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Abstract
We introduce SystemFC, which extends System F with support for non-syntactic
type equality. There are two main extensions: (i) explicit witnesses for type
equalities, and (ii) non-parametric type functions, givenmeaning by top-level
equality axioms. Unlike System F,FC is expressive enough to serve as a target
for several different source-language features, including Haskell’s newtype,
generalised algebraic data types, associated types, functional dependencies, and
perhaps more besides.FC can therefore serve as a typed intermediate language
in a compiler that supports these features.
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Abstract
We introduce SystemFC, which extends System F with support
for non-syntactic type equality. There are two main extensions: (i)
explicit witnesses for type equalities, and (ii) non-parametric type
functions, given meaning by top-level equality axioms. Unlike Sys-
tem F,FC is expressive enough to serve as a target for several differ-
ent source-language features, including Haskell’snewtype, gener-
alised algebraic data types, associated types, functionaldependen-
cies, and perhaps more besides.FC can therefore serve as a typed
intermediate language in a compiler that supports these features.

1. Introduction
GHC (the Glasgow Haskell Compiler) has a problem. It uses Sys-
tem F, extended with algebraic data types and case-expressions, as
its typed intermediate language. But Haskell has incubateda va-
riety of extensions that are hard to translate into this language:
in particular, functional dependencies [18], generalisedalgebraic
data types (GADTs) [39, 27], and associated types [6, 5]. When we
added GADTs to GHC, we also extended GHC’s intermediate lan-
guage with GADTs as well, even though GADTs are arguably an
over-sophisticated addition to a typed intermediate language. But
when it came to associated types, the translation became extremely
clumsy and, in some interesting corner cases, impossible.

In this paper we resolve this dilemma by presenting SystemFC, a
superset of F that is bothmore foundationalandmore powerfulthan
ad hocextensions such as GADTs or associated types.FC uses ex-
plicit type-equality coercions as witnesses, to justify explicit type-
cast operations. Like types, coercions are erased before running the
program, so they are guaranteed to have no run-time cost.

This single mechanism allows a very direct encoding of associ-
ated types and GADTs, and allows us to deal with some exotic
functional-dependency programs that GHC currently rejects on the
grounds that they have no System-F translation. Our specificcon-
tributions are these:
• We articulate the problem in§2, and give an informal descrip-

tion of our solution.

• We give a formal description of SystemFC, our new intermedi-
ate language, including its type system, operational semantics,
soundness result, and erasure properties (§3). There are two dis-

∗ Also Computer Science Department, Boston University,kevind@bu.edu

tinct extensions. The first, explicit equality witnesses, gives a
system equivalent in power to System F + GADTs (§3.2); the
second introduces non-parametric type functions, and addssub-
stantial new power, well beyond System F + GADTs (§3.3).

• The system is very general, but we are able to identifycon-
sistencyas a necessary and sufficient property for soundness
(§3.4). Conditions identified in earlier work on GADTs, asso-
ciated types, and functional dependencies, are special cases of
consistency.

• As one application, we give a type-preserving translation of
a source language supporting GADTs into SystemFC (§4).
As a second, we sketch a similar translation for associated
types (§5). The latter, and the corresponding translation for
functional dependencies, are more general than all previous
type-preserving translations for these features.

We have implementedFC in GHC. Although the implementation
is not yet complete, we have done enough to convince ourselves
thatFC can be incorporated in the guts of a complicated compiler
without great upheaval.

SystemFC has no new foundational content: rather, it is an in-
triguing and practically-useful application of techniques that have
been well studied in the type-theory community. We discuss this
and other related work in§6.

Although we have written this introduction as if GHC were theonly
compiler in the world, there is nothing GHC-specific about System
FC. Indeed,FC occupies an interesting place in the design space.
On the one hand, we know of no language smaller thanFC for
which typing is decidable and that is sufficient to serve as a target
for GADTs, associated types, and functional dependencies (see
also Appendix B and C); while on the other,FC seems much more
general than any of these specific source-language constructs, much
as System F is far more general than ML. In fact, we believe that FC

may have much wider application as a typed target for sophisticated
HOT (higher-order typed) source languages — a hypothesis that
remains to be tested.

2. The key ideas
The polymorphic lambda calculus, System F, is popular as a highly-
expressive typed intermediate language in compilers for functional
languages. Many source-language features can be desugaredinto
System F with little difficulty, but not all. The first such feature is
the algebraic data types of Haskell or ML, which are made more
complicated in Haskell because algebraic data types can capture
existential type variables. Whilst these can be encoded in System
F, the encoding is heavy, and compilers invariably extend System
F by adding algebraic data types, data constructors, andcase
expressions. We will useFA to describe System F extended in this
way, where the data constructors are allowed to have existential
components [21], type variables can be of higher kind, and type
constructor applications can be partial.
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Over the last few years, source languages (notably Haskell)have
started to explore language features that embodynon-syntactic
type equality. These features include functional dependencies [14],
generalised algebraic data types (GADTs) [39, 33], and associated
types [6, 5]. All three are difficult or impossible to translate into
System F — and yet the alternative of simply extending SystemF
by adding functional dependencies, GADTs, and associated types,
seems wildly unattractive. Where would one stop?

In the rest of this section we informally present SystemFC, an
extension of System F that resolves the dilemma. We show how
it can serve as a target for each of the three examples, and we
sketch further possibilities (such as closed type functions) thatFC

opens up. The formal details are presented in§3. Throughout we
usetypewriter font for source-code, anditalics for FC.

2.1 GADTs

Consider the following simple type-safe evaluator, often used as the
poster child of GADTs, written in the GADT extension of Haskell
supported by GHC:

data Exp a where
Zero :: Exp Int
Succ :: Exp Int -> Exp Int
Pair :: Exp b -> Exp c -> Exp (b, c)

eval :: Exp a -> a
eval Zero = 0
eval (Succ e) = eval e + 1
eval (Pair x y) = (eval x, eval y)

main = eval (Pair (Succ Zero) Zero)

The key point about this program, and the aspect that is hard to
express in System F, is that in theZero branch ofeval, the type
variablea is the same asInt, even though the two are syntactically
quite different. That is why the0 in theZero branch is well-typed
in a context expecting a result of typea.

Rather than extend the intermediate language with GADTs them-
selves — GHC’s current “solution” — we instead propose a general
mechanism of parameterising functions withtype equalitieswit-
nessed bycoercion types,which we calltype equality coercions.
Coercion types are passed around using System F’s existing type
passing facilities and enable representing GADTs by ordinary al-
gebraic data types encapsulating suchtype equality coercions.

Specifically, we translate the GADTExp to an ordinary algebraic
data type, where each variant is parametrised by a coercion:

data Exp : ⋆ → ⋆ where
Zero : ∀a. (a

.
= Int) ⇒ Exp a

Succ : ∀a. (a
.
= Int) ⇒ Exp Int → Exp a

Pair : ∀abc. (a
.
= (b, c)) ⇒ Exp b → Exp c → Exp a

So far, this is quite standard; indeed, several authors present
GADTs in the source language using a syntax involving explicit
equality constraints, similar to that above [39, 10]. However, for us
the equality constraints are extra type arguments to the constructor,
which must be given when the constructor is applied, and which
are brought into scope by pattern matching. The “⇒” is syntac-
tic sugar, and we sloppily omitted the kind of the quantified type
variables, so the type ofZero is really this:

Zero : ∀ a :⋆. ∀(co :a
.
= Int). Exp a

Herea ranges overtypes, of kind⋆, whileco ranges overcoercions,
of kind a

.
= Int . An important property of our approach is that

coercions are types, and hence,equalitiesτ1
.
= τ2 are dependent

kinds.An equality kindτ1
.
= τ2 categorises all coercion types that

witness the equality of the two typest1 and t2. So, our slogan is
propositions as kinds,andproofs as (coercion) types.

Coercion types may be formed from a set of elementary coer-
cions that correspond to the rules of equational logic; for example,
Int : (Int

.
= Int) is an instance of the reflexivity of equality and

sym co : (Int
.
= a), with co : (a

.
= Int), is an instance of symme-

try. A call of the constructorZero must be given a type (to instan-
tiatea) and a coercion (to instantiateco), thus for example:

Zero @Int @Int : Exp Int

We use@ to distinguish type, and hence also coercion, application
from value application. As indicated above, regular types like Int ,
when interpreted as coercions, witness reflexivity.

Just like value arguments, the coercions passed to a constructor
when it is built are made available again by pattern matching. Here,
then, is the code ofeval in FC:

eval = Λa :⋆.λe :Exp a.
case e of

Zero (co :a
.
= Int) →

0◮ sym co
Succ (co :a

.
= Int) (e ′ :Exp Int) →

(eval @Int e ′ + 1)◮ sym co
Pair (b :⋆) (c :⋆) (co :a

.
= (b, c))

(e1 :Exp b) (e2 :Exp c) →
(eval @b e1, eval @c e2)◮ sym co

The form Λa :⋆.e abstracts over types, as usual. In the first al-
ternative of thecase expression, the pattern binds the coercion
type argument ofZero to co. We use the symmetry of equality
in (sym co) to get a coercion fromInt to a and use that to cast the
type of0 to a, using thecast expression0◮ sym co. Cast expres-
sions have nooperationaleffect, but they serve to explain to the
type system when a value of one type (hereInt) should be treated
as another (herea), and provide evidence for this equivalence. In
general, the forme ◮ g has typet2 if e : t1 and g : (t1

.
= t2).

So,eval @Int (Zero @Int @Int)) is of typeInt as required by
eval ’s signature. We shall discuss coercion types and their kinds in
more detail in§3.2.

2.2 Associated types

Associated types are a recently-proposed extension to Haskell’s
type-class mechanism [6, 5]. They offer open, type-indexedtypes
that are associated with a type class. Here is a standard example:

class Collects c where
type Elem c -- associated type synonym
empty :: c
insert :: Elem c -> c -> c

The classCollects abstracts over a family of containers, where
the representation type of the container,c, defines (or constrains)
the type of its elementsElem c. That is,Elem is a type-level func-
tion that transforms the collection type to the element type. Just
asinsert is non-parametric – its implementation varies depend-
ing on c – so isElem. For example, a list container can contain
elements of any type supporting equality, and a bit-set container
might represent a collection of characters:

instance Eq e => Collects [e] where
{type Elem [e] = e; ...}

instance Collects BitSet where
{type Elem BitSet = Char; ...}

Generally, type classes are translated into System F [15] by(1) turn-
ing each class into a record type, called a dictionary, contain-
ing the class methods, (2) converting each instance into a dic-
tionary value, and (3) passing such dictionaries to whichever
function mentions a class in its signature. For example, a func-
tion of type negate :: Num a => a -> a will translate to
negate : NumDict a → a → a, whereNumDict is the record
generated from the classNum.
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A record only encapsulates values, so what to do about associ-
ated types, such asElem in the example? The system given in
[6] translates each associated type into an additional typeparam-
eter of the class’s dictionary type, provided the class and instance
declarations abide by some moderate constraints [6]. For example,
the classCollects translates to dictionary typeCollectsDict c e,
wheree representsElem c and where all occurrences ofElem c
of the method signatures have been replaced by the new type
parametere. So, the (System F) type forinsert would now be
CollectDict c e → e → c → c. The required type transforma-
tions become more complex when associated types occur in data
types; the data types have to be rewritten substantially during trans-
lation, which can be a considerable burden in a compiler.

Type equality coercions enable a far more direct translation. Here
is the translation ofCollects into FC:

type Elem : ⋆ → ⋆
data CollectsDict c =

Collects {empty : c; insert : Elem e → c → c}

as in a translation without associated types. Thetype declaration
in FC introduces a newtype function. An instance declaration for
Collects is translated to (a) a dictionary transformer for the values
and (b) an equality axiom that describes (part) of the interpretation
for the type functionElem . For example, here is the translation into
FC of theCollects [e] instance:

axiom elemList : (∀e :⋆.Elem [e])
.
= (∀e :⋆.e)

dCollectsList : ∀e :⋆.EqDict e → CollectsDict [e]
dCollectsList = ...

Theaxiom definition introduces a new, namedcoercion constant,
elemList , which serves as a witness of the equality asserted by
the axiom; here, that we can convert between types of the form
Elem [e] ande, for any ⋆-kindede. Using this coercion, we can
insert the character ’b’ into a list of characters[’a’ ] by applying
the instantiated coercionelemList @Char backwards to ’b’, thus:

(’b’ ◮ sym (elemList @Char)) : Elem [Char]

This argument fits the signature ofinsert .

In short, SystemFC supports a very direct translation of associated
types, in contrast to the clumsy one described in [6]. What ismore,
there are several obvious extensions to the latter paper that cannot
be translated at all, even clumsily, andFC supports them too, as we
sketch in§5.

2.3 Functional dependencies

Functional dependencies are another popular extension of Haskell’s
type-class mechanism [18]. With functional dependencies,we can
encode a function over typesF as a relation; i.e., the dependent type
parameters are not unlike associated types:

class F a b | a -> b
instance F Int Bool

A useful idiom in type-level programming is to abstract overthe
co-domain of a type function by way of an existential type, theb in
this example:

data T a = forall b. F a b => MkT (b -> b)

Then one might hope that the following function would type-check:

combine :: T a -> T a -> T a
combine (MkT f) (MkT f’) = MkT (f . f’)

After all, since the typea functionally determinesb, f and f’
must have the same type. Yet GHC rejects this program, because
it cannot be translated into SystemFA, becausef and f’ each
have distinct, existentially-quantified types, and there is no way to
express their (non-syntactic) identity inFA.

It is easy to translate this example intoFC, however:

type F1 : ⋆ → ⋆
data FDict : ⋆ → ⋆ → ⋆ where

F : ∀a b. (b
.
= F1 a) ⇒ FDict a b

axiom fIntBool : F1 Int
.
= Bool

data T : ⋆ → ⋆ where
MkT : ∀a b.FDict a b → (b → b) → T a

combine : T a → T a → T a
combine (MkT b (F (co : b

.
= F1 a)) f )

(MkT b′ (F (co′ : b′ .
= F1 a)) f ′)

= MkT @a @b (F @a @b @co) (f . (f ′ ◮ d2))
where

d1 : (b′ .
= b) = co′ ⊲ sym co

d2 : (b′ → b′ .
= b → b) = d1 → d1

The functional dependency is expressed as a type functionF1, with
one equality axiom per instance. (In general there might be many
functional dependencies for a single class.) The dictionary for class
F includes a witness that indeedb is equal toF1 a , as you can
see from the declaration of constructorF . When pattern matching
in combine we gain access to these witnesses, and can use them
to castf ′ so that it has the same type asf . (When constructing
the witnessesd1 and d2 we use the coercion combinatorssym ·
and· ⊲ ·, which represent symmetry and transitivity, respectively.
Moreover, we lift the coerciond1 to function space by applying the
type constructor→, which is admissible as plain types and type
constructors witness reflexivity.)

Even in the absence of existential types, there are reasonable source
programs involving functional dependencies that have no System F
translation, and hence are rejected by GHC. We have encountered
this problem in real programs, but here is a boiled-down example,
using the same classF as before:

class D a where { op :: F a b => a -> b }
instance D Int where { op _ = True }

The crucial point is that the contextF a b of the signature ofop
constrains the parameter of the enclosing type classD. This be-
comes a problem when typing the definition ofop in the instanceD
Int. In D’s dictionaryDDict , we haveop : ∀b.C a b → a → b
with b universally quantified, but in the instance declaration, we
would need to instantiateb with Bool . The instance declaration for
D cannot be translated into System F. UsingFC, this problem is
easily solved: the coercion in the dictionary forF enables the result
of op to be cast to typeb as required.

To summarise, a compiler that uses translation into System F(or
FA) must reject some reasonable (albeit slightly exotic) programs
involving functional dependencies, and also similar programs in-
volving associated types. The extra expressiveness of System FC

solves the problem neatly.

2.4 newtype, and closed type functions

FC is extremely expressive, and can support language features
beyond those we have discussed so far. Another example is Haskell
98’snewtype declarations:

newtype T = MkT (T -> T)

This declaresT to be isomorphic toT->T, but there is no good way
to express that in System F. In the past, GHC has handled this
with an ad hochack, butFC allows it to be handled directly, by
introducing a new axiom

axiom CoT : (T → T )
.
= T

More ambitiously, we may consider closed type functions, aspro-
vided by (for example)Ωmega [33]. (Associated types consti-
tute open,that is extensible, type functions.) To review the basic
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idea, consider the following definition of bounded sequences whose
length is encoded in their type:

kind Nat = Z | S Nat

data Seq a (n :: Nat) where
Nil :: Seq a Z
Cons :: a -> Seq a n -> Seq a (S n)

We define bounded sequences with a GADT parametrised by a kind
Nat encoding Peano numerals with two new type constructorsZ
:: Nat andS :: Nat -> Nat. Now, what is the signature of a
function appending one such sequence at another? The lengthof
the resulting sequence is clearly the sum of the lengths of the two
component sequences. Hence, we want to write something along
the following lines:

app :: Seq a n -> Seq a m -> Seq a (Plus n m)
app Nil ys = ys
app (Cons x xs) ys = Cons x (app xs ys)

HerePlus is a closed type function:

type Plus Z b = b
Plus (S a) b = S (Plus a b)

The type functionPlus can be directly translated intoFC; its
equations become equality axioms; and the GADTSeq is encoded
as in§2.1. FC does not support the declaration of algebraic data
kinds, such asNat, but that is an orthogonal extension that could
easily be added. (Or, perhaps better, one could re-use typesas
kinds, but that is another story.) In a similar manner, the recently
proposed extended algebraic data types [37], which add equality
and predicate constraints to GADTs, can be translated toFC.

2.5 Summary

In this section we have shown that System F is inadequate as
a typed intermediate language for source languages that embody
non-syntactic type equality — and Haskell has developed several
such extensions. We have sketchily introduced SystemFC as a
solution to these difficulties. We will formalise it in the next section.

3. System FC

The main idea inFC is that we pass around explicit evidence for
type equalities, in just the same way that System F passes types
explicitly. Indeed, inFC the evidenceγ for a type equalityis a
type; we use type abstraction for evidence abstraction, andtype
application for evidence application. Ultimately we eraseall types
before running the program, and thereby erase all type-equality
evidence as well, so the evidence passing has no run-time cost.
However, that is not the only reason that it is better to represent
evidence as atyperather than as aterm, as we discuss in§3.7.

Figure 1 defines the syntax of SystemFC, while Figure 2 gives
its static semantics. The notationan (wheren ≥ 0) means the
sequencea1 · · · an; the “n” may be omitted when it is unimportant.
Moreover, we use comma to mean sequence extension as follows:
an, an+1 , an+1. We usefv(x) to denote the free variables of a
structurex, which maybe an expression, type term, or environment.

3.1 Conventional features

SystemFC is a superset of System F. The syntax of types and
kinds is given in Figure 1. Like F,FC is impredicative, and has
no stratification of types into polytypes and monotypes. Themeta-
variablesϕ, ρ, σ, τ , υ, andγ all range over types, and hence also
over coercions. However, we adopt the convention that we useρ,
σ, τ , andυ in places where we can only have regular types (i.e.,
no coercions), and we useγ in places where we can only have
coercion types. We useϕ for types that can take either form. This
choice of meta-variables is only a convention to aid the human

Symbol Classes
a, b, c, co → 〈type variable〉
x, f → 〈term variable〉
C → 〈coercion constant〉
T → 〈value type constructor〉
Sn → 〈n-ary type function〉
K → 〈data constructor〉

Declarations
pgm → decl; e
decl → data T :κ → ⋆ where

K :∀a :κ.∀b : ι. σ → T a
| type Sn : κn → ι
| axiom C : σ1

.
= σ2

Sorts and kinds
δ → TY | CO Sorts
κ, ι → ⋆ | κ1 → κ2 | σ1

.
= σ2 Kinds

Types and Coercions
d → a | T Atom of sortTY
g → c | C Atom of sortCO
ϕ, ρ, σ, τ, υ, γ → a | C | T | ϕ1 ϕ2 | Sn ϕn | ∀a :κ.ϕ

| sym γ | γ1 ⊲ γ2 | γ @ϕ | left γ | right γ

(We useρ, σ, τ , andυ for regular types,γ for coercions, andϕ for both.)

Syntactic sugar
Types κ ⇒ σ ≡ ∀ :κ. σ

Terms
u → x | K Variables and data constructors
e → u Term atoms

| Λa :κ. e | e @ϕ Type abstraction/application
| λx :σ. e | e1 e2 Term abstraction/application
| let x :σ = e1 in e2

| case e1 of p → e2

| e◮ γ Cast

p → K b :κ x :σ Pattern

Environments
Γ → ǫ | Γ, u :σ | Γ, d :κ | Γ, g :κ | Γ, Sn :κ

Figure 1: Syntax of SystemFC

reader; formally, the coercion typing and kinding rules enforce the
appropriate restrictions. LikeFω (and Haskell), our system allows
types of higher kind; hence the type application formτ1 τ2.

Value type constructorsT range over (a) the built-in function type
constructor, (b) any other built-in types, such asInt , and (c) alge-
braic data types. We regard a function typeσ1 → σ2 as the curried
application of a built-in function type constructor to two arguments,
thus(→) σ1 σ2. Furthermore, although we give the syntax of arrow
types and quantified types in an uncurried way, we also sometimes
use the following syntactic sugar:

ϕn → ϕr ≡ ϕ1 → · · · → ϕn → ϕr

∀αn.ϕ ≡ ∀α1 · · · ∀αn.ϕ

An algebraic data typeT is introduced by a top-leveldata dec-
laration, which also introduces itsdata constructors. The type of a
data constructorK takes the form

K :∀a :κ. n∀b : ι. ϕ → T an
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Γ ⊢k κ : δ

(Star)
Γ ⊢k ⋆ : TY

(FunK)
Γ ⊢k κ1 : TY Γ ⊢k κ2 : TY

Γ ⊢k κ1 → κ2 : TY
(EqTy)

Γ ⊢TY σ1 : κ Γ ⊢TY σ2 : κ

Γ ⊢k σ1
.
= σ2 : CO

Γ ⊢TY σ : κ

(AtomT)
d : κ ∈ Γ Γ ⊢k κ : TY

Γ ⊢TY d : κ
(AppT)

Γ ⊢TY σ1 : κ1 → κ2 Γ ⊢TY σ2 : κ1

Γ ⊢TY σ1 σ2 : κ2

(SConT)
(Sn : κn → ι) ∈ Γ Γ ⊢TY σ : κn

Γ ⊢TY Sn σn : ι
(AllT)

Γ, a : κ ⊢TY σ : ⋆ Γ ⊢k κ : δ a 6∈ fv(Γ)

Γ ⊢TY ∀a :κ1. σ : ⋆

Γ ⊢CO γ : σ
.
= τ

(Refl)
a : κ ∈ Γ Γ ⊢k κ : TY

Γ ⊢CO a : a
.
= a

(AtomC)
g : σ

.
= τ ∈ Γ Γ ⊢TY σ : κ

Γ ⊢CO g : σ
.
= τ

(InstT)
Γ ⊢CO γ : ∀a :κ. σ

.
= ∀b :κ. τ

Γ ⊢k κ : TY Γ ⊢TY υ : κ

Γ ⊢CO γ @υ : [υ/a]σ
.
= [υ/b]τ

(InstC)
Γ ⊢CO γ1 : (τ1

.
= τ2 ⇒ σ1)

.
= (υ1

.
= υ2 ⇒ σ2)

Γ ⊢CO γ2 : υ1
.
= υ2

Γ ⊢CO γ1 @γ2 : σ1
.
= σ2

(AllT)
Γ, a : κ ⊢CO γ : σ

.
= τ

Γ ⊢k κ : TY a 6∈ fv(Γ)

Γ ⊢CO ∀a :κ. γ : ∀a :κ. σ
.
= ∀a :κ. τ

(AllC)
Γ ⊢CO γ1 : τ1

.
= υ1 Γ ⊢CO γ2 : τ2

.
= υ2

Γ ⊢k τ1
.
= τ2 : CO Γ ⊢CO γ : σ1

.
= σ2

Γ ⊢CO (γ1
.
= γ2) ⇒ γ : ((τ1

.
= τ2) ⇒ σ1)

.
= ((υ1

.
= υ2) ⇒ σ2)

(Comp)
Γ ⊢CO γ1 : σ1

.
= τ1 Γ ⊢CO γ2 : σ2

.
= τ2

Γ ⊢TY σ1 σ2 : κ

Γ ⊢CO γ1 γ2 : σ1 σ2
.
= τ1 τ2

(Sym)
Γ ⊢CO γ : σ

.
= τ

Γ ⊢CO sym γ : τ
.
= σ

(Trans)
Γ ⊢CO γ1 : σ1

.
= σ2

Γ ⊢CO γ2 : σ2
.
= σ3

Γ ⊢CO γ1 ⊲ γ2 : σ1
.
= σ3

(SComp)
Γ ⊢CO γ : σ

.
= τ

n
Γ ⊢TY Sn σn : κ

Γ ⊢CO Sn γn : Sn σn .
= Sn τn

(DLeft)
Γ ⊢CO γ : σ1 σ2

.
= τ1 τ2

Γ ⊢CO left γ : σ1
.
= τ1

(DRight)
Γ ⊢CO γ : σ1 σ2

.
= τ1 τ2

Γ ⊢CO right γ : σ2
.
= τ2

Γ ⊢e e : σ

(Var)
u : σ ∈ Γ

Γ ⊢e u : σ
(Case)

Γ ⊢e e : σ Γ ⊢p p → e : σ → τ

Γ ⊢e case e of p → e : τ
(Let)

Γ ⊢e e1 : σ1 Γ, x : σ1 ⊢e e2 : σ2

Γ ⊢e let x :σ1 = e1 in e2 : σ2

(Cast)
Γ ⊢e e : σ Γ ⊢CO γ : σ

.
= τ

Γ ⊢e e◮ γ : τ
(Abs)

Γ ⊢TY σx : ⋆

Γ, x : σx ⊢e e : σ

Γ ⊢e λx :σx. e : σx → σ

(App)
Γ ⊢e e1 : σ2 → σ1

Γ ⊢e e2 : σ2

Γ ⊢e e1 e2 : σ1

(TAbs)
Γ, a : κ ⊢e e : σ Γ ⊢k κ : δ a 6∈ fv(Γ)

Γ ⊢e Λa :κ. e : ∀a.σ
(TApp)

Γ ⊢e e : ∀a :κ.σ Γ ⊢k κ : δ Γ ⊢δ ϕ : κ

Γ ⊢e e @ϕ : σ[ϕ/a]

Γ ⊢p p → e : σ → τ

(Alt)
K : ∀a :κ.∀b : ι.σ → T a ∈ Γ θ = [υ/a] Γ, b :θ(ι), x :θ(σ) ⊢e e : τ

Γ ⊢p K b :θ(ι) x :θ(σ) → e : T υ → τ

Γ ⊢ decl : Γ′

(Data)
Γ ⊢TY σ : ⋆ Γ ⊢k κ : TY

Γ ⊢ (data T :κ where K :σ) : (T :κ, K :σ)

(Type)
Γ ⊢k κ : TY

Γ ⊢ (type S : κ) : (S :κ)
(Coerce)

Γ ⊢k κ : CO

Γ ⊢ (axiom C : κ) : (C :κ)

Γ ⊢ pgm : σ

(Pgm)

Γ ⊢ decl : Γd Γ = Γ0, Γd

Γ is consistent Γ ⊢ e : σ

Γ0 ⊢ decl; e : σ

Figure 2: Typing rules for SystemFC
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The firstn quantified type variablesa appear in the same order in
the return typeT a. The remaining quantified type variables bind
either existentially quantified type variables, or (as we shall see)
coercions.

Types are classified bykindsκ, using the⊢TY judgement in Fig-
ure 2. Temporarily ignoring the kindσ1

.
=σ2, the structure of kinds

is conventional:⋆ is the kind of proper types (that is, the types that
a term can have), while higher kinds take the formκ1 → κ2. Kinds
guide type application by way of Rule (AppT). Finally, the rules
for judgements of the formΓ ⊢k κ : δ ensure the well-formedness
of kinds; we will return to the meaning ofδ when discussing the
kinds of coercion types.

The syntax of terms is largely conventional, as are their type rules
which take the formΓ ⊢e e : σ. As in F, every binder has an
explicit type annotation, and type abstraction and application are
also explicit. There is acase expression to take apart values built
with data constructors. The patterns of a case expression are flat —
there are no nested patterns — and bind existential type variables,
coercion variables, and value variables. For example, suppose

K : ∀a :⋆.∀b :⋆. a → b → (b → Int) → T a

Then acase expression that deconstructsK would have the form

case e of K (b :⋆) (v :a) (x :b) (f :b → Int) → e′

Note that only the existential type variableb is bound in the pattern.
To see why, one need only realise thatK ’s type is isomorphic to:

K : ∀a :⋆. (∃b :⋆. (a, b, (b → Int))) → T a

3.2 Type equality coercions

We now describe the unconventional features of our system. To
begin with, consider the fragment of SystemFC that omits type
functions (i.e.,type andaxiom declarations). This fragment is
sufficient to serve as a target for translating GADTs, and so is of
interest in its own right. We return to type functions in§3.3.

The essential addition to plain F (beyond algebraic data types and
higher kinds) is an infrastructure to construct, pass, and apply type-
equality coercions.In FC, a coercion,γ, is a special sort of type
whose kind takes the unusual formσ1

.
= σ2. This kind indicates

thatγ is a proof that the typesσ1 andσ2 are equal.

More concretely, we can use a coercionγ : (σ1
.
= σ2), to cast an

expressione : σ1 to type σ2 using thecast expression(e ◮ γ)
(see Rule (Cast) in Figure 2). The term syntax for type abstraction
Λa.e and applicatione @ϕ also serves for coercion abstraction and
application.

Coercions are types, but they have their own kinding judgement
⊢CO, given in Figure 2. The type of a term often has the form
∀co : (σ1

.
=σ2).τ , whereτ does not mentionco — indeed, the kind

system would reject any mention ofco in τ . We allow the standard
syntactic sugar for this case, writing it thus:(σ1

.
= σ2) ⇒ τ (see

Figure 1). Incidentally, note that although coercions are types, they
do not classify values. This is standard inFω; for example, there
are no values whose type has kind⋆ → ⋆.

More complex coercions can be built by combining or transform-
ing other coercions, such that every syntactic form corresponds to
an inference rule of equational logic. We have the reflexivity of
equality for a given typeσ (witnessed by the type itself), symme-
try ‘ sym γ’, transitivity ‘γ1 ⊲ γ2’, type composition ‘γ1 γ2’, and
decomposition ‘left γ’ and ‘ right γ’. The typing rules for these
coercion expressions are given in Figure 2.

Here is an example, taken from§2. Suppose a GADTExpr has a
constructorSucc with type

Succ : ∀ a :⋆. (a
.
= Int) ⇒ Exp Int → Exp a

(notice the use of the syntactic sugarκ ⇒ σ). Then we can con-
struct a value of typeExp Int thus:Succ @Int @Int e. The sec-
ond argumentInt is a regular type used as a coercion witness-
ing reflexivity — i.e., we haveInt : (Int

.
= Int) by Rule (Refl).

Rule (Refl) itself only covers type variables and constructors, but
in combination with Rule (Comp), the reflexivity of complex types
is also covered. More interestingly, here is a function thatdecom-
poses a value of typeExp a:

foo : ∀ a :⋆. Exp a → a → a
= Λa :⋆. λe :Exp a. λx :a.
case e of

Succ (co :a
.
= Int) (e ′ :Exp Int) →

(foo @Int e ′ 0 + (x ◮ co))◮ sym co

Thecase pattern binds the coercionco, which provides evidence
that a and Int are the same type. This evidence is needed twice,
once to castx : a to Int , and once to coerce theInt result back to
a, via the coercion(sym co).

Coercion composition allows us to “lift” coercions througharbi-
trary types. For example, if we have a coercionγ :σ1

.
= σ2 then the

coercionTree γ is evidence thatTree σ1
.
= Tree σ2. More gener-

ally, if γ : σ1
.
= σ2, then

[γ/a]ϕ : [σ1/a]ϕ
.
= [σ2/a]ϕ

for any typeϕ, including polytypes. As a more elaborate example,

∀b.γ → Int : (∀b.σ1 → Int)
.
= (∀b.σ2 → Int)

Dually decomposition enables us to take evidence apart. Forex-
ample, assumeγ′ :Tree σ1

.
= Tree σ2; then, (right γ′) is evi-

dence thatσ1
.
= σ2. Decomposition is necessary for the trans-

lation of GADT programs toFC, but was problematic in ear-
lier approaches [3, 9]. The soundness of decomposition relies, of
course, on algebraic types being injective; i.e.,Tree σ1 = Tree σ2

iff σ1 = σ2. Notice, too, thatTree by itself is a coercion relating
two types of higher kind.

3.3 Type functions

Our last step extends the power ofFC by addingtype functions
and equality axioms, which are crucial for translating associated
types, functional dependencies, and the like. A type function Sn

is introduced by a top-leveltype declaration, which specifies its
kind κn → ι, but says nothing about itsinterpretation. The index
n indicates thearity of S. The syntax of types requires thatSn

always appears applied to its full complement ofn arguments (§3.4
explains why). The arity subscript should be considered part of the
name of the type constructor, although we will often elide it, writing
Elem σ rather thanElem1 σ, for example.

A type function receives its interpretation by one or more equal-
ity axiom definitions. Each axiom introduces a coercion constant,
whose kind specifies the types between which the coercion con-
verts. For example,

axiom elemBitSet : Elem BitSet
.
= Char

introduces the named coercion constantelemBitSet . Given an
expressione : Elem BitSet , we can use the axiom via the coercion
constant as in the caste ◮ elemBitSet , which is of typeChar .

We often want to state axioms involving parametric types, thus:

axiom elemList : (∀e :⋆. Elem [e])
.
= (∀e :⋆. e)

To use this axiom as a coercion, say, for lists of integers, weneed
to apply the coercion constant to a type argument:

elemList @Int : (Elem [Int ]
.
= Int)

which appeals to Rule (InstT) of Figure 2. The introduction rule
corresponding to the elimination Rule (InstT) is Rule (AllT). These
introduction and elimination rules for parametrisation over types of
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terms is mirrored in the coercion world by Rules (InstC) and (AllC).
(Remember thatκ ⇒ σ is sugar for∀ : κ. σ.) The corresponding
coercions are needed when a coercion is applied to a GADT in the
scrutinee of acase expression.

It may be surprising that we use one quantifier on each side of the
equality, instead of quantifying over the entire equality as in

∀a :⋆. (Elem [a]
.
= a) -- Not well-formedFC!

The advantage of the notation used in the definition ofelemList
is that we do not need quantifiers as part of the kind structure,
which simplifies matters significantly. Moreover, this notation is
justified by the logical structure of parametricity as captured in
Abadi et al.’s logical relations between parametric types [1]. A
well known instance of such a logical relation is the subsump-
tion relation between parametric types, of which type equal-
ity is the symmetric closure. For example, we obviously have
(∀b.∀a.a → b) ≤ (∀b.Int → b).

3.4 Consistency and saturation

In SystemFC, we refine the equational theory of types by giving
non-standard equality axioms.So what is to prevent us declaring
unsound axioms?For example, one could easily write a program
that would crash, using the coercion constant introduced bythe
following axiom:

axiom utterlybogus : Int
.
= Bool

(whereInt andBool are both algebraic data types). There are many
ad hocways to restrict the system to exclude such cases. The most
general one is this: we require that the axioms, taken together, are
consistent. We essentially adapt the standard notion of consistency
of sets of equations [12, Section 3] to our setting.

DEFINITION 1 (Value type).A typeσ is an value typeif it is of
form∀a.υ or T υ.

DEFINITION 2 (Consistency).Γ is consistentiff

1. If Γ ⊢CO γ : T σ
.
= υ, andυ is a value type, thenυ = T τ .

2. If Γ ⊢CO γ : ∀a :κ. σ
.
= υ, and υ is a value type, then

υ = ∀a :κ. τ .

That is, if there is a coercion connecting twovalue types — al-
gebraic data types, built-in types, functions, or foralls —then the
outermost type constructors must be the same. For example, there
can be no coercion of typeBool

.
= Int . It is clear that the condi-

tion is necessary for soundness, and it turns out (§3.5) that it is also
sufficient. Rule (Pgm) in Figure 2 enforces consistency.

Consistency is both necessary and sufficient for soundness of FC,
but it is not obvious how to check whether a particular program is
consistent. For particular classes of programs, however, consistency
is easy to guarantee, as we will see for theFC programs generated
from GADTs (in§4) and associated types (in§5).

We remarked earlier that applications of type functionsSn are
required to be saturated. The reason for this insistence is,again,
consistency. We definitely want to allow abstract types to benon-
injective; for example:

axiom c1 : S1 Int
.
= Bool

axiom c2 : S1 Bool
.
= Bool

Here, bothS1 Int andS1 Char are represented by theBool type.
But now we can form the coercion(c1 ⊲ (sym c2)) which has
typeS1 Int

.
= S1 Bool , and from that we must not be able to de-

duce (viaright) that Int
.
= Bool , because that would violate con-

sistency! Applications of type functions are therefore syntactically
distinguished so thatright andleft apply only to ordinary type ap-
plication (Rules (DLeft) and (DRight) in Figure 2), and not to appli-
cations of type functions. The same syntactic mechanism prevents

a partial type-function application from appearing as a type argu-
ment, thereby instantiating a type variable with a partial application
— in effect, type variables of higher-kind range only over injective
type constructors.

However, it is perfectly acceptable for a type function to have an
arity of 1, say, but a higher kind of⋆ → ⋆ → ⋆. For example:

type HS1 : ⋆ → ⋆ → ⋆
axiom c1 : HS1 Int

.
= [ ]

axiom c2 : HS1 Bool
.
= Maybe

An application ofHS to one type is saturated, although it has kind
⋆ → ⋆ and can be applied (via ordinary type application) to another
type.

3.5 Dynamic semantics and soundness

The operational semantics ofFC is shown in Figure 3. In the
expression reductions we omit the type annotations on binders to
save clutter, but that is mere abbreviation.

An unusual feature of our system, which we share with Crary’s
coercion calculus for inclusive subtyping [11], is that values are
stratified intocvaluesandplain values; their syntax is in Figure 3.
Evaluation reduces a closed term to acvalue, or diverges. A cvalue
is either aplain valuev (an abstraction or saturated constructor
application), or it is a value wrapped in a single cast, thusv ◮ γ
(Figure 3). The latter form is needed because we cannot reduce a
term to a plain value without losing type preservation; for example,
we cannot reduce(True ◮ co), whereco :Bool

.
= S any further

without changing its type fromS to Bool .

However, there are three situations when a cvalue will not do,
namely as the function part of a type application or functionappli-
cation, and as the scrutinee of acase expression. Rules (TPush),
(Push) and (PushC) deal with those three situations, by pushing the
coercion inside the term, turning the cast into a plain value. Notice
that all three rules leave thecontext(the application or case expres-
sion) unchanged; they rewrite the function or case scrutinee respec-
tively. Nevertheless, the context is necessary to guarantee that the
type of the rewritten term is a function or data type respectively.

Rules (TPush) and (Push) are quite straightforward, but (PushC) is
more complicated. Here is an example, stripped of thecase con-
text, whereCons : ∀a.a → [a] → [a], andγ : [Int ]

.
= [S Bool ]:

Cons Int e1 e2 ◮ γ −→ Cons (S Bool) (e1 ◮ right γ)
(e2 ◮ ([ ]) (right γ))

The coercion wrapped around the application ofCons is pushed in-
side to wrap each of its components. (Of course, an implementation
does none of this, because types and coercions are erased.)

We derived all three “push” rules in a systematic way. For example,
for (Push) we asked whate′ (involving e andγ) would ensure that
((λx.e) ◮ γ) = λy.e′. The reader may like to check that if the
left-hand side of each rule is well-typed (in the top-level context)
then so is the right-hand side.

Notice that evaluation affectsexpressionsonly, not types. Since co-
ercions are types, it follows that coercions are not evaluated either.
This means that we can completely avoid the issue of normalisation
of coercions, what a coercion “value” might be, and so on.

THEOREM1 (Progress).Suppose thatΓ is consistent, andΓ ⊢e

e : σ. Then eithere is a cvalue, ore −→ e′ andΓ ⊢e e′ : σ for
some terme′.

PROOF. By structural induction one. The interesting case is for
application. SupposeΓ ⊢e e1 e2 : σ. ThenΓ ⊢e e1 : τ → σ and
Γ ⊢e e2 : τ . Then there are three well-typed possibilities fore:

1. e1 is not a cvalue. Then by the induction hypothesis,e1 can take
a (type-preserving) step.
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Values:
Plain values v ::= Λa.e | λx.e | K ē
Cvalues cv ::= v ◮ γ | v

Evaluation contexts:
e −→ e′

E[e] −→ E[e′]
E ::= [ ] | E e | E τ | E ◮ γ

Expression reductions:

(TBeta) (Λa.e) @ϕ −→ [ϕ/a]e
(Beta) (λx.e) e′ −→ [e′/x]e

(Case) case (K σ ϕ e) of . . . K b x → e′ . . . −→ [ϕ/b, e/x]e′

(Comb) (v ◮ γ1)◮ γ2 −→ v ◮ (γ1 ⊲ γ2)

(TPush) ((Λa :κ. e)◮ γ) @ϕ −→ (Λa :κ′. (e◮ γ @a)) @ϕ
where γ : ∀b :κ. σ1

.
= ∀c :κ′. σ2

(Push) ((λx.e)◮ γ) e′ −→ (λy.([(y ◮ γ1)/x]e◮ γ2)) e′

where γ1 = sym (right (left γ)) – coercion for argument
γ2 = right γ – coercion for result

(PushC) case (K σ ϕ e◮ γ) of p → rhs −→ case (K τ ϕ′ e′) of p → rhs
where γ : T σ

.
= T τ

K : ∀a :κ.∀b : ι. ρ → T a

ϕ′

i =


sym θ(υ1)⊲ ϕi ⊲ θ(υ2) if bi : υ1

.
= υ2

ϕi otherwise
e′i = ei ◮ θ(ρi)

θ = [γi/ai, ϕi/bi]
γi = right (left . . . (left| {z }

i−1

γ))

Figure 3: Operational semantics

2. e1 is is a plain value which, to be well typed, must be of form
λx.e3. Hence we can take a (Beta) step.

3. e1 is v ◮ γ. By consistencyv must have a function type. Since
v is a value,v must be of formλx.e3, so we can take a type-
preserving step using (Push).

The other cases can be proved in a similar way. For example,
supposeΓ ⊢e case e of p → e : τ . ThenΓ ⊢e e : σ and
Γ ⊢p p → e : σ → τ . As before, we can distinguish among the
following three well-typed possibilities for case expressions:

1. e is not a cvalue. Then by the induction hypothesis,e can take
a (type-preserving) step.

2. e is a plain value which, to be well typed, must be of form
K e′. Hence we can take a (Case) step (we assume that case
expressions have exhaustive alternatives).

3. e is v ◮ γ. By consistency and sincev is a value,v must be of
form K e′, so we can take a type-preserving step using (PushC).

COROLLARY 1 (Syntactic Soundness).Let Γ be consistent and
Γ ⊢e e : σ. Then eithere −→∗ cv and Γ ⊢e cv : σ for some
cvaluecv, or the evaluation diverges.

We give a call-by-name semantics here, but a call-by-value seman-
tics would be equally easy: simply extend the syntax of evaluation
contexts with the formv E, and restrict the argument of rule (Beta)
to be a cvalue.

3.6 Type and Coercion Erasure

SystemFC permits syntactic type erasure much as plain System
F does, thereby providing a solid guarantee that coercions impose
absolutely no run-time penalty. Like types, coercions simply pro-

vide a statically-checkable guarantee that there will be norun-time
crash.

Formally, we can define an erasure functione◦, which erases all
types and coercions from the term, and prove the standard erasure
theorem (see Appendix A):

THEOREM2. GivenΓ ⊢e e1 : σ, (a) eithere1 is a cvalue ande1
◦

is a value or (b) we havee1 −→ e2 and eithere1
◦ −→ e2

◦ or
e1

◦ = e2
◦.

The dynamic semantics of Figure 3 makes all the coercions in the
program bigger and bigger. This is not a run-time concern, because
of erasure, but it might be a concern for compiler transformations.
Fortunately there are many type-preserving simplifications that can
be performed on coercions, such as:

symσ = σ
left (Tree Int) = Tree
e◮ σ = e

and so on. The compiler writer is free (but not obliged) to usesuch
identities to keep the size of coercions under control.

In this context, it is interesting to note the connection of type-
equality coercions to the notion of proof objects in machine-
supported theorem proving. Coercion terms are essentiallyproof
objects of equational logic and the above simplification rules, as
well the manipulations performed by rules, such as (PushL),corre-
spond to proof transformations.

3.7 Summary and observations

FC is an intensional type theory, like F: that is,every term encodes
its own typing derivation. This is bad for humans (because the
terms are bigger) but good for a compiler (because type checking
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is simple, syntax-directed, and decidable). An obvious question is
this: could we maintain simple, syntax-directed, decidable type-
checking forFC with less clutter? In particular, a coercion is an
explicit proof of a type equality; could we omit the coercions,
retaining only their kinds, and reconstructing the proofs on the fly?

No, we could not. Previous work showed that such proofs can
indeed be inferred for the special case of GADTs [39, 31]. Butour
setting is much more general because of our type functions, which
in turn are necessary to support the source-language extensions
we seek. Reconstructing an equality proof amounts to unification
modulo an equational theory (E-unification), which is undecidable
even in various restricted forms, let alone in the general case [2].
In short, dropping the explicit proofs encoded by coercionswould
render type checking undecidable (see Appendix C for a formal
proof).

Why do we express coercions astypes, rather than asterms? Doing
so is more conventional; for example, GADTs can be used to
encode equality evidence [33,§9], via a GADT of the form

data Eq a b where { EQ :: Eq a a }

FC turns this idea on its head, instead using equality evidenceto
encode GADTs. This is good for several reasons. First,FC is more
foundational than System F plus GADTs. Second,FC expresses
equality evidence intypes, which permit erasure; GADTs encode
equality evidence asvalues, and these values cannot be erased.
Why not? Because in the presence of recursion, the mere existence
of an expression of typeEq a b is not enough to guarantee thata is
the same asb, because⊥ has any type. Instead, one mustevaluate
evidence before using it, to ensure that it converges. In contrast, our
language of types deliberately lacks recursion, and hence coercions
can be trusted simply by virtue of being well-kinded.

4. Translating GADTs
With FC in hand, we now sketch the translation of a source lan-
guage supporting GADTs intoFC. As highlighted in§2.1, the key
idea is to turn type equalities into coercion types. This approach
strongly resembles the dictionary-passing translation known from
translating type classes [15]. The difference is that we do not turn
type equalities into values, rather, we turn them into types.

We do not have space to present a full source language supporting
GADTs, but instead sketch its main features; other papers give full
details [39, 10]. We assume that the GADT source language hasthe
following syntax of types:

Polytypes π → η | ∀a.π
Constrained types η → t | t

.
= t ⇒ η

Monotypes τ → a | τ → τ | T τ

We deliberately re-useFC’s syntax τ1
.
= τ2 to describe GADT

type equalities. These equality constraints are used in thesource-
language type of data constructors. For example, theSucc con-
structor from§2.1 would have type

Succ : ∀a.(a
.
= Int) ⇒ Int → Exp a

Notice that this alreadyis anFC type.

To keep the presentation simple, we use a non-syntax-directed
translation scheme based on the judgement

C; Γ ⊢GADT e : π  e′

We read it as “assuming constraintC and type environmentΓ,
the source-language expressione has typeπ, and translates to the
FC expressione′”. The translation scheme can be made syntax-
directed along the lines of [27, 31, 35]. The constraintC consists
of a set of named type equalities:

C → ǫ | C, c :τ1
.
= τ2

The most interesting translation rules are shown in Figure 4, where
we assume for simplicity that all quantified GADT variables are
of kind ∗. The Rules (Var), (∀-Intro), and (∀-Elim), dealing
with variables and the introduction and elimination of polymor-
phic types, are standard for translating Hindley/Milner toSystem
F [17]. The introduction and elimination rules for constrained
types, Rules (C-Intro) and (C-Elim), relate to the standardtype-
class translation [15], but where class constraints inducevalue
abstraction and application, equality constraints inducetype ab-
straction and application.

The translation of pattern clauses in Rule (Case) is as expected. We
replace each GADT constructor by an appropriateFC constructor
which additionally carries coercion types representing the GADT
type equalities. We assume that source patterns are alreadyflat.

Rule (Eq) applies the cast construct to coerce types. For this, we
need a coercionγ witnessing the equality of the two types, and we
simply re-use theFC judgementΓ ⊢CO γ : τ1

.
= τ2 from Figure 2.

In this context,γ is an “output” of the judgement, a coercion whose
syntactic structure describes the proof ofτ1

.
= τ2. In other words,

C ⊢CO γ : τ1
.
= τ2 represents the GADT condition that the equality

context “C impliesτ1
.
= τ2”.

Finding aγ is decidable, using an algorithm inspired by the uni-
fication algorithm [20]. The key observation is that the statement
“C implies τ1

.
= τ2” holds if θ(τ1) = θ(τ2) whereθ is the most

general unifier ofC. W.l.o.g., we neglect the case thatC has no
unifier, i.e.C is unsatisfiable. Program parts which make use of
unsatisfiable constraints effectively represent dead-code.

Roughly, the type coercion construction procedure proceeds as
follows. Given the assumption setC and our goalτ1

.
= τ2 we

perform the following calculations:

Step 1 : We normalise the constraintsC = c : τ ′
.
= τ ′′ to the

solvedform γ : a
.
= υ whereai < ai+1 andfv(ā) ∩ fv(ῡ) = ∅

by decomposing with Rule (DRight) (we neglect higher-kinded
types for simplicity) and applying Rule (Sym) and (Trans). We
assume some suitable ordering among variables with< and
disallow recursive types.

Step 2 : Normalisec′ : τ1
.
= τ2 wherec′ is fresh to the solved form

γ′ : a′
.
= υ′ wherea′

j < a′

j+1.

Step 3 : Match the resulting equations from Step 2 against equa-
tions from Step 1.

Step 4 : We obtainγ by reversing the normalisation steps in Step 2.

Failure in any of the steps implies thatC ⊢CO γ : τ1
.
= τ2 does

not hold for anyγ. A constraint-based formulation of the above
algorithm is given in [36].

To illustrate the algorithm, let’s considerC = {c1 : [a]
.
= [b], c2 :

b = c} andc3 : [a]
.
= [c], with a < b < c.

Step 1: NormalisingC yields{right c1 : a
.
= b, c2 : b = c} in an

intermediate step. We apply rule (Trans) to obtain the solved form
{(right c1)⊲ c2 : a

.
= c, c2 : b = c}

Step 2: Normalisingc3 : [a]
.
= [c] yields(right c3) : a

.
= c.

Step 3: We can matchright c3 : a
.
=c against(right c1⊲c2) : a

.
=c.

Step 4: Reversing the normalisation steps in Step 2 yieldsc3 =
[right c1 ⊲ c2], as⊢CO [ ] : [ ]

.
= [ ].

The following result can be straightforwardly proven by induction
over the derivation.

LEMMA 1 (Type Preservation).Let C; ∅ ⊢GADT e : t  e′.
Then,C ⊢e e′ : t.

In §3.4, we saw that only consistentFC programs are sound. It
is not hard to show that this the case for GADTFC programs, as
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C; Γ ⊢GADT e : π  e′

(Var)
(x : π) ∈ Γ

C; Γ ⊢GADT x : π  x
(Eq)

C; Γ ⊢GADT e : τ  e′ C ⊢CO γ : τ
.
= τ ′

C; Γ ⊢GADT e : τ ′  e′ ◮ γ

(∀-Intro)
C; Γ ⊢GADT e : π  e′ a 6∈ fv(C, Γ)

C; Γ ⊢GADT e : ∀a.π  Λa :∗. e′
(C-Intro)

C, c :τ1
.
= τ2; Γ ⊢GADT e : η  e′

C; Γ ⊢GADT e : τ1
.
= τ2 ⇒ η  Λ(c :τ1

.
= τ2). e

′

(∀-Elim)
C; Γ ⊢GADT e : ∀a.π  e′

C; Γ ⊢GADT e : [τ/a]π  e′ τ
(C-Elim)

C; Γ ⊢GADT e : τ1
.
= τ2 ⇒ η  e′ C ⊢CO γ : τ1

.
= τ2

C; Γ ⊢GADT e : η  e′ γ

C; Γ ⊢GADT p → e : π → π  p′ → e′

(Alt)

K :: ∀ā, b̄.τ ′
.
= τ ′′ ⇒ τ → T ā ā ∩ b̄ = ∅ fv(τ, τ ′, τ ′′) = fv(ā, b̄) θ = [υ/a]

C, c :θ(τ ′)
.
= θ(τ ′′); Γ, x :θ(τ ) ⊢GADT e : τ ′  e′ c̄ fresh

C; Γ ⊢GADT K x → e : T υ → τ ′  K (b :∗) (c :θ(τ ′)
.
= θ(τ ′′)) (x :θ(τ )) → e′

Figure 4: Type-Directed GADT toFC Translation (interesting cases)

GADT programs only make use of syntactic (a.k.a. Herbrand) type
equality, and so, require no type functions at all.

THEOREM3 (GADT Consistency).If dom(Γ) contains no type
variables or coercion constants, andΓ ⊢CO γ : σ1

.
= σ2, then

σ1 = σ2 (i.e. the two are syntactically identical).

The proof is by induction on the structure ofγ. Consistency is an
immediate corollary of Theorem 3. Hence, all GADTFC programs
are sound. From the erasure soundness (cf. Appendix A), we can
immediately conclude that the semantics of GADT programs re-
mains unchanged (wheree◦ is e after type erasure).

LEMMA 2. Let ∅; ∅ ⊢GADT e : t  e′. Then,e′ ֌∗ v iff
e◦ ֌∗ v wherev is some base value, e.g. integer constants.

5. Translating Associated Types
In §2.2, we claimed thatFC permits a more direct and more general
type-preserving translation of associated types than the translation
to plain System F described in [6]. In fact, the translation of as-
sociated types toFC is almost embarrassingly simple, especially
given the translation of GADTs toFC from §4. In the following,
we outline the additions required to the standard translation of type
classes to System F [15] to support associated types.

5.1 Translating expressions

To translate expressions, we need to add three rules to the standard
system of [15], namely Rules (Eq), (C-Intro), and (C-Elim) from
Figure 4 of the GADT translation. Rule (Eq) permits casting ex-
pression with types including associated types to equal types where
the associated types have been replaced by their definition.Strictly
speaking, the Rules (C-Intro) and (C-Elim) are used in a moregen-
eral setting during associated type translation than during GADT
translation. Firstly, the setC contains not only equalities, but both
equality and class constraints. Secondly, in the GADT translation
only GADT data constructors carry equality constraints, whereas
in the associated type translation, any function can carry equality
constraints.

5.2 Translating class predicates

In the standard translation, predicates are translated to dictionaries
by a judgementC 
D D τ  ν. In the presence of associated
types, we have to handle the case where the type argument to a
predicate contains an associated type. For example, given the class

class Collects c where
type Elem c -- associated type synonym
empty :: c
insert :: Elem c -> c -> c
toList :: c -> [Elem c]

we might want to define

sumColl :: (Collects c, Num (Elem c))
=> c -> Elem c

sumColl c = sum (toList c)

which sums the elements of a collection, provided these elements
are members of theNum class; i.e., provided we haveNum (Elem
c). Here we have an associated type as a parameter to a class
constraint. Wherever the functionsumColl is used, we will have
to check the constraintNum (Elem c), which will require a cast
of the resulting dictionary ifc is instantiated. We achieve this by
adding the following rule:

(Subst)
C 
D D τ1  w C ⊢TY γ : D τ1 = D τ2

C 
D D τ2  w ◮ γ

It permits to replace type class arguments by equal types, where
the coercionγ witnessing the equality is used to adapt the type of
the dictionaryw, which in turn witnesses the type class instance.
Interestingly, we need this rule also for the translation assoon as
we admit qualified constructor signatures in GADT declarations.

5.3 Translating declarations

Strictly speaking, we also have to extend the translation rules for
class and instance definitions, as these can now declare and define
associated types. However, the extension is so small that weomit
the formal rules for space reasons. In summary, each declaration
of an associated type in a type class turns into the declaration of
a type function inFC, and each definition of an associated type
in an instance turns into an equalityaxiom in FC. We have seen
examples of this in§2.2.

5.4 Observations

In the translation of associated types, it becomes clear whyFC

includes coercions over type constructors of higher kind. Consider
the following class of monads with references:

class Monad m => RefMonad m where
type Ref m :: * -> *

10



newRef :: a -> m (Ref m a)
readRef :: Ref m a -> m a
writeRef :: Ref m a -> a -> m ()

This class may be instantiated for theIO monad and theST monad.
The associated typeRef is of higher-kind, which implies that the
coercions generated from its definitions will also be higherkinded.

The translation of associated types to plain System F imposes two
restrictions on the formation of well-formed programs [5,§5.1],
namely (1) that equality constraints for ann parameter type class
must have type variables as the firstn arguments to its associated
types and (2) that class method signatures cannot constraintype
class parameters. Both constraints can be lifted in the translation to
FC.

5.5 Guaranteeing consistency for associated types

How do we know that the axioms generated by the source-program
associated types and their instance declarations are consistent? The
answer is simple. The source-language type system for associated
types only makes sense if the instance declarations obey certain
constraints, such as non-overlap [6]. Under those conditions, it is
easy to guarantee that the axioms derived from the source program
are consistent. In this section we briefly sketch why this is the case.

The axiom generated by an instance declaration for an associated
type has the form1 C : (∀a :⋆.S σ1)

.
= (∀a :⋆.σ2). where (a)

σ1 does not refer to any type function, (b)fv(σ1) = ā, and (c)
fv(σ2) ⊆ ā. This is an entirely natural condition and can also be
found in [5]. We call an axiom of this form arewrite axiom, and a
set of such axioms defines a rewrite system among types.

Now, the source language rules ensure that this rewrite system is
confluentand terminating, using the standard meaning of these
terms [2]. We writeσ1 ↓ σ2 to mean thatσ1 can be rewritten to
σ2 by zero or more steps, whereσ2 is a normal form. Then we
prove that each type has a canonical normal form:

THEOREM4 (Canonical Normal Forms).Let Γ be well-formed,
terminating and confluent. Then,Γ ⊢CO γ : σ1

.
= σ2 iff σ1 ↓ σ′

1

andσ2 ↓ σ′

2 such thatσ′

1 = σ′

2.

Using this result we can decide type equality via a canonicalnormal
form test, and thereby prove consistency:

COROLLARY 2 (AT Consistency).If Γ contains only rewrite ax-
ioms that together form a terminating and confluent rewrite system,
thenΓ is consistent.

For example, assumeΓ ⊢CO γ : T1 σ1
.
= T2 σ2. Then, we find

T1 σ1 ↓ σ′

1 andT2 σ2 ↓ σ′

2 such thatσ′

1 = σ′

2. None of the rewrite
rules affectT1 or T2. Hence,σ′

1 must have the shapeT1 σ′′

1 andσ′

2

the shapeT2 σ′′

2 . Immediately, we find thatT1 = T2 and we are
done.

We can state similar results for type functions resulting from func-
tional dependencies. Again, the canonical normal form property is
the key to obtain consistency. While sufficient the canonical nor-
mal form property is not a necessary condition. Consider thenon-
confluent but consistent environmentΓ = {c1 : S1 [Int]

.
=S2, c2 :

(∀a :⋆.S1 [a])
.
=(∀a :⋆.[S1 a])}. We find thatΓ ⊢CO γ : S1 [Int]

.
=

S2. But there existsS1 [Int] ↓ [S1 Int] and S2 ↓ S2 where
[S1 Int] 6= S2. Similar observations can be made for ill-formed,
consistent environments.

6. Related Work
System F with GADTs. Xi et al.[39] introduced the explicitly
typed calculusλ2,Gµ together with a translation from an implicitly

1 For simplicity, we here assume unary associated types that do not range
over higher-kinded types.

typed source language supporting GADTs. Their calculus hasthe
typing rules for GADTs built in, just like Pottier & Régis-Gianas’s
MLGI [31]. This is the approach that GHC initially took.FC is the
result of a search for an alternative.

Encoding GADTs in plain System F and Fω . There are several
previous works [3, 9, 26, 38, 7, 36] which attempt an encoding
of GADTs in plain System F with (boxed) existential types. We
believe that these primitive encoding schemes are not practical
and often non-trivial to achieve. We discuss this in more detail in
Appendix B.

An encoding of a restricted subset of GADT programs in plain
System Fω can be found in [29], but this encoding only works for
limited patterns of recursion.

Coercion-based subtyping. Mitchell [25] introduced the idea of
inserting coercions during type inference for an ML-like languages.
However, Mitchell’s coercion are not identities, but perform coer-
cions between different numeric types and so forth. A more recent
proposal of the same idea was presented by Kießling and Luo [19].
Subsequently, Mitchell [24] also studied coercions that are oper-
ationally identities to model type refinement for type inference in
systems that go beyond Hindley/Milner.

Much closer toFC is the work by Breazu-Tannen et al. [4] who add
a notion of coercions to System F to translate languages featuring
inheritance polymorphism. In contrast toFC, their coercions model
a subsumption relationship, not equalities, and their coercions are
values, not types. Nevertheless, they introduce coercion combina-
tors, as we do, but they don’t consider decomposition, whichis
crucial to translate GADTs. Moreover, the focus of their paper is
the translation of an extended version of Cardelli & Wegner’s Fun,
and in particular, the coherence properties of that translation.

Similarly, Crary [11] introduces a coercion calculus for inclusive
subtyping. It shares the distinction between plain values and co-
ercion values with our system, but does not require quantification
over coercions, nor does it consider decomposition.

Intuitionistic type theory, dependent types, and theorem provers.
The ideas from Mitchell’s work [25, 24] have also been transferred
to dependently typed calculi as they are used in theorem provers;
e.g., based on the Calculus of Constructions [8]. Generally, our co-
ercion terms are a simple instance of the proof terms of logical
frameworks, such as LF [16], or generally the evidence in intuition-
istic type theory [22]. This connection indicates several directions
for extending the presented system in the direction of more power-
ful dependently typed languages, such as Epigram [23].

Shao et al. [32] use equalities for type conversion in a lambda cal-
culus with a type language based on the calculus of inductivecon-
structions to denote certified binaries. Interestingly, already GADT
equalities are useful to encode safety properties, as Sheard [33]
demonstrated.

Translucency and singleton kinds. In the work on ML-style
module systems, type equalities are represented as singleton kinds,
which are essential to model translucent signatures [13]. Our use
of equalities to represent programs that involve functional depen-
dencies and existential types seems related.

7. Conclusions and further work
We showed that explicit evidence for type equalities is a convenient
mechanism for the type-preserving translation of GADTs, associa-
tive types, functional dependencies, and closed type functions. An
interesting avenue for future work is to find good source language
features to expose more of the power ofFC to programmers.
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A. Type and coercion erasure
In this section we give the details of our type erasure theorem.
Following Pierce [28, Section 23.7] we erase a type abstraction to a
trivial term abstraction, and type application to term application to
the unit value; this standard device preserves terminationbehaviour
in the presence ofseq, or with call-by-value semantics. The only
difference from plain F is that we also erase casts.

x◦ = x
K◦ = K

(Λa :κ. e)◦ = λa.e◦

(e @σ)◦ = e◦()

(λx :ϕ. e)◦ = λx.e◦

(e1 e2)
◦ = e1

◦e2
◦

(e◮ γ)◦ = e◦

(K a :κ x :ϕ)◦ = K a x

(let x :σ = e1 in e2)
◦ = let x = e1

◦ in e2
◦

(case e1 of p → e2)
◦ = case e1

◦ of p◦ → e2
◦

THEOREM5. GivenΓ ⊢e e1 : σ, (a) eithere1 is a cvalue ande1
◦

is a value or (b) we havee1 −→ e2 and eithere1
◦ −→ e2

◦ or
e1

◦ = e2
◦.

PROOF. Proof by structural induction one. The interesting case is
application. Suppose we haveΓ ⊢e e1 e2 : σ ande1 e2 −→ e3

(in one step). Then either (a)e1 can take a step (in which case the
result follows by induction), or (b)e1 is a cvalue. The latter has
two sub-cases: either (b.1)e1 is a plain value or (b.2) it is of form
(v1 ◮ γ).

In case (b.1), sincee can take a step,e1 must be of formλx.e′1
so thate1 e2 can take a (Beta) step. But then(e1 e2)

◦ can also
take a (Beta) step. We need an auxiliary substitution lemma,that
[e2

◦/x]e′1
◦

= [e2/x]e′1
◦, and then we are done.

In case (b.2),e1 is of form (v1 ◮ γ), and by consistencyv1 must
have a function type, and hence must be of the formλx.e′1. Hence
e1 e2 can take a (Push) step. Taking a (Push) step leaves the erasure
of the term unchanged, modulo alpha conversion, which givesthe
result.

COROLLARY 3 (Erasure soundness).For an well-typed System
FC terme1, we havee1 −→∗ e2 iff e1

◦ −→∗ e2
◦.

B. Primitive Translation of GADTs
We attempt a primitive translation (encoding) of GADTs to Sys-
tem F with (boxed) existential types (for convenience we will use
Haskell extended with rank-n types and existentials). We provide
evidence that such an encoding is sometimes hard to achieve.

The gist of the primitive encoding idea is to model type equality
a

.
= b via safe coercion functions. Effectively, a pair of embed-

ding/projection functions. Each type castγ ◮ e is then turned into
the function applicationγ e. To ensure correctness of this encod-
ing scheme, we need to guarantee that at run-time each coercion γ
evaluates to the identity.

There are two approaches known in the literature to encode such
coercion functions. One approach, employed in [3, 9, 26, 38], uses
“Leibniz” equality

newtype EQ a b =
Proof { apply :: forall f . f a -> f b }

refl :: EQ a a
refl = Proof id
newtype Flip f a b = Flip { unFlip :: f b a }
symm :: EQ a b -> EQ b a
symm p = unFlip (apply p (Flip refl))
trans :: EQ a b -> EQ b c -> EQ a c
trans p q = Proof (apply q . apply p)
newtype List f a = List { unList :: f [a] }
list :: EQ a b -> EQ [a] [b]
list p = Proof (unList . apply p . List)

We also provide a few sample type coercion functions. As pointed
out in [7], the trouble with this approach is that it seems impossible
to define “decomposition” functions such as

decompList :: EQ [a] [b] -> EQ a b

The alternative method is to represent type equality as follows.

type EQ a b = (a->b,b->a)
refl :: EQ a a
refl = (id,id)
sym :: EQ a b -> EQ b a
sym (f,g) = (g,f)
trans :: EQ a b -> EQ b c -> EQ a c
trans (f1,g1) (f2,g2) = (f2.f1,g1.g2)
list :: EQ a b -> EQ [a] [b]
list (f,g) = (map f, map g)

The advantage is that decomposition is possible for some types but
not for all as will see at the end of this section. Though, many(if
not all) realistic GADT programs can be translated based on this
encoding [36]. On the other hand, the (serious) disadvantage of this
representation is that it may incur a severe run-time penalty. Con-
sider the definition oflist where we have to apply the coercion
functions to each element.

Let’s attempt an encoding of the trie example found in [10]. Atrie
is a finite map from keys to values whose structure depends on the
type of keys, here encoded as products and sums in GADT variants:

data Either a b where
Left :: a -> Either a b
Right :: b -> Either a b

data Trie k v where
TUnit ::

Maybe v -> Trie () v
TSum :: forall k1 k2.

Trie k1 v -> Trie k2 v -> Trie (Either k1 k2) v
TProd :: forall k1 k2.

Trie k1 (Trie k2 v) -> Trie (k1, k2) v

A trie for a unit type is maybe one value, a trie for a sum is a
product of tries, and a trie for a product is a composition of tries.
An important operation on tries is the merging of two maps with
the same domain and co-domain.

merge :: (v -> v -> v)
-> Trie k v -> Trie k v -> Trie k v

merge c (TUnit Nothing ) (TUnit Nothing ) =
TUnit Nothing

merge c (TUnit Nothing ) (TUnit (Just v’)) =
TUnit (Just v’)

merge c (TUnit (Just v)) (TUnit Nothing ) =
TUnit (Just v)

merge c (TUnit (Just v)) (TUnit (Just v’)) =
TUnit (Just (c v v’))

merge c (TSum ta tb) (TSum ta’ tb’) =
TSum (merge c ta ta’) (merge c tb tb’)

merge c (TProd ta) (TProd ta’) =
TProd (merge (merge c) ta ta’)

The second two last equations are interesting. The patternsof
the first and second argument constraink to Either k1 k2 and
Either k1’ k2’, respectively. Hence, we have

Either k1 k2 = k = Either k1
′

k2
′

from which we can followk1 = k1′ andk2 = k2′. The point is
that to translate the above toFC, we need to construct a coercion
that witness these equalities, we need decomposition.

To encode the trie example, we need (among others) a function

decomp :: EQ (Either a b) (Either c d) -> EQ a b
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But it seems impossible to define such a function if we use Leibniz
equality.

Let’s consider the “other” type equality representation. To ensure
correctness of the encoding scheme, we need to maintain the in-
variant that for any type coercion functioncoerce :: EQ a b
-> EQ c d we have thatcoerce applied to a pair of identity
functions yields another pair of identity functions. We aremore
lucky here, a functiondecomp:: EQ (Either a b) (Either c
d) -> EQ a c with the above property is actually definable.

For simplicity, we only give parts of the definition ofdecomp.

decomp1 :: (Either a b -> Either c d) -> (a->c)
decomp1 f = \ a -> case (f (Left a)) of

Left c -> c

We inject thea value into theEither data type, apply the incoming
coercing function and then extract thec value. It is easy to verify
that the invariant is satisfied.

There are many other examples which can be translated using the
“other” type equality representation [36]. In fact, it almost seems
that all practical examples can be encoded. Though, not every
decomposition function is definable. Here is the (contrived) critical
example.

data Foo a where
K :: Foo a

data Erk a b c where
I :: c -> Erk a a c

f :: Erk (Foo a) (Foo Int) a -> a
f (I x) = x + 1

First, we convince ourselves that the above program is well-typed.
The patternI x in combination with the type annotation implies
thatFoo a = Foo Int. By decomposition, we conclude thata =
Int. Thus, the program textx + 1 can be given typeInt. Hence,
the above is well-typed. To translate the above, we need to define
a function of typeEQ (Foo a) (Foo Int) -> EQ a Int. We
claim it is impossible to define such a function with satisfiesthe
invariant. It suffices to show that a function

decompFoo :: (Foo a->Foo Int)->(a->Int)

with the property thatdecompFoo ( x->x) evaluates tox->x is
not definable.

The problem here is that a value of typea cannot be injected into a
value of typeFoo a. So, clearly the incoming function of typeFoo
a->Foo Int is useless. Effectively, we could omit the function
parameter altogether. Parametricity tells us that any function of type
a->Int must be a constant function. Hence,decompFoo applied to
any function of typeFoo a->Foo Int yields a constant function.
Hence, an encoding of the above critical example is impossible.

In fact, the “decomposition” problem is hardly surprising given that
similar issues arise when translating type class programs [15].

class Foo a where foo :: a->Int
instance Foo a => Foo [a] where

foo [] = 1
foo _ = 2

bar :: Foo [a] => a->Int
bar = foo

Based on the System F-style translation scheme described in[15],
we are unable to translate functionbar. The program text demands
a dictionary forFoo a but the annotation only supplies a dictionary
for Foo [a]. This is the wrong way around. The instance declara-
tion tells us how to constructFoo [a] givenFoo a but the other
direction does not hold in general.

C. Complexity of Type Checking
Previous calculi for GADTs, such asλ2,Gµ [39] and MLGX [31],
did not pass evidence for coercions explicitly, but deducedthe
equality between types at coercion points implicitly during type
checking. We call such calculicalculi with implicit evidence.This
raises the question whether it is necessary to construct andpass
evidence explicitly inFC, or whether we could not have made it
into an implicit calculus. To answer this question, we definean
implicit variant of FC, which we callFCi

and show that type
checking forFCi

is undecidable. More precisely, we show that
reconstructing explicit coercion terms, which amount to proofs
justifying coercions, is undecidable forFCi

.

The difference betweenFC andFCi
is simply the following: wher-

everFC has a coercion typeγ of kind σ1
.
= σ2, FCi

only gives the
equality kind in curly braces; i.e.,{σ1

.
= σ2}. Hence,

• castse ◮ γ turn intoe ◮ {σ1
.
= σ2} and

• type applicationse @γ turn intoe @{σ1
.
= σ2}.

It’s obviously straight forward to turn anFC program into anFCi

program. The converse, recovering anFC program fromFCi
, re-

quires a type-directed translation, that we obtain from thetyping
rules of Figure 2 by turning the expression typing rules intotransla-
tion rules. We replace the Rules (TApp) and (Cast) by those inFig-
ure 5; for all other rules, the translation is the identity. The modified
Rules (Casti) and (TAppCO) use the judgementΓ ⊢CO γ : σ

.
= τ to

re-computeγ. As we will see next, computingγ from a kindσ
.
= τ

is, in the general case, undecidable.

THEOREM6 (Undecidability of coercion reconstruction inFCi
).

Given an environmentΓ and anFCi
expressione, computing the

correspondingFC expressione′ and its typeσ as determined by
Γ ⊢e e e′ : σ is not decidable.

PROOF. We show that the reconstruction of coercion types for
FCi

expressions includes the word problem for A-ground theories,
which is long known to be undecidable [30]. An A-ground theory is
defined over a signatureF including the binary symbolPlus and a
set ofF-equationsE that are all ground (i.e, variable-free), except
for the associativity ofPlus. More concretely, we have

F = {S1 : ⋆k1 → ⋆, . . . , Sn : ⋆kn → ⋆,
Plus : ⋆ → ⋆ → ⋆}

where⋆k → ⋆ indicates thatSi is k-ary. Furthermore, we have

E = {σ1 = τ1, . . . , σm = τm ,
Plus (Plus a b) c) = Plus a (Plus b c))}

where theσi andτi are terms overF .

We representF andE in FC’s type language as follows:

type S1 : ⋆k1 → ⋆
...

type Sn : ⋆kn → ⋆
type Plus : ⋆ → ⋆ → ⋆
data Term : ⋆ → ⋆ where

Sv1 : ∀ak1 . Nat a
k1 → Nat (S1 ak1)

...
Svn : ∀akn . Nat a

k1 → Nat (Sn akn )
Plusv : ∀a b. Nat a → Nat b → Nat (Plus a b)

axiom ax1 : σ1 = τ1

...
axiom axm : σm = τm

axiom assoc :
(∀a b c. Plus (Plus a b) c)

.
= (∀a b c. Plus a (Plus b c))
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(Casti)
Γ ⊢e e : σ Γ ⊢CO γ : σ

.
= τ

Γ ⊢e (e◮ {σ
.
= τ}) (e◮ γ) : τ

(TAppTY )
Γ ⊢e e : ∀a :κ.σ Γ ⊢k κ : TY Γ ⊢TY τ : κ

Γ ⊢e (e @τ ) (e @τ ) : σ[τ/a]
(TAppCO)

Γ ⊢e e : ∀a : (τ
.
= υ).σ

Γ ⊢k (τ
.
= υ) : CO Γ ⊢CO ϕ : τ

.
= υ

Γ ⊢e (e @{τ
.
= υ}) (e @ϕ) : σ[ϕ/a]

Figure 5: Modified typing rules for SystemFCi

The data typeTerm enables us to construct any (ground)F-term
by reflection from the structurally identicalFC expression using
Term ’s constructors. For example, ifS1 and S2 are nullary, we
have thatPlusv Sv1 Sv2 : Term (Plus S1 S2). If σ is anF-term,
we denote the structurally identicalFC expression withbσ and have
bσ : Term σ.

The word problem for the A-ground theoryE over the signatureF
amounts to testing for two arbitraryF-termsσ andτ whetherσ =
τ underE. We represent this as anFCi

type checking problem by
typing the cast expressionbσ ◮ {σ

.
= τ} in the context of the above

FC declarations corresponding toF andE. The undecidability of
the word problem implies the undecidability ofFCi

typing, or more
precisely, that the judgementΓ ⊢CO γ : σ

.
= τ in the premise

of FCi
’s Rule (Casti) cannot be realised by an effective decision

procedure whenγ is unknown.

It remains the question whether there exists a restriction on FCi

equality axioms that excludes encoding problems, such as the word
problem for A-ground theories, but is still sufficient for translating
GADTs, associated types, functional dependencies, and so forth.
Given the range of FD programs supported by GHC and the anal-
ysis of properties of FD programs in [34], this is not a viableap-
proach.
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