A Competitive Learning Algorithm for Checking Sensor Data
Integrity in Unknown Environments

Tatiana Bokareva* Nirupama Bulusu
tbokareva@cse.unsw.edu.au nbulusu@cs.pdx.edu
The University of NSW Portland State University
Sanjay Jha
sjha@cse.unsw.edu.au
The University of NSW

Technical Report: UNSW-CSE-TR-0516
October 18, 2005

*Part of this work was done while Tatiana Bokareva was visitiTg Portlan State University.



Abstract

Ad-Hoc wireless sensor networks derive much of their promise from their potential for autonomously
monitoring remote or physically inaccessible locations. As we begin to deploy sensor networks in real world
applications [17], ensuring the integrity of sensor data is of paramount importance.

In this paper, we motivate, propose, evaluate and analyze an online algorithm for modeling and validating
sensor data in an unknown physical environment. Previous work on checking sensor data integrity developed
within the context of process control systems uses a priori characterization of sensor data. In contrast, our
approach leverages the concept of competitive learning for online characterization of a dynamic, unknown
environment and the derivation of conditions for verifying sensor data integrity over time. Moreover, to scale
to very large sensor networks, our algorithm leverages in-network processing a hierarchical, tiered sensor
network by executing on the distributed cluster heads, rather than at a central base station.

We prove the convergence properties of our algorithm through theoretical analysis. Furthermore, we
implement our algorithm on a real physical sensor network of motes and Stargates, and demonstrate that our
algorithm successfully learns real-world environmental data characteristics and filters anomalous data in a
sensor network.



1 Introduction

For widespread adoption of sensor technology, robust and high-integrity operation of the sensor network is of
paramount importance. In previous work, we have made the case for a self-healing sensor network architecture
called SASHA[2], that is inspired by the natural immune system. The goal of SASHA is to eventually provide
automatic fault recognition and response over a wide variety of faults, and evolve its monitoring and inference
capabilities with time.

A fundamental challenge in ensuring high-integrity operation of the sensor network as envisioned by
SASHA is ensuring the sensor data integrity. This paper proposes an online algorithm for mapping an en-
vironment and detecting anomalies in the data gathered using a sensor network. This is important functionality
for a sensor network because sensor data are prone to numerous faults, such as bio-fouling (e.g., leaves falling
on sensors), adverse ambient (e.g., snow covering sensors), failures due to adverse ambient (e.g., heat,) sensor
displacement due to the environment (e.g., due to wind), battery failures in event-oriented systems, and rarer
failures due to transducer calibration.

There has been much work in calibrating and detecting individual sensor faults in industrial process control
systems, such as [11], [18]. However, with the exception of [12], the problem of verifying the correctness of
sensor data in the presence of faults and disruption of the sensing channel, which we refer to as data integrity
verification in a sensor network has been largely unexplored.

This is a difficult problem due to several reasons. First, sensor networks are often ad hoc deployed in
unknown environments with limited knowledge of the phenomena being observed. In this environment, dis-
tinguishing normal and anomalous behavior of sensor readings is difficult because of a lack of knowledge
of normal data behavior. Second, individual sensor devices have very limited computational capacity which
bounds the amount of computation that can be performed on these devices. The approach for checking sensor
data integrity must scale to large networks, minimize the energy overhead required to communicate sensor data,
and adapt to system and environmental dynamics, such as node failures and the natural changing environment.
To address the first problem, we propose to leverage competitive learning neural networks (CLNN) for verify-
ing sensor data integrity. To address the second problem, we leverage in-network processing in a hierarchical
sensor network, where the data integrity verification is performed at cluster-heads or micro-servers (also known
as monitoring nodes in SASHA) as shown in Figure 1, rather than a centralized base station.

We formulate the data integrity verification problem as follows:

Given a set of input sensor data X, CLNN must

e Learn the characteristics and frequency distribution of the environmental data.
e Deduce what input data are correct, and what may be anomalous based on the learned environment
model.

Note that our objective is not to map the spatio-temporal characteristics of the environmental phenomenon,
only to determine the operational range of sensor values.

CLNN uses an unsupervised learning procedure, which we define formally in Section 3, to group the input
data into clusters. The strength of this approach is that it does not require us to collect a priori training data for
the sensor network, making it suitable for large scale, remotely deployed sensor networks. Furthermore, the
frequency and length of the training period can be adjusted based on robustness or performance requirements of
the application. Finally, clustering techniques can reduce the amount of information need to be transmitted over
the radio which has been identified as a major source of the energy consumption. However, the reduction in the
information space comes at the price of the higher pregrocessing of data. Another drawback of this approach



is that it may require a large amount of training time depending on the characteristics of the phenomena being
observed. Also, if more than 50% of the nodes are faulty, we may not be able to deduce the correct sensor
readings with a high degree of confidence.

1.1 Paper Contributions

This paper motivates and proposes a novel framework for data integrity verification. We leverage and motivate
the use of data clustering as a building block for sensor data integrity verification, assigning an additional
probability to each cluster. This approach filters the high confidence data from the low-confidence data, while
preserving the fine-grained features within the data.

We have evaluated our approach on a physical sensor readings and empirically measured its accuracy and
performance on a continuous sampling application. Our evaluation demonstrates that CLNN is computationally
efficient and identifies the correct sensor readings even in the presence of environmental dynamics (such as a
changing phenomenon) and system dynamics (such as faulty sensor nodes).

In the rest of this paper, we review related work in Section 2, we describe and formally define CLNN in
Section 3. In Section 4, we provide a mathematical background of competitive learning and its complexity
analysis. In Section 5, we describe the experimental evaluation of CLNN. Finally, we conclude in Section 6.

2 Related Work

Once deployed in the physical world, sensors are prone to numerous faults which corrupt sensor data. This
motivates techniques for automatic sensor fault detection and calibration, which can identify these faults and
correct them early.

The noise level of a physical sensor device is typically determined in the factory through calibration. How-
ever, even factory-calibrated sensors are prone to numerous faults which corrupt sensor data. For example,
sensors deployed in the Columbia River Estuary gather information on physical dynamics and changes in es-
tuary habitat [3]. Salinity sensors are particularly susceptible to bio-fouling, which gradually degrades sensor
response and corrupts critical data. The authors propose a framework for detecting degradation that grows with
time, based on the standard sequential likelihood method from classical pattern recognition. The limitation of
the proposed approach in [3] is that it is applicable to a single sensor system and the training of sensors happens
offline.

One of the the most interesting methodology for sensor fault-tolerance was developed by Marzullo [11].
This methodology was originally proposed for process control systems, but it can be applied broadly to wireless
sensor networks. This work uses the notion of abstract sensor, which is a piecewise continuous function from
a physical state variable to a dense interval of real numbers. An abstract sensor is correct if it is not too
inaccurate, it always includes the value of the physical variable. How do we construct an abstract sensor that is
tolerant of failures? The solution lies in replication. Suppose we are given n independent abstract sensors and
an assumption that no more than f sensors can fail. Marzullo intuit that intervals containing the correct value
must intersect, any point not contained in at least (n — f) intervals must not be correct.

Marzullo’s work shows that local sensing can be bound through sensor replication, even in the presence
of sensor failures. However, his methodology does not give an indication of the confidence level of the fault-
tolerant abstract sensor and it is largely centralized approach. It may also require a large amount of storage
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for sensor readings and a large amount of computational power as the number of sensors and the amount of
collected data becomes large.

Krishnamachari and Iyengar [12] proposed a solution to the recognition of faulty sensor readings and intro-
duced self-organization algorithms which combine a shortest-path routing and the construction of a spanning
tree as a clustering mechanism for nodes in a feature region.

To minimize the amount of forwarding data several aggregation options were presented and the total cost
of each scheme in terms of the total number of transmitted bits were studied.

One important aspect in the feature recognition is the understanding of what represents a feature. In this
work, the authors assumed that a simple threshold value is sufficient to determine the presence of an event.
In other words a large value is considered to be an unusual reading, where the low value is assumed to be a
normal sensor reading. The value of the threshold can be specified by a query or directly preloaded into nodes
before deployment. The problem is reduced to the mapping of a sensor reading to a binary value S;. 5;=0 if a
sensor measures an usual value and S;=1 if a sensor indicates an unusual reading. One of the examples given
for the use of this algorithm is the monitoring of a chemical concentration, where a region of an unusually high
concentration is of interest. It is also argued that the modularity in sensor readings can be introduced by the
lowest/highest chemical concentration region.

Although it is a reasonable assumption for some sensor network applications, nevertheless it is not suitable
for most of them. In many sensor network applications, events cannot be modeled by a simple threshold value.
In contrast, our approach dynamically tries to learn what the operational range of the data is.

There is also a large body of related work that ensure data integrity from the security perspective in wireless
sensor networks, such as “SIA:Secure Iformation Aggregation”[19], or to ensure the data is correctly aggre-
gated, without counting duplicates, such as Synopsis Diffusion [16]. Their focus is in ensuring the integrity of
the data collection process, rather than the data itself.

Our proposal could be extended to work over aggregated sensor data rather the raw sensor readings, however
this is not the focus of our design and evaluation. Rather, our research is motivated by a question likely to be
increasingly important as we begin to deploy sensor networks — Can a sensor network learn what the properties
of its measured environmental sensor data are, and use this to check what input data is likely to be correct and
what is anomalous? In the next two sections, we describe our approach toward addressing this question, and
its evaluation.

3 Approach

Sensor networks are expected to be ad hoc deployed to study an unknown physical phenomenon, sometimes
in remote or hostile environments. In this case, verification of the quality of collected sensor data becomes a
challenging problem. This motivates autonomous verification of collected data without human intervention.
Moreover, the environment may be dynamic and vary with time. Therefore, our primary design goal was to
come up with a solution that did not require a priori characterization of the sensor data.

Network Model: In recent years, the research community has recognized the need for a hierarchical organi-
zation of the sensor network [9]. As it was mentioned earlier and very well documented, the currently available
sensors such as the mica mote family [10] have very limited computational capacity. Moreover, studies show
that the energy expended for performing a computational task on these processors is surprisingly much greater
than a PDA sized device[14]. Therefore, they are reserved for simple data collection and most of the demand-
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= Base Station

Stargate

Figure 1: An example of a hybrid sensor network.

ing computational tasks are shifted to devices such as Stargate or Infrinsys Cube. Figure 1 shows the generic
architecture of a hybrid sensor network where each node communicates its sensor data to a closest cluster head.
The cluster head classifies the input data and performs most of the signal processing before forwarding the data
to a base station.
In the rest of this section, we describe our approach for verifying sensor data integrity. The algorithm can
be broken into two phases.
e Phase 1: Learning
In first phase it will learn physical attributes of a measured real world phenomenon. We acquire such
knowledge by means of the Competitive Learning Neural Network (CLNN) [13], which divides the input
data into clusters.
e Phase 2: Deduction
In the second phase, based on the acquired knowledge the algorithm will filter out noisy or faulty sensor
readings. We filter out noisy measurements by assigns the level of confidence to each data cluster.

3.1 Competitive Learning Neural Network (CLNN)

Multi-Layer Feed-Forward Neural Networks (FFNN) have been traditionally used to identify faulty sensor
readings in process control systems [18], [S] and [6]. And it was shown that neural networks in general are good
candidates for such tasks, especially when the sensor data contains a large amount of noise. However, Multi-
Layer Feed-Forward Neural Networks with Back Propagation requires a set of input vectors X = [z, ..z,| and
a set of corresponding output vectors O = o1, ..0,] for its training.

The major limitation of such an approach is that the corresponding output set O may not be available,
unless some a priori measurements of exactly the same environment were taken. This raises the question —
to what degree can we trust a priori measurements? Real world phenomenon are rarely stable which makes
the training of FFNNs a challenging proposition for w6ireless sensor networks. We require what is known as



Figure 2: Architecture of the Competitive Learning Neural Network (CLNN). The shaded color indicates the
winning neuron.

an unsupervised learning procedure, where we let the neural network deduce the appropriate behavior of a
measured phenomenon online, rather than using a priori measurements.

Instead of mapping a set of inputs to the corresponding set of output vectors, CLNN tries to find the rele-
vant information within a set of input vectors X by dividing its elements into clusters, where similar elements
are grouped into one cluster. If the phenomenon can be categorized by several distinct features then separate
clusters will learn these features. Figure 2 shows the architecture of the CLNN used in this study. There are 8
output units [0y, ..., 07] connected to all 8 input units [z, ..., 7] by means of the weight matrix . The rationale
for using 8 units is due to the hardware/software characteristics of the embedded device and it will be explained
in Section 5.

Woo --- Wro

W =

wo,7 ... Wr 7t

)

At atime ¢ an input vector z(t) is presented to CLNN and only one output unit o; will be selected as the winner
for this input. The winner unit is chosen based on the smallest Euclidean distance between a row vector of
weighted matrix W and an input vector x(t)

0 3| wo(t) = x(t) [[<| wilt) — 2(t) ||, Vi (D

where w,(t) is a vector of weights that is attached to the winning neuron o;, z(t) is a input vector of sensors
readings at a time ¢ and w;(¢) is a weighted vector attached to losing neurons. Note that z(t), w,(t) and w;(¢)
are all vectors of equal dimensions. Once a winner is selected, the corresponding vector of weights w,(t) is
shifted toward the input vector x(t).

Wo(t + 1) = w,(t) A? A X (z(t) — wy(t)) (2)



where ) is a constant learning rate and w,(¢+1) is an updated weight vector of a winning neuron o;. As a result,
vector w,(t+ 1) is shifted closer to the input vector z(¢). Therefore, when a similar input vector is presented to
CLNN, the same winning neuron o; will have a greater chance to win the competition. In the absence of noisy
data, it is easy to see that the same neuron may win all the time and the rest of the weights will never learn the
phenomenon. To avoid such a problem, we apply a simple rule known as leaky learning. The weights of losing
neurons are updated in a similar manner to the winning one.

wi(t +1) = wi(t) + X x (x(t) — w;i(t)),Vi # o (3)

where A" << ). In this manner, even the losing clusters have a chance to learn and capture more fine
grained variations in a phenomenon.

The output of a winning unit o; is set to a vector [min, mazx|, where min and mazx are the lowest and highest
value of sensor readings seen by the winning cluster during the training period. Lets assume that during the
training period unit o; won the competition for the set of vectors S = [z1, ..., Z,], each element in this set is a
vector in a eight dimensional space, then we can define [ to be the smallest and / to be be the highest sensor
reading contained in S.

i 0 otherwise

{ [ A] | wo(t) — (2) [I<[] wi(t) = =(2) || Vi

We also calculate the probability of every winning cluster to win the competition in a future as follows:

n;

P(o;,)) = — 4
(0) = 5 @
where n; is the number of times cluster o; won the competition out of N times. Note that
Z P(o;)) =1 (5)
i=0

Therefore, at the end of a training period, each cluster will learn some aspects of a measured phenomena which
are defined by the learned intervals and the probability of their future occurrences. Lets assume that every
neuron won a competition at least once, then the output of the CLNN at the end of the training period is a
collection of learned intervals and the probabilities of sensor reading to fall within these intervals:

00 = [lo, ho] P(0p)

01 = [ll, hl] P(Ol)
e 2
CLNN 04 = [l4, h4] P(O4)
05 = [ls, hs] P(0s)
06 = [ls, he] P(06)
o7 = [lz, hs]  P(o7)



4 Analysis

In this section, we present theoretical analysis of the proposed algorithm. As described in the previous section,
learning part of what constitutes the correct sensor readings is achieved by means of the Competitive Learning
Neural Network. References [8, 4, 15, 13] and [7] provide a good introduction to competitive learning. The ac-
tual process of learning in neural networks is usually associated with a search in multidimensional error-surface
for an optimal state that minimizes the error function. It was shown that the corresponding error function for the
learning rule in equation (2) corresponds to minimizing the error function E(w,(t)) by following its negative
gradient [13]:

E(w,

[\DI»—A

< lt) = ) ©

where z;() is an input vector at a particular instance of time ¢, w, () is a weight vector of equal dimensions and
n is a number of training examples for which o; was a winner. The analysis of this learning rule can be divided
onto two parts. Firstly it can be shown that the E(w,(t)) indeed seeks to find a minimum for the equation (2)
[13]. Secondly it can be demonstrated that under certain assumptions F(w,(t)) converges to the equilibrium
state which is proportional to the conditional probability of a neuron o; winning when the input vector z(t) is
present [4, 7, 1].

Theorem 1 The error function:

1 =
Bwo(t) = 5 x 3 ll(wot) — () ™)
minimizes the weight updates of a learning rule
Wo(t + 1) = wo(t) + A X (x(t) — w,(t)) (8)

where w,(t) is the weight vector at the time t, w,(t + 1) is an updated weight vector, x(t) is the current input
vector of sensor readings and ) is a learning rate.

Proof 1 In order to achieve the equilibrium state we need to move weighted vector w,(t) from its current
position toward the gradient decent direction of E(w,(t)), such that:

L 0B(wl()
Aw = —)\ X aT(t)
and
wo(t + 1) = w,(t) + Aw
OE(w,) O(w,(t) — x(t))
awo(t) - (wo(t) - $(t)) 6wo(t)
where

O(uwa(t) — o(t) _
0w, (t)
9




[ Ow, (t) Y 0w, (1) ]
[1,...,1]
and hence, OB (w,)
do, (to) = w,(t) — z(t)
and
Aw = =X X (wo(t) — z(t)) = X x (z(t) — w,(t))
therefor

Wo(t + 1) = wo(t) + Aw = we(t) + A X (z(t) — wo(t))

which is equivalent to equation (8).

The learning rule in equation (8) brings winning neuron’s weight vector closer to the training example z(t).

Now lets consider the normalized learning rule[7, 1] by setting

Dw = nx (22 milDk )

n
=1 kl

Let o; be the winning neuron when vector z(t) is present and

b — 1 if the o; is the winner for z(t)
] 0 otherwise

Let P(z;(t)) be the probability that z;(¢) is presented and P(0;) be the probability of 0; winning the competition

for this input vector. Then the equilibrium state i for the cluster o; can be expressed as:

=n

= 21 AwP(x;(t))P(o;)
hence .
=AML — w,(t)) P(@i(t)) Po;) =
AYET %P(ﬂﬁi(t))P(Oi) — AZZT wo(t) P(z4(t)) P(0:)
where

z(t) _ XL, zi(b)ks

k i=1 ki
At the equilibrium state ¢ = 0 and if all clusters contain the same number of vectors then

w,(t) = it fUi(t)P(ﬁi(t))P(oi)
’ kS S0P (@:(1) P(0:)

9)

(10)

(1)

(12)



Graphically, w,(t) at the equilibrium state corresponds to the center of the cluster o;.

Earlier we mentioned that the competitive learning converges under certain assumptions. One such assump-
tion is that the input sensor readings can be grouped into disjoint clusters. If this assumption does not hold,
the system may have many of such equilibrium states, some of which may be more stable than others. In our
study such variation occurs when there is a large amount of noise present in sensor readings or there is a high
variability in the phenomenon’s behaviors.

Finally, we present the complexity analysis of the learning phase. Note that the computational complexity
is very much implementation dependent and in this section we present the analysis of a simple implementation.

Algorithm 1 the implementation of simple competitive learning algorithm for a single input vector z(t).
1. For the input vector x(t) calculate the Euclidean distance from all the weights vector to z(t): O(n?)
2. For the winning neuron o; update I, h and P(o0;) : O(n)
3. Do While ((number of epochs > 0) or (the distance between z(t) and w,(¢) > the minimum error
tolerance))
e update weights of a winning unit: O(n)
e calculate the new distance between w, and z(t): O(n)
e update weights of losing neurons: O(n)
4. Update the final P(o0;): O(n)

Algorithm 1 shows the implementation of simple competitive learning for a single input vector of sensor read-
ings. Lets assume that we train the CLNN on N number of input vectors, each vector of size n, then the
complexity C'm of CLNN is defined as follows:

Cm =
O(N) * (O(n?) + O(n) + 3 * epochs x O(n) + O(n)) =
O(N) * (O(n?) + (2 + 3 x epochs) * O(n))

Because the input vector size n is a constant parameter (for example, 8 in our implementation), the complexity
of the algorithm is effectively O (V)

S Experimental Results

In this section, we describe the evaluation of the proposed algorithm on a physical sensor readings and the
experimental results obtained. We also explain some of the choices made for the implementation of CLNN.
The objective of our evaluation were three-fold:
e [s the algorithm effective? Can it learn the data characteristics in the presence of noise and natural
changes in the phenomena?
e How much noise in sensor readings can be present or how frequently the phenomenon can vary before
the algorithm losses its ability to deduce the correct sensor readings?
o s the algorithm efficient? How much time should we train it to correctly infer sensor data?
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Figure 3: The physical network topology of the motes. Motes are laid out in an 8 feet by 10 feet area. Each
mote measures its light sensor reading every minute and sends it to the gateway device.

5.1 Implementation

For the evaluation of the proposed algorithm we set up a sensor network of 30 micaZ motes in a grid topology,
as shown in Figure 3.

Each mote collects eight samples of light sensor readings per minute and sends these samples to a clustering
node. We choose light as the sensing modality for our experiments because it is easy to introduce temporal and
permanent noise into sensors readings by casting a shadow over a sensor or by covering its light sensor with a
paper cup, as shown in Figure 4. Moreover, it is relatively straightforward to control the light intensity, in an
indoor setting, allowing for repeatable experiments.

We limit the number of data samples to 8 because TinyOS packet size does not support more than 29 bytes
of data payload, each reading occupies 2 bytes and we reserved 4 bytes for nodes Cartesian coordinates. This
is also why the number of input and output units of CLNN was set to eight. During the training period CLNN
was trained on every received packet.

There are several important parameters that affect CLNN performance. First of all, one of the main problem
of convergence to a locally optimal solution that is associated with the neural networks is related to initialization
of its initial weight values. In this study we divided the entire spectrum of possible sensor readings into 8 zones
and each vector of weights was initialized to values from a particular zone.

For example, the light sensor can not return a negative value or a value above 1000 engineering units. Note,
that this is not strictly true for all cases. If nodes are completely faulty, then they may try to return these values,
but such readings can easily be checked and eliminated by introducing guard conditions. Weights of the neuron
op were initialized to 0.0, weights for the output neuron 0, were initialized to 125, weights of 0, were initialized
to 250 engineering units, etc and so on. This permits our CLNN to learn an entire spectrum of possible sensors
readings.

Secondly, there are two related parameters that affect the rate of CLNN learning. Namely, number of epochs
that we train CLNN for each input vector z(¢) and the amount of time we allocate for the training period. With
a longer training period, more input vectors in a CLNN1 \2>vill be learned, and larger number of clusters will learn



Figure 4: To simulate faulty sensors, motes are covered with cups to affect their direct observation of light.

these input vectors. With a larger number of iterations over the same input sample and smaller training period,
clusters will learn more about each input vector but the CLNN will learn over a lower number of samples.

The trade off between these choices is largely dependent on the measured characteristics of the phe-
nomenon. If we expect our environment to have a lot of noisy data then the training period should be longer.
This will allow CLNN to capture more of the non-noisy data and therefore it would predict the correct sensor
readings with a higher level of confidence. Subsection 5.2 contains the evaluation of the number of training
epochs in the stable environment.

We run our algorithm on three different types of phenomenon’s behavior. Firstly, we kept the light level in
our office on during the training period and introduced faulty nodes by covering them with a white paper cup.
Subsection 5.3 contains the results from this experiment.

Secondly, we introduced dynamics into phenomenon’s behavior by casting a time varying shadow over
sensors and by switching the light off for an approximately half of the training period. Subsections 5.4 and 5.5
contain the results of these experiments.

5.2 Varying the Training Period and Epoch Frequency

This subsection presents the results for evaluation of the trade off between the number of epochs and the
duration of the training period. Figure 5 shows the convergence of weight vectors with 10 epochs and the
training period was set to two hours. As can be seen from this figure even the furthest weights vector w learned
the phenomenon in over an hour. Figure 6 shows the distribution of light reading across nodes. Remarkably, at
approximately 15:20, a node at the position (0, 10) sent a noisy data and as can be seen from Figure 5 CLNN
immediately learns these noisy values. Nevertheless, the level of light in a computer lab is a reasonably stable
environment. Therefore, we do not need all output units to learn the input vectors and hence, we do not need
such large training period.

To study the impact of number of epochs on the learning rate of CLNN, we kept the training period constant
at 5 minutes and we vary the number of interactions for each input vector. Figures 7 shows the learning rates
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Figure 5: The convergence of weights using a 2 hour training period, with 10 epochs. Nearly all the weights
converge within a 2 hour period. The non-converging weight at the right corner indicates a random source of
noise.
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Figure 6: The readings of the sensors after 2 hours. No sensor reading is shown at location (6,8) because the
battery of that mote failed during the experiment.
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of weights for 10, 150, 500 and 1000 epochs respectively. As expected the fastest learning rate occurred at
the 1000 epochs. However, surprisingly the rate of learning did not increase proportionally to the number of
epochs. We can see that the weights learned the characteristics of a phenomenon twice as fast if the number of
epochs is increased from 10 to 150. But when the number of epochs is increased from 150 to 1000 we did not
observe any such significant increase in the learning rate. This suggests that a trade off can be made between
the computational capacity of the available hardware and the number of iterations for each input vector.

5.3 Varying the Number of Faulty Nodes

This subsection studies the number of faulty nodes that can be present during the training period before the
algorithm losses its ability to distinguish between the correct and faulty readings. As can be deduced from
Figure 5, the normal light readings in our lab should lie between approximately 850 and 950 engineering units.

Figure 5.3 and 5.3 shows the actual sensor values learned by different clusters and the level of confidence
in the correctness of these data values. As can be seen, cluster number 7 and cluster number 6 learned the
correct characteristics of a phenomenon in most cases. The rest of the clusters either never won a competition
or captured the noise in the environment. As expected, the confidence level in the correct data decreases as
the number of faulty nodes increases and in order to deduce the correct readings, a confidence level should be
> 0.5. As can be seen from Figure 5.3, the algorithm correctly learned and predicted sensor readings when up
to 60% of nodes were faulty. However, with 60% of nodes being faulty, the confidence level for the correct data
was lower than 0.5. Hence, in the presence of the constant noise the algorithm can deduce the correct readings
when up to 50% of nodes are working correctly. Another interesting aspect of learning is the distribution of
data values and the trajectory of the weights for each cluster during the learning period. Figures 10 and 11
show the trajectory of average weight values for each cluster for the scenarios with the percentage of faulty
nodes varying form 0% to 100%. The crosses in the graphs represent the average of vectors containing the
sensor readings and the small dots represent the average of weights matrices. As can be seen form Figure 10
when there is no faulty node present in the environment, data falls within a single cluster and all the weights
are moving toward this data cluster. The top two clusters (weight 6 and 7) are following the non-noisy data.
As the number of faulty nodes increases, we can see the emergence of new data clusters. When only a single
faulty node is present, an additional data cluster is formed at about 600 engineering units and there are 4
different clusters that learned the noise. However, their probability of winning is much lower than that of the
cluster 7. As more faulty nodes are introduced we can see that more and more of the data values are falling into
clusters that are lying approximately between 590 and 720 engineering units. As more of the data is getting
shifted away form the top clusters, the probability of winning of the correct clusters is reduced. However, as
there are multiple clusters that learn the noisy readings, the probability of winning for these clusters is less than
0.5. Even when all the nodes are faulty, the probability of winning for the cluster 5 which learned most of the
noisy readings is below 0.4.
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Figure 7: Convergence of weights with 10, 150, 500 and 1000 epochs, after a 5 minute training period. Only
the closest winning weight converges to the correct sensor readings after 10 epochs. However, two closest
winning weights, converged after 100 epochs. No significant difference is noticed in the convergence of the
weights to the correct sensor readings between 150, 500 and 1000 epochs. This indicates that 150 epochs may
be more than sufficient for the algorithm.
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Figure 8: The range of learned values to be contained in a cluster as a function of the number of faulty nodes
after the training period.
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Figure 9: The range of learned values to be contained in a cluster as a function of the number of faulty nodes
after the training period.
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Figure 10: The trajectory of weights for the scenarios with the number of faulty nodes varying from 0%, to
60% of faulty nodes.
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Figure 11: The trajectory of weights for the scenarios with the number of faulty nodes varying from 80%, to
100% of faulty nodes.
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Figure 12: Distributed of learned data values in clusters for the four experiments with a moving shadow.

5.4 Dynamics: Time Varying Shadows

This experiment studies whether our algorithm is robust and can adapt to dynamics of the environment and in
the presence of a temporal noise in the sensor readings. Next, we study the performance of the algorithm on the
scenario of a moving shadow. A person slowly moves from the position (2, 10) to the position (2, 0) carrying a
large box for the duration of the training period, taking a 2-meter step per minute (Figure 6). We repeated the
experiment four times. Figures 5.4 and 5.4 show the learned values and the corresponding levels of confidence
for all four experiments. It shows that the algorithm identifies the correct sensors readings (cluster 7), with a
high level of confidence (> 0.7%). We consider the correct sensor readings to be the constant level of light in
the office and noise to be the temporal shadow readings.

Figure 14 contains the distribution of sensor readings and the trajectory of weights during the training period
for all four experiments. As in previous experiment most of the average sensor readings falls in the interval
learned by the cluster 7 and rest of the neurons either never won the competition or learned the temporal shadow
readings.
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Figure 13: The confidence level associated with each cluster after the training period for the four experiments
with a moving shadow.
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Figure 14: Trajectory of weights and the sensor readings for the four experiments with the moving shadow
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Figure 15: Distribution of learned data values in clusters for a phenomenon with distinct features.

5.5 Dynamics: Light and Dark

This experiment studies whether the algorithm can adapt to dynamics of the phenomenon where we have multi-
ple distinct, and time-varying features of a phenomenon. We kept the lights on in our lab for the approximately
half of the training period. We then turned the light off for the remaining time of the training period. Figures
5.5 and 5.5 show the learned values and the corresponding levels of confidence. It shows that the algorithm
identifies the correct bright light sensors readings (cluster 7), with a level of confidence of approximately 0.5.
Cluster 1, contained dark light readings and it has a confidence levels of approximately 0.4. Clusters 2, 3, 4,
and 5 capture the transitional characteristics of the phenomenon.

We intended for our phenomenon to have 2 equally distinct characteristics. However, it is not possible to
switch light at precisely half way through the experiment, as there are always few seconds of a human error.
As you can see from Figure 5.5 there was a transitional period of approximately 30 seconds for the lights level
to go down to approximately 400 engineering units. The duration of the dark training period therefore was
slightly shorter than that of the light period. This is why the confidence levels of the dark feature are slightly
lower than one for the bright ones. Table 1 summarizes the results obtained for the degree of accuracy on
predicted values.

6 Conclusion

In this paper, we motivated and demonstrated the use of a competitive learning algorithm that successfully
learns the environmental data characteristics and uses it to filter anomalous data in a sensor network, without
requiring a priori knowledge of the environment.

Our experiments show the relationship between the noise in the sensor data, and the ability of the network
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Figure 17: Trajectory of the weights and sensor readings for the Light and Dark experiment
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Table 1: Summary of Results

Studied Correct readings | Learned Clusters that learned correct
Scenarios of a phenomenon | readings readings with the confidence levels
Varying the number of Cluster 7 (850-950) | Cluster 7, highest confidence 80%.
faulty nodes 850-950 Cluster 6 (850-950) | Clusters can learned these values
when up to 60% of nodes are faulty.

Dynamics: Time Varying Shadows | 850-950 Cluster 7 (850-950) | Cluster 7, highest confidence 99%.
Dynamics: Light and Dark 850-950 Cluster 7 (850-950) | Cluster 7, confidence 50%.

400-500 Cluster 1 (450) Cluster 1, confidence 40%.

to learn its environment and detect them. For a periodic light data collection application, the algorithm can be
trained with a small number of epochs and a small training period.

The algorithm is robust under sensor noise, it identifies the correct sensor data, even with 50% faulty sensor
nodes. As the number of faulty nodes increases, the level of confidence in data gradually decreases.

Finally, the algorithm works correctly even in the presence of event dynamics. When a small, moving
shadow is introduced in the environment, the algorithm still infers the bright light sensor readings with a
high degree of confidence, while preserving the finer-grained data corresponding to the presence of a shadow.
Because the algorithm leverages in-network processing and executes at the cluster heads of a hierarchical sensor
network instead of a central base station, it can scale to potentially very large sensor networks.

For future work, we are interested in exploring further performance optimizations in the algorithm. Also,
we would like to evaluate it over a wider range of sensing applications, including those featuring multiple
sensing modalities.
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