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Abstract

We introduce Systerfic, which extends System F with support for non-syntactic
type equality. There are two main extensions: (i) explicitnesses for type
equalities, and (ii) non-parametric type functions, giveeaning by top-level
equality axioms. Unlike System F is expressive enough to serve as a target
for several different source-language features, inclgditaskell's newtype,
generalised algebraic data types, associated typesjdonattiependencies, and
perhaps more besidels¢ can therefore serve as a typed intermediate language
in a compiler that supports these features.
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Abstract

We introduce Systentr'c, which extends System F with support
for non-syntactic type equality. There are two main extensi (i)
explicit witnesses for type equalities, and (ii) non-paesrc type
functions, given meaning by top-level equality axioms.ikalSys-

tem F,F ¢ is expressive enough to serve as a target for several differ-
ent source-language features, including Haskedstype, gener-
alised algebraic data types, associated types, functaepnden-
cies, and perhaps more besidEs. can therefore serve as a typed
intermediate language in a compiler that supports thederfea

1. Introduction

GHC (the Glasgow Haskell Compiler) has a problem. It uses Sys
tem F, extended with algebraic data types and case-expnsssis

its typed intermediate language. But Haskell has incubated-
riety of extensions that are hard to translate into this lengg:

in particular, functional dependencies [18], generaliaégkbraic
data types (GADTS) [39, 27], and associated types [6, 5]. Ve
added GADTs to GHC, we also extended GHC'’s intermediate lan-
guage with GADTSs as well, even though GADTSs are arguably an
over-sophisticated addition to a typed intermediate laggu But
when it came to associated types, the translation becameneety
clumsy and, in some interesting corner cases, impossible.

In this paper we resolve this dilemma by presenting Sydfema

superset of F that is bothore foundationahndmore powerfuthan

ad hocextensions such as GADTSs or associated tyBesuses ex-
plicit type-equality coercions as witnesses, to justifpleit type-

cast operations. Like types, coercions are erased beforémyithe
program, so they are guaranteed to have no run-time cost.

This single mechanism allows a very direct encoding of dssoc
ated types and GADTSs, and allows us to deal with some exotic
functional-dependency programs that GHC currently rgjeatthe
grounds that they have no System-F translation. Our spexifie
tributions are these:

¢ We articulate the problem if2, and give an informal descrip-
tion of our solution.

¢ We give a formal description of Systefit, our new intermedi-
ate language, including its type system, operational séoan
soundness result, and erasure properfjds [here are two dis-
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tinct extensions. The first, explicit equality witnesseiseg a
system equivalent in power to System F + GAD§3.2); the
second introduces non-parametric type functions, and swlals
stantial new power, well beyond System F + GAD$3.8).

The system is very general, but we are able to identip-
sistencyas a necessary and sufficient property for soundness
(§3.4). Conditions identified in earlier work on GADTSs, asso-
ciated types, and functional dependencies, are specias cds
consistency.

As one application, we give a type-preserving translatibn o

a source language supporting GADTSs into SystBm (§4).

As a second, we sketch a similar translation for associated
types €5). The latter, and the corresponding translation for

functional dependencies, are more general than all previou
type-preserving translations for these features.

We have implementeflc in GHC. Although the implementation

is not yet complete, we have done enough to convince ousselve
thatF¢ can be incorporated in the guts of a complicated compiler
without great upheaval.

SystemF¢ has no new foundational content: rather, it is an in-
triguing and practically-useful application of technigufat have
been well studied in the type-theory community. We dischs$s t
and other related work if6.

Although we have written this introduction as if GHC were tmdy
compiler in the world, there is nothing GHC-specific aboustsyn
Fc. Indeed,F¢ occupies an interesting place in the design space.
On the one hand, we know of no language smaller thanfor
which typing is decidable and that is sufficient to serve aarget
for GADTSs, associated types, and functional dependendes (
also Appendix B and C); while on the oth&lz seems much more
general than any of these specific source-language cotsstnugch

as System F is far more general than ML. In fact, we believeRha
may have much wider application as a typed target for saphisd
HOT (higher-order typed) source languages — a hypothesit th
remains to be tested.

2. Thekeyideas

The polymorphic lambda calculus, System F, is popular aglayr
expressive typed intermediate language in compilers factfonal
languages. Many source-language features can be destgtyed
System F with little difficulty, but not all. The first such feae is
the algebraic data types of Haskell or ML, which are made more
complicated in Haskell because algebraic data types catreap
existential type variables. Whilst these can be encoded/ateth

F, the encoding is heavy, and compilers invariably extenste3y

F by adding algebraic data types, data constructors, @
expressions. We will usEa to describe System F extended in this
way, where the data constructors are allowed to have efigten
components [21], type variables can be of higher kind, ampe ty
constructor applications can be partial.



Over the last few years, source languages (notably Hadkelig
started to explore language features that embodg-syntactic
type equality These features include functional dependencies [14],
generalised algebraic data types (GADTS) [39, 33], andciestsal
types [6, 5]. All three are difficult or impossible to trangdnto
System F — and yet the alternative of simply extending Sydtem
by adding functional dependencies, GADTSs, and associgjesst
seems wildly unattractive. Where would one stop?

In the rest of this section we informally present SystBm, an

Coercion types may be formed from a set of elementary coer-
cions that correspond to the rules of equational logic; f@meple,

Int : (Int = Int) is an instance of the reflexivity of equality and
sym co : (Int = a), with co : (a = Int), is an instance of symme-
try. A call of the constructoZero must be given a type (to instan-
tiatea) and a coercion (to instantiate), thus for example:

Zero @ Int @ Int : Exp Int

We use@ to distinguish type, and hence also coercion, application
from value application. As indicated above, regular typles Int,

extension of System F that resolves the dilemma. We show how yyen interpreted as coercions, witness reflexivity.
it can serve as a target for each of the three examples, and we

sketch further possibilities (such as closed type funslidhatFc
opens up. The formal details are presented3nThroughout we
usetypewriter font for source-code, anitalics for Fc.

2.1 GADTs

Consider the following simple type-safe evaluator, ofteadias the
poster child of GADTSs, written in the GADT extension of Haktke
supported by GHC:

data Exp a where

Zero :: Exp Int

Succ :: Exp Int -> Exp Int

Pair :: Exp b -> Exp ¢ -> Exp (b, c¢)
eval :: Exp a -> a
eval Zero 0

eval e + 1
(eval x, eval y)

eval (Succ e)
eval (Pair x y)

(Succ Zero) Zero)

The key point about this program, and the aspect that is ard t
express in System F, is that in thero branch ofeval, the type
variablea is the same asat, even though the two are syntactically
quite different. That is why the in the Zero branch is well-typed

in a context expecting a result of type

Rather than extend the intermediate language with GADTisithe
selves — GHC's current “solution” — we instead propose a gane
mechanism of parameterising functions wiitpe equalitieswit-
nessed bycoercion typeswhich we calltype equality coercions.
Coercion types are passed around using System F's existiueg t
passing facilities and enable representing GADTSs by orgliaé
gebraic data types encapsulating stygle equality coercions.

Specifically, we translate the GADHxp to an ordinary algebraic
data type, where each variant is parametrised by a coercion:

data Ezp : * — x where

Zero : Va.(a=1Int) = Ezpa

Succ : Va.(a=1Int) = EzpInt — Ezpa

Pair : Yabe. (a= (b,c)) = Expb — Ezpc — Ezpa
So far, this is quite standard; indeed, several authorseptes
GADTs in the source language using a syntax involving explic
equality constraints, similar to that above [39, 10]. HoerYor us
the equality constraints are extra type arguments to thetaggtor,
which must be given when the constructor is applied, and kwvhic
are brought into scope by pattern matching. The"“is syntac-
tic sugar, and we sloppily omitted the kind of the quantifigpet
variables, so the type dfero is really this:

Zero : Y a:*.¥(co:a=Int). Exp a

Herea ranges ovetypes of kind x, while co ranges ovecoercions

of kind a = Int. An important property of our approach is that
coercions are typesand henceequalitiesm = 72 are dependent
kinds.An equality kindr; = 72 categorises all coercion types that
witness the equality of the two types and t;. So, our slogan is
propositions as kindgndproofs as (coercion) types.

main = eval (Pair

Just like value arguments, the coercions passed to a cotwstru
when it is built are made available again by pattern matchitege,
then, is the code afval in F¢:

eval = Aa:x.\e:FExp a.

case e of
Zero (co:a = Int) —
0 » sym co

Succ (co:a = Int) (e': Exp Int) —
(eval @ Int €’ + 1) » sym co
Pair (b:x) (c:%) (co:a = (b, ¢))
(er:Exp b) (e2: Exp c)
(eval @b e1, eval @ c e2) » sym co
The form Aa:*.e abstracts over types, as usual. In the first al-
ternative of thecase expression, the pattern binds the coercion
type argument ofZero to co. We use the symmetry of equality
in (sym co) to get a coercion fronint to a and use that to cast the
type of0 to a, using thecast expressiof » sym co. Cast expres-
sions have nmperationaleffect, but they serve to explain to the
type system when a value of one type (hérg) should be treated
as another (here), and provide evidence for this equivalence. In
general, the forme » g has typetz if e : &4 andg : (t1 = &).
So, eval @ Int (Zero @ Int @ Int)) is of type Int as required by
eval’s signature. We shall discuss coercion types and theirskind
more detail ing3.2.

2.2 Associated types

Associated types are a recently-proposed extension todlask
type-class mechanism [6, 5]. They offer open, type-indeypées
that are associated with a type class. Here is a standardoéecam

class Collects c where

—

type Elem c -- associated type synonym
empty :: C
insert :: Elem ¢ -> ¢ -> ¢

The classCollects abstracts over a family of containers, where
the representation type of the containerdefines (or constrains)
the type of its elementBlen c. Thatis,Elem is a type-level func-
tion that transforms the collection type to the element tyhest
asinsert is non-parametric — its implementation varies depend-
ing onc — so isElem. For example, a list container can contain
elements of any type supporting equality, and a bit-setainat
might represent a collection of characters:

instance Eq e => Collects [e] where
{type Elem [e] = e; ...}

instance Collects BitSet where
{type Elem BitSet = Char; ...}

Generally, type classes are translated into System F [18])dwrn-
ing each class into a record type, called a dictionary, éonta
ing the class methods, (2) converting each instance intoca di
tionary value, and (3) passing such dictionaries to whiehev
function mentions a class in its signature. For example, ree-fu
tion of type negate :: Num a => a -> a will translate to
negate : NumDict a — a — a, WhereNumDict is the record
generated from the cla¥sm.



A record only encapsulates values, so what to do about associ
ated types, such aBlem in the example? The system given in
[6] translates each associated type into an additional pgvam-
eter of the class’s dictionary type, provided the class astince
declarations abide by some moderate constraints [6]. Fonple,

the clas<ollects translates to dictionary typ€ollectsDict c e,
where e representslem ¢ and where all occurrences @flem ¢

of the method signatures have been replaced by the new type

parametere. So, the (System F) type famsert would now be
CollectDict ce — e — ¢ — c. Therequired type transforma-
tions become more complex when associated types occur én dat
types; the data types have to be rewritten substantialingtrans-
lation, which can be a considerable burden in a compiler.

Type equality coercions enable a far more direct transtatitere
is the translation o€ollects into Fc:

type Elem : x — %
data CollectsDict ¢ =

Collects {empty : c; insert : Eleme — ¢ — c}

as in a translation without associated types. Tpe declaration

in F¢ introduces a newype function An instance declaration for
Collects is translated to (a) a dictionary transformer for the values
and (b) an equality axiom that describes (part) of the imttgtion

for the type functionElemn. For example, here is the translation into
Fc of theCollects [e] instance:

axiom elemList : (Ve:%.Elem [e]) = (Ve:*.€)
dCollectsList : Ve:x.EqDict e — CollectsDict [e]
dCollectsList =

Theaxiom definition introduces a new, namedercion constant,

It is easy to translate this example irife;, however:

type F'1 : x — «
data FDict : x — * — x where
F :Vab.(b=Fla) = FDictab
axiom fIntBool : F'1 Int = Bool
data T : ¥ — x where
MkT : Vab.FDictab — (b — b) — Ta

Ta— Ta— Ta
combine (MkT b (F (co b =Fla)) f)
(MET b (F (co =Fla))f)
= MkT@a@b (F@a@b@co) (f - (f > d2))
where
di 2 (b =) co’ > sym co
d: () — b =b — b) di — di
The functional dependency is expressed as a type fungtigmith
one equality axiom per instance. (In general there might baym
functional dependencies for a single class.) The dictpf@rclass
F includes a witness that indeddis equal toF'1 a, as you can
see from the declaration of constructBr When pattern matching
in combine we gain access to these witnesses, and can use them
to castf’ so that it has the same type As(When constructing
the witnessegl; and d2 we use the coercion combinatosgm -
and- > -, which represent symmetry and transitivity, respectively
Moreover, we lift the coerciod, to function space by applying the
type constructor—, which is admissible as plain types and type
constructors witness reflexivity.)

Even in the absence of existential types, there are reakosaixrce
programs involving functional dependencies that have reiedy F

combine :

elemList, which serves as a witness of the equality asserted by translation, and hence are rejected by GHC. We have engednte

the axiom; here, that we can convert between types of the form
Elem [e] and e, for any x-kinded e. Using this coercion, we can
insert the character 'b’ into a list of charactefs’'] by applying

the instantiated coercioglem List @ Char backwards to 'b’, thus:

(b’ » sym (elemList @ Char)) : Elem [Char]
This argument fits the signature dfsert.

In short, Systenk'c supports a very direct translation of associated
types, in contrast to the clumsy one described in [6]. Whatdse,
there are several obvious extensions to the latter papecamaot

be translated at all, even clumsily, aRd supports them too, as we
sketch ing5.

2.3 Functional dependencies

Functional dependencies are another popular extensionsKetl's
type-class mechanism [18]. With functional dependeneiescan
encode a function over typ€sas a relation; i.e., the dependent type
parameters are not unlike associated types:

class Fab | a->b
instance F Int Bool

A useful idiom in type-level programming is to abstract otiee
co-domain of a type function by way of an existential type, 4lin
this example:

data T a = forall b. F a b => MkT (b -> b)
Then one might hope that the following function would tygeck:

combine :: Ta ->Ta->Ta
combine (MkT f) (MkT f’) = MKT (f . f’)

After all, since the typea functionally determine®, £ and £’
must have the same type. Yet GHC rejects this program, becaus
it cannot be translated into Systely, becausef and £’ each
have distinct, existentially-quantified types, and therad way to
express their (non-syntactic) identity ity .

this problem in real programs, but here is a boiled-down gtam
using the same clagsas before:

Fab=>a->b}
= True }

The crucial point is that the contekt a b of the signature obp
constrains the parameter of the enclosing type ctasghis be-
comes a problem when typing the definitionopfin the instanc®
Int. InD’'s dictionary DDict, we haveop : ¥6.C ab — a — b
with b universally quantified, but in the instance declaration, we
would need to instantiatewith Bool. The instance declaration for
D cannot be translated into System F. Usifg, this problem is
easily solved: the coercion in the dictionary foenables the result
of op to be cast to typé as required.

To summarise, a compiler that uses translation into Systdor F
Fa) must reject some reasonable (albeit slightly exotic) pots
involving functional dependencies, and also similar paogs in-
volving associated types. The extra expressiveness oEByst
solves the problem neatly.

class D a where { op ::
instance D Int where { op _

2.4 newtype, and closed type functions

Fc is extremely expressive, and can support language features
beyond those we have discussed so far. Another example ieHas
98'snewtype declarations:

newtype T = MkT (T -> T)

This declareg to be isomorphic ta->T, but there is no good way

to express that in System F. In the past, GHC has handled this
with anad hochack, butF¢ allows it to be handled directly, by
introducing a new axiom

(T—-T)=T
More ambitiously, we may consider closed type functiongras

vided by (for example)2mega [33]. (Associated types consti-
tute open,that is extensible, type functions.) To review the basic

axiom CoT :



idea, consider the following definition of bounded sequeneeose
length is encoded in their type:

kind Nat = Z | S Nat
data Seq a (n :: Nat) where
Nil : Seq a Z
Cons :: a -> Seq an -> Seq a (S n)

We define bounded sequences with a GADT parametrised by a kind
Nat encoding Peano numerals with two new type construcors

: Nat andS :: Nat -> Nat. Now, what is the signature of a
function appending one such sequence at another? The lehgth
the resulting sequence is clearly the sum of the lengthseofitio
component sequences. Hence, we want to write something alon
the following lines:

app :: Seq an -> Seq am -> Seq a (Plus n m)

app Nil ys = ys

app (Cons x xs) ys = Cons x (app xs ys)
HerePlus is a closed type function:

type Plus Z b=">
Plus (S a) b =S (Plus a b)

The type functionPlus can be directly translated intbc; its
equations become equality axioms; and the GAa§ is encoded

as in§2.1. F¢ does not support the declaration of algebraic data
kinds, such adlat, but that is an orthogonal extension that could
easily be added. (Or, perhaps better, one could re-use @pes
kinds, but that is another story.) In a similar manner, treently
proposed extended algebraic data types [37], which addliggua
and predicate constraints to GADTS, can be translatéttto

25 Summary

In this section we have shown that System F is inadequate a
a typed intermediate language for source languages thabéymb
non-syntactic type equality — and Haskell has developedraév
such extensions. We have sketchily introduced Sysfemas a
solution to these difficulties. We will formalise it in thextesection.

3. System F¢

The main idea irF¢ is that we pass around explicit evidence for
type equalities, in just the same way that System F passes typ
explicitly. Indeed, inFc the evidencey for a type equalityis a
type; we use type abstraction for evidence abstraction, tgpel
application for evidence application. Ultimately we erafleypes

Symbol Classes

a,b,c,co —  (type variablé

x, f —  (term variable

C —  (coercion constait

T —  (value type constructor
Sn — (n-ary type function

K — (data constructor
Declarations

pgm — @; e

decl — datal:kK — xwhere

K:VNarVb:r.cd—Ta
| typeSn:F" —.
|  axiom C: o1 =02

Sortsand kinds
) — TY|cCO
Kyl — *|I€1—>I€2|0'1i0'2

Sorts
Kinds

Typesand Coercions
d

— al|T Atom of sortTy

g c|C Atom of sortco

P, P, 0, T, U, - a|C|T|@l@2|Sn¢n|VCLH(p

| symy|[y1D> 72| v@p|lefty | righty

(We usep, o, 7, andw for regular types;y for coercions, ang for both.)

—

Syntactic sugar
Types k=0 = V_.ik.o
Terms
u — z|K Variables and data constructors
e — u Term atoms
| Aa:k.e|le@yp Type abstraction/application
| Az:o.e|erex Term abstraction/application
| letz:o=-e;ine;
| casee; of p— ez
| ewy Cast
p — Kb KTo Pattern

Environments
' - €|l uio|T,d:k|,9:5 |, Sn:k

before running the program, and thereby erase all typeligua
evidence as well, so the evidence passing has no run-tinte cos
However, that is not the only reason that it is better to regné
evidence as typerather than as term, as we discuss i§3.7.

Figure 1 defines the syntax of Systdma, while Figure 2 gives
its static semantics. The notati@¥ (wheren > 0) means the
sequence; - - - an; the “n” may be omitted when it is unimportant.
Moreover, we use comma to mean sequence extension as follows
", ant1 2 @1 We usefu(z) to denote the free variables of a

structurex, which maybe an expression, type term, or environment.

3.1 Conventional features

SystemF¢ is a superset of System F. The syntax of types and
kinds is given in Figure 1. Like H'c is impredicative, and has
no stratification of types into polytypes and monotypes. ifieta-
variablesy, p, o, 7, v, and~ all range over types, and hence also
over coercions. However, we adopt the convention that wepuse
o, T, andv in places where we can only have regular types (i.e.
no coercions), and we use in places where we can only have
coercion types. We usg for types that can take either form. This
choice of meta-variables is only a convention to aid the huma

Figure 1. Syntax of Systent'c

reader; formally, the coercion typing and kinding rulesaeoé the
appropriate restrictions. Lik€'w (and Haskell), our system allows
types of higher kind; hence the type application farmrs.

Value type constructor® range over (a) the built-in function type
constructor, (b) any other built-in types, suchlas, and (c) alge-
braic data types. We regard a function type— o2 as the curried
application of a built-in function type constructor to tmgaments,
thus(—) o1 o2. Furthermore, although we give the syntax of arrow
types and quantified types in an uncurried way, we also somesti
use the following syntactic sugar:

Pt — pr

va".p

= QY1 — = Py Prp

= VYai---Van.p

An algebraic data typéel’ is introduced by a top-levalata dec-
laration, which also introduces itiata constructorsThe type of a
data constructok takes the form

K:Var"Vbir.o — Ta"



F}_Tya'lll‘i F|_Tya'2:/‘€

ek :TY Dhg kot TY
FunK EqT
( ) I'bp k1 — Ko i TY (qy) 'kt o1 =02 :CO

F"Tyalllﬁl—>l€2

Star) ————
( ) Dbk x:TY

F"Ty g2 . K1

d:kel Thrr:TY
AtomT AppT
( ) 'ty d:k (AppT) 'y 0102 Ka
(Sn:F*—1) el Thyorr" Ia:kbwo:x Dhpr:d adful)
SConT AlT
( ) 'k Spo” it ( ) 'k Va:ki.o: %

g:o=7€l I'ktryo:k

a:k€l Tk k:TY
Refl AtomC
( ) I'teoa:a=a ( ) I'Feog:o=T1

(’7‘1 iT2:>(T1)i(’U1 =2 :>02)
F}_co’YQIUliUQ
Moy @72 :01 =02

Ilteoy:Va:k.o=Vb:k.T T'Fecom:

(InstT) I'bek:TY Ty vk
['Feoy@u : [v/alo = [v/b]T

(InstC)

ThFecovi:mi=v1i Dhlcoye:m=v2

Tla:kbFcoy:io=T1
'Frmm=m:CO0 I'kteoy:o1=02

(AIIT) Fhpr:TY adgfvl) (AlIC)
T'teoVaik.y:Va:k.oc =Va:k.T Fheo(m=72)=v: (n=7)=o01) =((vi =v2) = 02)
F}—CO’Y1ZO'1iT1 F}—CO’YQIO'QiTQ P}— 'O';T P}—co’yl:OjiO'Q

(Comp) Dl o102k (Sym) coV:I=7 (Trans) Ibeorye:o2=03
- I'Feosymy:7=0 -

FFecomry2:o102="T1 72 o1 >y2:01 =03
IF'Feoy:oio2=11 72

o=t W T Fheoy: = _
T'keoyio=71 Tk Sna":k (DLeft) coY 0102 7’1 T2 (DRight) : :
Theolefty:o1=71 I'Feorighty : 02 =72

SCom
( P) Fbeo Sn A" : S =S, 7"

N'Feer:01 Tyx:01beea:o2

u:o€el I'tee:o T'kpp—oeio—T
var) ———— Case P Let
(van IF'Feu:o ( ) I'tecaseecof p—e: 7 (Ley I'keletxz:o01 =e1ines: o2
. by o i % I'teer:09 — 01
I'kee: '+ o=
(Cast) ‘eri »“’7 977 (Abs) T,o:opbee:o (App) Thees:on
c€P YT Thedx:0ogz.e:00 — 0 Theeles:on
INa:kkFee: '+ ) vl I'kFee:Va:k. '+ 9 '+ :
(TAbs) ,a: K e:o . kn a & fv(T) (TADD) e:Va:k.o Ifﬁ s PR
T'ke Aa:k.e:Va.o F'kFee@y: olp/al

IFl—pp—>e:a—>T|

,0:0(0),z:0(0)Fee:T

(Al K :VarVb:gc—Taecl 6=[v/d
Pkp Kb:0(t) z:0(0) »e:TT— 1
(Data) 'k o x b s TY .
't (dataT:x where K:0) : (T:k,K:0) ['F decl: T ' =To,I'a
(Pgm) I'isconsistent I'ke:o
m —
(Type) b s:TY (Coerce) I'kiLk:CO & T'oFdecl; e: o
yp I'F (type S :k):(S:k) 'k (axiom C : k) : (C:k)
Figure 2: Typing rules for Systent'c
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The firstn quantified type variableg appear in the same order in
the return typel” a. The remaining quantified type variables bind
either existentially quantified type variables, or (as wallskee)
coercions.

Types are classified bkinds x, using thet-r, judgement in Fig-
ure 2. Temporarily ignoring the king; = o2, the structure of kinds
is conventionalx is the kind of proper types (that is, the types that
a term can have), while higher kinds take the fotm— k2. Kinds
guide type application by way of Rule (AppT). Finally, thdesi
for judgements of the forn' -, « : 6 ensure the well-formedness
of kinds; we will return to the meaning & when discussing the
kinds of coercion types.

The syntax of terms is largely conventional, as are theie types
which take the formI't-. e: 0. As in F, every binder has an
explicit type annotation, and type abstraction and apfiinsare
also explicit. There is @ase expression to take apart values built
with data constructors. The patterns of a case expressioftear—
there are no nested patterns — and bind existential typahlas,
coercion variables, and value variables. For example,ssgp

K :Va:*.Vb:x.a —b— (b—Int) - Ta
Then acase expression that deconstrudiswould have the form
case e of K (b:%) (v:a) (z:b) (f:b— Int) — €

Note that only the existential type varialdlés bound in the pattern.
To see why, one need only realise tf#ék type is isomorphic to:

K :Va:*. (3b:x. (a,b,(b — Int))) > Ta

3.2 Typeequality coercions

We now describe the unconventional features of our system. T
begin with, consider the fragment of Systdra that omits type
functions (i.e.,type and axiom declarations). This fragment is
sufficient to serve as a target for translating GADTSs, andssof i
interest in its own right. We return to type functionsg®.3.

The essential addition to plain F (beyond algebraic datasygnd
higher kinds) is an infrastructure to construct, pass, qpilyetype-
equality coercionsin F¢, a coercion;y, is a special sort of type
whose kind takes the unusual forem = o2. This kind indicates
that~ is a proof that the types; ando, are equal.

More concretely, we can use a coercign (o1 = 02), to cast an
expressione : o1 to type o2 using thecast expressior{e » )
(see Rule (Cast) in Figure 2). The term syntax for type abstna
Aa.e and applicatiore @ ¢ also serves for coercion abstraction and
application.

Coercions are types, but they have their own kinding judgegme
Fco, given in Figure 2. The type of a term often has the form
Vco: (o1 =032).7, wherer does not mentiono — indeed, the kind
system would reject any mention af in 7. We allow the standard
syntactic sugar for this case, writing it thugt: = o2) = 7 (see
Figure 1). Incidentally, note that although coercions gpes, they
do not classify values. This is standard ity ; for example, there
are no values whose type has kind- *.

More complex coercions can be built by combining or transfor
ing other coercions, such that every syntactic form cowadp to
an inference rule of equational logic. We have the reflexiat
equality for a given type (witnessed by the type itself), symme-
try ‘ sym~/', transitivity ‘1 > 2, type composition 47 v2’, and
decomposition left v* and ‘right v'. The typing rules for these
coercion expressions are given in Figure 2.

Here is an example, taken fro§2. Suppose a GADFExpr has a
constructorSucc with type

Succ : Y a:* (a=Int) = EzpInt — Ezpa

(notice the use of the syntactic sugar= o). Then we can con-
struct a value of typdizp Int thus: Succ @ Int @ Int e. The sec-
ond argumentint is a regular type used as a coercion witness-
ing reflexivity — i.e., we havelnt : (Int = Int) by Rule (Refl).
Rule (Refl) itself only covers type variables and constrig;tbut
in combination with Rule (Comp), the reflexivity of complegpes
is also covered. More interestingly, here is a function tetom-
poses a value of typ€zp a:
foo :Ya:x. Expa — a — a
= Aa:x. Ne:Exp a. \x:a.
case ¢ of
Succ (co:a=Int) (¢': Exp Int) —
(foo@Int e’ 0 + (z» co)) » sym co
The case pattern binds the coerciorv, which provides evidence
thata and Int are the same type. This evidence is needed twice,
once to cast : a to Int, and once to coerce thie:t result back to
a, via the coercior(sym co).

Coercion composition allows us to “lift” coercions throughbi-
trary types. For example, if we have a coerciprr; = o2 then the
coercionTree v is evidence thafl’ree o1 = Tree o2. More gener-
ally, if v : 01 = 02, then

[v/ale : [o1/alp =[o2/alp
for any typeyp, including polytypes. As a more elaborate example,
Vb.y — Int : (Vb.o1 — Int) = (Vb.o2 — Int)

Dually decomposition enables us to take evidence apartefkor
ample, assumey’: Tree o1 = Tree o2; then, (rightv') is evi-
dence thato; = 02. Decomposition is necessary for the trans-
lation of GADT programs toF'c, but was problematic in ear-
lier approaches [3, 9]. The soundness of decompositiorsetif
course, on algebraic types being injective; iBee o1 = Tree o2

iff o1 = o2. Notice, too, thatTree by itself is a coercion relating
two types of higher kind.

3.3 Typefunctions

Our last step extends the power BE: by addingtype functions
and equality axiomswhich are crucial for translating associated
types, functional dependencies, and the like. A type foncH,

is introduced by a top-levelype declaration, which specifies its
kind & — «, but says nothing about itaterpretation The index

n indicates thearity of S. The syntax of types requires thét,
always appears applied to its full complemenharguments§3.4
explains why). The arity subscript should be considereti gfahe
name of the type constructor, although we will often elidwiiting
Elem o rather thanElem, o, for example.

A type function receives its interpretation by one or moreag
ity axiom definitions. Each axiom introduces a coercion constant,
whose kind specifies the types between which the coercion con
verts. For example,

axiom elemBitSet : FElem BitSet = Char
introduces the named coercion constaftmBitSet. Given an
expressiore : Elem BitSet, we can use the axiom via the coercion
constant as in the cast» elemBitSet, which is of typeChar.
We often want to state axioms involving parametric typessth
(Ve:x. Elem [e]) = (Ve: . €)
To use this axiom as a coercion, say, for lists of integersnaed
to apply the coercion constant to a type argument:

elemList @ Int : (Elem [Int] = Int)
which appeals to Rule (InstT) of Figure 2. The introductioer
corresponding to the elimination Rule (InstT) is Rule (AllThese
introduction and elimination rules for parametrisatiorotypes of

axiom elemList :



terms is mirrored in the coercion world by Rules (InstC) afti).
(Remember that = o is sugar forv_: k. 0.) The corresponding
coercions are needed when a coercion is applied to a GADTein th
scrutinee of aase expression.

It may be surprising that we use one quantifier on each sideeof t
equality, instead of quantifying over the entire equaliyia

Va:*. (Elem [a] = a) -- Not well-formedF ¢!

The advantage of the notation used in the definitiorelefnList

is that we do not need quantifiers as part of the kind structure
which simplifies matters significantly. Moreover, this rtata is
justified by the logical structure of parametricity as captlin
Abadi et al’s logical relations between parametric typgp A
well known instance of such a logical relation is the subsump
tion relation between parametric types, of which type equal
ity is the symmetric closure. For example, we obviously have
(Vb.Va.a — b) < (Vb.Int — b).

3.4 Consistency and saturation

In SystemF' ¢, we refine the equational theory of types by giving
non-standard equality axiomSo what is to prevent us declaring
unsound axioms®or example, one could easily write a program
that would crash, using the coercion constant introducedhby
following axiom:

axiom utterlybogus : Int = Bool

a partial type-function application from appearing as atgpgu-
ment, thereby instantiating a type variable with a partpglacation
— in effect, type variables of higher-kind range only ovgeutive
type constructors.

However, it is perfectly acceptable for a type function todan
arity of 1, say, but a higher kind 6f — x — x. For example:

type HS1 : x — * — *
axiom cl : HS: Int =[]
axiom c2 : HS: Bool = Maybe

An application of HS to one type is saturated, although it has kind
* — % and can be applied (via ordinary type application) to anothe
type.

3.5 Dynamic semantics and soundness

The operational semantics &f¢ is shown in Figure 3. In the
expression reductions we omit the type annotations on bsnite
save clutter, but that is mere abbreviation.

An unusual feature of our system, which we share with Crary’s
coercion calculus for inclusive subtyping [11], is thatued are
stratified intocvaluesandplain values their syntax is in Figure 3.
Evaluation reduces a closed term towalug or diverges. A cvalue

is either aplain valuev (an abstraction or saturated constructor
application), or it is a value wrapped in a single cast, thws ~
(Figure 3). The latter form is needed because we cannot esduc
term to a plain value without losing type preservation; feample,

(wherelnt and Bool are both algebraic data types). There are many \ye cannot reducé True » co), where co: Bool = S any further

ad hocways to restrict the system to exclude such cases. The most

general one is this: we require that the axioms, taken tegetne

consistentWe essentially adapt the standard notion of consistency

of sets of equations [12, Section 3] to our setting.

DEFINITION 1 (Value type).A typeo is anvalue typeif it is of
formVa.v or T w.

DEeFINITION 2 (Consistency)I is consistentff
1. fT'Feoy: T o =v,andv is avalue type, then =T 7.

2.1f T Feo v
v=Va:k.T.

: Ya:k.0 = v, and v is a value type, then

That is, if there is a coercion connecting twalue types — al-
gebraic data types, built-in types, functions, or forallstken the
outermost type constructors must be the same. For exanhgles t
can be no coercion of typBool = Int. It is clear that the condi-
tion is necessary for soundness, and it turns §B8t5) that it is also
sufficient. Rule (Pgm) in Figure 2 enforces consistency.

Consistency is both necessary and sufficient for soundrfeBs 0
but it is not obvious how to check whether a particular prayia
consistent. For particular classes of programs, howeugesistency
is easy to guarantee, as we will see for Hwe programs generated
from GADTSs (in§4) and associated types (B).

We remarked earlier that applications of type functidgfis are
required to be saturated. The reason for this insistencagain,
consistency. We definitely want to allow abstract types tobe-
injective; for example:

axiom cl : S; Int = Bool
axiom c¢2 : S1 Bool = Bool

Here, bothS; Int andS: Char are represented by thBool type.
But now we can form the coerciofrl > (symc2)) which has
type S1 Int = S1 Bool, and from that we must not be able to de-
duce (viaright) that Int = Bool, because that would violate con-
sistency! Applications of type functions are thereforetagtically
distinguished so thatight andleft apply only to ordinary type ap-
plication (Rules (DLeft) and (DRight) in Figure 2), and no&ippli-
cations of type functions. The same syntactic mechaniswepts

without changing its type frony to Bool.

However, there are three situations when a cvalue will ngt do
namely as the function part of a type application or funcappli-
cation, and as the scrutinee otase expression. Rules (TPush),
(Push) and (PushC) deal with those three situations, byipgishe
coercion inside the term, turning the cast into a plain vaNeatice
that all three rules leave tleontext(the application or case expres-
sion) unchanged; they rewrite the function or case scratieepec-
tively. Nevertheless, the context is necessary to guagahiat the
type of the rewritten term is a function or data type respedtyi

Rules (TPush) and (Push) are quite straightforward, bugl{lis
more complicated. Here is an example, stripped of¢hse con-
text, whereCons : Va.a — [a] — [a], andy : [Int] =[S Bool]:

Cons Int e1 ea » v — Cons (S Bool) (e1 » right~)
(e2 » ([]) (right~))

The coercion wrapped around the applicatiorffus is pushed in-
side to wrap each of its components. (Of course, an impleatient
does none of this, because types and coercions are erased.)

We derived all three “push” rules in a systematic way. Fomnepke,
for (Push) we asked what (involving e and~) would ensure that
((Az.e) » v) = Ay.€’. The reader may like to check that if the
left-hand side of each rule is well-typed (in the top-levehtext)
then so is the right-hand side.

Notice that evaluation affecexpressionsnly, not types. Since co-
ercions are types, it follows that coercions are not evelligither.
This means that we can completely avoid the issue of noratais
of coercions, what a coercion “value” might be, and so on.

THEOREM1 (Progress)Suppose that' is consistent, and” +.
e : 0. Then either is a cvalue, ore — ¢’ andT . ¢’ : o for
some terne’.

PrROOF By structural induction ore. The interesting case is for
application. SUpposE +. e e2 : 0. ThenT . e; : 7 — o and
Fe e2 : 7. Then there are three well-typed possibilities éor

1. e; is not a cvalue. Then by the induction hypothesiscan take
a (type-preserving) step.



Values:

Plain values v

Cvalues cw = veylv
Evaluation contexts:
/
e—e
E = Ee|ET|E»
o g 1 Ee|Br|Ery
Expression reductions:
(TBeta) (Aa.e)@¢ —  [p/ale
(Beta) (A\z.e) e — [¢/zle
(Case) case (Kogge)of ... KbT — ¢ —  [¢/b,e/x]e’
(Comb) (v y1) > 72 — vk (71 >72)
(TPush) ((Aa:k.e)p»y)@p — (Aa:k'.(ewy@a)) @y
where v : Vb: k.01 =Ve: k. 02
(Push) — ((Az.e)» 7)€ —  (w[(y»y)/zlew2)) €
where v1 = sym (right (left 7)) — coercion for argument
Yo = right ~y — coercion for result
(PushC) case (Ko @gew ) of p— rhs — case (KT ¢ €)of p— rhs

wherev: Te=TT

Aae|dze| Ke

K:VarvVb:o.p—Ta
; { sym6(v1) > ¢; > 0(v2)
Pi = .
©i
e; =e;i» 0(p;)
0 = [vi/ai, pi/bi]
~v; = right (left . .. (left ~))
S —

If bi L U1 = V2
otherwise

1—1

Figure 3: Operational semantics

2. e is is a plain value which, to be well typed, must be of form
Az.es. Hence we can take a (Beta) step.

3. e1 isv » 7. By consistency must have a function type. Since
v is a value,v must be of form\z.e3, SO we can take a type-
preserving step using (Push).
The other cases can be proved in a similar way. For example,
supposel’ . case e of p—e : 7. ThenT' . e : ¢ and
'+, p—e:0— 7. As before, we can distinguish among the
following three well-typed possibilities for case expiiess:
1. e is not a cvalue. Then by the induction hypothesisan take
a (type-preserving) step.

vide a statically-checkable guarantee that there will beunetime
crash.

Formally, we can define an erasure functigh which erases all
types and coercions from the term, and prove the standastdirera
theorem (see Appendix A):

THEOREM2. GivenTI' k. e; : o, (a) eithere; is a cvalue anck; °
is a value or (b) we have; — e2 and eithere;° — e2° or

e1° = ex°.

The dynamic semantics of Figure 3 makes all the coercionken t
program bigger and bigger. This is not a run-time concernabse
of erasure, but it might be a concern for compiler transfdromes.

2. e is a plain value which, to be well typed, must be of form Fortunately there are many type-preserving simplificatithrat can
K ¢’. Hence we can take a (Case) step (we assume that caseée performed on coercions, such as:

expressions have exhaustive alternatives).

3. eisv » 7. By consistency and sineeis a valuepy must be of
form K e’, so we can take a type-preserving step using (PushC).
m|

COROLLARY 1 (Syntactic Soundnesslet I" be consistent and
I ke e : 0. Then eithere —* cv andT" . cv : o for some
cvaluecw, or the evaluation diverges.

We give a call-by-name semantics here, but a call-by-vaduees -
tics would be equally easy: simply extend the syntax of extadn
contexts with the formv F, and restrict the argument of rule (Beta)
to be a cvalue.

3.6 Typeand Coercion Erasure

SystemF¢ permits syntactic type erasure much as plain System
F does, thereby providing a solid guarantee that coerciopose
absolutely no run-time penalty. Like types, coercions $ynguo-

symo = o
left (Tree Int) = Tree
ero = e

and so on. The compiler writer is free (but not obliged) to siseh
identities to keep the size of coercions under control.

In this context, it is interesting to note the connection ye-
equality coercions to the notion of proof objects in machine
supported theorem proving. Coercion terms are essenfiatipf
objects of equational logic and the above simplificatioresulas
well the manipulations performed by rules, such as (Pustit)e-
spond to proof transformations.

3.7 Summary and observations

Fc is an intensional type theory, like F: that éjery term encodes
its own typing derivationThis is bad for humans (because the
terms are bigger) but good for a compiler (because type ¢chgck



is simple, syntax-directed, and decidable). An obviousstjae is
this: could we maintain simple, syntax-directed, decidatype-
checking forF¢ with less clutter? In particular, a coercion is an
explicit proof of a type equality; could we omit the coercipn
retaining only their kinds, and reconstructing the proaigfee fly?

No, we could not. Previous work showed that such proofs can
indeed be inferred for the special case of GADTs [39, 31]. @ut
setting is much more general because of our type functioh&hw

in turn are necessary to support the source-language @tsns
we seek. Reconstructing an equality proof amounts to utifica
modulo an equational theory (E-unification), which is uridable
even in various restricted forms, let alone in the generaéda].

In short, dropping the explicit proofs encoded by coercivosild
render type checking undecidable (see Appendix C for a fbrma
proof).

Why do we express coercionstgpes rather than aterm< Doing
so is more conventional; for example, GADTs can be used to
encode equality evidence [33)], via a GADT of the form

data Eq a b where { EQ ::

Fc turns this idea on its head, instead using equality evidémce
encode GADTSs. This is good for several reasons. Hitstis more
foundational than System F plus GADTSs. SecoRd, expresses
equality evidence iypes which permit erasure; GADTs encode
equality evidence asalues and these values cannot be erased.
Why not? Because in the presence of recursion, the merepgist
of an expression of typeg a b is not enough to guarantee thas
the same ab, becausel has any type. Instead, one mestluate
evidence before using it, to ensure that it converges. ltrast) our
language of types deliberately lacks recursion, and hepegmns
can be trusted simply by virtue of being well-kinded.

4. Trandlating GADTs

With F¢ in hand, we now sketch the translation of a source lan-
guage supporting GADTSs intBc. As highlighted in§2.1, the key
idea is to turn type equalities into coercion types. Thisrapph
strongly resembles the dictionary-passing translatioowknfrom
translating type classes [15]. The difference is that we ataturn
type equalities into values, rather, we turn them into types

We do not have space to present a full source language sugport
GADTs, but instead sketch its main features; other papeesfgil
details [39, 10]. We assume that the GADT source languagthbas
following syntax of types:

Eq aal

Polytypes T — n|Vaw
Constrained typesn — t|t=t=rn
Monotypes T — al|lt—7|TT7T

We deliberately re-us&'c's syntaxr; = 7o to describe GADT
type equalities. These equality constraints are used irsdhece-
language type of data constructors. For example,Stine: con-
structor from§2.1 would have type

Succ : Va.(a = Int) = Int — Expa
Notice that this alreadis anF¢ type.

To keep the presentation simple, we use a non-syntax-daect
translation scheme based on the judgement

!
C;TFgapre:m~e

We read it as “assuming constrai6t and type environment’,

the source-language expressiohas typer, and translates to the
Fc expressiore’”. The translation scheme can be made syntax-
directed along the lines of [27, 31, 35]. The constraihtonsists

of a set of named type equalities:

C —

€| Cicimi =12

The most interesting translation rules are shown in Figurehere
we assume for simplicity that all quantified GADT variables a
of kind x. The Rules (Var), Y-Intro), and §-Elim), dealing
with variables and the introduction and elimination of paoby-
phic types, are standard for translating Hindley/MilneiSgstem
F [17]. The introduction and elimination rules for constred
types, Rules (C-Intro) and (C-Elim), relate to the standsyue-
class translation [15], but where class constraints indvadee
abstraction and application, equality constraints indtyge ab-
straction and application.

The translation of pattern clauses in Rule (Case) is as eged/e
replace each GADT constructor by an approprigite constructor
which additionally carries coercion types representing @ADT
type equalities. We assume that source patterns are alfisady

Rule (Eq) applies the cast construct to coerce types. Fey we
need a coerciory witnessing the equality of the two types, and we
simply re-use thé&'c judgement Fco v : 71 = 72 from Figure 2.

In this context;y is an “output” of the judgement, a coercion whose
syntactic structure describes the proofref= 7. In other words,

C tco 7y : 71 =72 represents the GADT condition that the equality
context ‘C impliest; = 72"

Finding a~ is decidable, using an algorithm inspired by the uni-
fication algorithm [20]. The key observation is that the estaént
“C'implies 1 = 2" holds if 8(71) = 0(72) wheref is the most
general unifier ofC'. W.l.0.g., we neglect the case th@thas no
unifier, i.e.C is unsatisfiable. Program parts which make use of
unsatisfiable constraints effectively represent deaacod

Roughly, the type coercion construction procedure prosezsl
follows. Given the assumption sét and our goalr; = ™ we
perform the following calculations:

Step 1 : We normalise the constraint§ = c: 7/ =7/ to the
solvedform + : a = v wherea; < a;+1 andfv(a) Nfv(o) = 0
by decomposing with Rule (DRight) (we neglect higher-kithde
types for simplicity) and applying Rule (Sym) and (Transe W
assume some suitable ordering among variables witand
disallow recursive types.

Step 2 : Normalisec’ : 71 = m» wherec’ is fresh to the solved form
v :a’ =v' wherea) < alj,.

Step 3 : Match the resulting equations from Step 2 against equa-
tions from Step 1.

Step 4 : We obtainy by reversing the normalisation steps in Step 2.

Failure in any of the steps implies th@t o v : 71 = 72 does
not hold for any~. A constraint-based formulation of the above
algorithm is given in [36].

To illustrate the algorithm, let's considét = {c; :
b= c}andcs : [a] =[], witha < b < c.

Step 1: Normalising”' yields {right ¢1 : a =b,c2 : b = ¢} inan
intermediate step. We apply rule (Trans) to obtain the sbfeem
{(rightc1) > c2 :a=c¢,c2: b= ¢}

Step 2: Normalisings : [a] = [¢] yields (right ¢3) : a = c.

Step 3: We can matatight c3 : a=cagainsi(right c1t>c2) : a=c.
Step 4: Reversing the normalisation steps in Step 2 yields-
[right ¢1 > e2], @asteo [] : [] =[]-

The following result can be straightforwardly proven by tiction
over the derivation.

[a] = [b], c2 :

LEMMA 1 (Type Preservationlet C;0 Fgapr e : t ~ €.

Then,C . €' : t.

In §3.4, we saw that only consisteft: programs are sound. It
is not hard to show that this the case for GAD'E programs, as



CiTFgapre:m~¢
z:m)el C;TFgapre:T~¢e CF =1
(Var) . ( ) - (Eq) - —— 4
C;T'kFgaprz:m~x CiUkgapre:T ~~ € p»y
;T cm s e fv(C,T T =725 ' in o~ e
(v-Intro) C; gapr €e:T~€e a¢ (C,/ ) (C-Intro) C,c:my 7'2,. GADT €: 1 e. :
C;T tFgapr e:Vam ~ Aa:x.e CiThrgapre:m1 =72 =10~ Ac:Ti =72).¢
. ;T :Va.m ~ ¢’ . ;T 1T = ~ € F T =
(V-Elim) C;T'Fgapr e : Va.w e, (C-Elim) C:T'kFgapre:mm=m2=>n~e ,C oY :ITI=T2
Ci;Tkgapre:[r/alm~ €' T C;Ttgapre:n~ce~y
|C;F|—GADTp—>€Z7T—>7TWpl—>€/|
K =Va,br' =7"=7—Ta anb=0 t77,77)=1Ga,b) 6=v/d
(Al) C,c:0(1") =0(1"); T,2:0(1) Feapr e : 7'~ € Efresh
C;Troapr KT —e:TT — 1~ K (b:x) (c:0(7) =0(t")) (z:0(1)) — €
Figure 4: Type-Directed GADT tdc Translation (interesting cases)
GADT programs only make use of syntactic (a.k.a. Herbrayoi t class Collects c where
equality, and so, require no type functions at all. type Elem c -- associated type synonym
THEOREM3 (GADT Consistency)lf dom(I') contains no type empty i ;1 e s
variables or coercion constants, afd Fco v : o1 = o2, then insert :: Elem c ¢ ¢
toList :: ¢ -> [Elem c]

o1 = o3 (i.e. the two are syntactically identical).

The proof is by induction on

the structure of Consistency is an we might want to define

immediate corollary of Theorem 3. Hence, all GADE programs sumColl :: (Collects c, Num (Elem c))

are sound. From the erasure soundness (cf. Appendix A), we ca => ¢ -> Elem ¢

immediately conclude that the semantics of GADT programs re sumColl ¢ = sum (tolList c)

mains unchanged (whee€ is e after type erasure). which sums the elements of a collection, provided these eésn
LEMMA 2. Let 0;0 Fgapr e : t ~ €. Then,e’ —* v iff are members of th#um class; i.e., provided we haveim (Elem

e® —* v wherev is some base value, e.g. integer constants. c). Here we have an associated type as a parameter to a class

constraint. Wherever the functioum Coll is used, we will have

5. Trandlating Associated Types to check the constrairtum (Elem c), which will require a cast

In §2.2, we claimed thdf ¢ permits a more direct and more general
type-preserving translation of associated types thanrémskation

to plain System F described in [6]. In fact, the translatidras-
sociated types t&'c is almost embarrassingly simple, especially
given the translation of GADTs tb'¢ from §4. In the following,
we outline the additions required to the standard trarsiaf type
classes to System F [15] to support associated types.

5.1 Trandating expressions

To translate expressions, we need to add three rules toahdastd

of the resulting dictionary it is instantiated. We achieve this by
adding the following rule:
Clkp D711 ~w C}_TY’Y:DTl:DTQ

Clkp D 1o~ wpr -y
It permits to replace type class arguments by equal typesrevh
the coerciorny witnessing the equality is used to adapt the type of
the dictionaryw, which in turn witnesses the type class instance.

Interestingly, we need this rule also for the translatiorsasn as
we admit qualified constructor signatures in GADT declawagi

(Subst)

system of [15], namely Rules (Eq), (C-Intro), and (C-Elingrh 5.3 Trangating declarations

Figure 4 of the GADT translation. Rule (Eq) permits casting e
pression with types including associated types to equaistyyhere
the associated types have been replaced by their defingtaotly
speaking, the Rules (C-Intro) and (C-Elim) are used in a rgere
eral setting during associated type translation than quBADT
translation. Firstly, the sef’ contains not only equalities, but both
equality and class constraints. Secondly, in the GADT tedims
only GADT data constructors carry equality constraintserdas
in the associated type translation, any function can cagpakty

constraints.

Strictly speaking, we also have to extend the translatidesrtor
class and instance definitions, as these can now declarecéiné d
associated types. However, the extension is so small thatmve
the formal rules for space reasons. In summary, each déolara
of an associated type in a type class turns into the dedarai

a type function inF¢, and each definition of an associated type
in an instance turns into an equaliixiom in Fc. We have seen
examples of this ig2.2.

5.4 Observations

5.2 Trandating class predicates In the translation of associated types, it becomes clear Iy

In the standard translation, predicates are translatecttiodaries
by a judgementC IFp D 7~ v. In the presence of associated

includes coercions over type constructors of higher kinghgider
the following class of monads with references:

types, we have to handle the case where the type argument to a class Monad m => RefMonad m where
predicate contains an associated type. For example, dieeclass type Ref m :: * -> *

10



newRef :: a -> m (Ref m a)
readRef :: Ref ma -> m a
writeRef :: Refma ->a ->m ()

This class may be instantiated for th@ monad and th6T monad.
The associated typeef is of higher-kind, which implies that the
coercions generated from its definitions will also be higkiaded.

The translation of associated types to plain System F ingptge
restrictions on the formation of well-formed programs §5.1],
namely (1) that equality constraints for anparameter type class
must have type variables as the firsarguments to its associated
types and (2) that class method signatures cannot consaén
class parameters. Both constraints can be lifted in thelation to
Fc.

5.5 Guaranteeing consistency for associated types

How do we know that the axioms generated by the source-progra
associated types and their instance declarations arestentd The
answer is simple. The source-language type system for iassdc
types only makes sense if the instance declarations obéegircer
constraints, such as non-overlap [6]. Under those conditid is
easy to guarantee that the axioms derived from the sourcgaro
are consistent. In this section we briefly sketch why thibésdase.

The axiom generated by an instance declaration for an agsdci
type has the forh C' : (Vax.S 01) = (Va:*.02). where (a)

o1 does not refer to any type function, (b)(s1) = a, and (c)
fv(o2) C a. This is an entirely natural condition and can also be
found in [5]. We call an axiom of this form mewrite axiom and a
set of such axioms defines a rewrite system among types.

Now, the source language rules ensure that this rewriteesyst
confluentand terminating using the standard meaning of these
terms [2]. We writeo1 | o2 to mean that; can be rewritten to
o2 by zero or more steps, wheee; is a normal form. Then we
prove that each type has a canonical normal form:

THEOREM4 (Canonical Normal Forms)l.et I' be well-formed,
terminating and confluent. TheR, Fco v : 01 = o2 iff 01 | o}
ando | o4 such thato] = o5.

Using this result we can decide type equality via a canomicahal
form test, and thereby prove consistency:

COROLLARY 2 (AT Consistency)lIf T" contains only rewrite ax-
ioms that together form a terminating and confluent rewrjtgtem,
thenI is consistent.

For example, assume tco v : 11 71 = T2 o2. Then, we find
T 51 | o1 andT: 73 | o3 such thab = o5. None of the rewrite
rules affectl’ or T:. Henceg; must have the shap® o/ andos

the shapel: 0. Immediately, we find thai, = 7> and we are

done.

We can state similar results for type functions resultirayrfrfunc-
tional dependencies. Again, the canonical normal form @ryps
the key to obtain consistency. While sufficient the candmca-
mal form property is not a necessary condition. Considemthre
confluent but consistent environmdht= {c1 : S1 [Int] =52, ¢z :
(Va:%.S1 [a])=(Va:*.[S1 a])}. Wefind thafl Fco v : Sy [Int]=
Sz. But there existsS; [Int] | [S1 Int] and Sz | S> where
[S1 Int] # S». Similar observations can be made for ill-formed,
consistent environments.

6. Related Work

System F with GADTs. Xi et al.[39] introduced the explicitly
typed calculus\z, ¢, together with a translation from an implicitly

1For simplicity, we here assume unary associated types thabtirange
over higher-kinded types.
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typed source language supporting GADTSs. Their calculusties
typing rules for GADTSs built in, just like Pottier & Régisi@nas’s
MLGI [31]. This is the approach that GHC initially took is the
result of a search for an alternative.

Encoding GADTsin plain System F and F,,. There are several
previous works [3, 9, 26, 38, 7, 36] which attempt an encoding
of GADTs in plain System F with (boxed) existential types. We
believe that these primitive encoding schemes are not ipahct
and often non-trivial to achieve. We discuss this in moreii@t
Appendix B.

An encoding of a restricted subset of GADT programs in plain
System E can be found in [29], but this encoding only works for
limited patterns of recursion.

Coercion-based subtyping. Mitchell [25] introduced the idea of
inserting coercions during type inference for an ML-likagaiages.
However, Mitchell’s coercion are not identities, but penfocoer-
cions between different numeric types and so forth. A mocemée
proposal of the same idea was presented by Kief3ling and 19]o [1
Subsequently, Mitchell [24] also studied coercions that @per-
ationally identities to model type refinement for type igfece in
systems that go beyond Hindley/Milner.

Much closer td ¢ is the work by Breazu-Tannen et al. [4] who add
a notion of coercions to System F to translate languagesrfegt
inheritance polymorphism. In contrastfie;, their coercions model
a subsumption relationship, not equalities, and theiraoas are
values, not types. Nevertheless, they introduce coeraonbina-
tors, as we do, but they don't consider decomposition, wiigch
crucial to translate GADTs. Moreover, the focus of their @ajs
the translation of an extended version of Cardelli & Wegs&n,
and in particular, the coherence properties of that traiosia

Similarly, Crary [11] introduces a coercion calculus foclumsive
subtyping. It shares the distinction between plain values @o-
ercion values with our system, but does not require quaatifin
over coercions, nor does it consider decomposition.

Intuitionistic type theory, dependent types, and theorem provers.
The ideas from Mitchell’s work [25, 24] have also been trensfd
to dependently typed calculi as they are used in theoremepspv
e.g., based on the Calculus of Constructions [8]. Genealiyco-
ercion terms are a simple instance of the proof terms of igic
frameworks, such as LF [16], or generally the evidence iuifiun-
istic type theory [22]. This connection indicates seveigtations
for extending the presented system in the direction of movegp-
ful dependently typed languages, such as Epigram [23].

Shao et al. [32] use equalities for type conversion in a laadzal-
culus with a type language based on the calculus of inductive
structions to denote certified binaries. Interestinglseadly GADT
equalities are useful to encode safety properties, as &Haa}f
demonstrated.

Translucency and singleton kinds. In the work on ML-style
module systems, type equalities are represented as singlietds,
which are essential to model translucent signatures [18t. Be
of equalities to represent programs that involve functiatepen-
dencies and existential types seems related.

7. Conclusionsand further work

We showed that explicit evidence for type equalities is aveaient
mechanism for the type-preserving translation of GADTspam-
tive types, functional dependencies, and closed type ifumet An
interesting avenue for future work is to find good source leage
features to expose more of the powertaf to programmers.
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A. Typeand coercion erasure

In this section we give the details of our type erasure theore
Following Pierce [28, Section 23.7] we erase a type abstrath a
trivial term abstraction, and type application to term dggtion to
the unit value; this standard device preserves termin&ébraviour
in the presence afeq, or with call-by-value semantics. The only
difference from plain F is that we also erase casts.

z° = =z (Az:p.e)° = Az.e°

K° = K (61 62)0 = e1%°
(Aa:k.€)° = Aa.e® (ewy)°” = ¢°

(e@o)” = €°() (KarTip)° = KazT

let x = e:° in e2°
case e1° of p° — e3°

(let z:0 =er1ines)’ =
(casee; of p = e3)° =

THEOREMS. GivenI' k. e; : o, (a) eithere; is a cvalue anck; °
is a value or (b) we have; — e3 and eithere;° — e2° or
610 = 620.

PrROOF Proof by structural induction oa. The interesting case is
application. Suppose we haVel. e; e2 : 0 ande; ea — e3

(in one step). Then either (&) can take a step (in which case the
result follows by induction), or (b is a cvalue. The latter has
two sub-cases: either (b.2) is a plain value or (b.2) it is of form
(v1 7).

In case (b.1), since can take a step;; must be of formAz.e}

so thate; e; can take a (Beta) step. But thée; e2)° can also
take a (Beta) step. We need an auxiliary substitution lenhe,
[e2°/z]el® = [e2/x]€}°, and then we are done.

In case (b.2)¢; is of form (v, » «), and by consistency; must
have a function type, and hence must be of the famre;. Hence

e1 ez can take a (Push) step. Taking a (Push) step leaves theerasur

of the term unchanged, modulo alpha conversion, which gives
result. O

COROLLARY 3 (Erasure soundnesdjor an well-typed System
Fc terme;, we havee; —* es iff €1° —" e2°.

B. Primitive Trandation of GADTs

We attempt a primitive translation (encoding) of GADTs tosSy
tem F with (boxed) existential types (for convenience wd usk
Haskell extended with rank-n types and existentials). \Weipe
evidence that such an encoding is sometimes hard to achieve.

The gist of the primitive encoding idea is to model type eifyal
a = b via safe coercion functions. Effectively, a pair of embed-
ding/projection functions. Each type cask ¢ is then turned into
the function applicatiorny e. To ensure correctness of this encod-
ing scheme, we need to guarantee that at run-time each opeyci
evaluates to the identity.

There are two approaches known in the literature to encode su
coercion functions. One approach, employed in [3, 9, 26, 3&}s
“Leibniz” equality

newtype EQ a b =

Proof { apply :: forall £ . f a ->f b}
refl :: EQ a a
refl = Proof id
newtype Flip f a b = Flip { unFlip :: £ b a }
symm :: EQ a b ->EQ b a
symm p = unFlip (apply p (Flip refl))
trans :: EQ a b ->EQ bc -> EQ ac
trans p q = Proof (apply q . apply p)
newtype List f a = List { unlList :: f [a] }
list :: EQ a b -> EQ [a] [b]
list p = Proof (unList . apply p . List)
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We also provide a few sample type coercion functions. Astpdin
outin [7], the trouble with this approach is that it seemsasgible
to define “decomposition” functions such as

decompList :: EQ [a] [b] -> EQ a b
The alternative method is to represent type equality asvial

type EQ a b = (a->b,b->a)

refl :: EQ a a

refl = (id,id)

sym :: EQ ab ->EQ b a

sym (f,g) = (g,f)

trans :: EQ a b ->EQ bc ->EQ ac

trans (f1,gl) (£2,g2) = (£f2.f1,gl.g2)

list :: EQ a b -> EQ [a] [b]

list (f,g) = (map f, map g)
The advantage is that decomposition is possible for somestipt
not for all as will see at the end of this section. Though, m@hy
not all) realistic GADT programs can be translated basedhi t
encoding [36]. On the other hand, the (serious) disadvantéthis
representation is that it may incur a severe run-time pgn@lbn-
sider the definition oftist where we have to apply the coercion
functions to each element.

Let's attempt an encoding of the trie example found in [10}ri&
is a finite map from keys to values whose structure dependbeon t
type of keys, here encoded as products and sums in GADT wsirian

data Either a b where

Left :: a -> Either a b
Right :: b -> Either a b
data Trie k v where
TUnit ::
Maybe v -> Trie O v
TSum : forall ki1 k2.

Trie k1 v -> Trie k2 v -> Trie (Either ki1 k2) v
TProd :: forall k1 k2.
Trie k1 (Trie k2 v) -> Trie (k1, k2) v

A trie for a unit type is maybe one value, a trie for a sum is a
product of tries, and a trie for a product is a compositionrist
An important operation on tries is the merging of two mapshwit
the same domain and co-domain.
merge :: (v => v => v)
-> Trie k v => Trie k v -> Trie k v

merge ¢ (TUnit Nothing ) (TUnit Nothing ) =
TUnit Nothing

merge ¢ (TUnit Nothing ) (TUnit (Just v’)) =
TUnit (Just v’)

merge ¢ (TUnit (Just v)) (TUnit Nothing ) =
TUnit (Just v)

merge ¢ (TUnit (Just v)) (TUnit (Just v’)) =

TUnit (Just (c v v’))
merge ¢ (TSum ta tb) (TSum ta’ tb’)
TSum (merge c ta ta’) (merge c tb tb’)
merge ¢ (TProd ta) (TProd ta’)
TProd (merge (merge c) ta ta’)

The second two last equations are interesting. The patteins

the first and second argument constraito Either k1 k2 and
Either k1’ k2’, respectively. Hence, we have

Either k1 k2 = k = Either k1’ k2’

from which we can followk1 = k1’ andk2 = k2’. The point is
that to translate the above I, we need to construct a coercion
that witness these equalities, we need decomposition.

To encode the trie example, we need (among others) a function

decomp :: EQ (Either a b) (Either c¢ d) -> EQ a b



But it seems impossible to define such a function if we userieib
equality.

Let's consider the “other” type equality representation.ehsure
correctness of the encoding scheme, we need to maintaimthe i
variant that for any type coercion functiatberce :: EQ a b

-> EQ ¢ d we have thatcoerce applied to a pair of identity
functions yields another pair of identity functions. We anere
lucky here, a functiodecomp:: EQ (Either a b) (Either c

d) -> EQ a c with the above property is actually definable.

For simplicity, we only give parts of the definition 6&comp.
(Either a b -> Either ¢ d) -> (a->c)

=\ a -> case (f (Left a)) of
Left ¢ > ¢

decompl ::
decompl f

We inject thea value into theEither data type, apply the incoming
coercing function and then extract thevalue. It is easy to verify
that the invariant is satisfied.

There are many other examples which can be translated using t
“other” type equality representation [36]. In fact, it alstcseems
that all practical examples can be encoded. Though, notyever
decomposition function is definable. Here is the (contijwedical
example.

data Foo a where
K :: Foo a
data Erk a b c where
I :: c->FErkaac
f :: Erk (Foo a) (Foo Int) a -> a
f (Ix)=x+1

First, we convince ourselves that the above program is typkd.
The patternI x in combination with the type annotation implies
thatFoo a = Foo Int. By decomposition, we conclude that=
Int. Thus, the program text + 1 can be given typént. Hence,
the above is well-typed. To translate the above, we needftoale
a function of typeEQ (Foo a) (Foo Int) -> EQ a Int. We
claim it is impossible to define such a function with satisfies
invariant. It suffices to show that a function

decompFoo :: (Foo a->Foo Int)->(a->Int)

with the property thatlecompFoo ( x->x) evaluates tx->x is
not definable.

The problem here is that a value of typeannot be injected into a
value of typeFoo a. So, clearly the incoming function of tygeo
a->Foo Int is useless. Effectively, we could omit the function
parameter altogether. Parametricity tells us that anytfanof type
a->Int must be a constant function. HendecompFoo applied to
any function of type&Foo a->Foo Int yields a constant function.
Hence, an encoding of the above critical example is imptessib

In fact, the “decomposition” problem is hardly surprisingan that
similar issues arise when translating type class progra®sis [

class Foo a where foo :: a->Int
instance Foo a => Foo [a] where

foo [] =1

foo _ =2
bar :: Foo [a] => a->Int
bar = foo

Based on the System F-style translation scheme descrit{é8]in
we are unable to translate functibar. The program text demands
a dictionary forFoo a but the annotation only supplies a dictionary
for Foo [a]. This is the wrong way around. The instance declara-
tion tells us how to construdoo [al givenFoo a but the other
direction does not hold in general.
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C. Complexity of Type Checking

Previous calculi for GADTS, such &g ¢, [39] and MLGX [31],
did not pass evidence for coercions explicitly, but dedutiesl
equality between types at coercion points implicitly dgritype
checking. We call such calcutalculi with implicit evidenceThis
raises the question whether it is necessary to constructpasd
evidence explicitly inFc, or whether we could not have made it
into an implicit calculus. To answer this question, we defame
implicit variant of F¢, which we callF¢, and show that type
checking forF¢, is undecidable. More precisely, we show that
reconstructing explicit coercion terms, which amount toqfs
justifying coercions, is undecidable fbi:, .

The difference betweeFic andF ¢, is simply the following: wher-
everF¢ has a coercion type of kind o1 = o2, F¢, only gives the
equality kind in curly braces; i.e{o1 = o2}. Hence,

e castse » yturnintoe » {01 =02} and
e type applicationg @~ turn intoe @{o1 = o2}.

It's obviously straight forward to turn aRc program into arFc,

program. The converse, recovering Ba program fromFc,, re-
guires a type-directed translation, that we obtain fromtthpgng
rules of Figure 2 by turning the expression typing rules indmsla-
tion rules. We replace the Rules (TApp) and (Cast) by thoségn
ure 5; for all other rules, the translation is the identitgeTmodified
Rules (Cas) and (TApro) use the judgemenit Feo v : 0 =7 tO
re-computey. As we will see next, computing from a kindo = 7

is, in the general case, undecidable.

THEOREM6 (Undecidability of coercion reconstructionlit, ).
Given an environmerit and anF ¢, expressiore, computing the
correspondingF ¢ expressiore’ and its types as determined by
' e~ e : oisnot decidable.

PrROOF We show that the reconstruction of coercion types for
F¢, expressions includes the word problem for A-ground theprie
which is long known to be undecidable [30]. An A-ground theigr
defined over a signatut® including the binary symbaPilus and a
set of F-equationsE that are all ground (i.e, variable-free), except
for the associativity ofPlus. More concretely, we have

F = {Slz¥k1—>*, ety Sp o Fem
Plus : x — * — *}

— %,

wherex* — « indicates thasS; is k-ary. Furthermore, we have
E={o1=7, ..., 0m =Tm,
Plus (Plus a b) ¢) = Plus a (Plus b ¢))}
where ther; andr; are terms ovefr.
We represenft and E in F¢'s type language as follows:

type S; : ¥ —

type S, : i R
type Plus : ¥ — * — %
data Term : x — x where
Svi  : Va*™. Nat ' = Nat (S Ekl)

Sv. : V@ Nata" — Nat (Sn @)
Plusv : Ya b. Nat a — Nat b — Nat (Plus a b)

axiomar; : 01 =T1

axiom az.,, :
axiom assoc :

(Va b c. Plus (Plus a b) ¢) = (Va b c. Plus a (Plus b c))

Om = Tm



(TApprv)

I'ktee:Va:ko T'hpr:TY Thyv 7k

I'Fee:o Theovyio=T
ke (ew{o=7})~ (ed):T

(Cast)

IFtee:Va:(r=v).o

T (c@7) = (c@r) ol /al (TAppco) Tkp(r=v):CcO Theop:7=v

I'ke (e@{r =v}) ~ (e@¢) : olp/a]

Figure 5: Modified typing rules for Systerfic,

The data typeTerm enables us to construct any (grourfjterm
by reflection from the structurally identicdlc expression using
Term's constructors. For example, 8; and S2 are nullary, we

have thatPlusv Sv; Svo :

Term (Plus S1 S2). If o is anF-term,

we denote the structurally identicBt: expression witty and have

o : Termo.

The word problem for the A-ground theof over the signaturé~
amounts to testing for two arbitraty-termso andr whethero =

7 underE. We represent this as &, type checking problem by
typing the cast expressianh» {o = 7} in the context of the above
F¢ declarations corresponding 16 and E. The undecidability of
the word problem implies the undecidability B¢, typing, or more
precisely, that the judgement co v : o =7 in the premise
of Fc,’s Rule (Casf) cannot be realised by an effective decision
procedure wher is unknown. O

It remains the question whether there exists a restrictioir'g,
equality axioms that excludes encoding problems, sucheasdind
problem for A-ground theories, but is still sufficient foatrslating
GADTSs, associated types, functional dependencies, andriuo f
Given the range of FD programs supported by GHC and the anal-
ysis of properties of FD programs in [34], this is not a viabfe

proach.
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