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Abstract

On-going improvements in the scaling of FPGA degizes and time-to-market pressures motivate tloptézh of a
module-oriented design flow for the developmenapydlications. At the same time, economic factorsoerage the
reuse of smaller devices for high performance cdatmnal tasks. Like other researchers, we therfemnvisage a need
for dynamic reconfiguration of FPGAs at the modideel. However, proposals to date have not foalisse
communications issues, have advocated use of spe@tocols, cannot be readily implemented, andfomot support
current device architectures. This paper propoaemethodology for the rapid deployment of a comuatitins
infrastructure that efficiently supports the comneations needs of a collection of dynamic moduleemwthese are
known at design time. The methodology also prowadésgree of flexibility to allow a range of unkmoeommunication
requirements to be met at run time. Our aim isupport new tiled dynamically reconfigurable areleiures such as
Virtex-4, as well as mature device families. Weegssa prototype of the communications infrastruetand outline
opportunities for automating the design flow.
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1 Introduction

Modern FPGAs are large, complex, heterogeneouselg\that present many challenges to designersnagighi fully
utilise device capabilities. Design complexity, ifieation, and time-to-market pressures encouragse of components
and designs that are tried and proven. Moduleebdssign methodologies form a class of higher-lelesign methods
that focus on implementing a design that is spetifir described in terms of its constituent mod[8§$]. As such they
enhance reuse, allow designs to be rapidly devdlagsted and deployed, and complement the engigémarketing
advantages of FPGAs as system components.

FPGAs are most commonly included as componentsnieedded systems in which performance requiremesmsadd
hardware support, yet cost, time-to-market, thelrteeprovide alternative hardware components, errtbed to revise
hardware-based components over time preclude thefusSICs, ASIPs, or processors alone. More dfta@m not, that
part of the system design that is targeted at B@Aris static, or doesn't change while the systeoperating. However,
several applications for FPGAs have been identifiredvhich the FPGA user circuitry is reconfiguredile the
embedding system remains active.

To date the most significant use of such dynamioméguration is to support so-called hardwareudlisation, several
flavours of which can be identified. In order t@ke do with insufficient FPGA area, a large FPG&uwi might be
temporally partitioning into components that areapped over time in order to map a large circui imtsmaller device
[12]. When the computation can be temporally partiéd, the decision to virtualise may be made withibe need to do
so. Instead of mapping the design to a large dedcsmaller one can be used in order to redudecpsr and power
consumption. Virtualisation also allows applicatidircuits to be specialised for one applicatiortéad of another, e.qg.
to implement 3G multi-standard wireless basestat[dh

As device sizes continue to scale, we envisagel@nnative use of dynamic reconfiguration that newentually
dominate. Conceivably, complex systems involvingtipie subsystems will be able to share expensivéefms of chip
area and power) and underutilised (in terms of tional density) resources such as FPGASs. This gii rise to the
desire to multitask FPGA devices. Another facikely to influence the emergence of multitasked PBGs that
devices are scaling much faster than IP size. itdsking offers a means of utilising the availatdeources and further
reducing system part counts.

Allowing system designers to exploit dynamic recgufation raises many challenges. Of foremost conethat we

need tools to help a designer decompose the apipfidato modules that are potentially reconfigyredswapped while
the system in which the FPGA is embedded is act®ach tools will, as a minimum, need to define ititerfaces of
modules as well as their timing characteristicdhe Partitioning of the system into modules canmtdone without
reference to the resources available to implenmentrtodules, including, necessarily, the commurooatinfrastructure
available to connect the modules together. The hesdthemselves may be sourced externally from IRdees or

developed in-house, which raises questions abousistency of definitions and descriptions of iraeds and
behaviours. Simulation of the module communicatiereds to include timing. Place and route tooésdrte operate at
the module level, and assuming the required comeations can be provided or codesigned, not perfiobal design
or optimisation steps.

The designer is also likely to want some form aftime or operating system to be generated or peavitiat can hide
the burden of managing the device. The OS defidisies and strategies for utilising and shariegources, which
must be fed back to the design system for it t@lble to partition and adapt the implementation ediogly. Design

iteration may be needed to accommodate the contstrai the device and its runtime management. Gdaeth should be
minimised so as not to lose the benefit of hardvimm@ementation. Moreover the penalty for desigrém@ higher level
of abstraction and supporting virtualisation shonlat be large. With respect to dynamic module giaent, it is

desirable that modules be relocatable in orderufipsrt schedules that are not known at design tifhés places a
significant burden on the communications infraduite to connect, when required, specific 10 pinthwnodule ports
whose locations are not known until runtime. Intevdule connections involving dynamically placed mled may also
need to be provided at runtime. A conflict thusesi between the need to provide fast routes ofuatiequidth for the
sake of performance and the constraint of finding) setting these at runtime, conceivably withdittxity in the task.

Perhaps the greatest challenge researchers amphelesscurrently face is a lack of vendor supparttieir enquiries into
or use of dynamic reconfiguration. Lack of suppakes two forms: sub-optimal device architectuned madequate
tool support. While the concepts underlying supfar dynamic modules in a general manner have heastigated
since Brebner's Swappable Logic Units [2], littilrprogress has been made in developing widellcapje solutions
with sufficient design tool support. With the rede of new architectures [16], which give more gadtion to the
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scalability of reconfiguration mechanisms, the tiseems right to move forwards on practical andctffe methods for
harnessing reconfiguration at the module level.

It is our contention that effective module-basecbrdiguration of FPGAs requires at its foundationcemmunications
infrastructure that can support the varying commations needs of the runtime configured modulegariably, these
dynamically placed modules will need to connecthwather modules on the FPGA and to the 10 pinshefdevice.
Since the interfaces of the modules and their numtplacement will in general vary, the communiaaiinfrastructure
needs to support runtime reconfiguration of theing, or provide an indirect mechanism for connegtports with pins.
This paper proposes a methodology for the deploymEa communications infrastructure that efficlgrgupports the
communications needs of a collection of dynamic nhesl when these are known at design time. Theadetbgy also
provides a degree of flexibility to allow a randeuaknown requirements to be met at run time.

In the following section, we outline a classificatiof dynamically reconfigurable systems from a mledrientation

that provides a framework for discussing relatedrkwand our contribution. In Section 3, we discustated

contributions. Our methodology and the target aeciire are outlined in Section 4. We describepagress to date
and our assessment of a prototype of the methogato8ection 5. Further work, including our plaes §upporting the
methodology with automated tools is presented iti&e 6. We conclude the paper with a summary efrtfain points
in Section 7.

2 A Hierarchy of Dynamically Reconfigurable Systems

System designs that target FPGAs may consist tdta gollection of sub-components or modules. Tibathe design
process results in a static circuit that is conigguonto the FPGA until a system reset occurs. \&feel the FPGA
design to be static since it is not altered while system is active, each configuration is compledefined at design
time, and there is sufficient time between resetsatry out the design to completion. Design metthagies for this type
of FPGA use are relatively well understood and sujgpl by FPGA tools, although a commonly acceptedute-based
orientation to the design of large-scale statidgtesmay still be lacking.

By virtue of their reconfigurability, systems inding FPGAs may exhibit a degree of flexibility adgnamism. This
may take a number of forms and we propose a hieydyased on the constraints imposed on the reamafije system
in order to provide a framework for subsequentuison.

First, we distinguish between complete and pargabnfiguration. In our work, we are concerned wstipporting
partial reconfiguration, in which part of a FPGAvide is reconfigured to support new functionalityoreover, we are
interested in supporting dynamic reconfiguratiomasgh as it may be permitted with commercial dexidéhis means
allowing part of a device to be reconfigured wihiie system in which it is embedded, or indeed ptirgs of the FPGA
device that are not being reconfigured, remainvactiVe consider complete reconfiguration of theickeo be an
incarnation of the static design case describedalbis our intention to support static desigesaaspecial case within
our methodology.

Second, the thrust of this work is to support mechdsed or core-based reconfiguration, such asgiacement of one
video codec with another, rather than fine-grainecbnfiguration, such as the specialisation of astant coefficient
multiplier. Our approach is not intended to preelwse of fine-grained reconfiguration, rather fmaus is on how to
support modular design techniques and in partictilarcommunications issues raised by dynamicaltpméiguring
design modules.

Apart from static designs, three types of dynamjcegéconfigurable systems, herein denoted DR1, iRd DR3
respectively, can be distinguished. DR1 is the neosistrained of these and applies to systems ichmvie know at
design time which sub-component of a design magviEpped with a given (set of) alternative(s) amdgially, which
region of the placed and routed circuit is to beordigured with a given dynamic module (see Figlrdor a
diagrammatic comparison of this situation with sii@ic case). Part of the FPGA circuit desigrtasicand another part
of the circuit is to be swapped at run time. Margraples of such systems have been reported. Formea bluetooth
baseband bitstream processor is reconfigured pftessing the header packet to process the paidogd. In this
class, the communication needs (bit- and band-w)d@nd thus the interface of the module altereatiare known in
advance. Connecting a dynamically placed modul¢h& surrounding circuitry and device pins thereforeolves
selecting from a number of preconfigured chanriels. worth mentioning that for DR1, the trigge feconfiguration
and all possible schedules are known at design time
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Figure 1: Classification of module-based reconfigwable systems

The class DR2 includes those systems for whichstadc components and the set of possible dynanadufas is

known at design time, but their placement ontoRR&A fabric at runtime is not known. A represen@texample is
depicted in Figure 1 (c). It is possible for thituation to occur when we do not know the ordemimich dynamic

modules are called for at runtime. A possible sdenexemplifying this case is a robotic exploreattldynamically

partitions real-time tasks, perhaps including \isinavigation, scientific sampling, and communizasi onto hardware
and software subsystems according to time, aregpangr constraints. This situation gives rise te tieed to support
flexibility in the communications infrastructure order to support the necessary interconnectiowd®mt a dynamic
module and other on- and off-chip components. H@negiven the interfaces of the dynamic componargsknown at

design time, it is possible to engineer an intedoi®@ communications infrastructure that supportpeeied

requirements.

For the sake of a complete classification, we gdte scenarios in which the set of modules forcWwliommunications
needs to be supported is not known at design tiBech systems are classified as DR3 in our schAmexample of
such a system may be one in which modules arrimamtjcally at runtime, perhaps in response to a tis@osing to run
an application downloaded from the internet. Siweeconsider this scenario futuristic, our thougitshow to support
such systems are not well formed. We anticipat/iging communications infrastructure that is pagterised on
maximum bit- and band-widths that can be supporfemhlications that comprise modules requiring mogeources
would be rejected.

3 Related Work

Previous research into support for dynamic modhbss considered many issues. Few researchers hasgle@®d the
communications problem in detail or centred theoppsals on the mechanisms needed to support thenanications
requirements of dynamic modules. The following representative selection of the variety of systprogposed to date.

Xilinx Application Note 290 [14] is the first andurently only commercial modular partial reconfigtion methodology
known to the authors. All communication betweerordigurable modules and reconfigurable or fixed mled goes
through three-state bus macros as shown in Figure 2

CENTER
(Boundary) between B and C

LO [3:0] RO [3:0]
L|[3:01ﬁS iﬁ iﬁ £ ﬂk Zﬁ %RI[B:O]
LT [3:0] RT [3:0]

Figure 2: XAPP290 Bus Macros

Inter-module communications are limited to thosespay through the bus macros and only abutting hesdmay
communicate with one another. Thus if modules Agr8l C are placed in order left-to-right, A musyreh B to send
signals through to C if it wishes to communicatéhwit. This is unacceptable to a designer of modilié there is no
knowledge of this requiremeatpriori, and also interferes with B’s internal routing shpossibly affecting performance
and area. The methodology works best with fixeddislots into which to place modules and constatgrfaces
between the alternative modules. XAPP290 is esdbnt module version-swapping methodology that sapport
DR1, but is likely to be too unwieldy and limitifigr implementing DR2 or DR3 systems. Finally it do®t support the
newer Virtex-4 devices, as they do not have tiiesliaes.
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In [7], Kalte et al. also describe a reconfigurabfstem implementation, depicted in Figure 3, incivtall inter-module

communication is performed through tri-state linel®wever, modules may have arbitrary width, whiem ceduce

fragmentation and thereby help to boost utilisatiohigh load situations. In their system, all mizduhave to implement
the AMBA bus protocol, which may limit the types mibdules that can be used. The overheads of man#ys bus

system can be relatively high. Virtex-4 devicesrasesupported due to their lack of tri-state lines
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Figure 3: 1-D Relocatable Modules

Bobda et al. have described a dynamic network-ap-tttat allows for modules to be plugged into anwek of routers
as shown in Figure 4 [1]. However, they do not dbéschow the modules communicate through this ngtwewhat
messages are sent, and how addressing is perfofinednodule-router interface is not specified arabems that at this
point each module has to be tailor-made for thisvagk, again limiting the use of currently availabP.

Marescaux et al. [10] proposed a network-on-chilisirtg the XAPP290 methodology and wormhole rogtas shown
in Figure 5. This approach not only inherits thmitations in XAPP290 but also requires that somenfof network
interface be provided in order for IP to be used.

]

[ PE @ Netwark logic— - Netwark « = + local wire

D_
Figure 4: Dynamic NoC
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Figure 5: Wormhole Routing

Horta et al. described a dynamic hardware plugatf@m as shown in Figure 6 [5]. Their approachsuaeseparate
FPGA to implement the communications network. Aliranunication has to bear the overheads of commtimicaff-
chip to the NID FPGA, which may be quite unaccelgtailo unnecessary.
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Figure 6: Dynamic Hardware Plugins

4 The COMMA Approach

The approach we chose to follow is founded on ¢flewing principles:

1. We acknowledge the need to provide practical afici&it methodologies that minimise constraintsusers.
2. We need to support design with tools.

3. For tools to have significant benefit they shouldd forwards to the capabilities of future devices.

4. We will focus on the communications needs of dyramédules.

We propose to develop a tool-suite to automaticgliyerate on-chip communications infrastructure dgnamic
modules. Our approach aims to provide infrastrgctbiat can be implemented on a range of devicepktidrms and
at the same time is optimised for the hardwareliegtpn requirements and available design-timevdedge.

4.1 Reference Target Device

The reference device family we will use in orderd&scribe and demonstrate our approach is the rilax Xirtex-4
family of FPGAs.

The frames in Virtex-4 devices are unique in thaltare of a fixed-length of 41 quad-byte wordshespaning 16 CLB
rows. The frames are tiled about the device intaggs” that span half the width of the device andC1® rows, as
shown in Figure 7, which depicts a Virtex-4 FX1%ide with 64 rows and 24 columns of CLBs (and idelsi one hard
PowerPC core, depicted as a white rectangle inr€i@l This is the smallest device available in fixefamily. The

external I/O banks are also located on the lefthexmiddle and on the right of the device (showirigure 7 as black
bars), rather than around the periphery in predeceamilies. In addition, the left and right barikssome Virtex-4
device/package combinations (e.g. XC4VFX100-FF15Q)yare located 6 CLBs away from the edges of tice.
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4.2 Module Placement Strategy

4.2.1 Paged Module Placement

Since each frame spans 16 CLBs vertically and timnmam unit of reconfiguration is one frame, it da@ seen that we
should be able to reconfigure any of the 8 pagewstin Figure 7 independently of every other. Wimadules mapped
to these pages, they could be dynamically swappele wther modules are left running.

We propose that each page should accommodate atomeseconfigurable hardware module. While it ésgble to
reconfigure less than a page, the overheads (suplaeement and defragmentation) of micro-managiogules (e.g.
arbitrary placement akin to [7]) are likely to beagceptable and unnecessary. However, there magcbefiguration
delay savings if the module size can be reduced.

Figure 7: XC4VFX12 Pages and I/O Banks

Another advantage to this approach is that eaatkelegion on the device corresponds to the pagasrsin

Figure 7, thus each module can be clocked indepgiydeand with the new support for dynamic recoufigfion of
functional blocks [15], DCMs may be dynamically oefigured to adjust the clock frequency in each epag
independently.

4.2.2 Page Aggregation

This placement strategy opens up possibilities la€ipg a module in two or more adjacent pages gshah larger
modules can be accommodated.

Since the centre column effectively divides the BP@sources into two halves it is preferable toraggte pages
vertically instead of horizontally. Since the ratibrows to columns in Virtex-4 devices is alwagsge (more than twice
the rows than columns on average) it is naturdbtso. This arrangement also allows carry chailetexpanded.

4.2.3 Horizontal Page Division

Since the minimum unit of reconfiguration is onanfie it is possible to divide each page into sulepaat the
granularity of 1 CLB. This may be desired if itkeown that there will be very small modules avd#abnd that some
space savings are necessary.

The sample module placement in Figure 8 shows nesdM1 and M2 being placed in a divided page, M3hiee
aggregated pages and M4 in a page of its own.
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Figure 8: Page Aggregation and Division

It should be noted that division and aggregatioesdaot need to be permanent. It is possible tepamodule utilising
the entire page that M1 and M2 takes up when theyemoved. Similarly we are able to place a smafiedule into
any of the three pages that M3 occupies wherrénsoved.

4.2.4 Predecessor Device Families

The above concepts can also be implemented on qassier device families if the entire device is \@dvas a single
page. The modules are then placed into horizondiigled subpages.

4.3 Pin Virtualisation

4.3.1 Communications Infrastructure

One of the unresolved issues with respect to cuseltions is the lack of access to module andiernal I/O Pins.
This limits bandwidth, placement flexibility, andstricts implementation to particular devices anglatforms.

Our approach allows virtualisation of any module @xternal 1/0 pin in the fabric to allow any moelub access any
other module’s pins and any external 1/O pin.

This can be implemented by designing a communicatiofrastructure that envelops the external I/@spised by the
system for communication.

The stylised layout of a possible maximal configiara of the communications infrastructure is shdawifrigure 9. The
grey area, where the infrastructure resides, epsetwery external IOB. Each module area shownerdtagram above
occupies a little less than one page and is coeddct the infrastructure via 8-bit LUT-based slioacros [11] (see
Figure 10 below). Note: the number of and size a@itras in Figure 9 is not illustrative of actual ieypentation
scenarios.
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Figure 9: Trident Layout

The “trident” layout has homogeneous module ar#ass allowing for simple means of relocation uitilgs major-

address modification techniques such as REPLICA ijwever, the critical path from the top-left toettop-right
corner is long.

Slice macros are used in place of XAPP290-likestaie bus macros in order to provide connectiontht®
communications channels that are routed via thasitfucture. Any combination of inputs and outfus to 8 bits) for

two vertically or horizontally adjoining CLBs is gsible. Figure 10 depicts the infrastructure ati¢fiteside of a module;
it is equally possible to have the module on tlfiesiele of the infrastructure.

Infrastructure Module
Side Side
module
input
—p(G4 Y P G4 Y—>
Slice Slice
s s
» F4 Xx—» —>|F4 X
module
outpu
CLB CLB
Col X, Row Y Col X+1, Row Y

Figure 10: Macro depicting one input and one outputo/from a module within the one slice

The “double-ring” layout depicted in Figure 11 ov@mes the critical delay of the “trident” layoutthe cost of slightly
greater relocation complexity.

16
CLBs

Figure 11: “Double-Ring” Layout
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This layout provides better routing opportunitieg three different types of module placement areag exist (the two
at the top, the four in the middle and the twohat hottom). As reconfiguration should be glitchles¥irtex-4 devices
reconfiguring modules in the top and bottom moduksas should not be an issue, but only moduldseofame type can
be relocated.

It is important to note that these observationgpsinmply that the communications infrastructureghl be free form
and optimised to the needs of the application. Example, if not all the external I/O pins are reedi the
communications infrastructure need not envelompthe that are not required.

4.3.2 Reconfigurable Data Ports

Each module area is capable of connecting a langebar of bits to the communications infrastruct(aemaximum
possible 82x16=256 bits of communication for a module using@llBs in its leftmost and rightmost columns for
implementing slice macros.).

We introduce Reconfigurable Data Ports (RDPs) m®ans mapping module ports to slice macros. InrEig@ the two
output ports destined for module M2 are mappetieémne 8-bit RDP (because they can be routed tegetlhilst the 3-
bit port has its own 3-bit RDP. The purpose of RizPs is to map the module’s interface to the stieeros.

Module Placement Area —_>
S
2
*—» Dest: M2 RDPIO]:
8 bit
Modulg 3
M1 ## Dest: M3
;ﬁ mpp Dest: M2 LS
f— est:
—>
RDP[1]:
3 bit

== Module Port

Port to Slice
Macro Mapping

YYY | | | VVVVVVV%

1
1
1
1
1
|
i —> Slice Macro Bit
1
1
1
1
1
1

Figure 12: RDP Mapping

The definition of RDPs allows communication chasrtel be set up in the infrastructure. Channelsao§ing bitwidths
can be defined to ease routing complexity (it Esleomplex to route a group of bits because therdeaver possible
destinations than if each bit were individually texl).

4.3.3 Implementation and Optimisation

The communications infrastructure can be optimidegending on how much knowledge is knoavpriori about the
modules, and any user-imposed constraints.

The following implementation details refer to tleeonfigurable classification hierarchy in Section 2

» DR3: The user specifies a fixed number of channelsthait bitwidths, the necessary external /O ping] a
appropriate number of slice macros to provide pedure so that the infrastructure can be optimised.

* DR2: Modules are available priori and appropriate tools can take over some taskspetifying the
communications requirements, including tailoringtfed module areas (i.e. size, location and sliceros for
optimal use of the module set.

» DRL1: Further optimisations are possible in additiorthose specified in DR2 as the routing is now elytire
static since the placement is fixed.

e Static: This will be similar to a standard modular desitpwf and is simply a more restricted case of DR1
where there is only one possible module in each.are
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4.3.4 Management Issues

The management of modules arriving and leavingteadsetup of channels and routes may be performexhbor off-
chip agents.

The essential requirements to be fulfilled for sagents (with respect to communication) are:
e Module registration:The registration of module IDs in order to locater modules when modules request
communication.
« RDP registration:The registration of module interfaces for charsstups.
e Channel registrationThe communications infrastructure should be infedras to what routes should be set up.

The requirements may be performed by a host cdatrot by an embedded CPU core such as the Poweldk in
Virtex-4 FX devices.

4.4 Design Automation and Tool Support

In order for this infrastructure to be readily impiented we propose the development of tools t@parfwo tasks — the
automated generation of the communications infuatire, and the preparation of modules (e.g. RDihitlen) for
placement. Figure 13 depicts the complete designt@ol flow for communications synthesis. The flowludes three
tools that we intend to create, and an incarnaifanpartial reconfiguration tool flow (see Sect®8).

This pre-processing tool (probably with a GUI) u¥dsx-supplied device information with user-supgal parameters to
create a Chip and Communications Configuration (Ef€ which will serve as the input for the neéabl.

The user may specify a layout of the communicatiofistructure and channel, slice macro and stefepences to
assist the infrastructure generation tool in opation. The 10 pad parameters are mandatory andsae to place and
optimise the infrastructure.

The infrastructure generator analyses the CCC dileated by the configurator and generates an cg#ini
communications infrastructure consisting of HDLnswaints, slice macros and accessory macros.

Device Information User-Supplied Parameters
Layout and 110 Pad
Channels Selection

PARTGen
Report {Array
Size, Slot Slice: Macro
Tristates &tc.) Assignments Selactions
Communications

y Infrastructure HDL Slice
& | Configurator | fa——  —l | E " - Macres

Chip & Communications [ Tcommunications

Configuration e Infrastructure

Bounding Buxes ] Module HDL v - Bitstream
- Interface ¥
ical Pe k .
[ oo | | —
Slot/Macro Map i ‘ ] |
[T | :
v Module

e »| Bitstreams

Package!
Device Pinout
File [ASCII)

Madule A Partial Reconfiguration
Toal Flow

Ty Y

Module Parameters Interface

| HDL HDUEDIF!
ROP NGOMNGC/
Mappings Module ID RDP Peers ﬂ NCD/NMC)

Figure 13: Design and Tool Flow for Communicationgnfrastructure Synthesis

Module Logic

Once the infrastructure has been generated, modale®e wrapped to enable placement into the infretsire at any
time thereafter (even after deployment) by usirgvihapper tool to generate RDP interfaces for tbdutes.

When the infrastructure and an initial set of megdu{which may be blank fillers) are available, ttshould be

synthesised using an available partial reconfigomaiow (e.g. the XAPP290 flow, which will suppodvirtex-4 devices
in ISE 8.1i, or a difference-based flow), and titstteams can be generated.
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The system can then be deployed. Additional modilesmay be added in the future can be wrappedderas long as
the CCC and infrastructure files are present.

5 The development so far, and its assessment

As the development of the tool is in its early ssghe experimental work done to date has bedpttymine methods
to design, place and automate the generation ofrarzinications infrastructure for a chip.

To date we have synthesised and placed a tridgotHacommunications infrastructure on a Virtex-412xchip with 4
module areas having 8 inputs and 8 outputs eachl@m®external I/O pins (8 inputs and 8 outputs).

5.1 Simple Multiplexed Inputs

So far, we have implemented a circuit-switched qiygte using LUT-based multiplexers, to route eaitftdiming into

the infrastructure onto every outgoing bit. Thet®4 CLB architecture allows the implementatiorad?:1 multiplexer
with one LUT, a 4:1 with one slice, an 8:1 with tslices and a 16:1 with four slices (or one CLB)eTdelay of a 4:1
MUX is 0.35ns, an 8:1 is 0.55ns and a 16:1 is 0s75n

A DR3 implementation withm inputs andn outputs will require approximatel)n|_log16 m—l CLBs. Thus our
implementation occupies about 40 CLBs in totalqildach module input and each external pin output).

5.2 Host Control

The control of the communications infrastructureingplemented with a simple interface supporting thaimal
instruction set of 6 instructions listed in Tabléolset the multiplexer selectors in each of thelah® inputs or external
pin outputs.

Figure 14: Constraints and Actual Placement

This instruction set utilises SMC (Slice Macro Ceator) numbers, which are logical numbers mappeakctoal slice
macro positions (corresponding to the physical macap in the CCC file).

Instruction Description

SSMC <smc_num>| Sets the active target SMC |bit
number.

SEIO <eio_num> Sets the active target external |I/O
pin bit number.

DTYP <mod/eio> Signifies if a module or external
1/O pin is connected to this SMC.

ASRC <log_port> Assigns a source port number
(either a corresponding logical
SMC number of a logical external
1/O input) as the source peer of the
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current target SMC or external /O
pin.
SLEN <slot_num> Enables the module at the
specified slot number.
SLDS <slot_num> Disables the module at the
specified slot number.

Table 1: Controller Instruction Set

Before placing a module’s bitstream onto the devibe host executes the following instruction segeeper bit of
communication:

1. SSMC or SEIO to select a particular bit of commatian.
2. DTYP to specify if this bit connects to another SMiICto external I/O.
3. ASRC to specify the source of communication (ano8MC or external 1/O pin).

The host can then place the bitstream onto thecdeand execute SLEN to enable the slot and s&urntidule running.

To remove a module the host executes SLDS to disdig@ slot, and then places a blank module bitstreato the
device to clear the configuration memory.

5.3 Implementation

5.3.1 Unconstrained Routing Issue

The communications infrastructure is implementetiDL with the use of appropriate primitives for tfasultiplexing,
and synthesised with slice macros and modular pilaoé constraints similar to those of XAPP290 asashon the left
in Figure 14.

Due to the lack of support for partial reconfigimatof Virtex-4 in ISE 7.1i, the internal routind modules ignore the
area constraints specified, as can be seen ongtiiteim Figure 14. However, the placement is botmthe constraints.
The router simply chooses the best paths whilesarqgamodule boundaries.

Since there are routes going through module boigslapecial care must be taken to prevent intenmalule routing
from using the infrastructure routes.

In order to do this we have adopted a special deffigv to implement the modules. This flow, depétiae Figure 15,
implements the “Partial Reconfiguration Tool Flopfocess of the complete design flow outlined inti®ec4.4 and
depicted in Figure 13.

This special design flow executes multiple itenasi@f the Xilinx Modular Design Flow [13]. The firpart of the flow
uses the generated communications infrastructure amdule and executes the initial budgeting ant/eaenodule
phases of the modular design flow, resulting ine&ed and routed circuit (NCD) of the communicasgiamfrastructure.

At this point the NCD design is converted to a haracro (NMC) and is reinstantiated into the topelebut as a hard
macro this time instead of as a module. After #mmosd initial budgeting phase, the Implementablp Ievel NGC will
contain the infrastructure as well (instead of phst slice macros the first time around). Blank oled (simple dummy
modules that are never enabled) can then be ids@rigenerate an initial top-level bitstream witiaf assembly.
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Multiple iterations of the active module phase tfzan be executed to generate individual partial ute8itstreams that
are ready to be loaded onto the device.

Figure 15: Partial Reconfiguration Tool Flow

5.3.2 Performance and Area

The maximum clock speed of the communications #tftecture after place and route (i.e. the hard o)aas per the tool
flow above is 358MHz (speed grade —10 i.e. the skivavailable), which should be sufficient for mostdules.

The statistics of this implementation are as folow

* Module Placement Area (defined as a “Slot” since thfrastructure occupies some of the page ar&3p
slices (9 columng 16 rowsx 4 slices) per slot; 4 slots in total.

* Infrastructure Area Consumptio®72 slices (~10.5% of available chip area).

* Infrastructure Area Overhead per pag&CLB columns.

The following area and performance statistics ao®ided for comparison:

*  8-bit Divider: 104 slices, 234 MHz

 DES Core: 476 slices, 182 MHz

e Triple-DES Core: 623 slices, 132 MHz

* MicroBlaze Processor: 988 slices, 200 MHz

e OpenRISC CPU Core: 9172 slices, 28.5 MHz

The FX12 thus accommodates a DES core with roospaoe in one slot and can fit a MicroBlaze processtwo slots.
It should be noted at this point that this impletagion utilised the smallest FX-family device iretiirtex-4 range (also

the one with the least number of slices). Tabla@s hypothetical but reasonable module areas hasedailable chip
area.

Device CLB Array Module Module Num Load

Width Slices Mods Time

(ms)
LX15 64 x 24 9 (-3) 576 6 0.32
LX25 96 x 28 10 (-4) 640 10 0.37
LX40 128 x 36 13 (-5) 832 14 0.47
LX60 128 x 52 21 (-5) 1344 14 0.76
LX80 160 x 56 21 (-7) 1344 18 0.76
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LX100 192 x 64 24 (-8) 1536 22 0.87
LX160 192 x 88 36 (-8) 2304 22 13

LX200 192 x 116 50 (-8) 3200 22 1.8

SX25 64 x 40 16 (-4) 1024 6 0.58
SX35 96 x 40 15 (-5) 960 10 0.54
SX55 128 x 48 18 (-6) 1152 14 0.65)
FX12 64 x 24 9(-3) 576 6 0.32
FX20 64 x 36 15 (-3) 960 6 0.54
FX40 96 x 44 18 (-4) 1152 10 0.65
FX60 128 x 52 21 (-5) 1344 14 0.76
FX100 160 x 68 27 (-7) 1728 18 0.97
FX140 192 x 84 34 (-8) 2176 22 1.23

Table 2: Module Area Projection

The individual module width is calculated by dividithe array width by 2 and subtracting what isquied to be a
reasonable infrastructure overhead width (in p&esds) given the device provides over 128 wiresGid8 column.

Table 2 also lists the number of modules suppdoie@ach device and the time in ms to load the gandition for a
complete module into a slot.

6 Further Work

6.1 Automation

Since the methodology and tool flow have been d@terd, the next step is to implement the toolstified in Section
4. We plan to implement th@onfigurator, Module WrappemndPartial Reconfiguration Tool Flovand combine them
to form a development environment.

6.2 Optimisation

Optimisation of the routes connecting slice maand external 1/0 pins relies on knowledge of thenownications
requirements at design time. Methods for determingificient routing infrastructures are to be detieed and
incorporated into thinfrastructure Generatiomool.

6.3 Analysis of Different Layouts

We have introduced two layouts in this paper — ttigent and double ring. These layouts are notnegitibut are
suggested as possibilities. Once the tools are ltea@n analysis of alternative layouts can béopeed to determine
routing strategies.

7 Conclusion

In this paper we motivated the need for a modulented methodology to cope with design pressuresexpected
device scaling. We discussed support needed foardym reconfiguration at the module level and argtizat the
provision of a flexible communications infrastruaiuthat affords a degree of pin address indirecisodesirable. We
then presented the COMMA approach to supportingnosonications for new tiled FPGA architectures andioed

design flows to enable its rapid deployment. A ptgte was implemented on a Virtex-4 FX12 device @nedresulting
design was assessed. Our plans for further work wetlined.
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