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Abstract

In this work, we present a centralized localization meck@rfior wireless sensor networks. Our
method is based on a graph drawing algorithm and utilizes imbde distances to localize sensor
nodes in a local coordinate system upto a global translataiation and reflection without any ab-
solute reference positions such as GPS or other anchor .ndéeshow through simulations that, it
is possible to avoid folds and flips in the localized netwaydut if the entire topology is considered
as a whole as opposed to distances to immediate neighbors\wel assess the effect of different
parameters like scale, node degree and ranging noise otgaouitiam. Finally, we propose a hierar-
chical approach to make the algorithm scalable for largevowds, which we would like to pursue as
future work.
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1 Introduction

Recent trends in electronic miniaturization and the advances made in wirefegsunication has given
us the ability to create tiny probes that can not only sense but also attamgselves in networks and
beam this information back over the air. These networks allow us to instruoventorld in novel
ways providing detailed insight that had not been possible before. 8iase sensor networks provide
an interface to the physical world, therefore, we must have a mechaardachting each node in the
physical space. The size of these networks prohibits the use of manefdiihed locations for all of
the nodes. Therefore, a localization service must be built in the netwoskiagidt to estimate node
positions.

Localization is an important middle-ware service in wireless sensor netwdirgovides location
information to each individual node in the network over which services hllentereporting, routing,
data aggregation and many other higher level services can be built. Tai®loawareness allows each
node to send location stamped data back to base station. Without the locationatibm, the raw data
would not be useful at the base station. Having location information alsoesome other interesting
possibilities like geographic routing [21], robot navigation [5], counteéper systems [22] and a wide
range of other interesting applications.

In section Il, we review some of the related work from both the sensoranktacalization community
and some graph drawing algorithms to see the similarities between the two. Imdéctice will look
in detail at one of the graph drawing algorithms. In section IV, we will pmesear localization algorithm
based on the graph drawing mechanism. Later we will analyze the effddferent parameters on our
localization algorithm. Finally we will present an extension of our currerrkwt@ make the localization
mechanism scalable which we would like to explore in future.

2 Related Work

In this section, we will review some of the related work from the sensor n&tlwoalization community.
We will also briefly look at some of the graph drawing algorithms and will try teettep a connection
between the two fields.

Location is considered an important attribute in wireless sensor netwodkthare is a large body
of work targeting this problem. A sensor network localization mechanism eaerglly be separated in
two distinct parts, a method for measuring distances between differestrsendes and an algorithm
that converts these distances into sensor node position estimates. A nunnéeging technologies
like [18], [19], [16] have been used with sensor nodes for distanasorements. The algorithms that
use these distances as inputs to determine position estimates can be classified@dased and anchor
free algorithms. Anchor based algorithms [15], [20] assume that some oioites referred as anchors
or beacons have an a priori knowledge of their locations through manritialization or through some
external infrastructure like GPS. These anchor node locations anchisderdistances are then used to
localize rest of the nodes in the network. A detailed analysis of these mhaked algorithms can be
found in [14].

Anchor free algorithms [17], [4] make no assumptions about a prioritime&nowledge of some
nodes in the network and use only inter node distances to localize the emtv@ ki a local coordinate
system. This local coordinate system can be readily used with applicatiorgeliggaphic routing [21]
where only the relative location of the destination node is required as egposbsolute GPS coordi-
nates. For other applications this local coordinate system can be cotsdlidip any other coordinate
system using methods described in [9] or [13]. Anchor free algorithme/dhe sensor networks to be



decoupled from any external infrastructure or any manual initializatidns i an extremely important
and desirable property for these networks to become plalge and play systems. Our algorithm also
falls in the same category of anchor free localization algorithms.

Anchor free algorithms take the distance constraints as input and forstearsgf non linear equations
which is generally solved through some form of non linear optimization. Som®agimes model this
as a physical analogy [10]. The nodes in the network are replaced wiith masses and the edges
connecting them are replaced with springs. These point masses amnigraced in a plane and
released. In a real physical system, these springs exhibit tensionyalodctsmpress or expand to their
normal rest lengths pulling the masses to correct locations. Similarly in the$eret@sation algorithms,
the nodes are randomly placed in a 2D plane and nonlinear optimization is usex/¢éothe nodes to
locations that satisfy these distance constraints. One advantage of thesestagation methods is that
they can be easily implemented in a distributed manner since they involve onlyboeitthneighbor
communication. However, one major problem with this approach is that the rlestation has a high
probability of converging to a false minimum when the initial placement of nodesmgom. These false
minimums correspond to folded or collapsed layouts of the original netwohiks groblem has been
hinted at in [10] and addressed in more detail in [17].

Now we turn our attention briefly to graph drawing. Graph drawing is admming field dedicated
to determine algorithms for drawiragsthetically pleasing layouts for different types of graphs. A large
variety of different algorithms [2] have been proposed that take intolataifferent aesthetics criteria
like edge crossings, vertex spacings etc for graph drawings. Fergegraphs, there exists a body of
algorithms [6], [7], [11] that are referred to &sce directed drawing algorithms. These graph drawing
algorithms, like Mesh Relaxation, also model the drawing process as factiag on vertices and then
try to find vertex locations where these forces become zero. In fagetrbview of these algorithms
shows that the Mesh Relaxation is just a slight variation of these appmddbeever, these algorithms
also introduce repulsive forces between non adjacent vertices whiahthe collapsed layouts and result
in uniform population of the drawing area by the vertices. Recently, ottagahgdrawing algorithms [12]
have also been used for both centralized [3] and distributed [8] serswork localization.

3 KamadaKawai Graph Drawing

In this section, we will review the Kamada Kawai graph drawing algorithnj.[M/e will present a
slightly modified version of the original algorithm that is not constrained byditasving area. Let
us suppose that there amevertices located in a two dimensional plane. Each vertex is connected to
all of the nearby vertices that lie with in a circle of radiugentered at that vertex as shown in fig.
(1a). The weights on the edges represent the distances between tihesveSuch a graph can be
modeled as a physical system of point masses connected together tBprirgys. Traditional spring
embedders [6], [7] modeled such graphs by replacing each edge ireghie \gith a spring that had a rest
length equal to the edge weight (distance in our case) to form a mass spgigas shown in fig. (1b).
However, as we noted earlier such spring embedders always resutiathpsed or folded layouts like

in [17], [10] in the absence of forces between non adjacent vertidessiinitialized with agood guess
of the original layout.

Kamada and Kawai also present a spring embedder for drawing aealliggileasing graphs in [11].
However, it is different from the earlier spring embedders in the seraatthssumes that each point
mass is connected to all of the remaintng 1 masses with springs having different spring constants and
rest lengths irrespective of whether there is an edge between two seasticmt in the original graph.
For each pair of vertices, the spring’s rest length and the spring curistderived from the shortest



(a) A simple graph (b) Mass spring mesh

Figure 1: A spring embedder’s view of the graph

Figure 2: Kamada Kawai spring embedder’s view of the same graph. Saglriapresent actual edges
and the dashed lines represent created connections. The connémtionty one vertex are shown for
the purpose of clarity



path distance between the vertices. If the current distance betweenithenagses is smaller than the
rest length of the spring, it pushes them away from each other; if therduttistance is larger than the
rest length, it pulls the masses closer to each other. The imbalance of magsapring system can be
modeled as an energy functi@given as

n—1 n
1
E=> %" ki (lpi = pjll = dij)? (1)

i=1 j=i+1
where
p; andp; are current coordinates of i and j
d;j is the shortest path distance between i and j
k;; is the spring constant of the spring connecting i and |

The spring constarit;; is given as

where K is a constant.

Eg. (1) is infact the summation of the differences of the current andai#sidistances for aﬂw
pairs of vertices. Therefore, the best graph layout can be deterfaynedhimizing the energ¥. Since
each vertex is connected to all of the remainfng- 1) vertices, so the resulting layout cannot collapse
or fold over itself. In a two dimensional plane, the position of each vertexbeaexpressed by two

coordinatesx andy. Therefore, energi is a function of2n variablesey, 2, ..., xn, y1, Y2, - - -, Yn.
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The condition for the minimum of the energy function E is

OE(X) _ OB(X)

= <1 <
oz, au 0 forl<i<mn (4)
where
o V@i o)+ i — )
and
I R
P V@i — )+ (i — )



However, then simultaneous nonlinear equations given by Eq. (4) cannot be solvexigirecause
they are not independent. If, however, only one vekiéxselected at a time and energy E is viewed as
a function of only two variables;, andy;, then it is possible to minimize the energy E with respect to
xx andyy, i.e. choosing a vertek and moving it to a position that minimiz&while freezing all of the
remaining vertices at their current locations. By iterating this step, a minimunfiysagi€q. (4) can be
obtained. In each step, a vertex with largasis selected, where

o ) - (50)

This results in two non linear equations in two unknowpsandy;

oOF

o
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These are solved using the iterative Newton-Raphson method, (lf), yx(0)) are the initial coordinates
of the selected vertek, then the following iteration is repeated until, becomes small.

zp(t+1) = zp(t) + oz
ye+1) = wr(t) + 0y (6)

d0x anddy are computed from the following pair of linear equations
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The process of selecting a vertex with largAsand moving it to its stable position continues until the
for all of the vertices become small enough and at that point the drawingshkdid.

4 Localization

In this section, we will present a localization mechanism for wireless seesoorks in which individual
sensor nodes are equipped with devices like [18] and can measurecdsstartheir nearby neighbors.
Our localization scheme is based on Kamada Kawai graph drawing algorésigned to dravaesthet-
ically pleasing graphs. However, as we will show later, it is possible to localize a semdwork upto

a global translation, rotation and reflection by using a combination of Kamadldawai and Mesh
Relaxation. If required this localized network layout can then be tram&fdrinto a absolute coordinate
system with the help of anchor nodes. However, our scheme does peraien anchors for network
localization and it will work in the absence of any anchor nodes.

We assume that after the network is deployed, each node enters intoirgrahgse and measures
distances to its nearby neighbors within its own ranging distance. After this tlhe successful distance
measurements along with the node ID are transferred to a base station usihgprmouting. After all
of the distance measurements are received at the base station, a grapktisated in which each
edge represents a distance and the end points of each edge repessamtnodes. Once the graph is



constructed, the localization problem can be viewed as a graph dravabtgpr. However, we are not
interested in aesthetics but a graph drawing that represents the aosa@lisetwork. Later in the section,
we will see that theesthetically pleasing drawings come quite close to the original network layout and
require only slight refinement.
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Figure 3: Screen shot of the graph drawing process

Once we have the graph, we must initialize the graph drawing process with idtia locations.
After the initialization step, the drawing process continually moves the nodserdo their original
locations in the network layout. We experimented with different starting layinaksding a completely
random one. However, the best results were obtained with what wesctile®istance Circle layout.

It is constructed by determining the shortest path distance between areof podes and choosing the
end point nodes of the largest one. These nodes are placed at th&tepnds of the diameter of a
circle centered at the origin. The diametkeof the circle is chosen such théts> d,,.. whered, .. is

the longest shortest path. The rest of the nodes are distributed unifalonly the circumference of the
circle. The reason for choosing tBéstance Circle as the starting layout was that it always resulted in a
final layout that was closer to the original network layout as opposecetcatidom initialization which

at times resulted in different final layouts. Fig. (3) shows a snap shot of moulator. On the left, it
shows the startin@istance Circle layout and on the right, it shows the current iteration of the drawing
process.

After the initialization, we use Kamada and Kawai’'s method of determining the mininmeng g state
for the graph. In each step, a vertex with larg&stalue is selected. This vertex is then iteratively moved
to its lowest energy position using Eq. (6) and Eq. (7). This procespéated until theA values of
all of the vertices become very small. We observed that the graph layoetajed by Kamada Kawai’s
method was quite close to the original network layout. However, the gederattex coordinates were
not equal taexact node coordinates. The reason for this is that like other graph drawingtalys, Ka-
mada Kawai's method is meant to prodyseasing graph drawings, uniformly distributing the vertices
with respect to the edge weights within a bounded area, a problem that is dimtifandamentally dif-
ferent from localization. However, the coordinates generated by thisathedn be refined using mesh
relaxation [10]. Fig. (4) shows a comparison of the original node locaiiothe network and the graph
drawn by Kamada Kawai’s method using the inter node distances after iekadtitialized with Dis-
tance Circle layout. It shows that the drawn graph is a slightly distorted version of tiggnat network.
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(a) Original generated network layout (b) Graph drawn by Kamad Kawai'’s algorithm

Figure 4. Comparison of original network layout and the output of Kankaeai drawing process. The
drawn graph looks slightly distorted but quite similar to the original networkuayo

In the later section, we will have a closer look at the distortion experiengégenetwork when drawn
by this method.

Mesh relaxation requires a good guess of vertex coordinates to genwbich in our case is provided
by Kamada and Kawai's drawing process. Mesh relaxation is initialized witlveéhiex coordinates
p; generated by Kamada Kawai’'s drawing process. During each relaxsigpnthese coordinates are
incrementally improved. In each stépthe force on vertex due to an adjacent vertexis calculated
using

— kx .
fij [t) = —lpi — pjll — dij)Pi; 9)
mg
where
7i; IS a unit vector directed fromto j

m, is the number of neighbors of

The total forcez?i [t] oni due to all of its neighboring vertices is the sum of individual forces

Filt] = Z ?ij [t] (10)

The new coordinate estimate for verteis generated as

pi [t +1] = pi [t] + F; [t] (11)

In our implementation, we used a fixed number of relaxation steps (t=100)of Allur generated
topologies converged well before the relaxation steps finished. At theoemesh relaxation, each
vertex coordinate is taken as the respective node’s position estimateitgdt) represents the entire
localization process as pseudo code.

It must be noted that our mechanism produces location estimates in a retaindinate system upto
a global translation, rotation and reflection. Therefore, a method fogibdnthe localized layout in



coincidence with the actual generated network for comparison pursssguired. In other words, we
need a transformation from the localized relative coordinate system to siodus coordinate system
in which the network topologies are generated. We use a closed form sofaticalculating such

transformations as proposed by Horn et al. in [9].

Algorithm 1 Sensor Network Localization
Requwe All distance measurements have been collected
: Determine the shortest padly for all pairs of nodes
Calculate spring constaky; for all pairs of nodes
Let dyazr = max(dij;)
Initialize node positions with &istanceCircle layout with diametei 00 X d,q4
while max(A;) > thresholddo
Let k£ be the node witl\;, = max(A;)
while Aj, > thresholddo
Calculatedz anddy
T — T + 0x
Yk < Yk + 0y
end while
. end while
10
: whilet < Iterationsdo
for all nodesdo
Calculate resultant force and direction
Update node coordinate estimate
t—t+1
end for
: end while
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5 Simulation

In this section, we analyze the effect of different parameters on oalization scheme with the help of
simulations. We investigate the effect of network size, node degree agohgeerror on both phases of
our localization method. In order to analyze the effect of differentipatars, we decided to generate
topologies that not only had some randomness but also some regularityctustt The reason for
choosing such topologies is that some random topologies are more wellebetiian others which at
times could be very difficult to localize. Therefore, we decided to gene@ity grid topologies like
the ones mentioned in [23] for all of our simulations. However, our localizaubreme is not limited to
these topologies and can also be used to localize random topologies.

In our first set of simulations we investigate the effect of increasing tleedfizhe network on the
localization error. We vary the number of nodes in the network while maintaithiegaverage node
density constant to around 0.1 node&/niThe smallest topology consists of 25 nodes in an area of
15m x 15m and the largest topology consists of 361 nodes in an ar8anfx 57m. Each node in the
network has a maximum ranging distance of 5m. The average node degedkdf the topologies was
around 6. The results of these set of simulations are shown in fig. (8h &aint in the figure is an
average of 10 runs of simulation on 10 different similar sized topologies.(¥& shows the minimum,
average and maximum location error after the Kamada Kawai’'s graph dyamuhfig. (5b) shows the
minimum, average and maximum error after applying mesh relaxation on the ofitfamada Kawai.
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Figure 5: Increasing the network size does not affect the averagreodiour localization scheme
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We can see in fig. (5) that the average localization error is ard0ad and it is not effected by the size
of the network being localized.

Average error is just an indicator and we believe that it makes more selwaktat the entire distri-
bution of errors in the localized network to gain insight into the performahedaralization algorithm.
We see from fig. (5b) that the maximum localization error was experiengcetd® of the topologies of
100 nodes. Therefore, we choose the topology of 100 nodes thatiexped the largest maximum error
from our previous simulation set to examine the error distribution. This topakogkown in fig. (6).
A comparison of actual node coordinates and localized node positiotisf@elected topology along
with the cumulative distribution of errors at both stages of our algorithm iwshio fig. (7). Fig. (7a)
is a comparison of actual node positions and the vertex coordinatesaggahbly the Kamada Kawai’s
drawing algorithm. We observe that the vertex locations seem to be radiaiiwgrd from the center.
The nodes at the center experience minimum error while the nodes at #aeedierience larger errors.
We believe that it is due to the fact that the nodes located close to the ceptiesce forces from
all of the directions as opposed to the nodes at the edges that expdaeres originating only from
the inner side of the network. Fig. (7b) shows the plot of empirical cumelalistribution function of
vertex coordinate errors. We can see from the CDF plot that 90 pesEdime vertices experience less
than150cm of location errors and only 10 percent of the remaining vertices exeriemors as large
as300cm. Fig. (7c) compares the location estimates with the actual node locationsyastging mesh
relaxation. It shows that the location errors are so small that they argsilgle at this scale. The CDF
plot in fig. (7d) shows that over 95 percent of errors are beldwn and there are only a few nodes in
the network that are experiencing large location errors of ar@dfidn.
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Figure 6: 100 node topology experiencing largest error

Next we investigate the effect of average node degree on our schesre tww it affects the local-
ization error. The same topology shown in fig. (6) is used for this simulatiofierBnt average node
degrees are achieved by increasing the maximum ranging distance ofoelcH-ig. (8) shows the result
of this simulation where the vertical axis is the localization error and the hdekanris is average node
degree. The two curves show the minimum, average and maximum localization @frtbe two stages
of our scheme. Increasing the node degree from 7 to 14 rapidly desr#iae average error of the coor-
dinates generated by Kamada Kawai’s graph drawing scheme. As thelaguoee is increased beyond
14, the difference between the two curves becomes smaller. Thus addiegdges in the graph allows
the Kamda Kawai’s algorithm to draw a graph that matches more closely to theetesrk layout.
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(a) Estimated coordinates after Kamada Kawai Drawing
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Figure 7: Analysis of localization errors of our scheme
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Now we look at the effect of ranging noise on the localization error. Wated one of the topologies
of 25 nodes i 5m x 15m for this set of simulations. Fig. (9) shows the result of this simulation where the
vertical axis is the average localization error and the horizontal axis isghdard deviation of a normal
distribution of distance errors with zero mean. The two curves show thage/éocalization error for
both the stages of our algorithm. Each point on the curve is an avera@aoh4 of simulation with the
same standard deviation. The curves show that increasing the distanseremeent error deteriorates
the performance and increases localization error. However, an itibgresoss over occurs at around
50cm. When the noise in distance measurement is increased bégpend the mesh relaxation starts
to increase location errors instead of improving location estimates. This is dibe ®ensitivity of
mesh relaxation to its proper initialization. Beyostm the graph layout generated by Kamada Kawai
becomes so distorted that the mesh relaxation does not converge to adegdasitions. These results
show that our algorithm can withstand small amount of ranging noise tygic#trasound devices.

6 FutureWork

In the previous few sections, we proposed a localization algorithm faoseretworks and analyzed
the effect of different parameters on localization errors with the helnadlations. In this section, we
present the planned future extensions of our current work.

(a) A large network (b) Network with two partitions

Figure 10: Dividing a large network in partitions for localization. Chosesteluheads are shown with
rectangles. Nodes in the shaded region belong to both partitions.

Recent studies suggest that there is always some difference betiwegation and real world per-
formance of localization algorithms [23]. Therefore, we are interesteghining our localization mech-
anism on a real medium sized deployment of Mica2 motes to see how it behaaegal world de-
ployment in the presence of real noise. At this stage, we are investigdffieigedt ranging technologies
like [19], [1], [18] for Mica2 platform. We are specially interested in [If#cause of its ability to use the
existing hardware on Mica2 motes for distance measurement with reasenaike The audible sound
frequency used with this method also makes it more omnidirectional than otresauniic alternatives.

Since our localization algorithm requires all of the distance measuremenighsosensor field to be
collected at a central base station for location estimation, this might pose biltyalssue for large net-
works. We propose a hierarchical scheme to use our current locatizdgorithm with large networks
which we would like to pursue in future. Here we briefly describe the ppepgescheme. Once a large
network is deployed, it is divided into several overlapping partitions withauster head chosen in each
partition. Fig. (10) shows a network divided into two such partitions. All efdistance measurements

14
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(a) Localized partition 1 (b) Localized partition 2

Figure 11: Each patrtition is localized at the cluster head in its own coordipsttens defined by Y;
and X,Y5.

from each partition are collected at the respective cluster head. Eastkrahead runs our localization
algorithm to localize the nodes in its own partition in a local coordinate system.(Ely.shows local-
ized layouts of both partitions in their respective coordinate systems ddfinagesX;Y; and X,Y5.
Grey circles represent those nodes that belong to both of the partitidribemrefore, each cluster head
has their estimated locations in its own coordinate system. Now the cluster lzaeaelsohiange the local
coordinates of these common nodes with each other and after this exawtpeluster head can calcu-
late an inter-cluster transformation using the method described in [9]. Udsgdhsformation any of
the two local coordinate systems can be aligned and stitched to the othersireasin fig. (12).

> X1

Figure 12: Aligning the coordinate system of cluster head 2 into the locatitwie system of cluster
head 1 with the help of common nodes.
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7 Conclusion

We presented a centralized localization algorithm for wireless sensor kstivased on a graph drawing
algorithm and analyzed the effect of different parameters on the ragidtalization errors. We showed
that by considering the entire topology it is possible to avoid the collapsedlded layouts. We also

showed that the graph drawing process is capable of generating lélyaudse quite similar to the actual
network layout and thus require only slight refinement to generate noslégm estimates. Finally we

outlined a planned extension of our current work that would allow outilat#don mechanism to be used
with large networks in a distributed manner.
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