
The Shadow Knows:

Refinement of ignorance
in sequential programs

UNSW-CSE-TR-0522

Carroll Morgan1

School of Computer Science and Engineering,
University of New South Wales
carrollm@cse.unsw.edu.au

30 November 2005

1Supported as an Australian Professorial Fellow by the Australian Research Council



Abstract

Sequential-program state can be separated into “visible” and “hid-
den” parts [4] in order to allow knowledge-based reasoning [8] about the
hidden values. Ignorance-preserving refinement should ensure that ob-
serving the visible part of an implementation can reveal no more about
the hidden part than could be revealed by its specification.

Possible applications are zero-knowledge protocols, or security
contexts where the “high-security” state is considered hidden and the
“low-security” state is considered visible.

Rather than checking for ignorance preservation at each stage, we
suggest program-algebraic “refinement rules” that preserve ignorance
by construction [7, 15].

The Dining Cryptographers (DC ) [3] is a motivating example, in
which ignorance of certain variables (coins) is intended to contribute to
an ignorance property of the overall protocol. Our algebra is powerful
enough to derive DC, while retaining soundness by avoiding (e.g.) the
Refinement Paradox [13].

We formulate and justify general principles about which refine-
ment rules should be retained, for algebraic power and utility, and
which should be discarded, for soundness.



1 Introduction

Traditionally, rigorous sequential-program development is based on an op-
erational model of state-to-state relations, a program logic of Hoare-triples
{Φ} P {Ψ} [12] or weakest preconditions [5], built above the model and con-
sistent with it, and finally a “refinement” algebra [2, 18] of (in-)equalities
between programs, in turn consistent with both the model and the logic. A
specification S is refined by an implementation I, written S v I, just when
I preserves all logically-expressible properties of S.

Ignorance is (for us) what observer’s does not know about the parts
of the program state he cannot see directly. We partition the state into a
“visible” part v which the observer can see and a “hidden” part h which he
cannot, and we consider a known program operating over v, h: from the final
value of v, what can he deduce about the final value of h? If the program
is v:= 0, what he knows after about h is just what he knew before; if it is
v:=hmod 2, he has learned h’s parity; and if it is v:=h he has learned h’s
value exactly.

Traditional refinement does not preserve ignorance. Assume v, h to have
type T : the program “choose v from T” is refinable into “set v to h” — it
is simply a reduction of demonic nondeterminism. That refinement v:∈T v
v:=h is called the “Refinement Paradox” [13] because it does not preserve
ignorance: program v:∈T tells us nothing about h, whereas v:=h tells us
everything.

Although we want to employ traditional refinement because it is famil-
iar, we cannot use it “as is” for ignorance-preservation because it would be
unsound.

Our first contribution is to propose the following principles for exclud-
ing from the algebra just those refinements inconsistent with ignorance-
preservation:

Pr1 Retain all “v-only” refinements — It would be impractical to search an
entire program for hidden variables in order to validate local “visible-
only” reasoning in which the hiddens are not mentioned.

Pr2 Retain all “structural” refinements — Associativity of sequential com-
position, distribution of code into branches of a conditional etc. are
refinements (actually equalities) that do not depend on the actual code
being moved around: they are valid en bloc. It would be impractical
to have to check through the fragments’ interiors (including e.g. pro-
cedure calls) to validate such familiar structural rearrangements.
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Pr3 Examine each “explicit-h” refinement on its merits — Those that pre-
serve ignorance will be retained; the others (e.g. the Paradox) will be
excluded.

Our main contribution is then to extend the model and logic of sequen-
tial programming (only slightly) to realise the above principles: Principles
Pr1,Pr2 will hold unconditionally; and, for Pr3, putative explicit-h refine-
ments can be checked individually. Sec. 2.3 illustrates exclusion; Sec. 7
illustrates retention.

A potential application is zero-knowledge- or security-sensitive protocols,
where ignorance is of course of great importance. Our final contribution is
to treat the Dining Cryptographer’s protocol (DC ) in that respect (Sec. 8).

2 Realising the refinement-algebra of ignorance

The great advantage of having our goals expressed algebraically it that we
can conduct early (and intellectually inexpensive) gedanken experiments
that inform the later model construction. Does program v:=h; v:∈T re-
veal h? Yes it does, because v:∈T v skip (Pr1); sequential composition “;”
is v-monotonic (Pr2); and skip is the identity (Pr2). Thus

v:=h; v:∈T v v:=h; skip = v:=h ,

and the implementation (rhs) fails to conceal h: so the specification must
have failed also. Hence our model must have “perfect recall” [10], because
escape (lhs) of h in v:=h is not “erased” by the overwriting v:∈T of v.
That, as well as compelling advice from Moses and Engelhardt, suggests the
Logic of Knowledge.

The standard model for knowledge-based reasoning [8] is based on pos-
sible “runs” of a system and participating agents’ ignorance of how they
have interleaved; we severely specialise this view in three ways. The first
is that we consider only sequential programs, with explicit demonic choice.
As usual, such choice can represent both abstraction, that is freedom of an
implementor to choose among alternatives (possible refinements), and ig-
norance, that is not knowing which environmental factors might influence
run-time decisions.

Secondly, we consider only one agent: informally, we think of this as an
observer of the system, whose local state is our system’s visible part and
who is is trying to learn about (what is for him) the non-local, hidden part.
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Finally, we emphasise ignorance rather than (its dual) knowledge, and
decrease of ignorance is sufficient to exclude an otherwise acceptable refine-
ment.

2.1 The model as a Kripke structure

We are given a sequential program text, including a notion of atomicity:
unless stated otherwise, each syntactically atomic element of the program
changes the program counter when it is executed. Demonic choice is either
a (non-atomic) choice between two program fragments, thus S1 u S2, or an
(atomic) selection of a variable’s new value from some set, thus x:∈X. For
now we suppose we have just two (untyped) variables, the visible v and the
hidden h.

The global state of the system comprises both v, h variables’ current
and all previous values, sequences v, h, together with a history-sequence p
of the program counter; the observer can see v, p but not h. From p, after
S1; (S2 u S3);S4 we can “remember” for example which of S2 or S3 was
executed earlier.

The possible runs of a system S comprise all sequences of global states
that could be produced by the successive execution of atomic steps from
some initial v0, h0, including all outcomes resulting from demonic choice
(both u and :∈ ).

If the current state is (v, h, p), then the set of possible states is the set of
triples (v, h1, p) that S can produce from v0, h0. We write (v, h, p) ∼ (v, h1, p)
for this (equivalence) relation, which depends on S, v0, h0.

Thus from p the observer knows the execution trace; from v he knows
the successive v values; but of hiddens he knows only h0 directly. Fig. 1
illustrates this viewpoint with some small examples: in Case 1.1 we are
indifferent to the two forms of choice because h does not occur in them
(Pr1); however Cases 1.(2,3) contain h explicitly, and the traditional rules
don’t necessarily apply (Pr3).

2.2 A logic of knowledge and ignorance

Our logical language is first-order predicate formulae Φ, interpreted con-
ventionally over the variables of the program, augmented with a “knows”
modal operator so that KΦ holds in this state just when Φ itself holds in
all states accessible via ∼ from this one, and its dual PΦ defined ¬K(¬Φ)
which holds in this state just when Φ itself holds in some state accessible
from this one. Occurrences of variable names in Φ give their current values
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In each case we imagine that we are at the end of the program given, that the initial
values were v0, h0, and that we are the observer (so we write “we know” etc.)

Program Informal commentary

1.1 both v:∈{0, 1}
and v:= 0 u v:= 1

We can see the value of v, either 0 or 1.We
know h is still h0, though we cannot see it.

1.2 h:∈{0, 1} We know that h is either 0 or 1, but we don’t
know which; we see that v is v0.

1.3 (two atomic statements)

h:= 0 u h:= 1

We know the value of h, because from the
program-counter history we know which of the
atomic h:= 0 or h:= 1 was executed.

1.4 h:∈{0, 1};
v:= 0 u v:= 1

We don’t know whether h is 0 or it is 1: even
the u-demon cannot see the hidden variable.

1.5 h:∈{0, 1};
v:∈{h, 1−h}

Though the choice of v refers to h it reveals no
information, since the statement is atomic.

1.6 h:∈{0, 1};
v:=h u v:= 1−h

Here h is revealed, because we know which of
the two atomic assignments to v was executed.

1.7 h:∈{0, 1, 2, 3};
v:=h

We see v; we deduce h since we can see v:=h
in the program text.

1.8 h:∈{0, 1, 2, 3};
v:=hmod 2

We see v; from that either we deduce h is 0 or
2, or that h is 1 or 3.

1.9 h:∈{0, 1, 2, 3};
v:=hmod 2;
v:= 0

We see v is 0; but our deductions about h are
as for 1.8, because we saw v’s earlier value.

Figure 1: Examples of ignorance, informally interpreted
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so that variable v (resp. h) is bound to last.v (resp. last.h). Earlier values in
v, h are not available directly, nor is p; however they indirectly influence the
modalities via their effect on ∼. Fig. 2 illustrates the logic with our earlier
examples in Fig. 1.

2.3 Refinement, and the paradox

Traditional refinement v between programs allows the reduction of demonic
nondeterminism, as in v:∈{0, 1} v v:= 0.2 It is a partial order over the
program lattice [2] and, as such, satisfies S1 u S2 v S1 in general; and
it is induced by the chosen program logic, so that S1 v S2 just when all
expressible properties of S1 are preserved in S2.

Our expressible properties will be traditional Hoare-style triples (equiv-
alently Dijkstra-style weakest preconditions) over formulae whose truth is
preserved by increase of ignorance: all modalities K occur negatively; all
modalities P occur positively. We say that such occurrences of modalities
are ignorant ; and a formula is said to be ignorant just when all its modalities
are.

Definition 0.1 A triple {Φ} S {ψ} is valid just when any system S1 for
which Φ is a valid conclusion (as in Fig. 2) if extended to a system S1;S
becomes a system for which ψ is a valid conclusion.

The Refinement Paradox [13] is an issue because traditional refinement
allows the “secure” v:∈T to be refined to the “insecure” v:=h as an instance
of reduction of demonic nondeterminism. The extended logic avoids the
paradox: in particular, in Sec. 6 we show that the property {P(h=c)} v:∈T {P(h=c)}
is valid, but that property {P(h=c)} v:=h {P(h=c)} is not valid. An oper-
ational argument is given there also.

3 The (v,h,H) interpretation of the logic

Our logical language (Sec. 2.2) is first-order augmented with a modal op-
erator so that KΦ is read “certainly Φ” [8, 3.7.2]. We give the language
function- (including constant-) and relation symbols as needed, among which
we distinguish the (program-variable) symbols visibles in V and hiddens in
H; as well there are the usual (logical) variables in L over which we allow
∀,∃ quantification. The visibles, hiddens and variables are collectively the
scalars X =̂ V ∪H ∪ L.

2It also allows elimination of divergence, which we do not treat here.
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In each case we interpret the formula after execution of the program from initial
values v0, h0. “Valid conclusion” means true in all final states and “Invalid conclu-
sion” means false in some final state.

Program Valid conclusion Invalid conclusion

2.1 both v:∈{0, 1}
and v:= 0 u v:= 1

v ∈ {0, 1} v = 0

2.2 h:∈{0, 1} P(h=0) K(h=0)
2.3 h:= 0 u h:= 1 h ∈ {0, 1} P(h=0)
2.4 h:∈{0, 1};

v:= 0 u v:= 1
P(v=h) K(v 6=h)

2.5 h:∈{0, 1};
v:∈{h, 1−h}

P(h=0)
In fact Program 2.5 equals Program 2.4.

P(v=0)

2.6 h:∈{0, 1};
v:=h u v:= 1−h

v ∈ {0, 1}
But Program 2.6 differs from Program 2.5.

P(h=0)

2.7 h:∈{0, 1, 2, 3};
v:=h

K(v=h) P(v 6=h)

2.8 h:∈{0, 1, 2, 3};
v:=hmod 2

v=0
⇒ P(h∈{2, 4})

P(h=1)
∧ P(h=2)

2.9 h:∈{0, 1, 2, 3};
v:=hmod 2;
v:= 0

P(h∈{1, 2})

The v:= 0 is an unsuccessful “cover up”.

v=0
⇒ P(h∈{2, 4})

· In 2.3 the invalidity is because u might resolve to the right: then h=0 is impossible.
· In 2.6 the invalidity is because :∈ might choose 1 and the subsequent u choose
v:=h, in which case v would be 1 and h=0 is impossible.

· In 2.8 the validity is weak: we know h cannot be 4; yet still its membership of
{2, 4} is possible. The invalidity is because the assignment v:=hmod 2 leaves us in
no doubt about h’s parity; we cannot simultaneously consider both 1 and 2 to be
possible.

· In 2.9 the invalidity is because the final value of v does not indicate h’s parity.

Figure 2: Examples of ignorance logic, informally interpreted
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A structure comprises a non-empty domain D of values, together with
functions and relations over it that interpret the function- and relation sym-
bols mentioned above; within the structure we name the partial functions
v, h that interpret visibles,hiddens respectively; we write their types V 7→D
and H 7→D.

A valuation is a partial function from scalars to D, thus typed X 7→D; one
valuation w1 can override another w so that for scalar x we have (w /w1).x
is w1.x if w1 is defined at x and is w.x otherwise. The valuation 〈x 7→d〉 is
defined only at x, where it takes value d.

A state (v, h,H) comprises a visible- v, hidden- h and shadow- part H;
the last, in P.(H 7→D), is a set of valuations over hiddens only. We require
that h ∈ H.3

We define truth of Φ at (v, h,H) under valuation w by induction, writing
(v, h,H),w |= Φ. Let t be the term-valuation built inductively from the
valuation v / h / w. Then we have the following [op. cit., pp. 79,81]:

• (v, h,H),w |= R.t1. · · · .tk for relation symbol R and terms t1 · · ·tk iff
the tuple (t.t1, · · · , t.tk) is an element of the interpretation of R.

• (v, h,H),w |= t1 = t2 iff t.t1 = t.t2.

• (v, h,H),w |= ¬Φ iff (v, h,H),w 6|= Φ.

• (v, h,H),w |= Φ1 ∧ Φ2 iff (v, h,H),w |= Φ1 and (v, h,H),w |= Φ2.

• (v, h,H),w |= (∀l · Φ) iff (v, h,H),w / 〈l 7→d〉 |= Φ for all d in D.

• (v, h,H),w |= KΦ iff (v, h1,H),w |= Φ for all h1 in H.

We write just (v, h,H) |= when w is empty, and |= Φ when (v, h,H) |= Φ for
all v, h,H with h∈H, and we take advantage of the usual “syntactic sugar”
for other operators (including P as ¬K¬). Thus for example we have |=
Φ⇒ PΦ.

4 The “reduced” (v,h,H) operational model

In Sec. 2.1 programs took initial states v0, h0 to sets of run-triples (v, h, p),
and the program text induced an equivalence relation ∼ over them. In Sec. 3
we interpreted a modal logic over (v, h,H) triples.

3Our state corresponds to Fagin’s Kripke structure and state together [loc. cit.]; but
our use of Kripke structures is extremely limited. Not only do we make the Common-
Domain Assumption, but we do not allow the structure to vary between worlds except for
the interpretation h of hiddens.
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The initial state is (v0, h0, {h0}).
Program Final states in the “reduced” (v, h,H) model

3.1 both v:∈{0, 1}
and v:= 0 u v:= 1

(0, h0, {h0}) , (1, h0, {h0})

3.2 h:∈{0, 1} (v0, 0, {0, 1}) , (v0, 1, {0, 1})
3.3 h:= 0 u h:= 1 (v0, 0, {0}) , (v0, 1, {1})
3.4 h:∈{0, 1};

v:= 0 u v:= 1
(0, 0, {0, 1}) , (0, 1, {0, 1}) ,
(1, 0, {0, 1}) , (1, 1, {0, 1})

3.5 h:∈{0, 1};
v:∈{h, 1−h}

(0, 0, {0, 1}) , (1, 0, {0, 1}) ,
(0, 1, {0, 1}) , (1, 1, {0, 1})

Thus this and
3.4 are equal.

3.6 h:∈{0, 1};
v:=h u v:= 1−h

(0, 0, {0}) , (1, 0, {0}) ,
(0, 1, {1}) , (1, 1, {1})

But this one
differs.

3.7 h:∈{0, 1, 2, 3};
v:=h

(0, 0, {0}) , (1, 1, {1}) ,
(2, 2, {2}) , (3, 3, {3})

3.8 h:∈{0, 1, 2, 3};
v:=hmod 2

(0, 0, {0, 2}) , (1, 1, {1, 3}) ,
(0, 2, {0, 2}) , (1, 3, {1, 3})

3.9 h:∈{0, 1, 2, 3};
v:=hmod 2;
v:= 0

(0, 0, {0, 2}) , (0, 1, {1, 3}) ,
(0, 2, {0, 2}) , (0, 3, {1, 3})

The final v:= 0
does not affect H.

In (3.9) partial information about h remains, represented by two possibilities for H
of {0, 2} and {1, 3}, even though v=0 in all outcomes.

Figure 3: Examples (Figs. 1,2) revisited: a relational interpretation

The two are brought together by giving a “reduced” relational opera-
tional model for programs, over such triples. That is, we augment the usual
relational state (v, h) with the shadow H; but we avoid the full detail con-
tained in Sec. 2’s run-sequences (whose virtue however was the comparison
with the standard knowledge framework [8]).

Thus programs take input reduced states to output sets of reduced states,
as we illustrate in Fig. 3 whose final states are such that the valid conclusions
(Fig. 2) are true (Sec. 3) over the whole output set and the invalid conclusions
are false for at least one output element.

The correspondence between the two operational models is summarised
in the following theorem:

Theorem 1 The run-sequence- (Sec. 2.1) and reduced- (this section) oper-
ational models correspond via the abstraction

v = last.v ∧ h = last.h ∧ H = {h′ | (v, h′
, p) ∼ (v, h, p) · last.h

′} . 4
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Substitute [e\E] Replaces e by E, with alpha-conversion as necessary if
distributing through ∀,∃.

Distribution through P however is affected by that modality’s implicitly quanti-
fying over hidden variables: if e is a hidden variable, then [e\E]PΦ is just Φ; and
if E contains hidden variables, the substitution does not distribute into PΦ at all
(which therefore requires simplification by other means).

Shrink shadow [⇓E] Distributes through all classical operators, with renaming;
has no effect on classical atomic formulae.

We have [⇓E]PΦ =̂ P(E ∧ Φ); hidden variables in E are not renamed.

Set hidden [h←E] Distributes through all operators, including P, with re-
naming as necessary for ∀,∃ (but not P).

Set shadow [h⇐E] Distributes through all classical operators, with renaming;
has no effect on classical atomic formulae.

For modal formulae we have [h⇐E]PΦ =̂ P(∃h′:E · [h\h′]Φ).

Figure 4: Technical predicate transformers

Proof: The straightforward proof [17] shows that the abstraction is pos-
sible because programs cannot refer to the full run-sequences directly; what
they can refer to —the current values of v, h— is captured in the abstrac-
tion. The shadow H is used by the modal-logic semantics to come (Sec. 5).5

2

5 Weakest-precondition modal semantics

For practical reasoning, we introduce a weakest-precondition logical seman-
tics to support the assertional style of Def. 0.1. It corresponds to the oper-
ational semantics of Sec. 4 (and hence via Thm. 1 to the original sequence-
semantics also), given the interpretation in Sec. 3 of the modal formulae.

The logical semantics is given in two layers, in Fig. 4 and Fig. 5, because
most programs generate both a modal- and a classical-style transformer,
which distribute differently through postconditions.

Visible and hidden variables have separate declarations vis v and hid h
respectively. Declarations within a local scope do not affect visibility: a
global hidden variable cannot be seen by the observer; a local visible variable
can.

4Read the last as “vary h
′
such that (v, h

′
, p) ∼ (v, h, p) and take last.h

′
”.

5In fact the H-component makes h redundant — i.e. we can make do with just (v, H)
— but this extra “compression” would complicate the presentation subsequently.
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Logical variable e is fresh.

Identity wp.skip.Ψ =̂ Ψ
Assign to visible wp.(v:=E).Ψ =̂ [e\E] [⇓ e=E] [v\e] Ψ
Choose visible wp.(v:∈E).Ψ =̂ (∀e:E · [⇓ e∈E] [v\e] Ψ)
Assign to hidden wp.(h:=E).Ψ =̂ [h←E] Ψ
Choose hidden wp.(h:∈E).Ψ =̂ (∀e:E · [h\e] [h⇐E] Ψ)
Demonic choice wp.(S1 u S2).Ψ =̂ wp.S1.Ψ ∧ wp.S2.Ψ
Composition wp.(S1;S2).Ψ =̂ wp.S1.(wp.S2.Ψ)

Conditional wp.(if E then S1 else S2 fi).Ψ
=̂ E ⇒ [⇓E]wp.S1.Ψ ∧ ¬E ⇒ [⇓¬E]wp.S2.Ψ

Declare visible wp.(vis v).Ψ =̂ (∀e · [v\e] Ψ)
}

Note that both these
substitutions propagate
within modalities in Ψ.Declare hidden wp.(hid h).Ψ =̂ (∀e · [h←e] Ψ)

The wp-definitions apply whether the postcondition Ψ is ignorant or not.

Figure 5: Weakest-precondition modal semantics

Occurrences of v, h in the rules may be vectors of visible- or vectors of
hidden variables, in which case substitutions such as [h\h′] apply throughout
the vector. We assume wlog that modalities are not nested, since we can
remove nestings via |= PΦ ≡ (∃c · [h\c]Φ ∧ P(h=c)).

The congruence of the logical- and operational semantics justifies the
connection between weakest preconditions and assertions.
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Theorem 2 For all formulae Φ,Ψ, we have that

|= Φ ⇒ wp.S.Ψ (as in Figs. 4,5) iff {Φ} S {Ψ} (as in
Def. 0.1).

Proof: The full proof [17] relies on a syntactic translation of v, h program
fragments (Fig. 5) into v, h,H fragments, the operational semantics (which
we have here only sketched), and a corresponding translation of modal for-
mulae into ordinary first-order formulae, in both cases introducing an ex-
plicit H. In effect our language and logic are both regarded as syntactic
sugar for a more basic form. For example (recall Example 2.8),

v:=hmod 2 becomes v:=hmod 2; H:= {h:H | v = hmod 2}
and v=0⇒ P(h∈{2, 4}) becomes v=0⇒ (∃h:H | h∈{2, 4}).

Then the normal wp-semantics [5] is used over the explicit v, h,H pro-
gram fragments, and the resulting preconditions are translated back from
the pure first-order (∃h:H · · ·)-form into the modal P-form. 2

The wp-logic has the following significant features:

1. All visible-variable-only program refinements (hence equalities) are preserved
(Pr1).

2. All refinements relying only on Demonic choice, Composition, Identity (“struc-
tural”) are preserved (Pr2).

3. The transformers defined in Fig. 5 distribute conjunction, as standard trans-
formers do [5]. Thus complicated postconditions can be treated piecewise.

4. Non-modal postconditions can be treated using traditional semantics [5, 12],
even if the program contains hidden variables.

5. Because of (3,4) the use of the modal semantics can be restricted to only the
modal conjuncts of a postcondition.

From (4) we never add refinements. An example of (5) occurs in the
Dining Cryptographers derivation (Fig. 6).

6 Avoiding the Refinement Paradox

In this section we see an example of a refinement’s being excluded (Pr3).
Operationally, for programs S,S ′ we have S v S ′ just when for some

initial (v0, h0,H0) every possible outcome (v′, h′,H ′) of S ′ has v = v′ ∧ h =
h′∧H ⊆ H ′ for some outcome (v, h,H) of S.6 Thus, recalling Fig. 3, we have

6This is the Smyth powerdomain-order over an underlying refinement on single triples
that allows the H-component —i.e. ignorance— to increase [22].
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postcondition p⇒ 〈〈p1: B〉〉
through wp.(p:= p0 ⊕ p1 ⊕ p2) gives “Assign visible”

[e\p0 ⊕ p1 ⊕ p2] [⇓ e = p0 ⊕ p1 ⊕ p2] [p\e] (p⇒ 〈〈p1: B〉〉)
≡ [e\p0 ⊕ p1 ⊕ p2] [⇓ e = p0 ⊕ p1 ⊕ p2] (e⇒ 〈〈p1: B〉〉) “substitute”
≡ [e\p0 ⊕ p1 ⊕ p2] [⇓ e = p0 ⊕ p1 ⊕ p2] (e⇒ (∀b: B · P(p1=b))) “expand 〈〈·〉〉”
≡ [e\p0 ⊕ p1 ⊕ p2] (e⇒ (∀b: B · P(e = p0 ⊕ p1 ⊕ p2 ∧ p1=b))) “Shrink shadow”
≡ [e\p0 ⊕ p1 ⊕ p2] (e⇒ (∀b: B · P((p0 ⊕ p1 ⊕ p2) ∧ p1=b))) “e in antecedent”
⇐ P((p0=p2) ∧ p1) ∧ P((p0 ⊕ p2) ∧ ¬p1) “drop antecedent; instantiate b”
⇐ P(¬p0 ∧ ¬p2 ∧ p1) ∧ P(¬p0 ∧ p2 ∧ ¬p1) “P is ⇒-monotonic”
⇐ 〈〈p0, p1, p2: B |

∑
i pi ≤ 1〉〉 . “abbreviation”

Because wp is conjunctive (Sec. 5) we can deal with postcondition conjuncts sep-
arately; the standard part is obvious from ordinary wp; and by symmetry we can
concentrate wlog on the p1 case for the remainder.

Figure 6: Adequacy of the cryptographers’ specification (Sec. 8)

for example (3.3) v (3.2), (3.6) v (3.5) and ((3.7); v:= 0) v (3.9). Apropos
the paradox we see that v:∈T 6v v:=h because the former’s final states are
{e:T · (e, h0,H0)} whereas the latter’s are just { (h0, h0, {h0}) } and, even
supposing h0∈E, still in general H0 6⊆ {h0}.

Fig. 7 shows how wp-logic avoids the Refinement Paradox.

7 The Encryption Lemma

In this section we see an example of a refinement’s being retained (Pr3).
When a hidden secret is encrypted with a hidden key and published as

a visible message, the intention is that observers ignorant of the key cannot
use the message to deduce the secret, even if they know the encryption
method. A special case of this occurs in the DC (Dining Cryptographers’)
protocol, where a secret (whether some cryptographer paid) is encrypted (via
exclusive-or) with a key (a hidden Boolean coin) and becomes a message (is
announced aloud).

We examine this simple situation in the ignorance logic; the resulting
formalisation will provide one of the key steps in the DC derivation of Sec. 8.

Lemma 2.1 Let s:S be a secret, k:K a key, and � an encryption method
so that s�k is the encryption of s. In a context hid s we have the refinement

skip v |[ vis m;hid k · k:∈K;m:= s� k ]| ,
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wp.(v:∈E).(P(h=c))
≡ “Choose visible”

(∀e:E · [⇓ e∈E] [v\e] P(h=c))
≡ “v not free”

(∀e:E · [⇓ e∈E] P(h=c))
≡ “Shrink shadow”

(∀e:E · P(e∈E ∧ h=c)))
≡ “h not free in e∈E”

(∀e:E · e∈E ∧ P(h=c))
≡ P(h=c) . “e not free in P(h=c)”

wp.(v:=h).(P(h=c))
≡ “Assign to visible”

[e\h] [⇓ e=h] [v\e] P(h=c)
≡ “v not free; Shrink shadow”

[e\h] P(e=h ∧ h=c)
≡ [e\h] P(e=c ∧ h=c) “h=c”
≡ “h not free in e=c”

[e\h] (e=c ∧ P(h=c))
≡ h=c ∧ P(h=c) “e not free”
≡ h=c . “|= Φ⇒ PΦ”

We exploit that |= P(Φ ∧Ψ) ≡ Φ ∧ PΨ when Φ contains no hidden variables.

The right-hand side shows that h=c is the weakest Φ such that {Φ} v:=h {P(h=c)},
yet (v, h,H) |= P(h=c)⇒ (h=c) for all c only when H = {h}. Thus, when E contains
no h, the fragment v:∈E can be replaced by v:=h only if we know h already.

Figure 7: Avoiding the Refinement Paradox, seen logically

which expresses that publishing the encryption as a message m reveals noth-
ing about the secret s, provided the Key-Complete Condition (1) of Fig. 8
(KCC ) is satisfied and the key k is not revealed.7

Proof: The calculation is given in Fig. 8. Informally we note that
the KCC tells us that for every message s�k revealed in m, every potential
value s′ of s has a possible (different) key k′:K that would produce the same
message. Since all values of k′:K are possible, all the potential values s′ for
s are also (still) possible. 2

8 Deriving the Dining Cryptographers’ Protocol

The Dining Cryptographers Protocol (DC ) is an example of ignorance preser-
vation [3]. In the original formulation, three cryptographers have finished
their meal, and ask the waiter for the bill: he says it has already been paid;
they know that the payer is either one of them or is the NSA. They devise
a protocol to decide which — without however revealing the payer in the
former case .

Each two cryptographers flip a Boolean coin, hidden from the third cryp-
tographer; and each announces the exclusive-or ⊕ of the two coins he sees

7The Key-Complete Condition is very strong, requiring as many keys as messages; yet
it applies to the DC protocol, where both are just one bit.
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postcondition s=B ∧ P(s=C)

through wp.(m:= s� k) gives “Assign visible”
[e\s� k] [⇓ e = s� k] [m\e] (s=B ∧ P(s=C))

≡ s=B ∧ [e\s� k] P(e = s� k ∧ s=C) “m not free; Shrink shadow”
≡ s=B ∧ [e\s� k] P(e = C � k ∧ s=C) “s=C”

through wp.(k:∈K) gives “Choose hidden”
(∀e:K · [k\e] [k⇐K] (s=B ∧ [e\s� k] P(e = C � k ∧ s=C)))

≡ s=B ∧ (∀e:K · [k⇐K] [k\e] [e\s� k] P(e = C � k ∧ s=C)) “distribute”
≡ s=B ∧ (∀e:K · [k⇐K] [e\s� e] P(e = C � k ∧ s=C)) “k hidden”
≡ s=B ∧ (∀e:K · [e\s� e] [k⇐K] P(e = C � k ∧ s=C)) “swap”
≡ s=B ∧ (∀e:K · [e\s� e] P(∃k′:K · e = C � k′ ∧ s=C)) “Set shadow”
≡ s=B ∧ (∀e:K · [e\s� e] (∃k′:K · e = C � k′) ∧ P(s=C)) “distribute”
≡ s=B ∧ P(s=C) ∧ (∀e:K · (∃k′:K · s� e = C � k′)) “distribute”

We use a subsidiary lemma [17] that skip v S provided S does not change v or the
actual or possible values for h: i.e. it is sufficient that for all A,B,C we have

{v=A ∧ h=B ∧ P(h=C)} S {v=A ∧ h=B ∧ P(h=C)} ,

where v, h are the (vectors of) all variables in context.
In Lem. 2.1 the context is hid s (and no v), giving the initial calculation above.
Because neither m nor k is free in its final line, concluding the calculation by
applying the remaining commands vis m,hid k has no effect. Finally, assuming
the precondition, ∀-quantifying over B,C, s in their type S, then renaming e, C to
k, s′, leaves only

KCC — (∀s, s′:S; k:K · (∃k′:K · s� k = s′ � k′)) , (1)

which we call the Key-Complete Condition for encryption � with key-set K.

Figure 8: Deriving the Key-Complete Condition for the Encryption Lemma
(Sec. 7)
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and whether-he-paid. The exclusive-or of the three announcements, known
to all, is true iff some cryptographer paid; but it reveals nothing about which
one did.

We model this with global Boolean variables p (some cryptographer paid)
and pi (Cryptographer i paid): a typical specification would include p =
p0 ⊕ p1 ⊕ p2 as a post-condition. If we take the waiter as observer, then
from his point of view the postcondition might also include p ⇒ 〈〈p0: B〉〉 ∧
〈〈p1: B〉〉 ∧ 〈〈p2: B〉〉, where in general for hidden (vector) h we introduce this
abbreviation:

• Complete ignorance 〈〈h:E | Φ〉〉 =̂ (∀e:E · [h\e]Φ⇒ P(h=e)) , 8

with omitted Φ defaulting to true, expressing ignorance of h’s value beyond
its membership in {h:E | Φ}. Thus in this case, even if p holds, still the
waiter is to know nothing about whether p0, p1 or p2 hold individually.

As a specification pre-condition we would find 〈〈p0, p1, p2: B |
∑

i pi ≤
1〉〉 expressing (with an abuse of notation) that the waiter considers any
combination possible provided at most one pi holds. Putting pre- and post-
together, the suitability of a specification S could be expressed

{〈〈p0, p1, p2: B |
∑

i

pi ≤ 1〉〉} S {p = p0 ⊕ p1 ⊕ p2 ∧ p⇒

 〈〈p0: B〉〉
∧ 〈〈p1: B〉〉
∧ 〈〈p2: B〉〉

} ,
(2)

and Fig. 6 shows it indeed is satisfied when S is the assignment p:= p0⊕p1⊕
p2. (Compare Halpern and O’Neill’s specification [11]: ours is less expressive
because we deal with only one agent at a time.)

Rather than prove (2) for an implementation directly —which could
be complex— we can use program algebra to manipulate a specification
for which (2) has already been established. An implementation reached via
ignorance-preserving refinement steps requires no further proof of ignorance-
preservation [15].

A derivation of the DC protocol, from the specification of Fig. 6, is given
in Fig. 9. To illustrate the possibility of different viewpoints, we observe as
Cryptographer 0 —rather than the waiter— which makes p0 visible rather
than hidden and thus alters our global context to vis p, p0;hid p1, p2: we
can see the final result, and we can “see” whether we paid; but we cannot
see directly whether Cryptographers 1 or 2 paid.

8Naturally we have |= 〈〈h: E〉〉 ⇒ P(h∈E), but in fact the latter is strictly weaker: for
example, program h:∈{0, 1} establishes P(h∈{1, 2}) but not 〈〈h: {1, 2}〉〉.
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The global context vis p, p0;hid p1, p2 is Cryptographer 0’s viewpoint.

p:= p0 ⊕ p1 ⊕ p2

= skip;
p:= p0 ⊕ p1 ⊕ p2

“skip is identity”

v “Encryption Lemma”
|[ vis s1, c1; hid c2 ·

c2:∈ B;
s1:= c1 ⊕ p1 ⊕ c2 ]|;
p:= p0 ⊕ p1 ⊕ p2

= “move into block; typed declaration”
|[ vis s1, c1;hid c2: B ·
s1:= c1 ⊕ p1 ⊕ c2
p:= p0 ⊕ p1 ⊕ p2 ]|

= “new inner block equals skip”
|[ vis s1, c1;hid c2: B ·
s1:= c1 ⊕ p1 ⊕ c2
p:= p0 ⊕ p1 ⊕ p2

|[ vis s0, s2, c0 ·
s0:= c0 ⊕ p0 ⊕ c1;
s2:= p ⊕ s0 ⊕ s1 ]| ]|

= “reorder”
|[ vis s0, s1, s2, c0, c1;hid c2: B ·

s0:= c0 ⊕ p0 ⊕ c1;
s1:= c1 ⊕ p1 ⊕ c2
p:= p0 ⊕ p1 ⊕ p2

s2:= p⊕ s0 ⊕ s1 ]|
= “Boolean algebra”

|[ vis s0, s1, s2, c0, c1;hid c2: B ·
s0:= c0 ⊕ p0 ⊕ c1;
s1:= c1 ⊕ p1 ⊕ c2
p:= p0 ⊕ p1 ⊕ p2

s2:= c2 ⊕ p2 ⊕ c0 ]|
= “reorder”

|[ vis s0, s1, s2, c0, c1;hid c2: B ·
s0:= c0 ⊕ p0 ⊕ c1;
s1:= c1 ⊕ p1 ⊕ c2
s2:= c2 ⊕ p2 ⊕ c0

p:= p0 ⊕ p1 ⊕ p2 ]|

The derivation begins at
upper-left with the speci-
fication, ending with the
implementing protocol at
right. Bold text highlights
changes.

The “typed declaration”
hid c2: B · abbreviates
hid c2 · c2:∈B.

= “Boolean algebra”

|[ vis s0, s1, s2, c0, c1;hid c2: B ·
s0:= c0 ⊕ p0 ⊕ c1;
s1:= c1 ⊕ p1 ⊕ c2
s2:= c2 ⊕ p2 ⊕ c0
p:= s0 ⊕ s1 ⊕ s2 ]| .

Local variables ci (coins) and si (Cryptographer i said) for i: 0, 1, 2 are introduced
during the derivation, which depends principally on Key-Completeness and the
Boolean algebra of ⊕.
In our use of Lem. 2.1 (Encryption) the message (m) is s1, the secret (s) is p1, the
encryption (�) is ·(⊕ c1⊕)· —which satisfies the Key-Complete Condition (1) for
both values of the visible c1— and the key (k) is c2.
Other refinements, such as moving statements into blocks where there is no capture,
and swapping of statements that do not share variables, are examples of Pr1 and
Pr2.

Figure 9: Deriving the Dining Cryptographers’ Protocol
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9 Contributions, comparisons and conclusions

Consider this (invalid) refinement, in which we use integers rather than
Booleans:

p:= p0 ⊕ p1 ⊕ p2

If c0, p0, c1 = 1, 1, 0, then
visible s0 will be 2 and
p0=1 is revealed.
It shouldn’t be.

v? |[ vis s0, s1, s2, c0, c1: {0, 1};
hid c2: {0, 1} ·
s0:= c0 + p0 − c1;
s1:= c1 + p1 − c2
s2:= c2 + p2 − c0
p:= (s0 + s1 + s2) mod 2 ]| .

(3)

The coins ci cancel just as in Fig. 9, but this time additively.
Our contribution is to disallow this refinement, and others like it.9

More generally our contribution is to have altered the rules for refinement
of sequential programs, just enough, so that ignorance of hidden variables
is preserved. We derive correct protocols (Fig. 9), but no longer incorrect
ones (3).

Halpern and O’Neill apply the Logic of Knowledge to secrecy [10] and
anonymity [11]. Compared to their work, ours is a very restricted special
case: we allow just one agent; our (v, h,H) model allows only h to vary in
the Kripke model [8]; and our programs are not concurrent. They treat DC,
as do Engelhardt, Moses & van der Meyden [6], and van der Meyden & Su
[23].

What we add back —having specialised away so much— is reasoning in
the wp-based assertional/sequential style, thus exploiting the specialisation
to preserve traditional reasoning patterns where they can apply.

Comparison with security comes from regarding hidden variables as
“high-security” and visible variables as “low-security”, and concentrating
on program semantics rather than e.g. extension via syntactic annotations:
thus we take the extensional view [4] of non-interference [9] where security
properties are deduced directly from the semantics of a program [20, III-
A]. Recent examples of this include elegant work by Leino et al. [14] and
Sabelfeld et al. [21].

Again we have specialised severely —we do not consider lattices, nor di-
vergence (e.g. infinite loops), nor concurrency, nor probability. However our
“agenda” of Refinement, the Logic of Knowledge and Algebra has induced
four interesting differences from the usual semantic approaches to security:

9One role of Formal Methods is to prevent people from writing programs, those that
are unintentionally wrong.
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1. We do not prove “absolute” security of a program. Rather we show
that it is no less secure than another; this is induced by our refinement
agenda. After all, the DC specification is not secure: it reveals whether
the cryptographers (collectively) paid or not. To attempt to prove the
DC implementation (absolutely) secure is therefore inappropriate.

However, if we did wish to prove absolute security we would simply
require refinement of an absolutely secure specification (e.g. skip, or
v:∈T ).

2. We concentrate on final- rather than initial hidden values. This is
induced by the Kripke structure, which models what other states are
possible “now”.

The usual approach relates instead to hidden initial values, so that
h:= 0 would be secure and v:=h;h:∈T insecure; for us just the op-
posite holds. Nevertheless, we could operate on a local hidden copy,
thrown away at the end of the block. Thus |[ hid h′: {h} · h′:= 0 ]| be-
comes secure (for us too), and |[ hid h′: {h} · v:=h′;h′:∈T ]| becomes
insecure.

A direct comparison with non-interference considers the relational
semanticsR of a program, operating over v, h:T ; the refinement v:∈T v
v:∈R.v.h then expresses absolute security for the rhs with respect to
h’s initial value. Operational reasoning (as Sec. 6) [17] then shows
that

Absolute security — (∀v, h, h′:T · R.v.h = R.v.h′)

is necessary and sufficient, which is non-interference for R exactly [14,
21].

3. We insist on perfect recall. This is induced by our algebraic principles
(recall the gedanken experiment of Sec. 2), and thus we consider v:=h
to have revealed h’s value at that point, no matter what follows. The
usual semantic approach allows instead a subsequent v:= 0 to “erase”
the information leak.

It is also a side-effect of (thread) concurrency [10],[20, IV-B], but
has different causes. We are concerned with ignorance-preservation
during program development ; the concurrency problem occurs during
program execution.

The “label creep” [20, II-E] caused by perfect recall, where the build-
up of un-erasable leaks makes the program eventually useless, is miti-
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gated because our knowledge of the current hidden values can decrease
(via e.g. h:∈T ), even though knowledge of initial- (or even previous)
values cannot.

4. We do not require “low-view determinism” [20, IV-B]. This is induced
by our explicit policy of retaining abstraction and determining exactly
when we can “refine it away” (and when we cannot). The approach
of Roscoe and others instead requires low-level behaviour to be deter-
ministic [19].

We conclude that ignorance refinement is able to handle examples of
simple design — even though their significance may be far from simple.
Because wp-logic for ignorance retains most structural features of traditional
wp, we expect that loops and their invariants, divergence, and concurrency
via e.g. action systems [1] will be feasible extensions.

Adding probability via modal “expectation transformers” [16] is a longer-
term goal, but will require a satisfactory treatment of conditioning (the
probabilistic version of Shrink shadow) in that context.
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