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Abstract

With the advent of multiprocessors on the desktop, software applications are in-

creasingly likely to adopt multithreaded architectures. To cope with the complexity

of concurrent systems, programmers build systems from thread-safe components. This

produces excessive and redundant locking, restricting the potential for concurrency

within the system.

Rather than deploying individual thread-safe components, we advocate deferring

the deployment of locks until the code dependencies are known. This avoids redundant

locking, and allows the granularity of concurrency to be chosen in a flexible way. In

earlier work we identified a formal relationship, known as a Galois connection, between

the potential for concurrency in a composite system and the locking requirements for

its components.

This report highlights the role of fixpoints for lock selection. The subsequent re-

port (UNSW-CSE-TR-605) will investigate strategies for selecting locks in a composite

system.



1 Introduction

Concurrent and multi-threaded programming is gaining popularity these days as the com-

plexity of computer applications grows and desktop hardware (especially desktop multi-

processors) become more powerful. Writing concurrent programs is a challenging task.

Concurrent access of multiple threads to shared data should be regulated and controlled to

preserve data invariants and ensure consistent behaviour. This is what we mean by thread-

safety. In order to provide thread-safety for software components, the simplest approach is

to force mutually exclusive access to the components’ interface. For example, in Java, we

can declare all the methods of a class as synchronized, serializing concurrent calls to each

instance of that class so that each object acts as a monitor.

To increase the potential concurrency in a system while maintaining thread safety, we

can adopt two complementary approaches. First, we can move monitor boundaries from

high-level components down to subcomponents, so that rather than single-threading an

entire subsystem, only the shared objects within that subsystem are single-threaded. Sec-

ond, we can adopt a finer granularity of exclusion control, such as read-write locks, rather

than simply single-threading entire components. We can of course adopt both of these

approaches simultaneously, and provide finer grain locking internally rather than at the

external interface.

In this report, we contribute an advance in our research for reasoning about concur-

rency and exclusion in component-based object-oriented systems. In the 2004 CSJP Work-

shop [PSY04] and also in [PSY05], we demonstrated the effectiveness of a general-purpose

exclusion lock that can provide any required exclusion. For locking of a single object, the ex-

perimental results confirmed the effectiveness of fine-grain (method-level) exclusion control.

In our work we use a simple notation for expressing concurrency control in objects. The

algebra of exclusion [NHP00] is an algebraic notation for expressing exclusion requirements

and also the potential concurrency for objects.
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In [SP05, SPN05] we characterised the relationship between exclusion requirements and

potential concurrency of components in a composite system. Based on prior knowledge of

the dependencies amongst a composite’s components, and exclusion requirements for primi-

tive components, we have established a more structured approach for propagating exclusion

requirements amongst components than was originally proposed in [NHP00]. This model

relies on a Galois connection between the outward mapping of exclusion requirements, and

the inward mapping of potential concurrency, to reduce the locks considered per component

to a minimal subset of those possible. We present a more detailed analysis of this Galois

connection in this report. Given the choice of a particular distribution of locks throughout

the components of the system, we can calculate whether or not each component is indeed

thread-safe, where locks are redundant and where high level or coarse grain locks cause

potential for concurrency to be lost.

The remainder of this report is organised as follows. Section 2 gives some background on

concurrency and objects, and on exclusion requirements and algebra of exclusion. Section 3

presents a brief overview in partially ordered sets and lattices. In section 4 the notion of

Galois Connection is defined with several applications such as Formal Concept Analysis. We

also present the fixpoint properties. Section 5 is the core of this report where we present a

proof of the occurrence of a Galois Connection in our model. First, we show the occurrence

of a Galois Connection between the exclusion requirements and concurrency potential; then

we present some examples to illustrate the significance of the fixpoint concept in choosing

an appropriate lock. Section 6 provides some concluding remarks.

2 Background

Concurrency and synchronisation have always been associated with the object paradigm

since its birth. Early languages and systems [BDMN79, Hoa74, Han73] adopted the object

as the unit of synchronisation with the concept of a monitor. We do not attempt a full survey
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here—see for instance Briot et al [BGL98] or Philippsen [Phi00] for comprehensive surveys

of systems and approaches that integrate concurrency and object-oriented languages.

Greenhouse and Scherlis [GS02] present a model for expressing design intent that may

help programmers to assure consistency between design and code. Their client policy nota-

tion for describing safe/unsafe method interactions is analogous to our method-level exclu-

sion specification for components of a composite. Whereas their concern is to relate design

intent to code, our focus is on calculating what locks are sufficient to satisfy given exclusion

requirements in a given concurrent environment.

Two recent articles present the spectrum of modern, language-based approaches to syn-

chronisation. Caromel et al [CMT04] describe a monitor-based extension to Java that is sim-

ilar to various other aspect-oriented synchronisation schemes [BA05, HNP97, Hol99, LK98,

Lop05]. Such schemes provide language extensions so that synchronisation or scheduling

code can be executed whenever a method enters or leaves an object. Programming languages

such as Polyphonic C# [BCF04] and JoinJava [vIK02] are at the other end of the spectrum

— incorporating constructs from the Join Calculus [FG02] directly into programming lan-

guages. In these languages, synchronisation policies are expressed using chords — combi-

nations of synchronous and asynchronous methods whose execution implicitly establishes

rendezvous between multiple threads. Both aspect-oriented and join-calculus languages can

be used to implement a wide variety of concurrency management techniques, from basic ex-

clusion, to state-dependent and transactional semantics. This control is provided, however,

by writing code, rather than a declarative specification, so there is no notion of a separation

of synchronisation policy and mechanism, and synchronisation policies can only be changed

— say to distribute locks over composite objects — by changing code.
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2.1 Exclusion Requirement

In this report we adopt a general model for synchronisation control for programming lan-

guages and component models. It is geared towards composite object models with distinct

interfaces on internal components, and is therefore not directly applicable for concurrency

control in database systems.

In our model we presume some knowledge of the internal implementation of the com-

ponent: we need to know the conflicts between the different methods of the interface, this

is known as exclusion requirements of a component. The exclusion requirement for a com-

ponent is specified as the set of method pairs that may conflict. Typically the exclusion

requirement depends on the internal implementation of that component. The components

exclusion requirements must be met to guarantee safe concurrent access to its interfaces.

As described in [SP05], we model individual components as in Figure 1. In this model

internal exclusion requirements Rint come from within the component and concurrency

potential Pext is determined externally. The lock L is provided by the component. The

missing requirement is Rext = Rint − L which must be managed externally. Also, the

remaining concurrency potential is Pint = Pext − L.

 

 Rext Pext 

Pint Rint 

Lock (L) 

Figure 1: Exclusion Requirement vs Concurrency Potential
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We can characterise several properties pertaining to safety, minimum locking, and lock

redundancy for a single component.

Safety Condition: For a component to be safe, none of the method pairs in RI should

be concurrently activated; but only those pairs in PE have this potential. So, provided the

lock L blocks all pairs in both RI and PE , the component is safe. The safety condition is

therefore:

RI ∩ PE ⊆ L

This is equivalent to the condition that, at each layer (external and internal), there is

nothing in common between exclusion requirements and concurrency potential; in other

words

RE ∩ PE = {} and RI ∩ PI = {}

Minimum Safe Lock: For given RI and RE , the above safety condition clearly identifies

the minimum safe lock as:

Lmin =̂ RI ∩ PE

Redundant Locking: If a lock for a component is not the minimum required for safety,

then any non-minimal pairs that are blocked are redundant, either because their exclusion

is not required by RI , or they will not occur concurrently, by PE . For a given local lock L,

the redundancy is therefore:

Lred =̂ L − Lmin

2.2 Algebra of Exclusion

In our earlier work [SP05, SPN05] we have described a simple language for compactly writing

exclusion requirements in a compact textual way, which is useful for describing examples.
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The basic syntax is given by:

e ::= e e | e|e | e × e | ē

In effect this is a language for describing undirected graphs. Each expression denotes a

set of elements (the vertices) and a symmetric relation on those elements (the undirected

edges). For each of these expressions, the set of elements is the union of the elements of its

sub-expressions. The relation described by: the sum e1e2 (equivalently e1|e2) is the union

of the relations for the sub-expressions; the product e1 × e2 is the union of the relation for

e1e2 and the symmetric cartesian product of the elements of e1 and e2; the completion ē

is the cartesian product of the set of elements of e with itself. The second form of sum

operator has lowest precedence; the first form (concatenation) has highest. The reason for

incorporating two forms of summation is that it allows us to express multiple read-write

sets neatly without any parentheses. For example, the expression r1r2×w1w2 | r3r4×w3w4

denotes a pair of read-write locks, with two readers and two writers in each set. Without

the concatenation operator, this would be written as (r1|r2)×w1|w2 | (r3|r4)×w3|w4 which

is much less clear.

The main focus of this report is to demonstrate the existence of a Galois Connection in

our model. Specifically, we show the occurrence of a Galois Connection in the relationship

between exclusion requirements and concurrency potential. We also show how the fixpoint

lattice, associated with the Galois Connection property, can be used to partition the sets

of exclusion requirements and concurrency potential into equivalence classes to be used in

reducing the set of controls considered.
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3 Order and Lattices

In this section we start some background for our theoretical work. We present material on

order theory and lattices, and show some examples of partitioning exclusion requirements

using lattice diagrams. More detailed background can be found in [DP02].

3.1 Ordered Sets

An ordered set is a set equipped with a special type of binary relation. Recall that abstractly

a binary relation on a set P is just a subset R ⊆ P × P = {(p, q) : p, q ∈ P} . (p, q) ∈ R

simply means that “p is related to q under R”. A binary relation R thus contains all the

pairs of points that are related to each other under R.

The basic concept in order theory is that of a partial order; it formalises the notion of

a hierarchy and is ubiquitous in mathematics and computer science. An ordered set (or

partially ordered set or poset) is an ordered pair (P ,≤) of a set P and a binary relation ≤

contained in P × P , called the order (or partial order) on P , such that

1. The relation ≤ is reflexive. That is, each element is related to itself; ∀p ∈ P : p ≤ p

2. The relation ≤ is antisymmetric. That is, if p is related to q and q is related to p,

then p must equal q; ∀p, q ∈ P : (p ≤ q ∧ q ≤ p) ⇒ (p = q).

3. The relation ≤ is transitive. That is, if p is related to q and q is related to r, then p

is related r; ∀p, q, r ∈ P : (p ≤ q ∧ q ≤ r) ⇒ q ≤ r.

The elements of P are called the points of the ordered set. Order relations introduce a

hierarchy on the underlying set. The statement p ≤ q is read p is less than or equal to q or

q is greater than or equal to p. The antisymmetry of the order relation ensures that there

are no two-way ties (p ≤ q and q ≤ p for distinct p and q) in the hierarchy. The transitivity
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(in conjunction with the antisymmetry) ensures that no cyclic ties (p1 ≤ p2 ≤ ... ≤ pn ≤ p1

for distinct p1,p2,...,pn) exist.

3.2 Bounds

Let A ⊆ P be a subset of the poset P . An element p is an upper bound for A if a ≤ p for

every a in A. An element p in P is the least upper bound of A (l.u.b of A), or supermum

of A (sup A) if p is an upper bound of A, and a ≤ b for every a in A implies p ≤ b (i.e., p

is the smallest among the upper bounds of A). Similarly we can define what it means for p

to be a lower bound of A, and for p to be the greatest lower bound of A (g.l.b of A), also

called the infimum of (inf A).

3.3 Lattices

If the least upper bound of A exists in a poset, we denote it by
∨

A, and if the greatest lower

bound of A exists, we denote it by
∧

A. If A = x1, x2, ..., xn is a finite subset, then we can

also write
∨

A = x1 ∨ x2 ∨ ... ∨ xn, and
∧

A = x1 ∧ x2 ∧ ... ∧ xn.

A poset L is a lattice if x ∨ y and x ∧ y exist for all elements x, y ∈ L. In a lattice
∨

and
∧

can be regarded as binary operations, called join and meet,
∨

: L×L → L and
∧

:

L × L → L. Based on this definition, the natural numbers N, the integers Z, the rational

numbers Q and the real numbers R are all lattices with their usual orders are ordered sets.

In these x ∨ y = max{x, y} and x ∧ y = min{x, y}.

Any set of sets is ordered by set inclusion ⊆. Similarly, geometric figures (like circle in a

plane) are ordered by inclusion. The simplest example of a set system ordered by inclusion

is the power set P(X) of a set X. Figure 2 depicts a sublattice of the power set (all possible

subsets) of the three element set {a, b, c}.

Notice that the set at the top of the figure, U , consists of all of the elements of the set.
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∅ = {} 

A = {a} 

D = {a,b}  E = {a,c}  

B = {b} 

F = {b,c}  

U = {a,b,c}  

C = {c} 

Figure 2: A Sublattice of the Set {a,b,c}

Sets D, E, and F are each in the subset relation to U , (for example, every element of D is

an element of U); and so on. This subset relation is a basis for partially ordering the sets.

We have placed the sets D, E and F below U to represent the fact that they are ordered

with respect to U . Note that they are not ordered with respect to each other. It is for this

reason that we refer to this as a partial order. Notice further that the set A is a subset of

D and of E; B a subset of D and F and so on. Finally, at the bottom of the figure is the

empty set. It is ordered in the figure with respect to sets A, B and C.

Another example more related to our work is depicted in Figure 3. This is a lattice

of exclusion requirements on the set of methods {1, 2}. This complete lattice depicts the

powerset of all possible symmetric pairs of the set. Adding one more element to the previous

set increases the number of symmetric pairs from 3 to 6, and the size of the lattice to 26 = 64

points (nodes) with 7 order levels as shown in Figure 4. In general, with n methods, there

are n(n+1)
2 symmetric pairs, and 2

n(n+1)
2 lattice elements with n(n+1)

2 + 1 levels.
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12 

1 2 1x2 

1x2 1x2 1 2 

12 

1 2 

Figure 3: Lattice of Exclusion Requirements on {1,2}

4 Galois Connection

In this section we introduce the notion of Galois Connection and show some related exam-

ples. We also talk about the fixpoint notion and its properties.

4.1 What is a Galois Connection?

A Galois Connection can be used as an effective research tool, it provides an interesting way

of comparing two pre-ordered sets. Consider the two partially ordered sets P and Q, also

consider the two functions ⊲ : P → Q and ⊳ : Q → P . ⊲ and ⊳ form a Galois Connection,

written GC (⊲, ⊳, P,Q), for all p ∈ P , q ∈ Q, if

p ≤P q⊳
iff p⊲ ≤Q q

4.2 Examples: Formal Concept Analysis

Formal Concept Analysis [DP02] is increasingly used for data mining, where the sets are

objects and attributes. Formal Concept Analysis is based on the philosophical understand-
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ing of a concept as a unit of thought described by its extension and intension. These two

entities exhibit a Galois Connection.

The extension consists of all objects belonging to the concept, and the intension contains

all attributes shared by all the objects of the extension. For formalising this understanding

a set G of objects and a set M of attributes has to be specified. They are connected by a

binary relation I between G and M . The triple (G,M, I) is called a formal context. For

each formal context its formal concepts can be introduced as pairs (A,B) where A is a

subset of G, B is a subset of M and A is the set of all objects which have all attributes

of B and B is the set of all attributes shared by all objects of A. These pairs constitute a

Galois Connection between G and M . Consider:

A⊲ = { b | ∀ a ∈ A. a I b}

B⊳ = { a | ∀ b ∈ B. a I b}

Then A Galois Connection exists between (G,⊆) and (M,⊇) if:

A ⊆ B⊳
iff A⊲ ⊇ B

4.3 Examples: Galois Connection in Usage Relation

Consider two components (sets of methods) A and B, with a known dependency relation

uses : A ↔ B. Define the pair of mappings (uses
⊲, uses

⊳) as:

uses
⊲ : PA → PB

uses
⊲(X) = { y ∈ B | ∃x ∈ X . x uses y }c

uses
⊳ : PB → PA

uses
⊳(Y ) = { x ∈ A | ∃y ∈ Y . x uses y }c
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The following property, which is straightforward to prove, establishes that the pair

of mappings, (uses
⊲, uses

⊳) forms a Galois Connection between the orders (PA,⊆) and

(PB,⊇). The corollary identifies the fixpoints of the connection which is the key for us.

X ⊆ uses
⊳ (Y ) iff uses

⊲ (X) ⊇ Y

Indeed, this example of a Galois Connection is just the same as that of formal concept

analysis working with the complement of the usage relation.

4.4 Fixpoints of a Galois Connection

What makes a Galois Connection between two posets P , Q interesting is that it establishes

a partition of convex subsets of P , and another of Q. Further more, there is a 1-1 connection

between these two partitions. The partitions are determined by the inverse image of the

composite maps ⊲⊳ on P , and ⊳⊲ on Q. These maps have the following properties:

closure : 1) p⊲⊳⊲ = p⊲

2) q⊳⊲⊳ = q⊳

convexity(max/min) : if p1 ≤ p2 ≤ p⊳⊲
1

then p⊳⊲
2 = p⊳⊲

1

We call the sets

{p⊲⊳ | p ∈ P}

and {q⊳⊲ | q ∈ Q}

the fixpoints of the Galois Connection. The fixpoints form a lattice. In the case of formal

concept analysis, the usual conceptual hierarchy defined by the containment relation be-
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tween the extents is an order relation on the set of all formal concepts of the given formal

context. This ordered set is always a complete lattice, called the concept lattice of the given

formal context. Each complete lattice is a concept lattice. Each concept lattice represents

its formal context without any loss of information.

4.5 Examples: Fixpoint for Usage Relation

We illustrate the fixpoint lattice for the uses relations with some simple examples.

Example 1.

 
 
 
 

A 
 
 
B 

 1                   2                    3 

 a                    b                   c 

Figure 5: Example 1 Usage Graph

Figure 5 shows the graph of a uses relation, where A = {a, b, c} and B = {1, 2, 3}.

Figure 6 shows two sublattices that depict the order of the elements in component A and

B.
 

 

 
 

   Ø 

     1     2             3 

  13 12 23 

123 

   ab                ac          bc 

 abc 

    b  a c 

  Ø 

 (B)              (A) 

Figure 6: Example 1 Sublattices

14



A uses⊲ uses⊲⊳

φ {1, 2, 3} φ
{a} {3} {a, c}
{b} φ {a, b, c}
{c} {1, 3} {c}
{a, b} φ {a, b, c}
{a, c} {3} {a, c}
{b, c} φ {a, b, c}
{a, b, c} φ {a, b, c}

Table 1: Component A uses Mappings

Table 1 and 2 show result of applying uses function on subsets of the two components A

and B respectively. Notice that the last column contains just the fixpoints of the mappings.

Indeed the entries in the middle column of one table are the fixpoints in the other table.

e.g. uses⊳{1} = uses⊳{1, 3} and uses⊳{φ} = uses⊳{2} = uses⊳{1, 2} = uses⊳{2, 3} =

uses⊳{1, 2, 3}.

B uses⊳ uses⊳⊲

φ {a, b, c} φ
{1} {c} {1, 3}
{2} φ {1, 2, 3}
{3} {a, c} {3}
{1, 2} φ {1, 2, 3}
{1, 3} {c} {1, 3}
{2, 3} φ {1, 2, 3}
{1, 2, 3} φ {1, 2, 3}

Table 2: Component B uses Mappings

Figure 7 shows how the ⊲⊳ mapping induces a partition on A whose components are

convex and with maximal elements that are fixpoints of the mapping (the black dots in the

figure). Similarly for ⊳⊲ and B. Then in Figure 8 we see that there is an order isomorphism

between the fixpoints of A and B, and that they form a lattice (in this case, a total order).
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Figure 7: Example 1 Highlighted Sublattices
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Figure 8: Example 1 Joint Sublattice
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Example 2.

In this example we use the usage relation graph shown in Figure 9. Again Table 3 and 4

show the result of applying the uses function on subsets of the two components A and B

respectively. The results of the ⊲⊳ mapping function on component A and the ⊳⊲ mapping

on B are shown in Figure 10. Finally, Figure 11 shows the joint fixpoint lattice for both

mappings.

 
 
 
 

 a                    b                   c 

A 
 
 
B 

 1                   2                    3 

Figure 9: Example 2 Usage Graph

A uses⊲ uses⊲⊳

φ {1, 2, 3} φ
{a} {1} {a, b}
{b} {1, 3} {b}
{c} {2} {c}
{a, b} {1} {a, b}
{a, c} φ {a, b, c}
{b, c} φ {a, b, c}
{a, b, c} φ {a, b, c}

Table 3: Component A uses Mappings
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B uses⊳ uses⊳⊲

φ {a, b, c} φ
{1} {a, b} {1}
{2} {c} {2}
{3} {b} {1, 3}
{1, 2} φ {1, 2, 3}
{1, 3} {b} {1, 3}
{2, 3} φ {1, 2, 3}
{1, 2, 3} φ {1, 2, 3}

Table 4: Component B uses Mappings
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Figure 10: Example 2 Highlighted Sublattices

18



 
 
 

 c 

       (B)                              (A) 
 

bc  ac 

 abc 

 ab 
 

    b  a 

  ∅∅∅∅ 

 ∅∅∅∅ 

   1
 

 13 12 23 

123 

  2 3 

 123      ∅∅∅∅   

  13       b 
    2       c 

        1     ab 

 ∅∅∅∅        abc 

Figure 11: Example 2 Joint Sublattice

5 The Galois Connection in Our Model

In this section we show how a Galois Connection occurs in our model, that is, we demon-

strate the occurrence of the Galois Connection between the exclusion requirements and

concurrency potential.

5.1 Definition

In our model, we defined basic mapping of internal exclusion requirements of an internal

component to its composite interface according to the composite usage pattern. This map-

ping is simply achieved by substituting each method name in each inner component with

the name of the composite interface that uses that method.

External requirement on inner component C [uses(m)/m]

⇒ Internal requirement on outer composite

for each m in C.

Consider the example in Figure 12 which depicts a simple composite object that contains

two internal components. Using the usage pattern shown we apply our simple mapping
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function to get the internal requirement: I1 × I2 on the composite.

        I1      I2 

 

C1 m1     m2            C1  C2                 n1     n2 
 n1 x  n2   m1 | m2  

Figure 12: Component Dependency

In order to discuss fixpoint properties of these mappings we find it convenient to refor-

mulate them using relational composition rather than substitution of usage sets. Consider

the (directed) usage relation u defined on the underlying set of names. We also consider

exclusion requirements R (and concurrency potential P ) as symmetric relations on their

respective sets. Given such a relation R, we define its outward mapping with respect to u

as:

R← =̂ u · R · u−1

and the inward mapping likewise:

P→ =̂ u−1 · R · u

Here the dot operator denotes forward composition of relations, and the u−1 denotes rela-

tional inverse. R← will relate those pairs of methods that call (according to u) some pair

in R. Similarly P→ will relate those pairs of methods that are called by some pair in P .

An inner exclusion requirement R = RE inner on the components of a composite object

already takes locks of the internal components into account. It can be propagated to an

internal exclusion requirement RI outer for the object, via the inner-outer usage relation.

So RI outer = R← The complement of this is the object’s internal allowed concurrency
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AI outer . We use � to denote this mapping, combining inner-outer usage, and complement.

So AI outer = Rc
I outer

= R�.

In summary we map inner exclusion requirements R to allowable outer concurrency R�

using:

R� =̂ (R←)c

= (u.R.u−1)c

Furthermore we can propagate P inwards to calculate the concurrency potential for the

internal components, the complement of which is the collection of excluded activation pairs,

P c
E inner

= P�, where

P� =̂ (P→)c

= (u−1.P.u)c

see Figure 13.

 

R 

y 
 
 
u 
 
 
 
x 
 
 
 

y 
 
 
u 
 
 
 
x 
 
 
 

P 

Figure 13: Outwards and Inwards Mapping

For safety at the outer level, the concurrency potential P = PI outer , must not exceed

the maximum allowable, so we require P ⊆ R�. For safety at the inner level, the excluded

concurrent activations for the components must contain all the required exclusion: R ⊆ P�.
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In the next section we prove the inner-outer correspondence:

Inner Safety holds iff Outer Safety holds

which is formalised as:

R ⊆ P�
iff P ⊆ R�

This is precisely the statement that the pair of mappings (�, �) is a Galois Connection

[DP02]. It follows that �� and �� are closure operators for inner exclusion requirements

and outer concurrency potential respectively.

Furthermore, as we have seen in Section 3, there is an order isomorphism between the

fixpoints of these closure operators, {R��} and {P��}, where R varies over all possible

inner exclusion requirements and P over all outer concurrency potentials. Because (�, �)

is a Galois Connection [DP02], given an inner exclusion requirement R, its corresponding

fixpoint R�� is the maximum exclusion expression that maps to the same outer allowed

concurrency as does R, that is R��� = R�. By finding these fixpoints, we partition the

inner exclusion expressions into equivalence classes, each with a unique maximal repre-

sentative. Similarly we can partition the concurrency potentials of the outer layer. The

partitions of exclusion and concurrency potential expressions are order isomorphic. In fact

the Galois Connection between exclusion requirements and concurrency potential is really

just a special case of the one sketched in Section 3.3 and 3.5.

5.2 The Theorem

Given sets A,B and relations

u : A ↔ B

P : A ↔ A

R : B ↔ B
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define

P� = (u−1.P.u)c

R� = (u.R.u−1)c

Then

P ⊆ R�
iff R ⊆ P�

Proof : ∃ y1 y2 ∈ P − R�

iff ∃ y1y2 ∈ P ∩ (u.R.u−1)

iff ∃ y1y2 · y1Py2 ∧ y1(u.R.u−1)y2

iff ∃ y1y2 x1x2 · y1Py2 ∧ y1ux1 ∧ x1Rx2 ∧ x2u
−1y2

iff ∃ x1x2 y1y2 · x1Rx2 ∧ x1u
−1y1 ∧ y1Py2 ∧ y2ux2

iff ∃ x1x2 · x1Rx2 ∧ x1(u
−1.P.u)x2

iff ∃ x1x2 ∈ R ∩ (u−1.P.u)

iff ∃ x1x2 ∈ R − P�

Thus

P − R� = φ iff R − P� = φ

as required to prove.

5.3 The Role of Fixpoints for Lock Selection

The importance of the Galois Connection and its associated fixpoint lattice is that it allows

us to precisely characterise locks for a component which provide safety without redundancy.

We find that two locks on an inner component may have the same effect at the outer level;

because of the fixpoint property, there will be a unique minimal lock with the same effect.

For lock selection purposes it is sufficient to restrict attention to these.

For example, for the usage relation of Example 2 (Figure 9) in Section 3.5, we obtain
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the fixpoint lattice depicted in Figure 14. Let’s assume that component B has exclusion

requirement RI = 13×2. And suppose a lock is arbitrarily chosen as LB = 1̄×3|2. Figure 15

shows the lock configuration after selecting the given lock. The remaining requirement is

RE = RI − L = 13̄ × 2. This then induces a maximal allowable concurrency potential for

component B: PI = R�

E = ab̄c. Note that this is a fixpoint. The corresponding concurrency

potential for B is PI
→ = 12̄3.
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 1 x 2       b x c 

   1       c 

    3       a 

1 x 3       c 

13 x 2       ab x c  

2 x 3      a x b  

1 x 2     ab x c   2  ab 

   1       c  1 x 3       a x c 

 1 x 2       b x c  

  1 x 3     a  x c 

    3       a 

 2   a x b 

      2   b 

2 x 3        a x b  

13 x 2       b x c  

13        c 

13        c 

13 x 2       

 23 x 1       ab c 13 | 2 

   123       ab x c     1 x 3|2       ac x babc 

abc 

Potential 
Concurrency 

Exclusion 
Requirement 

123        abc 

    1 x 2|3       ab c          123  c x ab         123       ab x c  

23 x 1        axb | c        13 2     a | bxc 

 13 x 2       abc 

123      abc 

  ac x b 

Figure 14: Full Lattice - Example 1

The redundancy for the chosen lock is:

= 1̄ × 3|2 − (13 × 2 ∩ 12̄3)

= 1̄ × 3|2
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1 x 3 | 2 

Figure 15: Outward and Inward Mapping

This implies that all of the chosen lock is redundant - there will be no concurrent behaviour

on B for it to block. The unique minimal lock with equivalent behaviour is L = φ (i.e. no

lock).

If instead as in Figure 16 we had chosen L = 13|2 (a mutex on 1 and 3), we find

RE = 13 × 2 and PI = ab̄c̄, with corresponding concurrency potential for B = 2̄|13.

In this case, the lock redundancy is:

= 13|2 − (13 × 2 ∩ 2̄|13)

= 13|2 − 13|2

= φ

No part of the lock is redundant.

This choice of lock corresponds to moving from one fixpoint (ab̄c) to another (ab̄c̄) in

the lattice. The lattice diagram of Figure 14 has labelled the corresponding edges with

the difference between the two fixpoints, namely c̄ corresponding to 13. All non-redundant

choices for locks can be read off the lattice directly. They are: φ, 13, 2×3, 2×13, 2× 3̄, 13̄×

2, 1 × 2 × 3̄, 3̄ × 1̄2, 13 × 2.

With a different usage relation (Example 1, Figure 5.4) we obtain a different lattice as
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 a x b x c        abc 
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  2 x 13         2 | 13   

  2 x 13             

13  | 2 

Figure 16: Outward and Inward Mapping

in Figure 17. Assume that the given exclusion requirement for the inner component B is

RI = 1̄2 × 3̄ which is also a fixpoint.

To calculate all non-redundant locks we simply need to calculate the difference between

the given exclusion requirement and the fixpoint value for each fixpoint below the initial

one. Figure 17 has labelled all locks that correspond to each fixpoint, so lock number 5 is

calculated as: 1̄2 × 3̄ − 123̄ = 1̄2 × 3.

Table 5 shows all non-redundant lock combinations for both components A and B.

Observe the trade-off between outer locking (on A) and inner locking (on B).

Lock Number Lock B Lock A

1 φ āc × b̄

2 2 × 3 ab
3 1̄ ac × b̄
4 1̄|2 × 3 a × b̄
5 1̄2 × 3 b̄
6 1̄2 × 3̄ φ

Table 5: Calculation of Minimum Locks

6 Conclusion

In this report, we have formally demonstrated the occurrence of a Galois Connection be-

tween the exclusion requirements and concurrency potential. We also demonstrated how
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Figure 17: Full Lattice - Example 2

the fixpoint lattice associated with the Galois Connection allows us to characterise the non-

redundant locking combinations between two layers of components in a composite object.

This implies that, for lock selection, we only need to consider a subset of the exponential

number of lock combinations. In our next technical report (UNSW-CSE-TR-605), we will

exploit this restriction to efficiently guide users through the process of lock selection.
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