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Abstract

End-to-end delay and interface bandwidth usage are two important performance

metrics in overlay multicast networks. This paper demonstrates that, by jointly opti-

mizing the placement of multicast service nodes and the routing strategy for overlay

multicast networks, it is possible to find an overlay multicast tree that both minimizes

the maximum end-to-end delay between the source and the destinations, and balances

the interface bandwidth usage within the set of multicast service nodes. Motivated by

this important observation, we propose in this paper a joint optimization problem for

overlay mutlicast networks, where we wish to find a globally optimized overlay multi-

cast tree with minimum average end-to-end delay subject to two stringent constraints:

1) The maximum end-to-end delay is bounded by the unicast latency from the source

to the farthest destination in the physical topology; 2) The interface bandwidth usage

is balanced within the set of multicast service nodes. This problem is shown to be

NP-hard. We present a low complexity greedy algorithm that obtains good quality

approximate solutions to the problem. We further show how the greedy algorithm

enables the design of a weight-coded genetic algorithm that achieves closer-to-optimal

solutions with reasonable computational complexity.
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1 Introduction

Several two-tier overlay multicast network infrastructures have been recently proposed as feasible

solutions to support scalable inter-domain multicast services for real-time applications [3, 13,20].

In an overlay multicast network, a set of dedicated devices called multicast service nodes (MSNs)

are distributed in the network, typically collocated at the sites of a selected number of access

routers. Each MSN functions not only as a multicast server for the access router it is collocated

with, but more importantly as a transit point for replicating and forwarding real-time streaming

traffic to other MSNs or access routers in the overlay multicast network by means of routine

unicast mechanisms. The topology of the overlay multicast network is hence considered as a fully

connected mesh.

End-to-end delay and interface bandwidth usage are two important performance metrics in

overlay multicast networks [3,20]. An overlay routing path from the source to a destination likely

passes through a series of MSNs. As a consequence, it is important to minimize the end-to-end

delay so as to reduce the jitter experienced by real-time streaming traffic on each overlay routing

path. This is essential to the provision of good quality delay-sensitive multicast services in the

overlay multicast network. On the other hand, each MSN in the overlay multicast network has

limited access bandwidth. Thus, it is important to manage the utilization of interface bandwidth

resources efficiently. It was shown in [20] that it is useful to balance interface bandwidth usage

among MSNs for each multicast session. This way, the overlay multicast network is able to support

a larger number of concurrent multicast sessions with good service qualities.

Earlier proposals for building an overlay multicast tree typically aim to optimize the backbone

tree that contains MSNs only [3,20]. They assume that the MSN placement solution is given and

the access subtrees rooted at each particular MSN are also given. The routing protocols proposed

in [3] and [20] addressed three constrained spanning tree problems: 1) Minimize the maximum

end-to-end delay within the set of MSNs subject to the interface bandwidth constraint at each

MSN; 2) Minimize the average end-to-end delay within the set of MSNs subject to the interface

bandwidth constraint at each MSN; and 3) Balance the interface bandwidth usage at each MSN

subject to the bound on the maximum end-to-end delay. Recently, Lao et al. [12] proposed to
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optimize exclusively the access subtrees rooted at each specific MSN. They formulated the MSN

placement problem to find optimal placement solutions such that the average latency between

access routers and their corresponding MSNs is minimized.

These existing approaches were designed to achieve optimal solutions in their respective prob-

lem domains. However, as will be demonstrated in this paper, they are not able to fully utilize the

network resources and to achieve effectively the best routing performance from the global perspec-

tive of the overlay multicast network. We shall see that, by jointly optimizing the placement of

MSNs and the routing strategy for both the backbone tree and the access subtrees, it is feasible to

obtain an overlay multicast tree that globally minimizes the maximum end-to-end delay, balances

the interface bandwidth usage within the set of MSNs, and yet obtains good performance results

on average end-to-end delay.

The contributions of this paper include:

1. We motivate and propose a new and challenging constrained spanning tree problem for

the overlay multicast network (Section 2). We demonstrate that, by solving the proposed

problem, it is feasible to obtain an overlay multicast tree with globally optimized end-to-end

delay of overlay routing paths and interface bandwidth usage of MSNs.

2. We develop a low complexity greedy algorithm that obtains good quality approximate so-

lutions to this problem (Section 3). For all the large size network topologies tested in our

simulation experiments, the worst quality solution obtained from the greedy algorithm is

below 16% from the optimal solution.

3. We design a weight-coded genetic algorithm (GA) which can readily utilize the greedy

algorithm and obtain closer-to-optimal solutions to this problem (Section 4). For all the

large size network topologies tested in our simulation experiments, the worst quality solution

obtained from the weight-coded GA is below 8% from the optimal solution.

4. We provide an integer linear programming (ILP) formulation for this problem. The ILP

model can be used to compute the optimal solutions for small size network topologies (Sec-

tion 5). Moreover, we believe that our proposed ILP model may pave the way for future
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research into the development of possible mathematical approaches for solving this chal-

lenging problem [18].

The remainder of this paper is organized as follows: Section 2 deals with the rigorous formu-

lation of the joint optimization problem. We also discuss the motivation of the problem using

an explicit numerical example. In Section 3, we present the greedy algorithm, and we provide

intuitive explanations to the working methodology of the greedy algorithm and an analysis of its

computational complexity. The details of the weight-coded GA are presented in Section 4. The

ILP formulation of the problem is given in Section 5. Simulation experiments are reported in

Section 6. Finally, we provide concluding remarks in Section 7.

2 Joint Optimization Problem

Consider an overlay multicast network in the form of a complete directed graph G = (V, E), where

V is the set of N nodes and E = V × V is the set of edges. Let node r be the source. Each

of the other N − 1 destination nodes in V − {r} represents an access router. The directed edge

〈i, j〉 in E from node i to node j represents the unicast path of latency li,j > 0 from node i to

node j in the physical topology. In this paper, we assume li,j = lj,i for all i, j ∈ V , i 6= j. By

{li,j}, we denote the matrix of unicast latency quantities between each pair of nodes in G and we

assume that it has been given. M , M < N , nodes (including the source node r by default) are

selected as MSNs which constitute the set P . For one particular multicast session, each outgoing

edge directed away from node i, i ∈ P , indicates one unit of interface bandwidth usage of node i,

and is equivalent to one count towards the out-degree of node i in the graph representation. Note

that we shall hence use the terms “interface bandwidth usage” and “out-degree” interchangeably

in the rest of this paper.

The overlay multicast tree can be represented by a directed spanning tree of G rooted at the

source node r. A directed edge from node i to node v, i ∈ V , v ∈ V −{r}, can be included in the

spanning tree if and only if node i is in P . Consequently, the set of internal nodes of the spanning

tree is composed of MSNs only, which constitutes the backbone tree. If we shall further enforce

at least one unit of interface bandwidth usage of each MSN, the set of leaf nodes of the spanning
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tree is thus exclusively composed of non-MSN nodes, which constitute the access subtrees rooted

at MSNs.

2.1 Performance metrics

For each destination node v in the set V − {r}, we define Rr,v as the set of directed edges that

form its overlay routing path from the source node r. Let Lr,v denote the latency of the overlay

routing path from the source node r to the destination node v. Given the unicast latency matrix

{li,j}, we readily have

Lr,v =
∑

〈i,j〉∈Rr,v

li,j . (1)

Let Lmax denote the maximum end-to-end delay, given by

Lmax = max
v∈V−{r}

Lr,v . (2)

Let L̄ denote the average end-to-end delay, given by

L̄ =
1

N − 1

∑

v∈V−{r}
Lr,v . (3)

Consider the case where the unicast latency matrix {li,j} satisfies the triangle inequality (see e.g.

[1], page 11). For each destination node v in the set V −{r}, the latency Lr,v of its overlay routing

path from the source node r can not be smaller than the latency lr,v of its unicast path from the

source node r. Thus, we can establish the lower bound Llb
max on Lmax as

Llb
max = max

v∈V−{r}
lr,v (4)

and the lower bound L̄lb on L̄ as

L̄lb =
1

N − 1

∑

v∈V−{r}
lr,v . (5)

Let d(i) denote the out-degree of an internal node i, i ∈ P . The following proposition states

a property on the sum
∑

i∈P d(i) of out-degrees in an overlay multicast tree.

Proposition 2.1 The sum of out-degrees in an overlay multicast tree is N − 1.
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Proof. It follows from Corollary 1.5.3 of [6] that a spanning tree with N nodes has exactly

N − 1 edges. By the definition of an overlay multicast tree, between each pair of nodes i and j,

the edge is either directed from node i to node j, or directed from node j to node i. In either

case, it contributes one count towards the sum of out-degrees.

We define an out-degree balancing index F , given by

F = max
i∈P

d(i)−min
i∈P

d(i) . (6)

A smaller value of F indicates a more balanced interface bandwidth usage within the set of MSNs.

Let F lb denote the lower bound on F . Clearly, F lb = 0 if

N − 1 = kM, k = 1, 2, . . . (7)

and we require each internal node to have an out-degree of exactly k. In situations where (7) does

not hold, F lb = 1. In such cases, letting k = bN−1
M c and n = N − 1− kM , we require n internal

nodes to have an out-degree of exactly k + 1, and the remaining M −n internal nodes to have an

out-degree of exactly k.

2.2 Problem formulation

Before we formally present the statement of the joint optimization problem, we shall first clarify

the motivation of such a problem by considering an eight-node example illustrated in Figure 1.

Let node 3 be the source node and assume three MSNs to be placed. A routine computation of (4)

and (5) on the unicast latency matrix {li,j} provided in Figure 1 gives Llb
max = 4 and L̄lb = 2.14

for this particular instance. Since N − 1 = 7 and M = 3, we have F lb = 1, and for achieving this

we require one MSN to have an out-degree of exactly three, and the other two MSNs to have an

out-degree of exactly two.

Using the ILP formulation presented in [12], we obtain the MSN placement solution, as shown

in (a) of Figure 2, where the three MSNs are placed at nodes 6 and 7 as well as node 3. In addition,

the access subtrees are constructed in such a way that nodes 1, 2, 4 and 5 are connected to node

3, and node 8 is connected to node 6. This gives a minimum total distance of six between each

node and its associated MSN. Given this solution for the access subtrees, all the three possible
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Figure 1: Overlay topology and unicast latency for the eight-node example.

solutions for the backbone tree are listed as (b), (c) and (d) in Figure 2. For each solution, we

use (1) to compute for each of the seven destination nodes the latency of its overlay routing path

from the source node. These results are provided in the figures for the corresponding nodes. We

then use (2) to find the maximum end-to-end delay Lmax, compute the average end-to-end delay

L̄ using (3), and obtain the out-degree balancing index F from (6). We observe in these three

solutions that both (b) and (c) incur a large maximum end-to-end delay and highly imbalanced

interface bandwidth usage within the set of MSNs. On the other hand, (d) achieves both Llb
max

and L̄lb for this particular instance. Nevertheless, it results in an extremely imbalanced out-degree

distribution. Interestingly, if we shall enforce F = 1 with the MSN placement solution of (a), the

best solution for backbone tree and access subtrees, as (e) of Figure 2 shows, can merely achieve

Lmax = 7, which also leads to a large average end-to-end delay. This implies that the issue of

strategic placement of MSNs itself is not trivial and indeed has significant impact on the routing

performance of the overlay multicast tree.

If we go one step further, and jointly optimize the entire overlay multicast tree, but without

explicitly considering the constraint on balancing the interface bandwidth usage, the best solution

on F that can achieve both Llb
max and L̄lb is shown in (f) of Figure 2. Such a solution again suffers

a highly imbalanced out-degree distribution. On the other hand, if we shall enforce the constraint

on balancing the interface bandwidth usage, the best solution to achieve Llb
max with the MSN

placement solution of (f) is shown in (g) of Figure 2. The interface bandwidth usage is more
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Figure 2: Overlay multicast tree solutions for the eight-node example: (a) Solution for MSN
placement and access subtrees due to [12]. All three possible solutions for the backbone tree of
(a) are shown in (b), (c) and (d); (b) Lmax = 7, F = 4, L̄ = 3; (c) Lmax = 6, F = 5, L̄ = 2.57;
(d) Lmax = 4, F = 6, L̄ = 2.14; (e) The best solution on Lmax to achieve F = 1 using the MSN
placement of (a) leads to Lmax = 7 and L̄ = 4.43; (f) The best solution to achieve Lmax = 4
and L̄ = 2.14 requires F = 4; (g) The best solution on F to achieve Lmax = 4 using the MSN
placement of (f) leads to F = 2 and L̄ = 2.71; (h) The best solution to achieve Lmax = 4 and
F = 1 results in L̄ = 2.57.
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balanced in this way with F = 2, but it leads to a poor performance result on L̄. Solution (h) in

Figure 2 achieves both Llb
max and F lb, and yet obtains a good L̄ result.

Clearly, we see from this example that any isolated approach optimizing exclusively either the

backbone tree [3, 20] or the access subtrees [12] is less likely able to utilize the network resources

efficiently. On the other hand, with joint optimization on the entire overlay multicast tree, it

is feasible to achieve minimal possible maximum end-to-end delay, balanced interface bandwidth

usage, and yet good performance results on average end-to-end delay. As we have discussed before,

the two most important performance metrics for overlay multicast networks are maximum end-to-

end delay and interface bandwidth usage. Therefore, we propose the following joint optimization

problem for overlay multicast networks:

Given a complete directed graph G = (V, E) of N nodes, find a constrained directed spanning

tree T of G rooted at the source node r, such that L̄ is minimized, and T is subject to constraints

on: 1) M , M < N , nodes (including the source node r by default) are selected as internal nodes,

all other N −M nodes are for leaf nodes; 2) Lmax is bounded by LB
max ≥ Llb

max; 3) F is restricted

to F lb.

If we shall enforce LB
max = Llb

max, the optimal solution to any instance of this problem, should

it exist, is certainly an overlay multicast tree with Globally Optimized Latency and out-Degree

(GOLD). This is particularly true if it would also realize L̄ = L̄lb. In the rest of this paper,

we shall refer to this problem as the GOLD spanning tree problem. Such a heavily constrained

spanning tree problem is clearly different from any existing constrained spanning tree problem

(see e.g. [3, 4, 15, 20] and references therein). This problem is NP-hard, which can be established

by the following theorem:

Theorem 2.2 The GOLD spanning tree problem is NP-hard.

Proof. It is easy to see that the decision version Π of the GOLD spanning tree problem is

in the class of NP. This is because a non-deterministic algorithm needs only to guess a directed

spanning tree rooted at the source node and check in polynomial time if it satisfies all constraints

of the GOLD spanning tree problem. Having M = N and allowing LB
max = Lub

max, this restricts Π

to a variant of the traveling salesman problem respecting mean arrival time of the tour starting
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from the source node ([8], page 211), which is NP-complete according to [19].

We thus resort to heuristic methods to find near-optimal solutions for this challenging problem.

3 Greedy Algorithm

The greedy algorithm that we propose for the GOLD spanning tree problem contains three stages.

The first stage deals with the issue of strategic placement of MSNs to constitute the set of internal

nodes for the overlay multicast tree T . The second stage is dedicated to the task of forming the

backbone tree of T . Finally in the third stage, we manage the connections between leaf nodes and

internal nodes to resolve the access subtrees for T . We shall see that our greedy algorithm ensures

that T satisfies all constraints of the GOLD spanning tree problem except the bound LB
max on

Lmax. Nevertheless, at any intermediate step during the process of incrementally building T , we

bear in mind the goal of greedily minimizing Lmax as well as L̄. A procedure that implements

this greedy algorithm is provided in Figure 3. We shall next explain each module in detail.

3.1 MSN placement

Given the unicast latency matrix {li,j}, we compute sv for each node v in the set V − {r} by

sv =
∑

j∈V−{r,v}
(lr,v + lv,j) . (8)

We then identify M − 1 nodes in V − {r} with the smallest values on sv. These M − 1 nodes

together with the source node r constitute the set P of internal nodes of the overlay multicast

tree T .

Our method of MSN placement is different from [12]. Their method aims to minimize the

average latency between leaf nodes and internal nodes. However, their method may not find the

optimal placement of MSNs from the global perspective of the overlay multicast tree. As we have

observed previously from the eight-node example considered in Figure 2, none of the internal

nodes (except the source node) in the optimal solution, (h) of Figure 2, can be identified by their

method. Intuitively, our method aims to find nodes that (should they be chosen as internal nodes)

would more likely result in smaller latency of the overlay routing path between each leaf node and

the source node.
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INPUT:

Overlay topology G = (V, E)

Source node r

Unicast latency matrix {li,j}
# of MSNs M

Output:

GOLD spanning tree T

Procedure:

/* Initialization */

T = ∅; N = |V |; k = bN−1
M

c;
if (kM = N − 1)

n = M ;

else

n = N − 1− kM ; k = k + 1;

/* MSN placement */

for each v ∈ V − {r} do

sv =
P

j∈V−{r,v}(lr,v + lv,j);

P = {M − 1 nodes with the smallest sv}; P = P + {r}; P̄ = ∅;

for each i ∈ P do

d(i) = 0;

/* backbone tree */

P ′ = {r}; Lr,r = 0;

for each v ∈ P − {r} in the non-decreasing order according to sv do

find u ∈ P ′ − P̄ with the smallest Lr,u + lu,v;

if ties exist on u

choose u with the largest
P

j∈P−P ′−{v}(Lr,u + lu,j);

Lr,v = Lr,u + lu,v ; P ′ = P ′ + {v}; d(u) = d(u) + 1; T = T + 〈u, v〉;
/* out-degree balancing */

if d(u) = k

P̄ = P̄ + {u}; n = n− 1;

if n = 0

n = M ; k = k − 1;

for each u ∈ P ′ − P̄ with d(u) = k do

P̄ = P̄ + {u}; n = n− 1;

/* access subtrees */

W = V − P ;

while W 6= ∅ do

for each v ∈ W do

δv = minj∈P−P̄ (Lr,j + lj,v);

find v ∈ W with the largest δv ;

if ties exist on v

choose v with the largest
P

j∈P−P̄ (Lr,j + lj,v);

u = argminj∈P−P̄ (Lr,j + lj,v);

if ties exist on u

choose u with the largest
P

j∈W−{v}(Lr,u + lu,j);

Lr,v = Lr,u + lu,v ; W = W − {v}; d(u) = d(u) + 1; T = T + 〈u, v〉;
/* out-degree balancing */

if d(u) = k

P̄ = P̄ + {u}; n = n− 1;

if n = 0

n = M ; k = k − 1;

for each u ∈ P − P̄ with d(u) = k do

P̄ = P̄ + {u}; n = n− 1;

Figure 3: Greedy algorithm for the GOLD spanning tree problem.
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Apply (8) to the eight-node example considered in Figure 2. The sv values are computed to

be:

v 1 2 4 5 6 7 8

sv 33 24 24 22 38 38 47

Node 5 clearly has the smallest value of sv. A tie exists between nodes 2 and 4. Selecting either

node, however, yields an optimal solution to this particular instance, which is confirmed by the

ILP model to be presented in Section 5.

3.2 Out-degree balancing

An important objective of our greedy algorithm is to guarantee that the out-degree balancing

index F of internal nodes of T is restricted to F lb. As we have discussed in Section 2.1, if F lb = 0,

we require each of the M internal nodes to have an out-degree of exactly k, where k = N−1
M . This

case can be trivially resolved. For each node v that has just been added to the partial tree of T ,

we check the cumulated out-degree d(i) of the internal node i which connects node v. If d(i) = k,

we mark node i so that node i will not be considered by any of the remaining unconnected nodes

in the set V − {r}.
On the other hand, if F lb = 1, we require n internal nodes to have an out-degree of exactly

k + 1, and the remaining M − n internal nodes to have an out-degree of exactly k, where in

this case k = bN−1
M c and n = N − 1 − kM . To achieve this, we make sure that once the n-th

internal node whose out-degree reaches k+1 has been marked, we further check for each unmarked

internal node if its out-degree has reached k. If so, we mark such nodes correspondingly, again to

make sure that they will not be considered by any of the remaining unconnected nodes in the set

V − {r}.

3.3 Backbone tree

Our greedy algorithm for constructing the backbone tree is an improved variant of the Compact

Tree (CT) algorithm proposed in [20]. While CT was designed to address the problem of minimiz-

ing Lmax of the backbone tree only, we aim for greedily minimizing Lmax and L̄ simultaneously

for the entire overlay multicast tree.
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For this purpose, we begin by arranging all M − 1 internal nodes in the set P − {r} in a

non-decreasing order according to their sv values computed from (8). Then, we add these internal

nodes one-by-one in that order to form the backbone tree of T . Intuitively, nodes that are added

to the backbone tree earlier in this stage are more likely to be connected by some other internal

nodes later in this stage as well as some leaf nodes later in the access subtrees. Consequently, by

adding internal nodes in such an order, we hope to achieve an overall smaller overlay latency of

both internal nodes and leaf nodes.

Let P ′ denote the set of all internal nodes in the partial tree of T constructed so far. Let P̄

denote the set of all internal nodes that have been marked. Starting from the initial tree with

P ′ including the source node r only, for each unconnected internal node v in the ordered set

P −{r}, we find an unmarked internal node u in the partial tree of T constructed so far such that

Lr,u + lu,v is the smallest. Ties are broken by choosing node u such that
∑

j∈P−P ′−{v}(Lr,u + lu,j)

is the largest. Intuitively, if we do not connect node v to node u at this iteration, later node u

would more likely lead to larger overlay latency of some other internal nodes not yet in the tree.

After node v is added to the tree, we update P ′, and we apply the out-degree balancing module

to check if node u needs to be marked into the set P̄ .

3.4 Access subtrees

Given that the backbone tree of T is formed, we are now at the stage of describing how we connect

leaf nodes one-by-one to the backbone tree to complete the access subtrees for T .

Let W denote the set of all leaf nodes not yet in the partial tree of T , and initialize W to

V − P . At any iteration, for each node v in the set W , we find an unmarked internal node u in

the backbone tree of T which minimizes δv = Lr,u + lu,v. We then identify the node v in W with

the largest value of such δv, and add it to the partial tree of T by creating a directed edge from

node u to node v. Intuitively, if we do not connect node v at this iteration, later it would more

likely incur larger overlay latency and contribute towards a larger value of L̄.

In cases where ties exist either on u or on v, we break the ties on u by choosing node u such

that
∑

j∈W−{v}(Lr,u + lu,j) is the largest. Intuitively, again, if we do not go for node u at this

iteration, later node u would more likely lead to larger overlay latency of some other leaf nodes
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not yet in the tree. On the other hand, we break the ties on v by choosing node v such that
∑

j∈P−P̄ (Lr,j + lj,v) is the largest. Similarly, if we do not connect node v at this iteration, later

node v would be more likely connected to an internal node which yields larger overlay latency of

node v.

Once node v is added to the tree, we update W , and we again apply the out-degree balancing

module to check if node u needs to be marked into the set P̄ .

3.5 Computational complexity

Clearly, for the MSN placement, it first requires a total of 2(N − 2) additions. Then, in order to

identify M − 1 nodes with the smallest values on sv, it requires a total of (M − 1)(2N −M − 2)/2

comparisons of complexity O(MN), given N ≥ M . Alternatively, we apply a quick sort of

complexity O(N log N) on sv if M > log N . For the backbone tree, it turns out that to add the

m-th internal node, m = 3, 4, . . . , M − 1, it requires m− 1 additions and m− 2 comparisons and

an extra 2(m− 1)(M −m) additions and m− 1 comparisons at most for tie-breaking. To add the

M -th internal node, it merely requires M − 1 additions and M − 2 comparisons. Therefore, the

complexity of this module is O(M3) in the worst. Similarly, it can be shown that the complexity

of the module for the access subtrees is at most O(MN2). Since N ≥ M , the greedy algorithm is

O(MN2) in complexity.

4 Weight-Coded Genetic Algorithm

GAs are population-based stochastic search and optimization approaches inspired by the mech-

anism of natural selection which obeys the rule of “survival of the fittest” [10]. As shown in

Figure 4, in a typical implementation of GAs, a population of chromosomes is processed. Each

chromosome represents a candidate solution to the problem. Starting from an initial popula-

tion of randomly created chromosomes, GAs perform multi-directional stochastic search through

a genetic evolution process without the need for any problem information except the objective

function values. During each generation of the evolution process, a selection operator is employed

to introduce certain bias. As a result, chromosomes with higher fitness values have better chances

to survive and reproduce through genetic operators. It is hoped that after a certain number of
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Figure 4: Flowchart of GAs.

generations, the best chromosome represents a good quality solution that is reasonably close to

the optimal solution.

GAs have been extensively used for solving various real-world complex optimization problems

due to their broad applicability, ease of use and global perspective [9]. In particular, they have

found successful applications in a number of tree-based network optimization problems (see e.g.

[21, 23] and references therein). In all cases, it was observed that GAs can achieve near-optimal

solutions for fairly large size instances with reasonable computational effort. We choose to imple-

ment a weight-coded GA [16] for the GOLD spanning tree problem, since it uses a node-based

encoding approach for chromosome representation rather than an edge-based encoding approach

which is inefficient in the context of a complete graph [21]. Moreover, it readily utilizes the

proposed greedy algorithm and thus effectively operate the stochastic search in the heavily con-

strained solution space without necessitating the design of any specialized GA operator [17].
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4.1 Implementation

By weighted coding [16], we express a chromosome of GA in the form of a real-valued vector w

of size N . Each gene wi, i = 1, 2, . . . , N , of the chromosome w holds a weight in the range (0, 1).

The string of N weights is used to produce an altered version of the unicast latency matrix {li,j}
by

l′i,j = li,j · wi · wj (9)

for 〈i, j〉 ∈ E. The greedy algorithm is applied to identify an overlay multicast tree represented

by w using the altered matrix {l′i,j}, but the corresponding Lmax and L̄ values of this overlay

multicast tree are computed using the original matrix {li,j}. Clearly, the nature of the greedy

algorithm guarantees that such an overlay multicast tree satisfies all constraints of the GOLD

spanning tree problem except the bound LB
max on Lmax. Consequently, we can effectively operate

GA in the heavily constrained solution space of the GOLD spanning tree problem by simply

exploring the space of weights and handling any constraint violation on Lmax in each generation

of the evolution process.

For the purpose of constraint handling, we use an efficient approach proposed in [5] to guide the

weight-coded GA towards the constrained optimum without the need for any penalty parameter

in the fitness function. Let Lmax(w) and L̄(w) respectively denote the Lmax and L̄ values of the

overlay multicast tree represented by w. Let L̄max be the L̄ value of the worst feasible chromosome

in the population. Let Lub
max be an upper bound on Lmax. Let L̄ub be an upper bound on L̄. Note

that both Lub
max and L̄ub can be safely set to (N − 1) ·max〈i,j〉∈E li,j for the GOLD spanning tree

problem.

If w is a feasible chromosome, i.e. Lmax(w) ≤ LB
max, we evaluate its fitness f(w) by

f(w) =
[
Lub

max − LB
max

]
+

[
L̄ub − L̄(w)

]
. (10)

On the other hand, if w is an infeasible chromosome, i.e. Lmax(w) > LB
max, we evaluate its fitness

f(w) by

f(w) =
[
Lub

max − Lmax(w)
]

+
[
L̄ub − L̄max

]
. (11)
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With the fitness function defined in this form, we ensure that the higher fitness value a chromosome

has, the better solution it represents. Moreover, we also guarantee that 1) the fitness value of a

feasible chromosome is higher than that of an infeasible chromosome, 2) the comparison between

two feasible chromosomes is purely based on the objective function value L̄, and 3) the comparison

between two infeasible chromosomes uses the information of constraint violation on Lmax alone.

The evolution process is initiated with a randomly generated population of size K, except for

one in which all weights are set to one. This chromosome represents the approximate solution

obtained from the greedy algorithm directly using the original matrix {li,j}. Seeding the pop-

ulation in this knowledge-augmented way can substantially improve the search efficiency of GA

[16]. Starting from this initial population, in each generation of the evolution process, we form a

mating pool by selecting K good chromosomes, some of which may be duplicate, from the current

population. We use the tournament selection operator for this purpose [5]. For two chromosomes

chosen for competition in a binary tournament, the winner goes to the one with a higher fitness

value. Moreover, we set the rule such that any chromosome is made to participate in exactly two

tournaments. As a result, any chromosome in the current population will have at most two copies

as the parents in the new population. This is particularly important in our context to prevent

the good quality approximate solution from becoming a predominant chromosome which would

likely lead to premature convergence of GA.

For each pair of coupled chromosomes in the mating pool, a uniform crossover operator is used

to promote random information exchange between the two parents. One such operation at rate rc

generates a pair of new chromosomes, each of which inherits some parts of genetic materials from

both parents. To introduce greater variability into the offspring, for each gene wi, i = 1, 2, . . . , N ,

of an offspring w, we further apply a uniform mutation operator with a small probability rm. If

wi is chosen for mutation, it is altered with a weight randomly generated from the range (0, 1).

We evaluate the fitness of each offspring using either (10) or (11) depending on if it represents a

valid overlay multicast tree. The parents and the offspring are then combined into one transitional

population (of size ≥ K and ≤ 2K). The K chromosomes with highest fitness values are chosen

and placed in the new population of the next generation.
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The evolution process is terminated after a predefined number of generations have been com-

pleted. Alternatively, we presume convergence if the best chromosomes are not improved over a

certain succession of generations. In either case, we decide the best overlay multicast tree with

the highest fitness value from the last population.

4.2 Computational complexity

For each generation of the weight-coded GA, it is clear that the complexity of selecting K parents

from the current population of K chromosomes is no more than O(K). It then requires at most

K crossover operations each of which has complexity O(N), and is followed by KN mutation

operations of overall complexity O(KN) in the worst case. Since the evaluation of the fitness for

each of the K offsprings requires exactly one computation of the greedy algorithm which is of

complexity O(MN2), the overall computational complexity of one generation of GA is no more

than O(KMN2).

5 Integer Linear Programming Formulation

Here we provide an ILP formulation for the GOLD spanning tree problem. Let the 0-1 variables

xi, i ∈ V , indicate if node i is selected as an internal node. Let the 0-1 variables pv
i,j , v ∈ V −{r},

〈i, j〉 ∈ E, indicate if the directed edge 〈i, j〉 from node i to node j is included in the overlay

routing path from the source node r to the destination node v. Let the 0-1 variables ti,j , 〈i, j〉 ∈ E,

indicate if the directed edge 〈i, j〉 from node i to node j is used by the overlay multicast tree.

Let the non-negative real variables dmax and dmin respectively identify the maximum out-degree

and the minimum out-degree among the internal nodes. For the latter, it is useful to define a

non-negative real variable yi for each i ∈ V . The GOLD spanning tree problem aiming to find an

overlay mutlicast tree that achieves LB
max and F lb and minimizes the average end-to-end delay L̄

can now be formulated as:

Minimize
1

N − 1

∑

v∈V−{r}

( ∑

〈i,j〉∈E

pv
i,jli,j

)
(12)

subject to

xr = 1 (13)
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∑

v∈V−{r}
xv = M − 1 (14)

∑

i:〈i,r〉∈E

pv
i,r = 0, ∀v ∈ V − {r} (15)

∑

j:〈r,j〉∈E

pv
r,j = 1, ∀v ∈ V − {r} (16)

∑

i:〈i,v〉∈E

pv
i,v = 1, ∀v ∈ V − {r} (17)

∑

j:〈v,j〉∈E

pv
v,j = 0, ∀v ∈ V − {r} (18)

∑

i:〈i,m〉∈E

pv
i,m =

∑

j:〈m,j〉∈E

pv
m,j , ∀v ∈ V − {r}, ∀m ∈ V − {r, v} (19)

∑

v∈V−{r}
pv

i,j ≤ (N − 1) · ti,j , ∀〈i, j〉 ∈ E (20)

∑

〈i,j〉∈E

ti,j = N − 1 (21)

∑

〈i,j〉∈E

ti,j ≤ (N − 1) · xi, ∀i ∈ V (22)

∑

〈i,j〉∈E

pv
i,jli,j ≤ LB

max, ∀v ∈ V − {r} (23)

dmax ≥
∑

j:〈i,j〉∈E

ti,j , ∀i ∈ V (24)

yi = (N − 1) · (1− xi) +
∑

j:〈i,j〉∈E

ti,j , ∀i ∈ V (25)

dmin ≤ yi, ∀i ∈ V (26)

dmax − dmin ≤ F lb (27)

The objective function presented in (12) is equivalent to (3) by the definition of pv
i,j . Equations

(13) and (14) restrict that M nodes (including the source node r by default) are selected as internal

nodes. Equations (15) to (20) ensure that the solution is a directed spanning tree rooted at the

source node r. More explicitly, they enforce one single overlay routing path for each source-

destination pair. Equation (21) restricts that the sum of out-degrees counts N − 1, which is

a necessary property of an overlay multicast tree established in Proposition 2.1. Equation (22)

ensures that the directed edge 〈i, j〉 from node i to node j can be included in the overlay multicast

tree if and only if node i is an internal node. Equation (23) restricts that the maximum end-to-
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end delay is bounded by LB
max. Equations (24) to (27) enforces the balance of out-degree among

nodes selected as internal nodes. All the equations jointly ensure that the solution is a directed

spanning tree rooted at the source node r and satisfies all constraints of the GOLD spanning tree

problem established in Section 2.

6 Simulation Experiments

We have tested our proposed heuristic methods for the GOLD spanning tree problem on many

different network topologies. Here we report experimental results for three small size topologies

and three large size topologies.

The various network topologies used in our experiments were obtained from the GT-ITM

topology generator [22]. In particular, the three small size topologies (N = 20, 25, 30) were

generated using the flat random graph model of GT-ITM with an average node degree between

3 and 5. Unicast latency between different pairs of nodes in these graphs varies between 1 and

80. The three large size topologies (N = 100, 300, 500) were generated using the transit-stub

graph model of GT-ITM with an average node degree between 3 and 4. Unicast latency between

different pairs of nodes in these graphs ranges from 1 to 500. It was reported in [22] that the

transit-stub model was designed to generate a domain structure resembling that of the Internet.

Based on these network topologies, we design the following experiments to study the perfor-

mance of the proposed heuristic methods. For each of the small size topologies, we consider the

various instances in which we set each different node to be the source node. In all such instances,

the number M of MSNs is fixed to 3. Due to the small size of these topologies, we are able to

compute the optimal solutions by solving the ILP model presented in Section 5. The CPLEX tool

[11] can be in general used to solve ILP models for problems with a reasonable number of integer

variables. With these concrete optimal results in hand, we are able to confirm the capability of

GAs in our context, although it has been widely established in the literature.

ILP is, however, known to have an exponential computational complexity and is unlikely to

be solved for problems with a large number of integer variables. Consequently, we are not able to

obtain the ILP results for the large size topologies. Nevertheless, given that we have established
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the lower bound L̄lb on L̄, we can use L̄lb as the benchmark to verify the performance of the

heuristic methods in such instances. Due to the limited space, we do not present experimental

results for the large size topologies with respect to different source nodes. Instead, we randomly

choose one node as the source node and vary M from 5 to 30 for each such topology.

In all experiments, we conduct the weight-coded GA with ten independent runs each of which

starts from a different initial population. The crossover rate rc is varied from 0.5 to 1.0 at the

step size of 0.1. The mutation probability rm is set to 1/N [2]. Each run repeats the evolution

process with up to 100 generations for the small size topologies and with up to 1000 generations

for the large size topologies. The population size K is set to N for the small size topologies and

100 for the large size topologies. We also compare the performance of the weight-coded GA with

a random search. For that purpose, we use the weighted coding approach to randomly generate

the same number of chromosomes explored by the weight-coded GA. For each string of weights

so obtained, we compute its corresponding overlay multicast tree and check if it results in a valid

solution. Similar to the implementation of GA, we include the approximate solution obtained

from the greedy algorithm as one of the solutions in the random search.

The performance results are reported in Figure 5 for the small size topologies and in Figure

6 for the large size topologies. In both figures, we plot the L̄ results in the form of a percentage

deviation from the lower bound L̄lb given by (L̄− L̄lb)/L̄lb(%). Note that in all the experiments

we have conducted for the purpose of this paper, we have enforced LB
max = Llb

max. It is interesting

to see that even with such a stringent constraint, our proposed greedy algorithm always yields a

valid solution to the heavily constrained problem.

Results in Figure 5 clearly confirm the capability of the weight-coded GA. For all the various

instances, this heuristic method has successfully found the optimal solutions within the limited

number of generations. The performance of the greedy algorithm is reasonably good for these

small size topologies, within 20% in the worst case from the optimal solution. Interestingly, it

happens in these small size topologies that, in all cases where the greedy algorithm hits the optimal

solution, it indeed achieves the lower bound L̄lb on L̄. This demonstrates that it is possible that

a globally optimal solution to an instance of the GOLD spanning tree problem can truly realizes
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Figure 5: Quality of solutions measured by (L̄ − L̄lb)/L̄lb(%) to the small size instances of the
GOLD spanning tree problem, obtained from 1) the greedy algorithm, 2) the weight-coded GA
and 3) the ILP formulation.
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Figure 6: Quality of solutions measured by (L̄ − L̄lb)/L̄lb(%) to the large size instances of the
GOLD spanning tree problem obtained from 1) the random search, 2) the greedy algorithm and
3) the weight-coded GA.
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Figure 7: CPU time required on a 2.4 GHz Pentium 4 machine for one computation of the greedy
algorithm and for one generation of the weight-coded GA.

the three lower bounds F lb, Llb
max and L̄lb simultaneously.

Such perfect results of the heuristic algorithm do not recur in Figure 6 for the large size

topologies. Nevertheless, the weight-coded GA yet hits the lower bound L̄lb in four instances and

approaches very closely to L̄lb in several other instances, when the ratio between N and M is

sufficiently large. The worst case performance of the weight-coded GA is below 8% from L̄lb. The

random search is not even able to hit a valid solution given that it searches the same number of

chromosomes as of the weight-coded GA. The worst case performance of the greedy algorithm

occurs in the graph with N = 100, which is below 16% from L̄lb. Compared with the weight-coded

GA, it is clear that the performance of the greedy algorithm is considerably good when the size of

the network topology is large. This is especially true in consideration of its lower computational

complexity and hence the smaller amount of CPU time it requires as demonstrated in Figure 7.

7 Conclusion and Future Work

We have proposed a new and challenging constrained spanning tree problem which we call GOLD

for overlay multicast networks. We have demonstrated that by solving this problem it is feasible

to obtain an overlay multicast tree with globally optimized latency and out-degree. We have

presented two efficient heuristic methods, which have been shown by simulation experiments to
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be scalable for large size network topologies and yield near-optimal routing performance from the

global perspective of overlay multicast networks.

The GOLD spanning tree problem proposed in this paper is based on a single-source multicast

service model, since the driving multicast applications to date are one-to-many including real-time

media streaming and file transfers [7]. In our future work, we plan to modify the formulation of

the GOLD spanning tree problem and extend the methodologies developed in this paper to cover

the multi-source multicast scenarios in overlay multicast networks. We are also interested in

designing efficient restoration algorithms to provide resilience capabilities for overlay multicast

trees [14].
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