented an approach to automatically estimate the
noise threshold from the input dataset. This is significant due to the following rea-
sons: (i) user generally has no idea of how to manually set a threshold for a given
dataset, (ii) the value of the threshold is not the same for all datasets, and for all
sequence lengths. For instance, the noise threshold for sequences of length 3 is dif-
ferent (bigger) than sequences of length 4, as frequency distribution of sequences
varies with k. This value also depends on the number of conversations in the input
dataset. Finally, we have experienced that setting a same fixed threshold value for
various datasets, sequence length and algorithm parameters results in discovering
models which either include noisy, or exclude many correct conversations.

The approach presented in Laura Maruster et. al. [29] uses machine learning
based approach to learn a set of robust rules from potentially noisy dataset. Each
rule specifies how to identify the relationship (e.g., sequential, parallel, exclusion,
etc) of a pair of activities in a workflow log by inferring the values of a set of
frequency-based parameters. The learner is trained with a set of labelled activity
pairs and corresponding frequency statistics from a noisy log. These rules are then
used to predict the relationship of activities in an unseen dataset. The following
characteristics of this approach makes it less suitable for applying on service logs
compared to our automated approach for estimating noise threshold:

• The discovered rules specify thresholds for the values of some frequency-
based parameters learned from the training dataset. To be effective, rules
have to be learned from a learning set very similar to the testing set (e.g., has
the same distribution and generated from the same logging infrastructure)
[29]. However, our approach directly analyzes the frequency distribution of
the input dataset to discover the noise threshold.

• Preparing training samples is hard in real-world scenarios. This requires
analysis of data from a similar/same logging infrastructure to understand
which sequences are noisy, and what kinds of mistakes the logging infras-
tructure makes.
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8.2 Model Discovery Techniques

The problem of protocol discovery is similar to that of inferring grammar inference
form language samples [15,33]. We focus on regular grammars as their language is
represented using deterministic finite state machine machines. There are two main
classes of approaches for inferring regular grammars: generalization-based, and
specialization-based. In the generalization-based approach the algorithm builds the
most precise representation of the target FSM (e.g., prefix tree), which has one path
for each distinct input sequence, and then generalize it using merge operations [33,
37,39]. In specialization-based approach, an over-generalized simple model is built
first and then its precision enhanced through node splitting. This increases the size
of the model [12, 26, 33].

Software process models are much closer in terms of size to the most general-
ized representation of the model than the size of the most precise representation of
the target model. This has been confirmed by experiments that Herbst et. al. [26]
performed by applying both generalization and specialization based approaches
on the log of sequential workflow models. They conclude that the number of state-
merging operations that are required to perform to get from the prefix tree to the tar-
get model is much higher compared to the number of required splitting operations
from the most generalized model to the target model. In addition, generalization-
based approaches are best in discovering loop-free (acyclic) automata models [39].
However, it is important for the algorithm of protocol discovery to be able to dis-
cover models with loops. The initial model in specialization-based approaches by
construction covers all loops that are found in conversations. For above reason,
we have decided to take a specialization-based approach in the protocol discovery.
One may legitimately argue that this approach does not allow for incremental learn-
ing from additional new samples. It is possible to employ a generalization-based
approach to enable incremental learning, after discovering a model from instances
in logs using a specialization-based approach.

Cook et. al. [11, 12] also propose a specialization-based approach for discov-
ering sequential software process models represented as non-deterministic FSMs.
We are inspired by this approach for building the initial discovered model. How-
ever, for specialization, Cook et al. approach recommends splitting only the node
next to the last in an incorrect sequence. This is not applicable to deterministic
FSM, discovered in the context of protocol discovery, as using it leads to non-
deterministic FSM, in which the incorrect sequence is not removed, as discussed
in Section 5. We proposed a splitting algorithm that recommends splitting all mid-
dle nodes of an incorrect sequence and resolves this issue.

Herbst et. al. [26] also present a specialization-based approach for discovering
sequential model of process logs represented using HMM (Hidden Markov Model).
In this approach all states with more than one incoming are considered as candi-
dates for splitting. Candidate states are examined for splitting into two states with
all possible disjoint set of inputs to observe if any of such models improves the log-
likelihood of the model with a value above a user-specified threshold. Therefore,
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the number of potential examinations for each state is exponential to the number of
incoming transitions of that state. However, we use an algorithmic approach which
splits nodes in sequences with a support lower than the noise threshold. The com-
plexity of our splitting method is polynomial in the order of number of sequences
of length k generated from the graph G (discussed in Section 5). On the other hand,
determining a right value for the threshold of log-likelihood is the job of the user.

In software engineering, researchers analyze the traces of software executions
to discover execution models of software that is mainly used for debugging [6,42].
Authors in [6] use existing probabilistic automata learners to discover data and
control flow specification of APIs or ADTs inside a program.

Discovering XML schemas and DTDs from sample XML files (e.g., [9,10,19])
is also related to the problem of model disocvery. The focus of this problem is
rather different than protocol discovery. DTD discovery approaches are infer a
set of regular expressions from XMLs that represent XML DTDs [9, 19]. Schema
discovery is usually mapped to different classes of grammars, e.g., context-free
grammars [10] or special subclasses of regular automaton [9].

Another related area is discovering concurrent process models form workflow
logs [3, 11, 13, 22, 23, 25, 36, 38]. ProM [35] is a workflow discovery prototype
tool based on some of above approaches [38]. Although these approaches allow
for discovering process models with complex constructs, such as parallelism and
synchronization points, they are not appropriate for protocol discovery as gener-
ally they make the assumption that each activity appears only once in the target
model [38]. However, it is quite common for the same activity to appear in differ-
ent part of the model, e.g., operation Ship in Retailer example. The only work
in this area that relaxes this assumption is the work of Herbst et. al. [25], which
presents a specialization based approach. The splitting operations introduced in
this approach extends the previous work of authors for discovering sequential pro-
cess models [26]. Note that our approach also takes a specialization approach.
In addition, to the best of our knowledge, no approach in model discovery con-
sider handling log incompleteness. Our approach exploits statistical properties of
messages in the log to predict some missing service conversations to allow for
generalization of the discovered models and so to compensate for log incompletes.
The work of Dustdar et. al. [16] uses existing process discovery techniques [38] to
discover the composition logic of a Web service.

It should be noted that software model discovery has been also investigated
through static analysis of the code (e.g., [17,41]). This approach is complementary
to ours. However, the discovered model in this approach does not enjoy from the
benefits of dynamic analysis in capturing the real model of service interactions, but
the model prescribed by implementation.

8.3 Refinement of Discovered Models

It is unlikely for any automated approach to discover the model that is precise,
and simple enough as desired by human. Another contribution of this paper is to
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provide an interactive approaches (meta-data driven model pruning, and distance-
based model extension) to refine the discovered protocol models to cater for inac-
curacies that may have been introduced during the pre-processing or the protocol
discovery visa user interaction as presented in Section 7.6. Considering the related
work, our contribution is original in the sense that, to the best of our knowledge,
no support is provided for refinement of discovered models to compensate for log
imperfection. Existing approaches are limited to simple editors for model visual-
ization e.g., an editor for manual manipulation of discovered models in [12]. In the
area of software engineering, the problem of debugging software specifications is
studied in [7]. In this approach, after discovering software specifications from soft-
ware execution traces [6], a model checking tool is applied on the source code of
the software to generate all the execution traces of the software that violate the dis-
covered specification. In the context of Web services, if the source code of service
is available, this approach could be complementary to our approach, as it allows
to obtain a complete log (by generating all possible conversations of service), and
also to obtain additional correct traces that could be used to refine the discovered
protocol model.

9 Conclusion and Future Work

The approach presented in this paper addresses the problem of discovering protocol
models from real-world service conversation logs, which are often imperfect. We
make a number of unique contributions. We provided a characterization the prob-
lem of protocol discovery in real-world setting and captured different conceptual
components of a protocol discovery solution in a framework. Given the fact that
conversation logs are imperfect (contains incorrect and incomplete data), we pro-
posed approaches to address this issue. In particular, we presented a quantitative
approach and an algorithm for estimating a noise threshold, which is used to filter
noisy conversations from the log. We presented a protocol discovery algorithm
that also handle log incompleteness. We proposed an interactive protocol refine-
ment technique that provides support for analysis of uncertain conversations and
correcting discovered protocols. We developed a prototype system that implements
the protocol discovery and refinement techniques proposed in this paper. This pro-
totype constitutes the initial testbed model discovery solution for SOA Manager,
the Web services monitoring tool provided by HP. We validated the proposed tech-
niques using both synthetic and real service logs.

We observe that always mapping between operations in the log and transitions
in the model is not 1-to-1. We are currently extending the proposed discovery
techniques to derive transition conditions from logs (i.e., capture message body
information and detect data conditions in model transitions) to identify the correct
mapping of operations to transition in the log, i.e., the same message with different
content may lead to different transitions in the model. We also plan to extend the
approach to cases where the requester-provider interaction spans across multiple
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services as this would be quite useful for companies to understand their interaction
patterns, going beyond the point-to-point interaction between two specific services.
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