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Abstract

Path length(i.e: the number of hops), the fundamental metric of multi-hop wireless network,

has a determinative effect on the performance of wireless network, such as throughput, end-

to-end delay and energy consumption. In this paper, we propose a stochastic process based

mathematical model to analyze the shortest path length. The model is based on the observation

that greedy forwarding in geographic routing can approximately find the shortest path in

reasonably dense network. We present formula for the probability mass function of path length,

given the distance between source and destination. In addition, we also propose a simple but

efficient formula to estimate the mean path length. Our analytical results are well justified by

a rich set of simulations, in which both random and realistic mobility scenarios have been

investigated.
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I. I NTRODUCTION

The length of routing path refers to the number of transmission hops from source to destination. In

multi-hop wireless network, the effect of path length on the performance has been explicitly discussed in

many previous well-known works [1] [2] [3] [4] [5] [6]. Overall, path length has a determinative effect

on the following performance metrics in wireless network:

• Energy Consumption: Energy saving is an important issue in some genres of wireless network, e.g.

sensor network and personal network. With increasing path length, more intermediate nodes are

involved in wireless transmitting, which inevitably consume more energy.

• Packet Collision: As nodes share a common wireless channel, packet collision is an inherent charac-

teristic of wireless network. When routing path is longer, the collision chance of a packet increases.

• End-to-end Delay: Each extra wireless transmission of data packet introduces some delay, i.e.

propagation delay, queuing delay and collision back off delay. Thus longer routing path have longer

end-to-end delay consequently.

• Throughput: In the wireless network, such as Mobile Ad-hoc Network (MANET), where topology

changes dynamically, longer routing path have higher path break probability. This results in higher

packet loss.

• Routing Overhead: As discussed in [7], higher path break probability also leads to higher routing

overhead, especially in reactive routing protocols, e.g. DSR [8], AODV [9].

Although path length issues have been studied in random graph theory, existing literature does not

sufficiently cover wireless network scenario. This is mainly because of differences between random

graphs and wireless network topologies. For example, the probability of edge occurrences in random

graph are independent, while in case of wireless network it depends on relative distances between the

nodes [10]. Several previous works [11] [12] have tried to analyze path length in wireless ad-hoc network.

However, they either make some unrealistic assumptions, e.g. square radio range, or they only give a

bound on path length. The sound analysis of path length in wireless ad-hoc network is still absent in the

literature.

This paper targets at analyzing the shortest path length given the distance of communication pair. By

leveraging the truth that greedy forwarding in geographic routing can almost find the shortest path in

reasonably dense network [1] [13], we propose a stochastic process based mathematical model to analyze

the shortest path length. The underlying principle of greedy forwarding involves selecting the next routing

hop from amongst a node’s neighbors, which is geographically closest to the destination. This localized
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forwarding simplifies the original shortest path length problem without compromising the accuracy in

reasonably dense network.

To justify this model, we conduct a comprehensive set of simulations covering scenarios with both

random and realistic mobility. The comparison results prove our model works very well for the random

mobility model, which can satisfy the assumptions of our model. Further, even for the realistic mobility

model extracted from real-word vehicle networks, we find our analytical results are still valid.

The main contributions of this work have three folds.

• 1) We propose a stochastic process based model to analyze the probability distribution of the shortest

path length, given Euclidean distanceL between source and destination in reasonably dense network

(i.e: The average number of neighbors is greater than 10).

• 2) We show that the average distance progress per hop converges whenL À R (R is radio range),

and we build the formula for the convergency valueλ, which only depends on average number of

immediate neighbors.

• 3) Based on the results of 2), we propose an simple formulaH(L) = L
λ·R to estimate the mean

shortest path length. We also show this estimation can improve the accuracy of widely used equation

L
R by up to 37%, depends on network density.

The rest of the paper is organized as follows. Section II provides an overview of our mathematical

model and elaborates the assumptions in our analysis. Section III derives the probability mass function of

path length and the mean value, given the distance between the source and destination. The complexity

of this computation is considerably high. Hence, in Section IV we provide an efficientO(1) estimation

of the path length. Section V presents extensive simulations to validate our theoretical results. We also

evaluate the relevance of our analytical results in realistic scenarios such as vehicular networks. Finally,

Section VI concludes the paper.

II. OVERVIEW OF METHODOLOGY

Given the complex nature of the analysis, we make the following simplifying assumptions in our

analysis:

• Two Dimensional Terrain: We assume that the terrain under consideration is two dimensional. Our

work can be easily extended to three dimensional topologies.

• Uniformly Distributed Node Layout: We assume that nodes are uniformly distributed in the target

area. However, this does not entail using a particular mobility model for modeling the node move-
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ment. Any mobility model that leads to a uniform distribution of the nodes is acceptable. Previous

analytical exercises in ad hoc networks [6], [14], have made similar simplifying assumptions.

• Complete Knowledge of Local Topology: We assume that nodes always have an up-to-date view of

their local topology, i.e. each node is aware of the locations of its immediate neighbors. The nodes

can employ a neighbor discovery protocol for this purpose. Consequently, each intermediate node

can always find the optimal next hop.

• No Boundary: In a typical ad hoc deployment, nodes located near the network boundary have fewer

neighbors that nodes located elsewhere. To avoid this distinction, we ignore the existence of the

boundary. Consequently, the probability distribution function for the number of neighbors at each

node is identical [15].

• Dense Deployment: It is well-known that if the ad-hoc network is reasonably dense, then the

forwarding path established by employing greedy forwarding between any source and destination

node is the same as the shortest-hop path between these two nodes [1], [13]. In our analysis,

we assume that the node density is sufficiently dense to allow us to use greedy forwarding for

determining the shortest path between nodes. Since greedy forwarding relies on localized decisions,

our analysis is greatly simplified as each node is not required to have knowledge of the entire

topology. A consequence of this assumption is that the occurrence of a local minima, i.e. a situation

where a node cannot find a suitable relay node that is closer to the destination than itself, is highly

unlikely.

• Existence of Nodes in the Shadow Region: In greedy forwarding, the next hop chosen by a node is

the one that is closest to the destination from amongst its one-hop neighbors. In other words, none

of the other neighbors are closer to the destination than the chosen next hop node. For example, as

shown in Fig. 1 the next hop node chosen by node X is node N. Consequently, there are no nodes

in the shaded area, referred to as theShadow Regionin Fig. 1. However, our earlier assumption of

uniformly distributed nodes requires that the neighbors of node N are equally likely to be placed

anywhere within N’s radio range including the shadow region. This implies that from the point

of view of node N, it may be possible for nodes to exist within the shadow region. However, as

discussed in Sec. III-C, the area of the shadow region is considerably smaller than the area within

a node’s radio. Further, as demonstrated in Sec. V, the impact of these contradictory assumptions

on the analytical results of our model are negligible.
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Fig. 1. Example of state transition (from statei to statej)

The above assumptions, some of which are somewhat unrealistic, are necessary in making the analysis

tractable. However, in our simulation study, we relax several of these assumptions (e.g: uniform distri-

bution of the nodes) to create more realistic scenarios and compare the resulting outcomes to those from

our analysis.

Assuming that the distance between the source and destination is known, our analysis seeks to develop

a model for analyzing the length of the shortest path between these nodes, where the path is measured in

terms of the number of hops. We use a discrete Markov chain to model the hop-by-hop progress along

the shortest path from the source to the destination, where the state is defined as the Euclidean distance

(measured in some consistent metric unit) between the current forwarding node and the destination.

Ideally, this distance should be modeled as a continuous random variable. However, to simplify our model,

we use discrete state space to approximately represent the continuous distance values. We elaborate on

our model using the example illustrated in Fig. 1, Assume that node X is the source and node D is the

destination. Since node X is at a distancei from the destination, the initial state for this path isi. The

next hop node chosen by node X using greedy forwarding is node N, which is at a distance ofj from

the destination. This results in a state transition fromi to j. To restrict the number of possible states,

we quantize the distances resulting in a state space of(0, ε, 2ε, ..., nε, ...), where the parameterε is the

interval of the state space (i.e. the quantization coefficient). The smaller the intervalε, the closer our

model approximates reality. However, a small interval increases the computation time required for the

evaluation. We discuss this tradeoff in our simulation study in Sec. V. Table II presents the notations

used in our analysis

III. A NALYSIS OF THE PROBABILITY DISTRIBUTION OF PATH LENGTH AND THEMEAN VALUE

Our analysis is composed of the following steps. The first step involves determining the state transition

probabilities for the Markov chain used to model the path. Based on the transition probabilities, we
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TABLE I

NOTATIONS USED IN OUR ANALYSIS

Symbol Denotation

N The total number of nodes in network

A The area of network

R The radio range

ε The interval of state space

m The average number of one hop neighbors

Nneighb The number of one hop neighbors

L The distance between the source and destination

H The shortest path length (measured as number of hops

H(L) The mean shortest path length given the distanceL

G(L) The average progress per hop given the distanceL

λ The value that the average progress per hop converges to

compute the probability distribution of the path length. Finally, the probability distribution function is

used to derive the mean value of the path length (measured in hops).

A. Evaluating the State Transition Probability

In the defined state space, statei denotes that the distance from current intermediate node to destination

is i units (meters). The transition from statei to j, implies that the next hop neighbor is at a distance

of j from the destination, as illustrated in Fig. 1. Intuitively, the transition probability depends on the

node density, since the more dense the network, the greater the chance that the the next hop will make

significant progress towards the destination. We first compute the probability distribution of the number of

neighbors. Then we derive the conditional transition probability, given the number of neighbors. Finally,by

applying the law of total probability we can get the final transition probability.

Theorem 1:The probability of a node havingm neighbors is

P (Nneigh = m) =
(N−1

m

)
(πR2

A )m(1− πR2

A )N−1−m

, 0 ≤ m ≤ N − 1

(1)

and the average number of neighbors per node is

m = E(Nneigh) = (N − 1)
πR2

A
(2)
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Proof: This can be formulated as a binomial probability distribution. Since the nodes are uniformly

distributed in the network, given any nodeX, the probability that any other node is within the radio

range of nodeX is given by,

p =
The area of radio coverage

The area of network
=

πR2

A
(3)

Sincem nodes are within the radio coverage ofX, the rest of the nodes, i.e., (N − 1−m), are outside

it’s radio range. Using the binomial probability distribution, we have,

P (Nneigh = m) =

(
N − 1

m

)
pm(1− p)N−1−m (4)

Combining Eq. (3) and Eq. (4), one can readily derive Eq. (1). Further, the expected value of a binomially

distributed variable is given by,

m = E(Nneigh) = (N − 1)p = (N − 1)
πR2

A
(5)

Theorem 2:Assume that the system is currently in statei, with nodeX being the current relay node,

with a radio range ofR, as depicted in Fig. 1. Given that nodeX hasm neighbors, the conditional

transition probability from statei to statej is given by,

Pi,j|m>0 = P (si → sj |Nneigh = m > 0) =




1 if i ≤ R and j = 0,

0 if i ≤ R and j > 0,

∑m
k=1

(m
k

)
(Ai,j+ε−Ai,j

πR2 )k(1− Ai,j+ε

πR2 )m−k

if i > R and i−R ≤ j < i,

∑m
k=1

(m
k

)
(Ai,j−Ai,j−ε

πR2 )k(1− Ai,j

πR2 )m−k

if i > R and i < j ≤ i + R,

0 if i > R and (i = j or j < i−R or j > i + R),

Pi,j|m=0 = P (si → sj |Nneigh = m = 0) =





1 if i=j ,

0 otherwise,

(6)
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where,

Ai,j = R2 arccos i2+R2−j2

2iR + j2 arccos i2+j2−R2

2ij

−
√

(R+i+j)(R+i−j)(R−i+j)(i+j−R)

2

(7)

Proof: To prove this theorem, we start with a simple case, where nodeX has no neighbors, i.e.

m = 0. Consequently, there is no next hop node implying no state transition. Hence,

Pi,j|m=0 = P (si → sj |Nneigh = m) =





1 if i = j,

0 otherwise.

(8)

When the number of neighbors is greater than zero, we sub-divide the problem into two parts, depending

on the relationship between the distancei and the radio rangeR. When i ≤ R, the destination node is

within the one-hop neighborhood of the current nodeX. Hence, as the next hop is the destination, the

statei must transition to state0. Consequently, we have,

Pi,j|m>0 = P (si → sj |Nneigh = m)

=





1 if i ≤ R and j = 0,

0 if i ≤ R and j > 0.

(9)

Now let us consider the situation wherei > R. Since the next hop node must be within the radio

range of nodeX, the probability that statei will transition to a statej, which lies between[i−R, i+R],

is zero. In addition, the probability that the state does not change is zero as well, since nodeX hasm

neighbors. Thus, we have,

Pi,j|m>0 = P (si → sj |Nneigh = m) = 0

,if i > R and (i = j or j < i−R or j > i + R)

(10)

Now, we discuss the more complicated and plausible case where,i + R ≤ j ≤ i−R. This can further

be broken down into the following two sub-cases: (i)i−R ≤ j < i and (ii) i < j ≤ i + R. For the sake

of brevity, we will only discuss the former case. The latter can be proved in a similar manner.

The probability of state transition fromi to j is the probability that at least one neighbor of nodeX

lies on the perimeter of the curve of radiusj centered at the destination (see Fig. 1) with the rest ofX ’s

neighbors located in the region to the left of this curve. Since we assume a discrete state space, withε

as the interval of the state space, we can approximate the curve as a ring of thicknessε, as illustrated in
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Fig. 2. Illustration used to prove Theorem 2

Fig. 2. LetRi,j represent the area of this curve that intersects with the radio range of nodeX (narrow

dark region in Fig. 2). LetAi,j represent the area of the shaded region in Fig. 2, which is the intersecting

region between the radio coverage of nodeX and a circle of radiusj centered at the destinationD. The

area of the ringRi,j can be computed as follows:

Ri,j = Ai,j+ε −Ai,j (11)

As shown in Fig. 2, the areaAi,j can be computed as,

Ai,j = 2(A _

CXE
−ACXD + A _

CDB
) (12)

, whereA _

CXE
is the area of the sectorCXE; ACXD is the area of triangleCXD and A _

CDB
is the

area of sectorCDB. By applying the law of cosines and Heron’s formula, we have,




A _

CXE
= R2

2
6 CXD = R2

2 arccos i2+R2−j2

2iR

A _

CDB
= R2

2
6 CDX = j2

2 arccos i2+j2−R2

2iR

ACXD =
√

(R+i+j)(R+i−j)(R−i+j)(i+j−R)

4

(13)

Combining Eq. (12) and Eq. (13), we have,

Ai,j = R2 arccos i2+R2−j2

2iR + j2 arccos i2+j2−R2

2ij

−
√

(R+i+j)(R+i−j)(R−i+j)(i+j−R)

2

(14)

Let Pj|i denote the conditional probability that a neighbor is at a distancej from the destination, given

that the current state isi. Similarly, letP(farther than j)|i denote the conditional probability that a neighbor

is at a distance greater thanj from the destination given that the current state isi. Since the nodes are
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uniformly distributed, these conditional probabilities can be computed as follows,

Pj|i ≈ P (a neighbor is present in the ringRi,j)

= the area of ringRi,j

the area of radio coverage=
Ri,j

πR2

= Ai,j+ε−Ai,j

πR2

(15)

P(farther than j)|i

≈ P (a neighbor is in the region to the left of ringRi,j)

= 1− Ai,j+ε

πR2

(16)

Now, the transition probability from statei to j is the probability that at least one neighbor of node

X lies inside ringRi,j , while the rest of its neighbors are to the left of ringRi,j . Using the binomial

probability theorem and using the conditional probabilities from Eq. (15) and Eq. (16), we finally have,

Pi,j|m = P (si → sj |Nneigh = m)

=
∑m

k=1

(m
k

)
(Pj|i)k (P(farther than j)|j)

m−k

=
∑m

k=1

(m
k

)
(Ai,j+ε−Ai,j

πR2 )k(1− Ai,j+ε

πR2 )m−k

(17)

One can use a similar approach to compute the probability for the case when,i < j ≤ i + R. We have

omitted this due to lack of space and present the final result below,

Pi,j|m = P (si → sj |Nneigh = m)

=
∑m

k=1

(m
k

)
(Ai,j−Ai,j−ε

πR2 )k(1− Ai,j

πR2 )m−k

(18)

By combining Eqs. (8), (9), (10), (14), (17) and (18), we finally prove Theorem 2.

We can now readily compute the state transition probability as follows,

Theorem 3:The transition probability from statei to j is

Pi,j =
N−1∑

m=0

P (si → sj |Nneigh = m)P (Nneigh = m) (19)

Proof: We have already derivedP (si → sj |Nneigh = m) andP (Nneigh = m) in Theorems 1 and

2, respectively. The above theorem follows by applying the law of total probability.
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B. Probability Distribution Function of the Path Length

Recall that, the state variable in our Markov model represents the distance between the current node

and the destination. Based on the transition probability computed in Section III-A and using the approach

of recursive computation, we obtain the probability distribution function of the path length as follows,

Theorem 4:Let H denote the number of hops. The probability distribution of the path length, given

that the path originates at statei is given by,

P (H = h|s = i) =




1 if 0 < i ≤ R andh = 1,

0 if 0 < i ≤ R andh > 1,

0 if i > R andh < d i
Re,

∑i−ε

j=i−R|ε P (H=h−1|s=j)Pi,j

1−Pi,i
+

∑i+R

j=i+ε|ε P (H=h−1|s=j)Pi,j

1−Pi,i
otherwise,

(20)

Proof: Assume that the node which corresponds to statei is nodeX as in Fig. 1. Now ifi ≤ R,

then the destination is just one-hop away from nodeX and hence the path length is one. Thus,

P (H = h|s = i) =





1 if 0 < i ≤ R andh = 1,

0 if 0 < i ≤ R andh > 1.

(21)

On the contrary, wheni > R, the minimum number of hops must bed i
Re, since each hop can at most

progress by a distanceR towards the destination. Thus, the probability that the path length is less than

d i
Re is zero, i.e.,

P (H = h|s = i) = 0 if i > R andh < d i
Re, (22)

For the other cases, applying the law of total probability, we have,

P (H = h|s = i) =
i+R|ε∑

j=i−R|ε
P (H = h− 1|s = j)Pi,j (23)

This is illustrated in Fig. 3. Recall that each subsequent step in the state space is separated byε. Further,

as discussed in Theorem 2, the possible next hop states originating ati are constrained betweeni + R
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Fig. 3. Computation of the probability distribution of the path length

and i−R. Now, Eq.( 23) can be expanded as follows,

P (H = h|s = i) =
∑i−ε

j=i−R|ε P (H = h− 1|s = j)Pi,j+

P (H = h|s = i)Pi,i +
∑i+R

j=i+ε|ε P (H = h− 1|s = j)Pi,j

(24)

Hence,

P (H = h|s = i) =
∑i−ε

j=i−R|ε P (H=h−1|s=j)Pi,j

1−Pi,i
+

∑i+R

j=i+ε|ε P (H=h−1|s=j)Pi,j

1−Pi,i

(25)

Combining Eqs. (21), (22) and (25), the theorem is proved.

Using Eq. (21) and (22), one can readily determine the probability of single hop paths. Subsequently,

using Eq. (25) and the probability of single hop paths, the probability of two hops paths can be computed.

Similarly, employing recursive computations, the probability of allh hop paths can be computed.

C. Mean Path Length

Based on the result of Theorem 4, we can easily calculate the mean path length (measured in number

of hops) for a pair of communication nodes, which are separated by distanceL. Let H(L) represent the

mean path length givenL, which can be computed as follows,

H(L) =
∞∑

h=1

h · P (H = h|s = L) (26)

Recall that,P (H = h|s = L) can be calculated using Theorem 4. now illustrate the mean path length for

ConsN = 117, A = 1500 ∗ 1500m, R = 250m, ε = 5. Fig. 4 plots the mean path length as a function of

the distanceL between the source and destination for a network of size1500 ∗ 1500m consisting of 117

uniformly distributed nodes with the radio range set to 250m. One can readily observe from Fig. 4 that
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the mean path is a linear function of the distance between the source and the destination. This observation

implies that the ratio of the source-destination distance and the mean length is constant. We will explore

this feature in the subsequent section.

Note that, the above computation of the mean path length requires us to recursively compute the entire

probability distribution function of the path length. We have proved that this computation involves a

complexity of O(NL/R). The details of this proof have been excluded due to space restrictions. It is

evident that evaluating the mean path length for a sizable network can be an considerably computationally

intensive task. Hence, in the next part of our analysis, we evaluate anO(1) technique for estimating the

mean path length. We also demonstrate that our estimate is quite accurate, especially whenL >> R.

IV. A PPROXIMATE ANALYSIS OF THE MEAN PATH LENGTH

As discussed in the previous section, the exact computation of the mean path length is highly complex.

To simplify this analysis, in this section, we develop a novel technique to estimate the mean path length.

In order to achieve this, we first introduce a new parameter, known as the average progression per hop.

Given the distance between the source and destination isL and the radio range of each node isR, the

average progression per hop,G(L), is defined as follows,

G(L) =
L

R ·H(L)
. (27)

G(L) is a measure of how far each hop can progress towards to destination, normalized by the radio

range. The results from Fig. 4 indicate that the ratio of the destination between the source and destination

and the mean path length of the hop is constant.G(L) will provide a means to investigate this observation.

Fig. 4 plotsG(L) as a function ofL for the same example as that used for the mean path length in

Sec. III-C. One can observe thatG(L) converges at a certain value whenL À R. This implies that when
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Fig. 5. AsL >> R, the arc
_

CF can be approximated as lineCF

L >> R, the average progress made along each hop approaches a constant value. The following theorem

proves this observation. It is well-known that in ad-hoc networks, the throughput decreases substantially

with each additional hop. Hence, most real deployments may not necessarily have long multi-hop paths

and thus,L >> R may not always hold true. However, to evaluate the convergence ofG(L) in our

analysis, this assumption is necessary.

Theorem 5:The average progression per hop converges asL >> R and the valueλ that it converges

to is given by,

λ = 1−
∫ 1

−1
(1− arccos (t)− t

√
(1− t2)

π
)mdt (28)

,wherem is the average number of neighbors.

Proof: From Theorem 4, we know that the probability distribution of the path length given the initial

statei depends on the state transition probability. Further from Theorem 2, we know that the transition

probability is dependent on the area ofAi,j . Fig. 2 illustrates thatAi,j is determined by the shape of

curve
_

CF . This area is computed using Eq. (14) and depends on bothi andj. If the distanceL between

the source and destination is very large, as depicted in Fig. 5, the curve
_

CF can be approximated by a

straight line. Consequently, this simplifies the computation of the areaAi,j , which now solely depends

on the distance between nodeX and its next one-hop neighbor,i − j. Let x representi − j. Now, we

can calculate the area ofAi,j , as depicted in Fig. 6, as follows,

Ai,j = 2(A _

CXE
−ACXD) = R2 arccos

x

R
− x

√
(R2 − x2) (29)

The probability that a neighbor of X lies in the region (within the radio rangeR) to the left ofCF is

given by,

P (a neighbor ofX lies to the left ofCF ) = 1− Ai,j

πR2
(30)

In order that the progress made along the next hop from nodeX towards the destination (i.e. change

of state fromi to j) is less thanx, all neighbors ofX must reside in the region to the left ofCF . Let

T represent the progress made along this hop towards the destination. Combining Eq. (29) and (30), the
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Fig. 6. As i tends to infinity,Ai,j is approximated by the shaded region

probability that the progression of the next hop towards to destination is less thanx is,

FT (x) = P (T < x)

= P (all neighbors are in the left side ofCF )

= (1− Ai,j

πR2 )m

= (1− R2 arccos x

R
−x
√

(R2−x2)

πR2 )m

(31)

Consequently, the probability density function (pdf) of the progressionT is given by,

fT (x) =
d(FT (x))

x
(32)

Further, the average of the progressionT is,

E(T ) =
∫ R

−R
xfT (x)dx (33)

Recall thatλ denotes the value thatG(L) converges to. Thus, we have,

λ = E(T )
R = 1

R

∫ R
−R xfT (x)dx

=
∫ R
−R

x
RdFT (x)

= [ x
RFT (x)]R−R −

∫ R
−R

1
RFT (x)dx

= 1− ∫ R
−R

1
R(1− R2 arccos x

R
−x
√

(R2−x2)

πR2 )mdx

x=Rt=⇒ 1− ∫ 1
−1(1−

arccos (t)−t
√

(1−t2)

π )mdt

(34)
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Interestingly, the above equation reveals thatλ only depends on the average number of neighbors (node

density) and is independent of the radio range. Fig. 4 compares the value ofλ as derived in the theorem

above with that ofG(L) for different values of the distance between the source and destination. In this

particular example,m = 10, which results inλ = 0.7298. As is evident, from Fig. 4, Theorem 5 provides

an accurate approximation of the convergene ofG(L), especially whenL À R.

The above theorem and Eq. (27) leads to the following interesting corollary,

Corollary 1: The mean path length,H(L), can be approximated as follows,

H(L) =
L

λ ·R (35)

Eq. (35) has an implementation complexity ofO(1) and hence can simplify the computation of the

mean path length significantly as compared with the highly complex Eq. (26). Fig. 4 illustrates how the

estimated mean path length closely approximates the actual mean path length for a network with the same

parameters as the one in Section III-C. As observed the discrepancy between the approximation and the

exact value is indistinguishable whenL >> R.This approximation eliminates the need to recursively

compute the probability distribution function using Theorem 4 and significantly reduces the complexity

involved in determining the mean path length, without compromising the accuracy.

In the past, researchers who have theoretically analyzed the capacity and other aspects of ad-hoc

networks [1], [2], have frequently usedL/R as the lower bound for the mean path length. Comparing the

estimated mean path length in Eq. (35) withL/R, we observe an improvement in accuracy as follows,
L

λ·R − L
R

L
R

=
1
λ
− 1 (36)

Fig 4 comparesL/R with our analytical results. The graph illustrates that the estimated mean path length

is a superior approximation of the mean path length. For example, the improvement is 37% when the

average number of neighbors are 10.

Lastly, we discuss the consequence of one of our assumptions, ”Existence of Nodes in the Shadow

Region” (see Sec. II). Recall that, in our analysis we have assumed the existence of nodes in the shadow

region depicted in Fig 1, even though this contradicts with the greedy forwarding strategy. Theshadow

region in our assumption corresponds to the regionAi,j in Fig. 6. The inconsistency introduced by these

contradicting assumptions depends on the ratio ofAi,j to the area within a node’s radio coverage, which

can be computed as follows,

Ai,j

πR2 = R2 arccos x

R
−x
√

(R2−x2)

πR2

= arccos (λ)−λ
√

(1−λ2)

π

(37)
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Assuming a density ofm = 10, this ratio is a mere 8 %. This further reduces to 5% whenm = 15. In

addition, the simulation results in Section V demonstrate that the impact of this shadow region on our

analytical results is virtually non-existent.

V. SIMULATIONS

In this section, we present comprehensive simulations to validate our theoretical analysis. Our first

goal is to corroborate the claims of Section III-C, which proposes an exact solution for computing the

mean path length. Subsequently, we also wish to verify the accuracy of the estimated mean path length

(Corollary 1). It is important to note that our analysis is independent of the node mobility and only

requires the node distribution in the network to be uniform. In the first part of our simulations, where

we validate our analysis, we use a mobility model calledRandom Direction Mobility with Reflection,

which conforms to this uniform distribution assumption. Finally, we carry out simulations using mobility

patterns that do not conform to the assumptions in our analysis, such as the popular Random Way Point

and realistic movement traces of a vehicular network. The objective of this exercise is to compare our

analytical results with those from more realistic scenarios and more importantly to ascertain if the analysis

can serve as bounds in these situations.

A. Random Direction Mobility Model with Reflection

The probability mass function (pmf) of the path length given the distance between the source and

destination nodes is computed in Theorem 4. This pmf is subsequently used to determine the mean path

length as shown in Eq. (26). In this sub-section we compare the analytically derived pmf and mean path

length with those from simulation experiments. We assume a network where the nodes are uniformly

distributed in a square region of size3000m∗3000m, with the radio range of each node set to 250m. The

average number of neighbors,m are equal to 15. The corresponding total number of nodes as derived

from Eq. (2) are 688. We use theRandom Direction Model with Reflection(RDMR)mobility model [16]

in our simulation since it has been proven in [16] that this model results in a uniform distribution of

nodes within the deployment area. We assume that the speed of each node varies uniformly from 0 to

20 m/s (average speed of 10 m/s), and the travel duration at each transition varies uniformly from 5 to

15 seconds. Recall that our analysis ignores the network boundary. Hence, in our comparative study, we

only consider nodes within the central square region of size2500m ∗ 2500m. In our simulations we use

a state space interval,ε of 5m (i.e., the distances are quantized to discrete values, which are multiples

of 5). We have evaluated the effect of choosing different values ofε, and have found that a value of 5
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Fig. 7. Probability mass function of the path length, RMDR mobility model
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Fig. 8. Mean path length v/sL, RDMR mobility model

achieves a suitable balance between the accuracy and the computation duration. Due to space restrictions,

we do not present those results here.

A simulation run lasts for 3000 seconds during which we take a snapshot of the network every

five seconds. For each snapshot, we compute the shortest path that exists between all possible source

destination pairs and the number of hops along the path. This leads to a very large sample space, since

we have 600 snapshots in total, leading to a comprehensive set of107 source-destination pairs. Note that,

in our simulations we assume that each node is aware of the complete global topology, which enables

the node to compute accurate shortest paths to all destinations. The resulting probability distribution and

mean path length are compared with their analytical derived counterparts: pmf (Theorem 4), the exact

and estimated mean path length (Eq. (26) and Corollary 1, respectively). We also include the popular

approximation for the mean path length,L/R in our comparisons.

Fig. 7 illustrates the probability mass function of the path length, withm = 15, for 2 values ofL:

1000 and 2000 meters. Fig. 8 compares the mean path length obtained from our analysis results with

the corresponding simulation results. From Figs. 8 and 7 it is evident that the simulation results are in
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line with our theoretical results, thus validating our analysis exercise. Further, Fig. 8 indicates that our

estimated mean path length provides a better approximation of the mean path length as opposed to using

L/R.

B. Realistic Mobility Models

In the previous sub-section, all simulations parameters conformed to the assumptions used in our

analysis. However, not all these assumptions will hold true for realistic mobile ad hoc networks. In

particular, a real-world network would not usually consist of uniformly distributed nodes. In this sub-

section, we wish to investigate if our theoretical results are relevant in practical scenarios. For this

we first use the popular random way point mobility model [17] to model the node movements. In the

second instance, we investigate a real-world vehicular ad hoc network, a popular application domain for

MANETs. Our aim is to determine if the mean path length and its estimated value as derived in our

analysis are pertinent for these real-world networks.

For the first case we choose a scenario that uses the random way point mobility to model the motion

of the nodes. The rest of the simulation parameters (network size, number of nodes, etc) are identical

to those used in Section V-A and so is the methodology (snapshots every 5 seconds, etc). Note that,

the random way point model does not result in a uniform distribution of the nodes. Fig. 9 illustrates

that our analytical and estimated results slightly over-estimate the mean path length as compared to the

simulations. The reason for this is that in the random way point model, nodes tend to move towards the

central area of the network, with the consequence that the central area is much denser as compared to

the regions near the border [17]. Hence, on average, the progress made per hop towards the destination

is larger as compared to a purely uniform distribution (as in our analysis), resulting in a shorter path

length. However, Fig. 9 clearly demonstrates that our results are far more accurate than the frequently

used measure of the mean path length,L/R.

The mobility model used in the second instance of our simulations is based on the actual movement

of buses in the King County Metro bus system in Seattle, Washington [18]. We extract an area of size

4000m ∗ 7000m corresponding to the the downtown area of Seattle. The duration of this trace spans

30 minutes. We assume that the radio range of each node is 1000m, which is consistent with that for

DSRC[19] and the results from [20]. During this simulation run, we found that the average number

of nodes in the selected region was 288. Using the above parameters and Eq. (2), we can calculate the

average number of neighbors per node to be 32. We used this parameter in our analysis. Fig. 10 compares

the analytical and estimated (using Corollary 1) mean path length values with those from the simulations
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Fig. 9. Mean path length for the random way point model
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for this realistic vehicular network. It is evident that the analysis results are well matched with those

from the simulations. As observed with other mobility models, the analytically derived estimated mean

path length is a significantly closer approximation as compared withL/R.

In conclusion, it is obvious from these simulations, that our theoretical results are highly relevant to

practical cases and can be used for accurately estimating the mean path length in a realistic deployment.

VI. CONCLUSION

Motivated by the importance of path length(i.e: the number of hops) in multi-hop wireless network,

this paper proposes a stochastic process based model to analyze the length of shortest path in virtue of

simplicity introduced by greedy forwarding. We present formula for the probability mass function of path

length given distanceL between source and destination. In order to reduce the computation complexity,

we also propose a simple but efficient formula to approximate the mean path length. The rich set of

simulation results, generated from different mobility models, validate our analysis model. We show our

results can improve the accuracy of the widely used equationL/R by up to 37%. In the future, we

are going to apply the analysis results to the performance analysis of other metrics, such as capacity,
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end-to-end delay, and routing overhead. In addition, we will investigate how the knowledge of path length

can assist routing protocol or localization so as to achieve better performance.
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