
ASEHA: A Web Services Protocol Modelling
Formalism

Pemadeep Ramsokul
Arcot Sowmya

School of Computer Science and Engineering
The University of New South Wales, Sydney 2052, Australia

and
National ICT Australia(NICTA)

Locked Bag 6016, NSW 1466, Australia
. Email: {pkramsok, sowmya}@cse.unsw.edu.au

UNSW-CSE-TR-0521
November 2005

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

1

Abstract

Agents require standard and reliable protocols to interact with different
service providers in order to provide high quality service to customers over
the web. Many useful protocols are coming into the market, but are am-
biguously specified by protocol designers and without being fully verified.
These can lead to interoperabilty problems among implementations of same
protocol and high software maintenance costs.

In this paper, we propose a hierarchical automata-based framework to
model the necessary features of protocols to verify their correctness. Our
experience shows that the graphical models produced, provide invaluable in-
sights and can be used to complement specifications to drastically reduce,
if not eliminate, ambiguities. We illustrate our formalism with a version of
WS-AtomicTransaction protocol.

1 INTRODUCTION 3

1 Introduction

Among their many goals, Web Services(WS) are designed to help agents to com-
municate, through a standard interface, with their partners regardless of platforms,
thereby solving the interoperability problem.

Figure 1 illustrates a fictional travel arrangement facility, which is often used
in the literature [10]. In this case, the agent and service providers all belong to the
same company (Z) but are potentially in different locations. Customers wishing to
go on a trip may want to book a ticket with Z Airlines, reserve a room with Z Hotel,
and rent a car with Z Car Services. They may want the ticket only if the hotel and
car are also available and the agent must find a way to make this possible.

Flight
Booking
Service

Car
Rental
Service

Hotel
Reservation

Service

Z Flight

Z Hotel

Z Car
Travel Agent

Figure 1: Travel arrangement facility

A standard protocol that allows collaboration among these partners would be
highly useful in this situation. Many such protocols have been defined over the
past few years, the well known ones being WS-AtomicTransaction (WS-AT) [8],
WS-BusinessActivity [9] and Business Transaction Protocol [4].

Unfortunately, the use of non-formal language in the specifications re-introduces
the interoperability problem among the implementations of the same protocol,
which is supposedly addressed by WS. This is because the non-formal language

1 INTRODUCTION 4

could be, and often is, interpreted differently by different service providers and
furthermore, not all possible interaction scenarios may have been fully considered
in the specifications. Consequently, these can potentially lead to financial loss due
to costs of software maintenanace.

There have been research efforts towards modelling and automated verification[1,
3, 5, 6, 7, 16, 17, 20, 23], which work well for network protocols. Due to significant
differences between network and WS protocols, these formalisms are not directly
applicable to the latter. On the other hand, the recent formalisms for WS protocols
[13, 14] have not shown any noticeable signs of adoption in the industry perhaps
due to their complexity and intimidating syntax.

We present a formalism called Asynchronous Extended Hierarchical Automata
(ASEHA) inspired by EHA[19] that is informed by the study of WS protocols. It
has a sound mathematical foundation and aims to reconcile desirable features found
in other formalisms while still maintaining syntactic and semantical simplicity.

We are using this formalism to model and verify commonly used WS proto-
cols. Consequently, we find that the formalism provides invaluable insights and
previously ‘unthinkable’ possible scenarios about the protocol in question. The
modelling exercise also leads to concise, unambiguous and comprehensive doc-
umentation of the functional aspects of the protocols that can be used by both
protocol designers and implementation teams.

1.1 Related Work and Overview

The area of protocol verification has been studied extensively over the past decades.
The recent survey by Bhaduri and Ramesh [2] uncovers most of the recent ad-
vances. Most of the graphical models are based on statecharts[11] variants. While
there are many different graphical models with different semantics, the verification
is mainly handled by model checking using SMV[18] and SPIN[12].

Research in [1, 3, 5, 6, 7, 16, 17, 20, 23], including EHA[19], work well for
network protocols but are not directly applicable to WS protocols. The main differ-
ences between network and WS protocols include heterogeneity of entities, com-
munication mechanism and the complexity of the whole protocol interaction. Fur-
thermore, some WS protocols operate using a two pipe model meaning that there is
an application message exchange and a separate protocol message exchange. The
application exchange introduce causal dependencies not apparent in the protocol
message echange. These will become apparent in the later sections of this paper.

However, limitations in the existing formalisms include concise graphical rep-
resentation of message exchange permutations and reliance on broadcasting as the
main means of communication. We have instead adopted the shared buffer model
which closer to what actually happens during WS protocol interactions. It also

2 OVERVIEW OF ASEHA 5

abstracts away unnecessary communication details while allowing analysis of cor-
rectness of the protocols. We have also integrated desirable features from existing
formalisms such as state hierarchy, inter-level transitions (supported indirectly),
concurrency and variable support[2, 22].

The models used in [13, 14] have yet to enjoy great success in the industry,
most likely due to their syntactic and semantic complexity. It is believed that the
primary resistance for adopting formal methods is that designers are unfamiliar
with specification processes, notations and strategies. Our formalism is very simple
and intuitive to understand and use. We believe that a graphical approach to WS
protocol specification is more likely to be successful while abstracting away the
mathematics behind it.

1.2 Paper Contributions

In this paper, we describe an automata based framework for modelling the essential
components of WS protocols in order to assess their correctness. This framework
can be used by designers to make sure that their protocols work as intended before
release into the market. We claim that the graphical model produced together with
some additional information, should be adequate for engineers to understand and
implement the protocols. Furthermore, the framework can also be used by an ‘ex-
ternal reviewer’ to model newly released protocols and determine their correctness.

Correctness is determined by automatic verification—the model is translated
into the input language of a suitable tool such as SPIN. Verification, however, is
not focused here.

We are currently using this framework to generate automata based models for
some popular WS protocols, which can complement their specification and drasti-
cally reduce their size.

The paper is organised as follows: Section 2 presents a complete informal
overview of the proposed framework, Section 3 contains the formalization of ASEHA
while introducing its different components in a bottom-up fashion. We give the se-
mantics of ASEHA in Section 4 and discuss its features in Section 5. A case study
is given in Section 6 and finally we conclude in Section 7 with some hints on future
work.

2 Overview of ASEHA

We illustrate our framework by a simple version of WS-AT. In Figure 2, the WSAT
automaton, called the root automaton, has one AND-state[11, 19] (w0), as indi-
cated by the presence of dashed lines and three basic states namely co, ab and ex.

2 OVERVIEW OF ASEHA 6

w0 is also the default state for WSAT as identified by an incoming arrow and
co, ab and ex are its final basic states as indicated by the double borders. w0 is
mapped to three automata: Participant, Initiator (Figure 3) and Coordinator
(Figure 4). A non-basic state is implicitly a final state, therefore, w0 is also a final
state of WSAT .

Each entity of the protocol has an ID associated with it and a set of variables
and is modelled by a single automaton or a set of automata. In this case, the
Participant and Initiator each represent one entity with IDs P and I respec-
tively. The Coordinator automaton has three basic states (c0, c1, c5) and has
three OR-states[11, 19] (c2, c3, c4) as indicated by the shade difference. The
Registration automaton, which refines c2 is shown on the right in Figure 4. c3
and c4 in turn are refined by CommitTrans and AbortTrans (Figure 5) respec-
tively. Together, Coordinator, Registration, CommitTrans and AbortTrans
form an entity with ID C and have access to the variables p, v and d.

At the beginning the default state of the root automaton(w0) is active and con-
sequently makes the states p0, i0 and c0 active. In ASEHA, only one transition
can be taken at a time and in an asynchronous fashion. Each transition label has
a trigger, an action and a target determinator component. For a transition to be
enabled, the trigger must evaluate to true and the action must be unblocked.

In the label of the transition, from state p0 to p1, in(i4) and Register, volatile!C
are the trigger and the action components respectively. The transition can only be
taken if state i4 in the Initiator automaton, is active (which is currently not the
case).

Thus, the only possible transition, at this point, is CCC!C, which causes the
message CCC to be put in the shared buffer and can only be removed by an au-
tomaton belonging to the entity C. After this transition is taken, i0 becomes in-
active and i1 becomes active. The only next possible transition is CCC?I found
in the Coordinator automaton. This causes the removal(reception) of the CCC
message from the shared buffer by a get action. A get is blocking whereas a put is
always non-blocking. This process continues until no more transitions are possible.
Correctness is determined by checking if all active states are final states.

When c2 eventually becomes active, it also causes r0, the default state of
Initiator , to become active simultaneously. If there are more than one enabled
transition, one is taken non-deterministically. Later, if the transition c2 to c5 is
taken, c2 becomes inactive and so does the active state within the Registration
automaton.

At some point, say the transition c2 to c4 is taken, c4 will become active. As
indicated by the target determinator {a0}, a0 will become active (since c4 is refined
by AbortTrans) regardless of AbortTrans’s default state. However, in this case,
the target determinator is redundant.

3 FORMAL DEFINITIONS 7

co ab

WSATw0

in(i7) &&
(in(p7) || in(p8) || in(p9) &&

in(m5) || in(m6))

in(i8) &&
(in(p9) || in(p10) || in(p11) ||
in(p0) || in(p1) || in(p2)) &&

(in(a2) || in(a3))

ex

in(i9) &&
(in(p0) || in(p1) || in(p2)) &&

in(c5)

Figure 2: WSAT automaton

3 Formal Definitions

An ASEHA consists of many components and rules, which are discussed in the
following subsections. We begin by defining the most basic component of an
ASEHA—a sequential automaton.

3.1 Definition of Sequential Automaton

Let A be a sequential automaton, i.e. one in which at most one transition can be
made at a time. A is defined by the tuple (Σ, ι, Λ, Φ,→) where Σ is the set of
states, ι is the initial state, Λ is the set of transition labels (which we will define
precisely later), Φ is the set of final states and →⊆ Σ × Λ × Σ is the transition
relation. When A is entered, the default state ι becomes active, unless specified
otherwise by the incoming transitions’s target determinator (discussed in Section
3.6.1).

Example 1 For the sequential automaton WSAT , Σ = {w0, co, ab, ex}, ι =
w0, Φ = Σ, → = {(w0, `l, co), (w0, `2, ab), (w0, `3, ex)}, where `1, `2, `3 ∈
Λ.

A sequential automaton can have its states mapped to one or more automata
to form a hierarchy. This mapping is specified by the refinement function defined
next.

3 FORMAL DEFINITIONS 8

p0

p1

in(i4):
Register,volatile!C

p3

RegisterResponse?C RegisterResponse?C

p2

p4

in(i4):
Register,durable!C

p5

Prepare?C

Prepare?C

p6

Prepared!C

p7

Commit?C

p8

Committed!C

p9

ReadOnly!C

p11

p10

Rollback?C

Aborted!C

Aborted!C

i0

i1

CCC!C

i2

CCCR?C

i3

Register,completion!C

i4

RegisterResponse?C

i5

in(p3) || in(p4):
Commit!C

i7

Committed?C

i6

i8

Aborted?C

Rollback!C

i9

ContextRefused!C

Participant Initiator

Rollback?C
Rollback?C

Aborted?C

Figure 3: Participant and Initiator automata

3.2 Definition of Refinement Function

For a set of sequential automata F = {A1, ..., An} with mutually disjoint state
spaces, ΣF =

⋃

A∈F ΣA is the union of all states of all automata in F . The refine-
ment function γ : ΣF → 2F maps a state s of a sequential automaton to a subset
of automata G ⊆ F ; s is said to be refined by G in such a case.

For any s ∈ ΣF , if |γ(s)| = 0, s is a basic state, else if |γ(s)| = 1, s is an
OR-state else for |γ(s)| > 1, s is an AND-state. Moreover, if γ(s) = {A′

1, .., A
′
n},

we say that s is non-basic, A′
1, .., A

′
n are its sub-automata, they refine s and s is

their parent state. If s ∈ ΣA, A is the parent automaton of A′, .., A′
n.

Analogous to [19], for γ to be a valid function, the following conditions must
hold:

• F can only have one root automaton (denoted by γroot), i.e. ∃A ∈ F : A /∈
range(γ). γroot is the top-level automaton, which does not have a parent
state. It glues the entities together.

3 FORMAL DEFINITIONS 9

c0

c1

CCC?I

r0

r1

Register, completion?I

r3 r4

c2

CCCR!I

c3

c4

in(r2):
Commit?I

Coordinator Registration

in(m1) || in(m3):
Aborted?>v−, >d−

in(r2):
Rollback?I{a0}

r2

RegisterResponse!I

Register,
volatile?>v+

RegisterResponse!<v

Register,
durable?>d+

RegisterResponse!<d

c5

ContextRefused?I

Figure 4: Coordinator and Registration automata

• Each automaton, except from the root γroot, has exactly one parent state i.e.
range(γ) = F \{γroot}∧ ∀A ∈ F \{γroot} ∃ s, s′ ∈ ΣF , A ∈ γ(s)∧ A ∈
γ(s′) ⇒ s = s′.

• All non-basic states of the automata of F are final states, i.e. ∀A ∈ F : (s ∈
A ∧ γ(s) 6= φ) ⇒ s ∈ ΦA.

These conditions imply that γ does not contain any cycle.

Example 2 The refinement function on F = {WSAT, Participant, Initia-
tor, Coordinator, Registration, CommitTrans, AbortTrans} with γroot =
WSAT is:

γ = {(w0, {Coordinator, Participant, Initiator}), (c2, {Registration}),

(c3, {CommitTrans}), (c4, {AbortTrans})} ∪

{(s, φ) | s ∈ ΣF \ {w0, c2, c3, c4}}

γ induces a successor function θ : F → 2F . It returns all the automata whose
parent automaton is A:

θ(A) = {A′ |∃ s ∈ ΣA : A′ ∈ γ(s)}

3 FORMAL DEFINITIONS 10

m0

m1

m2Prepare![v]

ReadOnly?>v−

Prepared?>p+,>v−

Register, durable?>d+

RegisterResponse!<d

m3ReadOnly?>d− Prepared?>p+,>d−

m4

m5

Commit![p]

CommitTrans

a0

a1

Aborted!I

a2

Rollback![p],[v],[d]

Aborted?>p−,>v−,>d−

a3

empty(p) && empty(v)
&& empty(d)

AbortTrans

empty(v):
Prepare![d]

enpty(d):
Committed!I

m6

empty(p)Committed?>p−

Figure 5: CommitTrans and AbortTrans automata

The irreflexive and reflexive transitive closures of θ are denoted by θi and θr

respectively, i.e. ∀A ∈ F ,A ⊂ F : (A,A) ∈ θi ⇒ A /∈ A and ∀A ∈ F , ∃A ⊆
F : (A,A) ∈ θr ∧ A ∈ A.

Example 3 Using the definition of the refinement function in Example 2, we have:
θ = {(WSAT, {Participant, Initiator, Coordinator}), (Coordinator, {Re-

gistration, CommitTrans, AbortTrans})} ∪ {(A, φ) |A ∈ F\{WSAT, Coor-
dinator}}

θi = {(WSAT,F \ {WSAT}), (Coordinator, {Registration, Commit-
Trans, AbortTrans})} ∪ {(A, φ) | A ∈ F \ {WSAT, Coordinator}}

θr = {(WSAT,F), (Coordinator, {Coordinator, Registration, Com-
mitTrans, AbortTrans})} ∪ {(A, {A}) | A ∈ F \{WSAT, Coordinator}}

3 FORMAL DEFINITIONS 11

3.3 Entity Model

An entity that participates in a protocol is modelled by a sequential automaton or
by a set of automata. Each entity has an ID and a set of variables associated with
it. An ID can be thought of as a shorter form of the entity’s name for keeping the
labels of transitions short. The mapping of an automaton to its entity ID is specified
by the EID lookup function.

Entities communicate with each other by exchanging messages through the
shared buffer using put and get actions, as shown in Figure 6. Furthermore, only
entities in ASEHA can access the buffer i.e. ASEHA is a closed system. To cope

Entity 1

Shared Buffer

Entity 4

Entity 2 Entity 3

put put

getget

Figure 6: Interaction of entities

with the complexity of dealing with many entities, variables are of great help. They
are mainly used for remembering certain responses of a group of entities and to
handle message exchange permutations. The evaluation function keeps track of
variables and their values.

3.3.1 Definition of EID Lookup Function

For a set of entity IDs D = {d1, .., dm}, where m ≤ |F|, an EID lookup function,
η : F → D, maps an automaton to its entity ID. The η function indicates the entity
that an automaton is part of—the root automaton is strictly not part of any entity
as it represents the whole protocol interaction, but is given an entity ID to simplify
the model. η is valid iff:

• All automata that refine the states of the root automaton γroot have different
EIDs, i.e. ∀A, A′ ∈ θ(γroot) : (η(A) = d ∧ η(A′) = d) ⇒ A = A′, where
d ∈ D.

3 FORMAL DEFINITIONS 12

• All automata except the root γroot and the automata which refine its states,
have the same EID as their parent automaton, i.e. ∀A ∈ θ(γroot), A

′ ∈
θi(A) ⇒ η(A) = η(A′).

Hereafter, we will refer to η as ‘an EID function’.

3.3.2 Definition of Evaluation Function

Each entity with ID d, has a set of variables Vd associated with it. A variable can
only hold EIDs for values. An evaluation function ξ : V → D × 2D, returns
the current value and the set of buffered (remembered) values of a variable. A
variable v ∈ V is initialized to (d, φ) unless specified otherwise. We define selector
functions as follows: if ξ(v) = (d, R), then val(v) = d and buffer(v) = R.

Example 4 Continuing from Example 2, for D = {W, P, I, C}, we have η =
{(WSAT, W), (Coordinator, C), (Registration, C), (CommitTrans, C),
(AbortTrans, C), (Participant, P), (Initiator, I)}, and each entity’s set of
variables is given by: VW = φ, VC = {p, v, d}, VP = φ and VI = φ.

This means that the Coordinator, Registration, CommitTrans and Abort-
Trans automata belong to the entity with ID = C and only these automata have
access to the variables p, v, and d. Also, WSAT , Participant and Initiator
belong to the entity with ID = W , ID = P and ID = I respectively but have no
variables.

3.4 Definition of ASEHA

An ASEHA H is defined by H = (F , µ,V, γ, η), where F = {A1, ..., An} is a set
of sequential automata with mutually disjoint state spaces, µ is a set of messages,
V =

⊎

d∈D Vd is the set of variables (disjoint union of the variables of all entities),
γ is a refinement function on F , and η is the EID function on (F ,D, γ), where D
is a set of EIDs.

Furthermore, B ⊆ D×µ×D represents the contents of the shared buffer used
for communication among the entities. Intuitively, it stores messages that have
been sent but not yet received.

Moreover, the visited list T ⊆
⋃

A∈F ΣA, stores the list of all states visited so
far. A state is s said to be visited when it becomes active. In section 4.2, we will
explain how and when T is updated.

We next formalize the notion of configuration before defining a transition label
in ASEHA.

3 FORMAL DEFINITIONS 13

3.5 Definition of Configuration

A configuration is a set of states in H that can be active simultaneously. Analogous
to [19], a set C ⊆

⋃

A∈F ΣA is a configuration iff:

• Any automaton contributes at most one state to the configuration i.e. A ∈
F ⇒ |ΣA ∩ C| ≤ 1

• Downward closure: if a state s is in C then its descendants (states lower that
itself in the hierarchy) are in C, i.e. s ∈ C∧A ∈ γ(s) ⇒ ∃ s′ ∈ ΣA, s′ ∈ C.

• Upward closure: if a state s is in C, then its ancestors (states higher that
itself in the hierarchy) are in C, i.e. {s} = ΣA ∩ C ∧ (∃ s′ ∈ ΣA′ : A ∈
γ(s′)) ⇒ s′ ∈ C.

The set of all configurations is given by Conf(γ) and the initial configuration
Cγroot

is the set containing only default states, i.e. {Cγroot
} = {C |C ∈ Conf(γ)∧

∀ s ∈ C ∃A ∈ F : s = ιA}

Example 5 If we define H using the information from the previous examples, we
have the initial configuration Cγroot

= {w0, p0, i0, c0}.

3.6 Definition of Transition Label

Interlevel transitions[11, 19] are not allowed but are simulated using triggers and
target determinators. The motivations behind disallowing interlevel transitions are
mainly that they introduce a lot of semantic complexity and make compositionality
very hard, if not impossible[19].

Recall that an automaton A ∈ F is defined by the tuple (ΣA, ιA, ΛA, ΦA,→A)
and →A= ΣA × ΛA × ΣA. A label ` ∈ ΛA of a transition can be further defined
as a 3-tuple (tr, ac, td), where tr is the trigger, ac is the action taken and td ⊆ ΣF

is the target determinator, where ΣF =
⋃

A′∈F ΣA′ .
The syntax of the labels used in the examples is:

trigger : action{target determinator}

If the trigger and the colon(:) are omitted, the trigger is assumed to be true, if the
action is omitted, it is assumed to be τ and if the target determinator, enclosed in
braces ({}), is omitted, it is assumed to be empty.

3 FORMAL DEFINITIONS 14

3.6.1 Target Determinator

For the transition (s, (tr, ac, td), s′) ∈→A, if s′ is a non-basic state, the default
states of the sub-automata are recursively entered unless the target determinator td
has been specified.

If C is the current configuration then, td is valid iff

td 6= φ ⇒
[

head ∪ {s′} ∪ td
]

∈ Conf(γ)

where head =
(

C \
(

⋃

A′ ∈ θr(A) ΣA′

))

.
Intuitively, if td is specified (non-empty), it has to specify the set of states

to enter such that the resulting set(head ∪ {s′} ∪ td) is a valid configuration.
(

⋃

A′ ∈ θr(A) ΣA′

)

is the set of states that will be exited and {s′} ∪ td is the new
set of states that will be entered. Although td can possibly be specified by fewer
states, we stick to the above definition since it simplifies the semantics.

Example 6 Consider the transition between c2 and c4 in the Coordinator au-
tomaton in Figure 4. If the current configuration is C = {w0, p4, i6, c2, r2}, then
if the transition is taken, {c2, r2} will be exited, {c4, a0} will be entered while
{w0, p4, i6} will still be in the new configuration i.e. C ′ = {w0, p4, i6, c4, a0}.
In this case, the target determinator td = {a0} could have been omitted since the
default state of AbortTrans is a0.

3.6.2 Action

As mentioned earlier, an action ac can be a put, get or internal. There are two
versions of the get and put actions—one based on a specific entity ID and the other
based on the evaluation of the local operation sequence (LOS) function, which we
define later.

Given the current value of the message buffer B is B and the following actions
appear in a transition t ∈→A:

put(msg, r) Puts the message msg ∈ µ for the entity with ID r ∈ D. Effectively,
after the put action, the new value of B will be B ∪ {(η(A), msg, r)}.

put(msg, ft) Similar to the function above, except that the tuple containing the
message msg ∈ µ is put based on the LOS function ft to be explained in the
next section.

get(msg, d) Returns the retrieved tuple from the message buffer B. Effectively, a
get action finds the tuple (d, msg, η(A)) in B, where d ∈ D is the sender’s
EID, msg ∈ µ is the message and η(A) is A’s EID. If such a tuple is

3 FORMAL DEFINITIONS 15

found, the receive action in A is unblocked else the receive action is blocked
until such a tuple is found. When the transition is taken, the tuple is re-
moved from B. After the receive action, the new value of B becomes B \
{(d, msg, η(A))}.

get(msg, ft) Similar to the function above, except that the tuple containing the
message msg ∈ µ is retrieved based on the LOS function ft to be explained
in the next section.

τ is an internal action, i.e. one which is not visible to the environment.

Syntactically, an action may be specified in BNF as:

action ::= snd rcv | ‘’

snd rcv ::= message ‘!’ address |

message ‘?’ address

address ::= EID |mem op [‘,’mem op] ∗

mem op ::= ‘>’var | ‘<’var | var‘+’ | var‘−’ |

‘[’var‘]’ | ‘>’var‘+’ | ‘>’var‘−’ |

‘<’var‘+’ | ‘<’var‘−’

Some messages usually have parameters—in that case, they are separated by
commas(,). Recall that ? means get and ! means put and empty action refers to
τ . var represents a variable name. The syntax for local operations on variables is
given in the next subsection.

The automaton performing the get/put action on the shared buffer B has atomic
access to the latter since a transition is deemed complete only after the action has
been fully carried out.

3.6.3 Definition of LOS function

For a transition t = (src, (tr, ac, td), dest) ∈→A, the LOS function ft : {1, ..., N} →
MemAct, returns an ordered sequence of operations that must be performed on
variables while the transition t is taken—N is the number of operations to per-
form. As the name suggests, a LOS function defines operations on local variables
only.

For any variable v ∈ Vη(A) with value ξ(v) = (d, R), the set MemAct consists
of the following operations:

fetch(v) Fetches the value of v and puts it in a set, i.e. {val(v)}, which is {d}.
Syntax: <v.

3 FORMAL DEFINITIONS 16

enlist(v) Fetches the set of all remembered values, i.e. buffer(v), which is R.
Syntax: [v].

update(v) Requests the update of the variable v based on the sender of a message.
Syntax: >v.

remember(v) Adds the value of v to the set of remembered values, i.e. after
remember(v), v becomes (d, R ∪ {d}). Syntax: v+.

forget(v) Removes the value of v from the set of remembered values, i.e. after
forget(v), v becomes (d, R \ {d}). Syntax: v–.

Hence, we have MemAct = {op |∃v ∈ Vη(A) : op = fetch(v) ∨ op =
enlist(v) ∨ op = update(v) ∨ op = remember(v) ∨ op = forget(v)} .

The operations are executed sequentially while the transition t is taken, i.e.
ft(1) is executed, followed by ft(2) and so on. Only certain sequence of operations
are allowed based on the action ac; ft is a valid function iff:

• If ac is a put action, the ft function can only contain fetch and/or enlist, i.e.
∃msg ∈ µ : ac = put(msg, ft) ⇒ ∀ i ∈ {1, 2, .., |ft|}, ∃ v ∈ V : ft(i) =
enlist(v) ∨ ft(i) = fetch(v).

• If ac is a get action, there must be at least one update but no fetch or atmost
one fetch, which must also be first, i.e. ∃msg ∈ µ : ac = get(msg, ft) ⇒
(∃ i ∈ {1, 2, .., |ft|}, v ∈ V : ft(i) = update(v)∧∀v ∈ V, i ∈ {1, 2, .., |ft|} :
ft(i) 6= fetch(v) ∨ (∀i ∈ {1, 2, .., |ft|} ∃ v ∈ V : ft(i) = fetch(v) ⇒ i =
1)).

Some of the operations can be combined syntactically, e.g. >v+ stands for
{(1, update(v)), (2, remember(v))}.

3.6.4 Trigger

For the transition (src, (tr, ac, td), dest) ∈→A, the trigger tr is a boolean combi-
nation of predicates defined on variables or states. Predicates are side-effect free
and can be connected by ∧ and/or ∨. The unary boolean operator ¬ is also sup-
ported. Specifically, given the current configuration C, v ∈ V and s ∈

⋃

A′∈F ΣA′ ,
tr is a monomial over the following propositions:

empty(v) evaluates to true iff |enlist(v)| = 0.

nempty(v) evaluates to true iff |enlist(v)| > 0.

4 SEMANTICS OF ASEHA 17

in(s) Evaluates to true iff s ∈ C.

visited(s) Evaluates to true iff s has been visited at least once, i.e. s ∈ T .

Note that the in(s) predicate restricts the enabledness of a transition based on
the state s and thus can be used together with td to simulate inter-level transitions.
It can also be used to introduce causal dependencies between entities for synchro-
nization.

Example 7 The definition of µ used in the examples is: µ = {CCC, CCCR, Con-
textRefused, RegisterResponse, Prepare, Prepared, ReadOnly, Commit, Com-
mitted, Rollback, Aborted} × {ε} ∪ {Register} × {completion, vola-
tile, durable}. Due to space constraints, we will only give the set of labels Λ for
the Coordinator automaton.

ΛCoordinator = {(true, get((CCC, ε), I), φ),
(true, put((CCCR, ε), I), φ),
(in(r2), get((Commit, ε), I), φ),
(in(r2), get((Rollback, ε), I), {a0}),
(in(m1) ∨ in(m3), get((Aborted, ε), ft), φ)}

where ft = {(1, update(v)), (2, forget(v)), (3, update(d)), (4, forget(d))}.

4 Semantics of ASEHA

We define the semantics of ASEHA using a Kripke structure, K, used by many
model checkers for verification. Once we translate ASEHA into Promela (the input
language of SPIN), we will have show that the Kripke structure, K′, used by SPIN
is bisimilar to K to make sure our translation is correct. However, this will not be
further addressed in this paper.

To define K, we first introduce the notion of enabled transitions.

4.1 Definition of Enabled Transitions

Given an ASEHA H = (F , µ,V, γ, η), to determine which transitions are enabled
at any time, we need to know the configuration C of H, the message buffer B, the
visited list T , and the evaluation function ξ on (V,D). Collectively, we refer to
(C,B, T , ξ) as a status in the rest of this paper.

A transition t = (s, (tr, ac, td), s′) ∈→A is enabled in the status (C,B, T , ξ),
denoted by enabled(C,B,T ,ξ)(t), iff:

• s is active, i.e. s ∈ C.

4 SEMANTICS OF ASEHA 18

• tr evaluates to true, i.e. (C,B, T , ξ) |= tr.

• ac is unblocked, i.e. for some d ∈ D, v ∈ V and LOS function ft:

– ac = get(msg, d) ⇒ (d, msg, η(A)) ∈ B

– (ac = get(msg, ft) ∧ ft(1) = fetch(v)) ⇒ (val(v), msg, η(A)) ∈
B

– (ac = get(msg, ft) ∧ ft(1) 6= fetch(v)) ⇒ (d, msg, η(A)) ∈ B

The set of enabled transitions in (C,B, T , ξ) is given by:

ET(C,B,T ,ξ) =

{

t | t ∈
⋃

A∈F

→A ∧ enabled(C,B,T ,ξ)(t)

}

Example 8 Consider the status (C,B, T , ξ) = ({w0, c2, r2, i4, p1}, {(C, (Re-
gisterResponse, ε), P)}, {w0, p0, p1, i0, i1, i2, i3, i4, c0, c1, c2, r0, r1, r2,
r3}, {(v, (P, {P}), (d, (C, φ)), (p, (C, φ)}).

This means that currently: the states w0, c2, r2, i4, p1 are active, the shared
buffer contains the tuple (C, (RegisterResponse, ε), P), the states w0, p0, p1, i0,
i1, i2, i3, i4, c0, c1, c2, r0, r1, r2, r3 have been visited and the variable v has
the value P and has remembered P .

In this status, the set of enabled transitions is

ET(C,B,T ,ξ) = {(p1, (true, get((RegisterResponse, ε), C), φ), p3),

(r2, (true, put((Rollback, ε), C), φ), r4)}

4.2 Definition of Kripke Structure

The semantics of H = (F , µ,V, γ, η) is a Kripke structure K = (S, s0, F,
STEP
−→),

where:

• S ⊆ Conf(γ)×2D×µ×D×2ΣF×2V×(D×2D) is the set of all possible statuses
of H, which is a subset of the cross-product of all configurations, contents
of the message buffer, visited states and variables with their corresponding
possible values.

• s0 ∈ S is the initial status, given by:

s0 = (Confγroot
, φ, Confγroot

, {(v, (d, φ))| d ∈ D ∧ v ∈ V})

4 SEMANTICS OF ASEHA 19

• F ⊆ S is the set of final (accepting) states derived as follows:

(C,B, T , ξ) ∈ (F ∩ S) ⇔ ∀ s ∈ C ∃A ∈ F : s ∈ ΦA

This means that a state in K is accepting iff all states in the configuration are
final states of automata in H.

•
STEP
−→ ⊆ S×S is the transition relation of K, where (C,B, T , ξ)

STEP
−→ (C ′,B′, T ′, ξ′)

iff there exists a transition {t} = {(s, (tr, ac, td), s′)} ∈ (ET(C,B,T ,ξ) ∩ →A

) for some A ∈ F such that:

C ′ =

{

head ∪ {s′} ∪ td if td 6= φ
C otherwise

where head = C \
(

⋃

A′ ∈ θr(A) ΣA′

)

and {C} = {G |G ∈ Conf(γ)) ∧

(head ∪ {s′} ⊆ G) ∧ ∀x ∈ G \ (head ∪ {s′}), ∃A′ ∈ F : x = ιA′}

The new configuration C ′ is obtained by:

– exiting the state s and all the states below it, i.e.
(

⋃

A′ ∈ θr(A) ΣA′

)

– entering s′ i.e. {s′}

– entering td if it is specified or entering the default states of the automata
below s′, if td is unspecified.

To get the contents of the new shared buffer B′, the action ac is the carried
out using the definitions in Sections 3.6.2 and 3.6.3.

B′ =

B ∪ {(η(A), msg, d)} if ac = put(msg, d)
B \ {(d, msg, η(A))} if ac = get(msg, d)

Bp if ac = put(msg, ft)
Bg if ac = get(msg, ft)
B otherwise

for some msg ∈ µ, d ∈ D and LOS function ft. Bp and Bg are obtained by
sequentially ‘processing’ the operations in the LOS function ft.

Let Bp
0..|ft|

be an array of set of tuples, with Bp
0 = B and Bp

1..|ft|
be defined

by:

Bp
i = Bp

i−1 ∪

{(η(A), msg, val(v))} if ft(i) = fetch(v)
{(η(A), msg, x) |x ∈ buffer(v)} if ft(i) = enlist(v)

φ otherwise

5 FEATURES OF ASEHA 20

for some v ∈ V . Bp is simply given by Bp = Bp
|ft|

.

Bg = B \

{

{(val(v), msg, η(A))} if ft(1) = fetch(v)
{(addr, msg, η(A))} otherwise

where addr is an arbitrary value such that addr ∈ D and (addr, msg, η(A)) ∈
B.

The new set of visited states T ′ is obtained by adding the states in the new
configuration C ′ to the old set of visited states T .

T ′ = T ∪ C ′

Let ξ0..|ft| be an array of evaluation functions, with ξ0 = ξ and ξ1..|ft| defined
by:

ξi = ξi−1\{(v, (d, R))}∪

{(v, (addr, R)} if ft(i) = update(v)
{(v, (d, R ∪ {d})} if ft(i) = remember(v)
{(v, (d, R \ {d})} if ft(i) = forget(v)

{(v, (d, R))} otherwise

where v ∈ V, (d, R) = ξi−1(v) and addr obtained from the definition of Bg

(above). Thus, ξ′ is simply given as ξ′ = ξ|ft| after all operations have been
performed on the variables.

The states of K are thus all the possible statuses of H.

Example 9 Continuing from previous examples, the first few states of the resulting
Kripke structure is shown in Figure 7.

5 Features of ASEHA

ASEHA has many desirable features which include:

Communication One of the distuiguishing aspects about ASEHA compared to
other existing formalisms, is that the communication mechanism is based on
shared buffer model using interleaving semantics for step execution. This
model is captures all the key information without going into unnecessary
details.

6 CASE STUDY: WS-AT 21

Simplicity We believe that simplicity is the most important factor for a formalism
to be accepted and used by people who do not have an in depth knowledge
of formal methods. The diagrams generated by our tool are very simple
and intuitive for any programmer or protocol designer to pick up and under-
stand within minutes. Furthermore, the semantics is very simple: one step in
ASEHA is just one transition.

Reusability Automata defined in ASEHA are easily reusable; one just has to link
a state to an automaton or group of automata for hierarchical composition.

Hierarchy Due to the hierarchical nature of ASEHA, different levels of abstrac-
tion are provided by zoom in and zoom out mechanisms. This is based on
the tried and tested ideas of David Harel [11].

Permutation Handling As the number of entities increases, the number of possi-
ble message exchange sequences can increase exponentially. To be able to
represent exchanges concisely, we have variable support.

Verification ASEHA’s simple semantics results into almost straightforward gen-
eration of verification code while leaving room for clever optimizations.

Last but not least, ASEHA’s formalism can easily be extended by adding new
predicates (for triggers) or data-structures(for LOS function) and can be easily ad-
justed for use in other domains.

6 Case Study: WS-AT

We have successfully modelled and verified WS-AT. Its purpose is to ensure that a
transaction, done across several trusted WS providers, is atomic[8, 14].

We used our own XML-based language called ASEHAX to encode the ASEHA
for the WS-AT protocol. In the model, we have assumed unexpected messages
(messages arriving out of order or non-protocol messages) are discarded for sim-
plicity. The parser, written in the Java language for ASEHAX, reads the input and
automatically generates diagrams for each automaton using dotty[15]. The result-
ing diagrams have been shown earlier (Figures 2, 3, 4, 5), which have been slightly
modified for clarity.

We varied the number of participants from 1 to 4. During this process, we also
had to adjust the causal dependencies between the initiator and participant and the
triggers for entering the final states of WSAT automaton. The initiator can only
request transaction commitment, by sending the Commit message (i4 to i5), after
the desired participants have successfully registered with the coordinator. We had

7 CONCLUSIONS AND FUTURE WORK 22

to introduce more causal dependencies to allow participants, which registered for
volatile 2PC, to allow other participants to register for durable 2PC before sending
the Prepared message (p5 to p6). For more information, consult [8, 14].

Verification code in Promela was generated for each case and then input to
SPIN. Correctness was determined by observing that one of the states co, ab and
ex was entered (which represent the whether a transaction is committed, aborted,
or exited prematurely, respectively) and that all these states were reachable.

7 Conclusions and Future Work

In this paper we have presented ASEHA, the formalism for modelling WS proto-
cols, which integrates many desirable features while still having a simple syntax
and semantics. We modelled the essential components of protocols and described
how their correctness can be verified using Kripke structures.

This formalism has been used to model the WS-AT protocol and aid in its
formal specification thereby partially solving the interoperability problem.

In the next paper of this sequel, we will demonstrate the translation of ASEHA
to Promela and the verification process in details. Some work in progress include
protocol compatibility checking (i.e. making sure that implementations actually
correctly implement the protocols and that they can interact correctly) and graphi-
cal support for end-users.

Acknowledgments

National ICT Australia is funded through the Australian Government’s initiative,
in part through the Australian Research Council. We also thank David Langworthy
of Microsoft, Tim Bourke and Piyush Maheshwari of School of Computer Science
and Engineering, University of New South Wales, for their valuable comments and
feedback.

References
[1] R. Alur, S. Kannan, and M. Yannakakis. Communicating hierarchical state machines.

Lecture Notes in Computer Science, 1644:169–178, 1999.
[2] P. Bhaduri and S. Ramesh. Model checking of statechart models: Survey and re-

search directions. CoRR, cs.SE/0407038, 2004.
[3] T. Bienmuller, W. Damm, and H. Wittke. The statemate verification environment -

making it real. In CAV ’00: Proceedings of the 12th International Conference on
Computer Aided Verification, pages 561–567, London, UK, 2000. Springer-Verlag.

REFERENCES 23

[4] A. Ceponkus, S. Dalal, T. Fletcher, P. Furniss, A. Green, and
B. Pope. Business Transaction Protocol Specification. http://www.oasis-
open.org/committees/download.php, May 2004.

[5] W. Chan, R. Anderson, P. Beame, S. Burns, F. Modugno, D.Notkin, and J. Reese.
Model checking large software specifications, 1998.

[6] N. Chandra, S. Sonalkar, and N. Korade. Programming environment for communi-
cating reactive state machines. Technical Report, TR-02-11, Feb 2002.

[7] E. Clarke and W. Heinle. Modular translation of statecharts to smv, 2000.
[8] D. Langworthy (editor). Web Services Atomic Transaction Specifi-

cation. ftp://www6.software.ibm.com/software/developer/library/WS-
AtomicTransaction.pdf, Aug 2005.

[9] D. Langworthy (editor). Web Services Business Activity Framework.
ftp://www6.software.ibm.com/software/developer/library/WS-Coordination.pdf,
Aug 2005.

[10] J. Gray. The Transaction Concept: Virtues and Limitations. In IEEE Proceedings of
the Seventh International Conference on Very Large Data Bases, Sep 1981.

[11] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Com-
puter Programming, 8(3):231–274, Jun 1987.

[12] G. J. Holzmann. The model checker spin. IEEE Trans. Softw. Eng., 23(5):279–295,
1997.

[13] J. E. Johnson. Formal Specification of a Web Services Protocol. First Int’l Workshop
of Web Services and Formal Methods (WS-FM), 2004.

[14] J. E. Johnson, D. Langworthy, L. Lamport, and F. Vogt. Spec-
ification of the Web Services Atomic Transaction Protocol.
http://research.microsoft.com/users/lamport/tla/ws-at.html, 2004.

[15] E. Koutsofios and S. C. North. Editing graphs with dotty.
http://www.graphviz.org/Documentation/dottyguide.pdf.

[16] D. Latella, I. Majzik, and M. Massink. Automatic verification of a behavioural subset
of uml statechart diagrams using the spin model-checker. The International Journal
of Formal Methods, 11(6):637–664, 1999.

[17] J. Lilius and I. P. Paltor. vUML: A Tool for Verifying UML Models. In ASE ’99:
Proceedings of the 14th IEEE International Conference on Automated Software En-
gineering, page 255, Washington, DC, USA, 1999. IEEE Computer Society.

[18] K. L. McMillan. Symbolic model checking: an approach to the state explosion prob-
lem. PhD thesis, Pittsburgh, PA, USA, 1992.

[19] E. Mikk, Y. Lakhnech, and M. Siegel. Hierarchical Automata as Model for State-
charts. In Proceedings of Asian Computing Science Conference (ASIAN ’97), vol-
ume 1345, pages 181–196. Lecture Notes in Computer Science, Springer Verlag,
Dec 1997.

[20] E. Mikk, Y. Lakhnech, M. Siegel, and G. J. Holzmann. Implementing statecharts in
promela/spin, 1997.

[21] P. Ramsokul and A. Sowmya. ASEHA: A Web Services Protocol Modelling For-
malism. Technical Report, UNSW–CSE–TR–0521, Nov 2005.

[22] M. von der Beek. A comparison of statechart variants. In Formal Techniques in
Real-Time and Fault-Tolerant Systems, volume 863, pages 128–148. Lecture Notes
in Computer Science, Springer Verlag, 1994.

REFERENCES 24

[23] R. Walters. Automating checking of models built using a graphically based formal
modelling language. In Proceedings of The Twenty-Seventh Annual International
Computer Software and Applications Conference, pages 98–104, Dallas, Texas,
2003.

REFERENCES 25

({w0, p0, i0, c0},
{},

{w0, p0, i0, c0},
{(p, (C, {})), (v, (C, {})), (d, (C, {}))})

({w0, p0, i1, c1},
{},

{w0, p0, i0, i1, c0, c1},
{(p, (C, {})), (v, (C, {})), (d, (C, {}))})

({w0, p0, i1, c0},
{(I, (CCC, NULL), C)},

{w0, p0, i0, i1, c0},
{(p, (C, {})), (v, (C, {})), (d, (C, {}))})

({w0, p0, i1, c2, r0},
{(C, (CCCR, NULL), I)},

{w0, p0, i0, i1, c0, c1, c2, r0},
{(p, (C, {})), (v, (C, {})), (d, (C, {}))})

({w0, p0, i2, c2, r0},
{},

{w0, p0, i0, i1, i2, c0, c1, c2, r0},
{(p, (C, {})), (v, (C, {})), (d, (C, {}))})

({w0, p0, i9, c2, r0},
{(I, (ContextRefused, NULL), C)},

{w0, p0, i0, i1, i2, i9, c0, c1, c2, r0},
{(p, (C, {})), (v, (C, {})), (d, (C, {}))})

({w0, p0, i3, c2, r0},
{(I, (Register, completion), C)},

{w0, p0, i0, i1, i2, i3, c0, c1, c2, r0},
{(p, (C, {})), (v, (C, {})), (d, (C, {}))})

Figure 7: First few states of the resulting Kripke structure

