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Abstract

Numerous dynamic power management techniques have been proposed
which utilize the knowledge of processor power/energy consumption at run-
time. So far, no efficient method to provide run-time power/energy data has
been presented. Current measurement systems draw too much power to be
used in small embedded designs and existing performance counters can not
provide sufficient information for run-time optimization. This paper presents
a novel methodology to solve the problem of run-time power optimization
by designing a processor that estimates its own power/energy consumption.
Estimation is performed by the addition of small counters that tally events
which consume power. This methodology has been applied to an existing
processor resulting in an average power error of 2% and energy estimation
error of 1.5%. The system adds little impact to the design, with only a 4.9%
increase in chip area and a 3% increase in average power consumption. A
case study of an application that utilizes the processor showcases the benefits
the methodology enables in dynamic power optimization.
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1 Introduction

Power and energy consumption are becoming the most dominant bottlenecks con-
straining today’s embedded systems. Reducing energy consumption, benefits the
system by performing longer on limited battery supplies, reducing product weight
by eliminating the need for heat sinks, and increasing reliability by dissipating less
energy and running cooler. Batteries have a very limited amount of energy they
can supply, and when power peaks over certain levels, the capacity of the battery
drops more rapidly than usual[1]. Recently, many methods have been designed to
manage power at all levels of design. These methods can be broadly split into static
and dynamic methods.

Static power management involves predicting, simulating or profiling appli-
cations to record their performance and optimize power/ performance trade-offs
to cater for the data set. All decisions are made before run-time, so worst case
conditions are typically used to guarantee that constraints are met.

Dynamic power management for embedded systems allows tuning of hard-
ware/software parameters to perform trade-offs between power consumption and
performance of applications during execution. Dynamic techniques can make use
of operational parameters of the system at run-time and make decisions that alter
the future operation of the system.

However, dynamic power management is stymied by the lack of methods to
efficiently obtain run-time measurements of power or energy consumption. Sev-
eral techniques for dynamic power management have been proposed that require
knowledge of how much energy has actually been consumed by the device to make
run-time decisions[2, 3, 4]. Providing these values in a stand-alone system is dif-
ficult as measurement systems for power and energy usage draw too much power
themselves, making potential savings useless.

Data dependent applications, e.g. multimedia, have no concept of the type of
data they will be operating on until the data arrives at run-time. The type of data
greatly affects the execution paths causing vastly different power and energy con-
sumption. It is impossible to design static power algorithms to manage this class
of applications due to this unpredictable behavior. Due to data dependence, dy-
namic power optimization methods are required to analyze recent operation and
make decisions to manage future operation of the system. Other examples of data
dependence include RF systems, where transmit and receive power changes for
differing situations; and packet based unreliable communication systems, where
selected packets can be dropped if power consumption becomes critical.
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Figure 1:JPEG Power Comparison

Motivation

The motivation for this work stems from two disparate, yet synergistic observa-
tions. The first observation is that there is significant correlation between the func-
tion a processor is performing and its power consumption. The second is that many
applications operate quite differently depending on their data input.

The first observation leads to event based macro modeling[5], which allows us
to count events in the system that contribute power to gain an adequate represen-
tation of power consumption. Over time, we only need to look at control signals
to find these events; due to the randomness of data, the data signals tend to only
provide random noise in the power trace. When combined with regression based
modeling techniques[6], we can generate an accurate model to estimate power con-
sumption of a device from its control signals.

The claims of the second observation are demonstrated by Figure1. This shows
the power waveform for two differing images encoded by a JPEG application. The
execution time and average power for the two images differ, and energy use varies
by 20%.

If the data dependent algorithms of the second observation could gain knowl-
edge of their run-time power consumption, they could make trade-offs to optimize
quality of service under power constraints. The first observation provides that
knowledge via the addition of on-chip estimation of power using macro model-
ing. This estimation technique opens the door to a new breed of enhanced dynamic
power management techniques for stand-alone systems with power constraints.

This work, for the first time, presents a methodology to modify a processor
so that it can estimate its own power consumption at run-time by utilizing small
counters attached to the control path of the design. We call this methodology
CLIPPER, or Counter-based Low Impact Processor Power Estimation at Run-time.
The counters have little impact upon the power consumption and area of the sys-
tem. CLIPPER is a generic methodology which can be applied to a wide range of
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processors, enabling and enhancing the use of many dynamic power optimization
techniques. Application adaptation techniques greatly benefit from knowledge of
energy consumption to handle run-time energy constraints (see Section6). Ad-
ditionally, hardware techniques such as Dynamic Voltage Scaling (DVS) can use
power data to perform time/power trade-offs and manage heat consumption, al-
though these DVS techniques are outside the scope of this paper.

Limitations of Performance Counters

Many modern high performance processors already have counters included in the
processor to count system events for statistics related purposes[7, 8]. These coun-
ters often overlap with the events needed to model the power effectively at run-
time. Although there are many events that can be detected and counted by these
systems, there is a limitation to the number of simultaneous events that can be
counted in a single execution[7]. Run-time power calculation is performed in mul-
tiple execution passes with different counters being used each time. Hence these
processor typescannotbe used to provide the run-time feedback of power con-
sumption which motivates this paper. Additionally, performance counters are only
included on high performance processors, so they may not be suitable for smaller
embedded systems. The methodology described in this paper is applicable to any
type or size of processor, and attempts to minimize the additional hardware re-
quired while allowing run-time feedback to the application so power optimization
decisions can be made.

Organization

The rest of the paper is organized as follows. We review others’ works related
to this topic in Section2. Section3 discusses the CLIPPER methodology while
Section4 demonstrates an application of CLIPPER to a processor based on the
SimpleScalar architecture. Results of experiments performed on this processor are
given in Section5. A case study of an application which CLIPPER enables is
provided in Section6, then Section7 draws conclusions.

2 Related Work

Reduction of power/energy consumption of embedded systems has been a major
field of research for the past few decades[9], covering both software and hardware
approaches. Some of the proposed hardware techniques include Dynamic Voltage
Scaling[9, 10] and Adaptive Body Biasing[11, 12, 13]. Proposed software methods
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include Power-Aware Task Scheduling[14, 15], Power Macro Modeling[16] and
Application Adaptation[2].

Powerscope[17] is a system designed to measure run-time power consumption
and is used as a tool for power-aware computing. It was designed to be used with
the tool Odyssey[2] to allow run-time application adaptation trade-offs to manage
power consumption of a run-time system. However, this measurement procedure
is power hungry and is not feasible for stand-alone embedded systems.

Many power estimation techniques have been proposed at all levels of design[16,
18, 19]. Macro modeling has emerged as one of the recurring themes of these
works, as it provides simplified models for each of the devices in the system to
estimate their power consumption. This is typically applied at the RTL, but may
also be applied at other levels of design. Macro modeling can also be applied
through instruction level analysis techniques[20, 21]. These techniques use soft-
ware simulators to assign power levels to each type of instruction executed in the
system. Bellosa showed in [5] that event based power macro modeling is an effec-
tive method for producing power models for various components of processors.

Wattch[22] is a tool that macro models the SimpleScalar simulator[23]. This
system calculates power for a theoretical implementation of the SimpleScalar pro-
cessor using power models of components from typical superscalar processors.
The tool is useful for analyzing power and can be used to test dynamic power
management models, however it is only a simulation tool and has no underlying
hardware model to provide a true self estimation system.

Contreras and Martonosi, in [24], use existing Hardware Performance Counters
(HPCs) in the Intel PXA255 processor to count five events in the system to calcu-
late average power consumption with an error of 4%. However, the authors point
out that the processor can only count two event types during any single execution,
so multiple passes are needed to achieve the stated accuracy.

In [25], Haid et al. presents JouleDoc (an audio processing system), the only
previous attempt we can find to estimate and feedback power/energy usage of a
stand-alone embedded system at run-time. JouleDoc is a co-processor which uti-
lizes macro modeling to estimate power of its single application. JouleDoc uses
eight counters to estimate energy consumption with an error of 5%. The JouleDoc
co-processor adds approximately 12,000 gates to the area of the system.

In contrast to [24] which requires existing performance counters to estimate
power, CLIPPER shows how and where to insert counters intoany processor sys-
tem to estimate power accurately with minimal impact. In addition, our system
allows run-time feedback of power/energy consumption rather than needing to ex-
ecute the algorithm multiple times. In comparison to [25], our method allows for
general systems to be characterized, as no method to apply the JouleDoc solution
to systems apart from the selected application specific system is provided. Despite
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its generality, CLIPPER also exhibits smaller impact upon the system due to lack
of a co-processor and the use of smaller fixed increment counters.

Thus, thecontributions of our paper are as follows:

• For the first time, we present a methodology to add dedicated fixed increment
counters to a processor system so that it can estimate its own power/energy
consumption at run-time.

• A method is proposed to show how and where counters should be placed to
provide desired accuracy with minimal impact.

• We demonstrate via a benchmark application how feedback provided by run-
time power estimation can be used to dynamically optimize performance
under energy constraints.

3 Methodology

The CLIPPER methodology makes use of the techniques ofsystem decomposition
theory[26] and regression analysis[27]. This allows us to decompose the system
into components that are analyzed separately to determine how their power con-
sumption is related to events that occur in the component. The embedded system
can hence be modeled by counting the events that occur and calculating the power.
The mechanisms to find these events, compute the relationship of the events to
power and provide run-time feedback of the power consumption to applications at
run-time is detailed in this section.

3.1 Theory

System decomposition theoryoriginated from the ontological model of an infor-
mation system decomposition. The following basic definitions and theorems are
obtained from [26], though a far more detailed description is given in the same
paper.

• A system,σ, comprises a set of events.

• An event,c, is a boolean value representing the present state of one or more
control signals.

• An event space,S, is a multi-dimensional hypercube, where each dimension
corresponds to an event and each point is a state of the system
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• A function,f , over a parameter space,S, is a function that corresponds to a
power model of the component.

• A systemσ́ is a subsystem ofσ, andσ is a supersystem of́σ if and only if
the composition of́σ is a subset of the composition ofσ.

• A decomposition of a systemσ is a set of subsystems D(σ) = {σi}i∈I , such
that each event in the system is included in at least one of the subsystems.

Let D(σ) = {σi}i∈I be a decompositionσ. The event space S(D) of the decompo-
sition is:

S(D) ≡ S(D(σ)) = ⊗i∈IS(σi)

Let ci be an event in an ordered and finite setSi. C is ann tuple of events,
C = {c1, c2, ..., cn}. Let C1 be anx tuple of events{c1, c2, ..., cx} andC2 be an
n− x tuple of events{cx+1, cx+2, ..., cn} such thatn tupleC can be expressed as
{C1, C2}. In addition, a function,f(C1, C2), is independent ofC2 if f(C1, C2) =
f(C1) which can be completely represented by events inC1.

There are three requirements to ensure a valid system decomposition: i) the
system must have a well-defined structure; ii) the system must only be represented
by a known set of the events; iii) a change in an event, that belongs to a subsystem,
must result in a significant change on the function of the subsystem. The reasons
that system decomposition theory is applicable to modeling power of embedded
systems : i) a system can be split into components that contribute power (e.g.
dividers, caches, ALUs); and, ii) we can determine events in components that affect
operation of the component or other components. These events typically represent
the state of operation of the component (e.g. a divider in use, a cache miss, a cache
hit etc.) and the more important events can be used to calculate power consumption
of the system.

Regression analysisis an analysis method that expresses a model as a function
of parameters. Each of the events in the system is modeled as consuming a par-
ticular energy amount. For example, a model of a system, M(σ), is expressed as a
linear function ofe1, e2, ...,en, where eachei is a detected event of the system and
can be represented as follows:

M(σ) = m0 + m1e1 + m2e2 + ... + mnen

wherem1, ... ,mn are coefficients of the eventse1, ... ,en andm0 is a base value.
The function can take other forms of expression, such as quadratic or polynomial
etc. The coefficients of the parameters, and the relationship of the model (i.e.
linear, quadratic, polynomial etc) can be determined (if such a relationship exists)
by commercial tools, when a sample dataset and parameters are given.
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Figure 2:CLIPPER Methodology

3.2 CLIPPER

The CLIPPER methodology is outlined in further detail in Figure2. The input is a
synthesizable RTL description of a processor. Step I of CLIPPER synthesizes the
processor to produce a gate-level model.

Step II simulates the gate level model of the processor to record its cycle-by-
cycle switching activity. An application that tests many operating conditions of
the processor is used when simulating to determine all possible power conditions.
This application includes all of the instruction set, memory operations, I/O type
instructions, different types of loops etc. and also makes good use of different
states of the cache or caches utilized by the system.

In Step III, the switching activity is used by a power analysis tool such as
Synopsys Primepower[28] to determine the power consumption of the processor.
This power calculation provides a waveform for power consumption which is used
to analyze the processor to determine which events in the system are responsible
for most of the power consumption so a macro model can be made.

Event Analysis

Step IV of the CLIPPER methodology, expanded in Figure3, discovers events used
to create a macro model of the system. We first utilize the system decomposition
theory to split the processor into it’s modules for separate analysis. The power
of each of the separate components can be analyzed to determine the events that
contribute to its power. As the power of the system will be the sum of the power
of the components, only those components that demonstrate large variation in their
power consumption during run-time are required to be analyzed. Those models
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Figure 3:Event Analysis Flow

with minor variation can effectively be modeled with a constant value for power
consumption. Module selection is performed by ranking all modules in the design
by their power variation (max. power - min. power) and selecting the modules with
the highest variation.

Changes in the power consumption of a system are often detectable by the
control signals of the design. Therefore, the values or transitions of one or more
control signals can be tested to detect these changes. The combination of these
control signals is called an event, with each control signal being a condition for
that event to occur.

Algorithm 1 is used to find events within modules. This algorithm creates a
set of events,events = {e1, ..., en}, for each module to characterize the system.
An eventei is represented as a set of control signals{c1, ..., ck} which form the
conditions of the event. The algorithm first discovers events and then simplifies
them to reduce complexity.

Step 1 of the algorithm analyzes each power change in the system and creates
events to attribute to the change. Control signals that change at the time of the
change in power are correlated with power. Correlation is performed by looking at
the power waveform whenever the control signal has the same value or transition of
value. If power often has a similar change or similar level as it does at the current
time, it is likely that the control signal contributes to the change and can be added
to the list of control signals defining an event.

Step 2 attempts to simplify many of the events by reducing the number of
controlling signals. This is due to groups of signals that switch simultaneously,
e.g. if one signal is the logical NOT of another, or the logical AND of two others.
If there exists a signal that switches at least whenever a second signal switches, the
second signal is superfluous and is removed from the event.

Step 3 removes events that are duplicated due to the same changes in the system
occurring. Events are then output to be added to the system.

Events selected by the algorithm are converted to logic circuits for detection.
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Algorithm 1 Find Events Causing Power Consumption
for all m in selected modulesdo

// Step 1: Find events for each change in power
Order power changes of modulem into P1...Pn

WhereP1 is largest andPn is smallest viable size
Let events = {e1, ..., en} with all ei empty
for all Pi in P1...Pn do

Let c be a set containing all control signals that switch near time ofPi

for all cj in c do
// Test if the control signals often contribute power
if cj correlates with power waveformthen

Add cj to ei

// Step 2: Remove superfluous control signals from events
for all ei in events do

for all cj , ck in ei do
if cj occurs wheneverck occurs in the simulation tracethen

Removeck from ei

// Step 3: Remove duplicate events
for all ei, ej in events do

if ei contains same signals asej then
Deleteej

// Output each event that remains
for all e in eventsdo

print Control signals ofe

Each event is formed by taking the AND of its conditions. Events that occur due
to transitions of signals also require additional flip-flops to detect the change.

After event selection, a linear regression is performed to reduce the number of
events in the system. Any events found to contribute little to the power in a regres-
sion are removed from the system. This helps to counter some of the redundancy
of the provided algorithm.

Power contributions of external devices are also modeled. These devices in-
clude off-board memory, additional analog circuitry or user interfaces. Off-chip
peripheral components are analyzed using the above method to provide additional
events into the power estimation system. If power variance is small compared to
average power of the system, the component is modeled as maintaining a constant
average value for power consumption.

3.2.1 Counters

Counters are added to the design to tally occurrences of events. These counters are
fixed increment counters to reduce their impact upon the area and power consump-
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Figure 4:Counter Setup Example

tion of the system. Specific trigger events increment the counters. Additionally,
a counter is automatically reset by hardware whenever the counter is read, so that
power consumption will be valid between accesses of the counters.

Counters are interfaced to the processor so that they do not severely impact
upon power consumption when read. Counters are interfaced via memory mapped
I/O in a reserved memory space avoiding the data cache. Figure4 depicts this
method. An address decoding multiplexor is used to interface the counters to the
data cache bus. Control signals are taken from various modules and include com-
binational logic to decode events.

For the system implementation in this paper we used equal sized 32-bit coun-
ters. This is the data bus width of the processor which allows the most amount
of time to pass between reads. Despite their size, impact of these counters is still
small, so we didn’t further reduce the width of the counters.

3.2.2 Macro Modeling

The counters are added to the original RTL processor model. The newly created
model, located at the top right of Figure2, is passed through the same synthesis,
simulation and power calculation flow as before to model the added impact of the
counters to the system (Steps V, VI and VII of Figure2).

Note that as the counters are small compared to the processor, the impact is not
large enough to change the modules or events that were chosen by the earlier steps.
The contributions of the events and idle power will increase due to the addition of
the counters, but not by a significant amount (see Section5).

Regression analysis is applied to the power calculations to find actual contri-
butions to power of the specific events in Step VIII of Figure2. Power is linearly
related to the events in the system. Each event is associated with a power calcula-
tion which represents the contribution to power consumption each time the event
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occurs. i.e. for every eventei, there is an average additional powerpi which is
caused by the event. In addition, a base powerp0 is provided by the regression
to represent static power consumption and average power consumption of non-
modeled components. These results are tabulated into an array of power values
that will be utilized by the software loop to calculate the estimated run-time energy
and power consumption.

3.2.3 Software

A software loop calculates total energy between counter readings by employing the
following equation:

Etot =
CC × pbase +

∑n
i=1 ei × pi

f

wheren is the number of events,f is the current clock frequency of the processor,
CC is the number of clock cycles from the last energy reading,pbase is the base
power used every cycle (due to static leakage power and average dynamic power
of unselected modules),ei is the counter value for eventi and pi is the power
contribution of that event.

Average power for the period between reading of the counters is found by:

Pave =
Etot × f

CC
= pbase +

n∑

i=1

ei × pi

CC

This calculation is performed at recurring locations in an algorithm’s task flow.
For example, after each frame of a video application or after each line of processing
in an image encoding application. This minimizes software impact.

Where the system has multiple states, such as if DVS were applied, a multi-
dimensional version of the power array (one row per state) can be used. Analysis
of this is outside of the scope of this paper.

4 Experimental Setup

We tested the CLIPPER methodology by applying it to a publicly available pro-
cessor described in [29]. This processor is defined in RTL VHDL and implements
all integer instructions of the SimpleScalar[23] PISA instruction set as an in-order,
six-stage pipeline processor. Synopsys Design Compiler[28] was used to synthe-
size the processor in Steps I and V of Figure2. Synthesis was performed with
the 180nm TOWER library available from Synopsys with a clock frequency of
125MHz.
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ModelSim[30] was used in Steps II and VI to perform gate level simulation of
the synthesized processor. The processor was connected to simulated memories
and an application was executed so that internal signal changes are stored in a
Value Change Dump (VCD) file. Periodic readings of power counters were also
taken during ModelSim simulation to allow us to determine estimation accuracy.

To perform Steps III and VII, the VCD produced by ModelSim was analyzed
by Synopsys Primepower[28] to model power. By analyzing the design and switch-
ing activity from the VCD, Primepower produces an accurate prediction of how
much power the synthesized chip would actually consume per clock cycle.

The module selection stage resulted in five components being chosen for power
consumption. The chosen modules were the divider, multiplier, register file, in-
struction cache and data cache. Event analysis found nine events in the system that
were used to model the selected modules. These events included cache memory
being read or written and the divider or multiplier being utilized. An additional
event was added to measure time.

The CLIPPER methodology allows the addition of events to model off-chip cir-
cuitry such as external memory. We have a DRAM power model derived from data
sheets that can be modeled exactly by adding two events to the design. However,
we have no other tools to more accurately estimate or measure power consumption
of external memory chips. Therefore, we chose to ignore memory power contri-
butions in our accuracy analysis as the actual model is equivalent to the estimation
model, providing no benefit to proving the validity of the approach. Incidentally,
the average power of the DRAMs is about equal to the average power of the pro-
cessor.

Control of most counters was determined by an existing control signal, while
other events required nominal logic gates or flip-flops to be added to test multiple
signals. The counters were interfaced by memory mapped I/O, bypassing data
cache as shown in Figure4.

The modified version of the processor’s HDL code with the added power coun-
ters will be made available to download athttp://www.cse.unsw.edu.au/∼esl.

5 Results

This section lists some of the tests that were performed to discover the impact upon
the experimental system and test the accuracy of the prediction mechanism.

Power contributions for each of the selected events were calculated using Step
VIII of the CLIPPER flow (see Figure2). The divider caused the greatest impact
upon power, doubling the power consumption of the chip for three cycles each time
it was used. The divider, multiplier and instruction cache each needed only one
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Table 1:Metrics With and Without Counters
Original Modified % Increase

Gate Area (NANDs) 127994 134238 4.9%
Total Power (mW ) 77.19 79.48 3.0%

/* energy_arr contains the energy contributions *
* of each of the counters. POW_NUM is the *
* number of counters including time count */

unsigned int energy_arr[POW_NUM] = {19,31,10,...};

int calc_energy(void) {
unsigned int i, energy = 0;
for (i = 0; i < POW_NUM; i++) {

/* Counters are mapped to the memory in int *
* sizes from address 0 to POW_NUM-1 */

energy += energy_arr[i] * ( *((int *)(i * 4)) );
}
return energy;

}

Figure 5:Sample Energy Calculation Loop

event to accurately model their power contribution. The register file contributed
to power when there was a register write or the registers selected for reading were
changed between instructions. The data cache provides the remaining four events
(miss, write-back, read hit and write hit).

Impact

Table 1 compares the area and power metrics of the original processor and the
processor with added power counters. The first column names the metric. The
second column gives values for the original processor, while the third gives the
values for the modified processor with additional counters. The final column shows
percentage increase of the metrics. Area values include interconnect area and were
calculated after synthesis of the processor with Synopsys Design Compiler and
were converted to the equivalent number of NAND gates. Total average power
was provided after simulation of some test applications in Synopsys Primepower.
The impact upon area of the processor is only 4.9% and average total power only
increases by 3%. Note that our ten counter design of 6,224 gates uses about half
the gates of JouleDoc’s eight counter, 12,000 gate system.
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The function shown in Figure5 was simulated in ModelSim to determine addi-
tional software impact. Note that this loop also accounts for energy used during its
own execution; as order is preserved, any energy not seen in the current iteration
will be seen in the next iteration. When applied to the SimpleScalar processor,
the compiled loop executes 95 instructions taking 232 clock cycles with pipeline
stalls and cache misses taken into account. Small applications require execution
of the loop at most every 100,000 cycles representing only 0.23% of the execution
time. Note that we do not wish to add hardware to the design to aid this calculation
(such as a dedicated multiplier) as the infrequency of execution does not justify the
persistent area and power costs of additional hardware.

Accuracy

Figure6shows power estimation results for cjpeg(6(a)), qsort(6(b)) and tiff2rgba(6(c))
from the MiBench testbench suite[31]. Each graph shows both measured and es-
timated values of power calculated by Synopsys Primepower and the processor
power counters respectively. Power was sampled at a period of 10,000 clock cy-
cles. The closeness of the waveforms in each graph demonstrates high accuracy.

Table2 summarizes the estimation results for several testbench applications.
The applications were cjpeg, qsort, tiff2bw and tiff2rgba from MiBench[31]; and
rawcaudio, rawdaudio, g721e and g721d from Mediabench[32]. Column 1 states
the name of the benchmark being executed while Column 2 lists the number of
clock cycles taken to execute the benchmark. Columns 3 and 4 show the accuracy
of power calculations as an average for all samples as well as the maximum per
sample error respectively (sample period is 10,000 cycles). Columns 5 and 6 show
the measured and estimated energy consumed over the run-time of the application.
The final column shows error in energy estimation, with the sign indicating whether
energy was over- or under-estimated. The table shows that the average absolute
error for power calculation is less than 2%. The maximum sample power error
is larger (e.g. 8% for rawcaudio), but this is only at a few points throughout each
trace. Energy estimation has a total error less than 1.5% over all applications.
These results show we are more accurate than JouleDoc which has an error of 5%,
despite our generic approach.

In Figure 7 we show how choosing the number of modules and events that
are selected affects the accuracy of the estimation procedure. We removed less
significant events from the event list and created new macro models with the re-
maining counters. Figures7(a), 7(b) and7(c) show accuracy graphs utilizing 2,
5 and 8 counters respectively for the qsort benchmark. This demonstrates how
adding more counters to the processor increases accuracy of the estimation. Note
that Figure7(c) bears resemblance to Figure6(b), showing that qsort could have
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Figure 6:Measured vs. Estimated Power

Table 2:Power and Energy Errors
Bench- Cycles Power Error Energy (mJ) Energy
mark (mils.) Avg Max MeasuredEstimated Error
g721e 2.9 0.77% 4.97% 1.566 1.577 0.74%
g721d 2.6 0.48% 5.05% 1.441 1.448 0.47%
cjpeg 4.2 1.27% 6.86% 2.559 2.564 0.21%
qsort 3.7 0.85% 4.80% 2.124 2.118 -0.24%

rawcaudio 3.2 1.45% 8.04% 1.988 1.961 -1.35%
rawdaudio 2.9 0.58% 2.30% 1.793 1.793 -0.03%

tiff2bw 3.1 0.89% 6.00% 1.924 1.925 0.03%
tiff2rgba 2.8 1.58% 6.24% 1.685 1.705 1.22%
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Figure 7:Results with Various Numbers of Counters

utilized fewer counters to achieve similar results, although this trend is not seen
across all benchmarks.

6 Case Study

To demonstrate how a CLIPPER processor can be used for run-time power opti-
mization, an application was modified to utilize the power estimation of the Sim-
pleScalar processor described above. The JPEG benchmark was converted into a
motion JPEG encoder. This application was then modified to make use of the pro-
cessor to optimize it’s quality under a given energy constraint. A stream of images
from the flower garden and table tennis sequences[33] were encoded with energy
calculated after each image. The modified application is able to encode images at
various quality levels, for which approximate ratios of energy consumption were
calculated. Twelve quality levels were created by choosing between DCT routines
and varying compression rate. An additional level (level 0) was created that drops
color information and encodes images in black and white to save computation time
and energy.

Algorithm 2 is a dynamic algorithm used to determine which quality level will
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be used for future images. It assumes that future images will be similar to the
current image when making decisions. The number of images that remain to be
encoded isN , R is the remaining energy to encode those images,L is the current
quality level with maximumMAX, andlevels is an array storing the relative en-
ergy consumption of each quality level. The values of this array were pre-computed
by executing the algorithm on a range of images at the various quality levels and
comparing the average energy consumption. Within an iteration of the main loop,
E represents the energy of the most recently encoded image andl is used to calcu-
late the quality level of the next image.

Algorithm 2 Application Decision Algorithm
N ← Number of images to encode
R ← Total available energy
L ← MAX
while N > 0 do

Encode image at levelL
E ← calc energy(); // Get energy of encoded image
N ← N − 1;
R ← R− E;
if E > R

N then
// Energy is too high, reduce level until it meets constraint
if L 6= 0 then

l ← L− 1; // Start form next level down
while l > 0 and E × levels[l]

levels[L] > R
N do

l ← l − 1;
else

// Energy is OK, increase level if it will stay under constraint
while l < MAX and E × levels[l+1]

levels[L] < R
N do

l ← l + 1;
L ← l; // Set level for further images

Figure8 shows the output of a sample execution of the motion JPEG algorithm
described above. Figure9 shows both the energy usage of each image in the stream
and the available energy per image for future images. Available energy per image
is calculated by dividing total energy remaining by the number of images left to
encode (R/N). The algorithm can encode images at quality levels from 0 to 12 with
lower levels being very lossy to demonstrate extreme conditions. The first image
is computed at maximum quality (level 12), and further images use Algorithm2 to
change the quality level. Figure9 demonstrates how the algorithm finds the correct
power level at which to encode images to maximize quality while attempting to
stay under the available energy consumption level. Also note the garden images
take more energy to encode than the table tennis images at equivalent levels (see
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Figure 8:Output of Sample Application with Image Quality Levels
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Figure 9:Energy Usage with Constraints

transitions from (f)-(g) and (n)-(o)). The algorithm automatically compensates for
these different image types, altering the level for future images when it detects the
change in energy. This case study demonstrates how CLIPPER enables new power
optimization techniques.

7 Conclusion

This paper presented CLIPPER, a novel methodology to modify a processor de-
sign so that it can estimate its own power and energy consumption. Small counters
added to the design allow event driven macro modeling to be economically per-
formed in parallel with application execution. The discussed methodology can
handle estimation of power consumption of external devices to the processor, and
supports hardware power/energy reduction techniques unlike other run-time solu-
tions. This is the first time a feasible, wide-ranging solution to the problem of
run-time power estimation for dynamic power management of stand-alone systems
has been proposed. Unlike performance counter methods, CLIPPER can be used
to provide run-time feedback of data to achieve power optimizations.

We have also demonstrated an example of how a CLIPPER processor can be
used with an application that dynamically modifies its QoS to meet energy con-
straints at run-time, a technique that is impossible without power estimation or
prior knowledge of the input data.

The modified SimpleScalar processor produced by the CLIPPER methodology
will be made available to download athttp://www.cse.unsw.edu.au/∼esl so that
further research can be performed.
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