

Toward a Framework for Capturing and Using Architecture Design Knowledge

Muhammad Ali Babar, Ian Gorton, and Ross Jeffery
School of Computer Science & Engineering, University of New South Wales, Australia and

National ICT Australia Ltd.
{malibaba, iango, rossj}@cse.unsw.edu.au

UNSW-CSE-TR- 0513

June 2005

Abstract

Management of architecture knowledge is vital for improving an organization’s architectural
capabilities. Despite the recognition of the importance of capturing and reusing architecture
knowledge, there is no suitable support mechanism. We propose a conceptual framework for
providing appropriate guidance and tool support for making tacit or informally described
architecture knowledge explicit. This framework identifies different approaches to capturing
implicit architecture knowledge. We discuss different usages of the captured knowledge to
improve the effectiveness of architecting process. The report also presents a brief description
of a prototype of a web-based architecture knowledge management tool to support the
storage and retrieval of the captured knowledge. The report concludes with open issues that
we plan to address in order to successfully transfer this support mechanism for capturing and
using architecture knowledge to the industry.

1. Introduction

Software Architecture (SA) design and evaluation involves complex and knowledge
intensive tasks [36, 42]. The complexity lies in the fact that tradeoffs need to be made to
satisfy current and future requirements of a potentially large set of stakeholders, who may
have competing vested interests in architectural decisions[2, 20]. The knowledge required to
make suitable architectural choices is broad, complex, and evolving, and can be beyond the
capabilities of any single architect.
Due to the recognition of the importance and far reaching influence of the architectural
decisions, several approaches (such as Architecture Tradeoff Analysis Method (ATAM)
[15], 4+1 views [29], Rationale Unified Process (RUP) [28] and architecture-based
development [10]) have been developed to support architecting process. While these
approaches help manage complexity by using systematic approaches to reason about various
design decisions, they provide very little guidance or support to capture and maintain the
details on which design decisions are based, along with explanations of the use of certain
types of design constructs (such as patterns, styles, tactics and others). Such information
represents architecturally significant knowledge, which can be valuable throughout the
software development lifecycle [12, 18].
Lack of a systematic approach to capture and use architecture knowledge may preclude
organizations from growing their architecting capability and reusing architectural assets.
Moreover, the knowledge concerning the domain analysis, patterns used, design options
evaluated and design decisions made is implicitly embedded in the architecture and/or
becomes tacit knowledge of the architect [12, 42, 44].
Apart from architectural artifacts created during architecting activities, there are several
other sources of architecture knowledge. These include architecture styles and patterns [11,
13, 40], design patterns [19], architecture and design tactics [7, 11]. While these sources are
aimed at explicitly codifying different types of architecture knowledge, some vital pieces of
knowledge are either omitted or informally described. For instance, many pattern
documentation formats do not explicitly describe the “forces1” of a pattern. We have also
found that each pattern’s documentation informally describes the schemas of synergistic
relationships among patterns, quality attributes and scenarios. These can be captured as
reusable artifacts in a format that provides architectural knowledge at a level of abstraction
appropriate for the architecture design phase [3, 5].
Our research is aimed at improving the quality of architecting process. This is achieved by
developing effective knowledge management structures to facilitate the capture and
management of implicit architecture knowledge generated during architecting activities or
informally described in sources such as [7, 11, 13, 19]. We have been developing a support
mechanism to facilitate the capture and use of architecture knowledge by using concepts
from knowledge management [35, 37], experience factories [8, 9], and pattern-mining [5, 47]
paradigms.
This report presents a conceptual framework for capturing implicit architecture knowledge
as reusable artifacts and managing it with a knowledge repository. This makes such
knowledge readily available to improve architecture-based software development process.

1 The forces of a pattern describe the factors which can cause a problem if they interfere with one another. A pattern attempts
to resolve clashes among those factors. Discussion of forces also captures tradeoffs in a pattern.

The framework identifies various approaches to capture implicit and explicit design and
process knowledge during architecting process, along with an approach to distil and
document architecture knowledge from patterns. The novelty of the approach resides in its
ability to incorporate all the components into an integrated approach, which has been
incrementally implemented in a web-based tool.
The reminder of this report is organized as follows. In Section 2 we describe the theoretical
background and motivation that stimulated our research in software architecture knowledge
management. Section 3 presents a conceptual framework for capturing architecture
knowledge. Section 4 describes usages of the captured knowledge. A brief description of a
prototype tool is given in Section 5 and Section 6 concludes the report.

2. Theoretical Background and Motivation

In this section we briefly discuss the theoretical concepts that underpin our approach to
manage architecture knowledge for supporting and improving architecture processes.

2.1. Architecture-Based Software Development

Software architecture embodies some of earliest design decisions, which are hard and
expensive to change if found flawed during downstream development activities. Since the
quality attributes (such as maintainability, reliability) of complex software systems largely
depend on the overall software architecture of such systems [11], a systematic and integrated
approach is required to address architectural issues throughout the software development
lifecycle; such approach is called architecture-based development [10]. One of the main
characteristics of architecture-based development is the role of quality attributes and
architecture styles and patterns, which provide the basis for the design and evaluation of
architectural decisions in this development approach [33]. Figure 1 shows a high level
process model of architecture-based development that consists of six steps, each having
several activities and tasks.

Figure 1: Architecture-Based Development Process model [10].

Architectural requirements are those requirements that have broad cross-functional
implications. Such requirements are usually elicited and specified using quality sensitive
scenarios [11]. Scenarios have been used for a long time in several areas of different
disciplines (military and business strategy, decision making,). The software engineering
community started using scenarios in user-interface engineering, requirements elicitation,
performance modelling and more recently in SA evaluation [27]. Scenarios are quite
effective for specifying architectural requirements because they are very flexible. Scenarios
can be used to characterize most of the architectural requirements. For example, we can use
scenarios that represent failure to examine availability and reliability, scenarios that
represent change requests to analyze modifiability, scenarios that represent threats to analyze
security, or scenarios that represent ease of use to analyze usability. Moreover, scenarios are
normally concrete, enabling the user to understand their detailed effect [31].

Architecture design is an iterative process, making incremental decisions to satisfy
functional and architectural requirements. Architecture design decisions are mainly
motivated by architecture requirements, which provide the criteria used to reason about and
justify the architectural choices [10]. Architects usually enlist several design options, which
may have the potential of satisfying different non-functional requirements. Then, a selection
is made from the available design options in order to satisfy all or most of the desired non-
functional requirements. This selection process involves several tradeoff decisions.

Architecture design decisions needs to be documented to support the subsequent design
and development decisions. Architecture is documented in terms of views, each view
addressing a different perspective of the architecture. Architecture design, documentation
and analysis are iterative steps in the process [10]. Having designed and analyzed a suitable
architecture, it is realized to create the system, and the architecture is maintained to ensure
that the detailed design and implementation decision conform to the original architectural
decisions and rationales. Moreover, a modification request that can have architectural
implications may results in the continuation of architecture-based development cycle starting
with eliciting architectural requirements. Later in the paper, we briefly describe what type of
knowledge can be captured or used by each step.

2.2. Knowledge Management Issues in Architecting Process

The architecting process aims to solve a mix of ill- and well-defined problems, which
involve processing a significant amount of knowledge. Architects require topic knowledge
(learned from text books and courses) and episodic knowledge (experience with the
knowledge) [36]. One of the main problems in architecture processes is the lack of capture
and access to knowledge underpinning the design decisions and the processes leading to
those decisions [4, 12]. This type of knowledge involves things like the impact of certain
middleware choices on communication mechanisms between different tiers, why an API is
used instead of a wrapper, and who to contact to discuss the performance of different
architectural choices.

Much of this knowledge is episodic and usually not documented [42]. The absence of a
disciplined approach to capture and maintain architecture knowledge has many downstream
consequences. These include:
• the evolution of the system becomes complex and cumbersome, resulting in violation of

the fundamental design decisions
• inability to identify design errors

• inadequate clarification of arguments and information sharing about the design artifacts
and process,

All these cause loss of substantial knowledge generated during architecture process, thus
depriving organizations of a valuable resource, loss of key personnel may mean loss of
knowledge [22, 25, 42].

The SA community has developed several methods (such as ATAM [15], PASA [46]) to
support a disciplined approach to architectural practices. Some of these do emphasize the
need for knowledge management to improve reusability and grow organizational capabilities
in the architecture domain. Except for [14], there is no approach that explicitly states what
type of knowledge needs to be managed and how, when, where, or by whom. Also, none of
the current approaches provides any conceptual framework to design, develop and maintain
an appropriate repository of architecture knowledge. Hence we posit that the lack of suitable
techniques, tools, and guidance is why architecture design knowledge is not captured.

The software engineering community has been discovering and documenting architecture
knowledge accumulated by experienced researchers and practitioners in the forms of
architecture or design patterns [13, 19]. These patterns attempts to codify implicit
knowledge. However, we have found that the amount of information provided and the level
of abstraction used may not be appropriate for the architecture stage – too much detail is
counter-productive as expert designers usually follow breadth-first approach [36]. Moreover,
we have found that the existing formats of pattern documentation are not appropriate for
explicating the schemas of the relationships among scenario, quality attributes, and patterns
in a way that makes this knowledge readily reusable. This results in little use/reuse of the
architectural artifacts (such as scenarios, quality attributes and tactics) informally described
in patterns’ documentation [3, 5].

Like any other activity of software development, KM in architecture processes also
suffers from other problems such as lack of motivation, resources, lackluster sponsorship by
the management [16, 43]. However, these issues are not within the main focus of this paper.

2.3. Architecture Knowledge Management Building Blocks

The major objective of Knowledge Management (KM) is to improve business processes
and practices by utilizing individual and organizational knowledge resources. These include
skills, capabilities, experiences, routines, cultural norms, and technologies [35]. Software
engineering processes need or generate both explicit and implicit knowledge. These are
mutually complementary entities that interact with each other in creative activities [34].

KM does not ignore the value or need to address other software development aspects,
such as process and technology, nor does it seek to replace them. Instead, it works toward
software process improvement by explicitly and systematically addressing the management
of knowledge. This includes its acquisition, structuring, storage and effective maintenance
[37]. There are two main strategies to manage knowledge:
1. codification or centralization: making tacit knowledge explicit
2. personalization or P2P: supporting knowledge sharing by describing who knows what.

Organizations apply both codification and personalization strategies: one of them in a
primary and the other in a secondary role [23]. A hybrid approach to manage knowledge is
considered an effective and efficient mechanism of maximizing the benefits of codification
and personalization strategies of knowledge management for distributed projects [17].

We posit that architecture knowledge management is a management task, which can be
described using the knowledge management task model presented in [20]. This model
(Figure 2) consists of two strategic and six operational knowledge management tasks, called
the building blocks of KM. These represent activities directly related to knowledge. This
model presents an integrated approach to KM and ignoring one or more of the building
blocks can interrupt the knowledge cycle [35]. For example, if contextual information about
designing an artifact in a particular way is not preserved, it may disappear from
organizational or individual memory, making reusability of that artifact difficult.

Figure 2: Building blocks of architecture knowledge management (Modified from [35])

Architecture knowledge goals, a strategic task, describe the objectives of managing

knowledge and the expected benefits. For instance, improve quality of architecture
decisions, reusability of architectural artifacts, architecture maintenance and evolution, and
others. Architecture knowledge measurement is another strategic level task aimed at
ensuring the quality of the knowledge management process by comparing the results with
the expected benefits. This task needs to define and assess several metrics for that purpose.

Operational tasks of knowledge management are mainly concerned with the capture,
maintenance, and use. We describe how the proposed approach support architecture
knowledge capture and maintenance in section 3 and the utility of the captured and
preserved knowledge is discussed in section 4.

2.4. Experience Factory Organization

The Experience Factory Organization (EFO) provides a conceptual framework for
building a systematic approach to accumulate and reuse domain specific knowledge [9]. The
main objective of the EFO approach to improve the performance (in terms of cost, quality,
and schedule) of software development projects by leveraging experience from previous
projects [8]. The EFO framework takes into account the reality that accumulating and
maintaining knowledge and experiences of software development are non-trivial tasks,
which should not be left to individual projects. This is because it is difficult for a project

team to devote resources to capture their experiences for reuse while deadlines are looming
or quality and productivity have top priority.

The EFO addresses this issue by dividing the responsibilities of software development
and experience accumulation into two organizational units:
1. Project Organization: uses packaged experience to deliver software products
2. The experience Factory: supports software development by providing tailored

experience [9].
Unlike the EFO, our approach treats the experience factory as a tool, called the

Architecture Knowledge Repository (AKR), instead of a separate organizational unit.
However, the AKR has also been logically divided into project knowledge (concrete) and
corporate knowledge (generic). Another requirement of reusability is an appropriate
structure to enable tailoring and generalizing knowledge. We have addressed this issue by
designing a set of templates to capture and present architecture design knowledge [5].

3. Capturing Architecture Knowledge

This section presents a conceptual framework for capturing implicit knowledge. This
framework provides a support mechanism to design, develop and populate a knowledge
repository to improve architecture processes. The proposed framework comprises planning,
capturing, organization and evaluation, and storage of architecture knowledge (Figure 3).

Figure 3: A conceptual framework for capturing architecture knowledge

The planning phase is aimed at understanding the knowledge domain, identifying the
sources of the knowledge, and deciding about the techniques to be used. The main objective
of knowledge capture phase is to acquire knowledge from human or secondary sources using
the techniques described in section 3.1 and 3.2. The knowledge captured in this phase needs
to be organized and evaluated (the objective of phase 3) before being placed in the AKR as a

reusable artifact. There are different techniques (such as transcription, coding,
summarization [30]) to organize knowledge depending on the knowledge capture source and
methods. For example, we have developed different templates to organize knowledge
extracted from patterns[3]. The organized knowledge is validated before being stored in
knowledge repository. The cycle between phase 2-4 runs until most of the required implicit
knowledge from the people or secondary sources has been extracted, organized and stored.

3.1. Capturing Knowledge from Human Sources

One of the main sources of implicit architecture knowledge is people (e.g. architects,
domain experts and project teams), who individually and collectively carry a large amount of
“know-how” and “community specific folklore” about their domain and projects [42]. There
are two main strategies to capture such implicit knowledge to populate a knowledge
repository: 1) appoint a knowledge engineer to capture implicit knowledge from individuals
or teams [41, 42] or 2) provide appropriate tool support so that knowledge can be encoded
into the system as part of the knowledge creation process. The latter is called contextualized
knowledge acquisition [24]. This strategy is similar to Electronic Process Guide (EPG) [39].
It is not the intent of this paper to recommend a particular strategy as each of them have been
found useful in different contexts.

Table 1: Some Knowledge Acquisition Techniques

When applying the first strategy of knowledge acquisition, someone can use a variety of
techniques derived from different disciplines such as expert systems, artificial intelligence,
groupware systems and others. Table 1 presents some of the techniques that are useful to
capture implicit knowledge. A succinct explanation of these techniques is provided in [32].

To implement the second strategy, a suitable environment is provided so that knowledge
generators can encode the knowledge in a system as it is created [24]. We have developed a
knowledge repository as a support mechanism for this strategy. However, an empty
knowledge repository cannot motivate people to use it. Before exposing the potential users
to a knowledge repository, it should be populated [38]. This can be done by capturing
knowledge from experts using the above-mentioned techniques or from secondary sources
such as patterns. We have developed a “pattern-mining” approach to populate the AKR.

3.2. Capturing Knowledge from Patterns

We have found that software patterns are a valuable source of architecturally significant
constructs (such as scenarios and tactics) and relationships between them. These synergistic
relationships should be captured and documented as reusable architecture knowledge to
support and improve architecting activities [3, 5]. To facilitate the task of knowledge
acquisition from patterns, we have developed:
• a process model to capture and structure architecture knowledge from patterns.
• a set of guidelines to identify and capture the architectural information that can be

captured as a reusable artifact from a pattern.
• a set of templates to structure and document the extracted architecture knowledge.

Figure 4: A process model of mining patterns for architecture knowledge from patterns

In the following, we describe the steps of the pattern-mining process (Figure 4).
The process consists of the following steps:

1. Select a software pattern to be explored for architectural information. This decision is
usually influenced by a system’s domain and the software engineer’s experience.

2. Understand the pattern documentation format to identify the variations that exist among
different patterns’ description styles.

3. Explore different parts of the selected patterns to identify architectural information
described in a pattern’s documentation

4. Capture each type of information separately
5. Structure and document the extracted information using the provided template
6. Validate and refine documented information based on domain knowledge and

experience of using different patterns.
Patterns are usually documented in a variation of the format used in [13, 19]. This

requires the inclusion of problem, solution, and quality consequences parts. Figure 5
presents a diagrammatic guide to spot architecturally significant information from a pattern.
Our experience is that scenarios are mostly found in the problem and solution sections. A
pattern’s forces can also be found in these sections. However, there may be a separate
section for describing forces. The quality attributes (positively or negatively affected) are
described in the quality consequence section, usually at the end of a pattern’s description.

Figure 5: A simple guide to spot architecturally significant information in a pattern

The extracted information must also be structured and documented in a format that creates

a readily useable knowledge artifact. We have designed a set of templates to document
different units of architecturally significant information (i.e. general scenarios, quality
attributes, tactics, usage examples and so on) as an artifact of architecture knowledge. Table
2 presents one of these templates. The template presents different pieces of a pattern’s
description in a succinct format at an abstraction level suitable for architecting activities,
where abstract scenarios are used to characterize required quality attributes and suitable
patterns are chosen based on their support for the required quality attributes.

Table 2: A template to document architectural knowledge extracted from patterns

Pattern Name: Name of the software pattern Pattern Type: Architecture, design, or style
Brief description A brief description of the pattern.
Context The situation for which the pattern is recommended.
Problem description What types of problem the pattern is supposed to address?
Suggested solution What is the solution suggested by the pattern to address the problem?
Forces Factors affecting the problem and solution. Justification for using pattern.
Available tactics What tactics are used by the pattern to implement the solution?

Positively Negatively Affected Attributes
Attributes supported Attributes hindered

S1 A textual, system independent specification of a quality attribute. General
scenarios S..n
Usage
examples

Some known examples of the usage of the pattern to solve the problems.

The template presented in Table 2 makes the relationships among scenarios, quality

attributes, and patterns explicit. Moreover, it also captures one of the most important parts of
a pattern description, namely the forces. The forces of a pattern are usually described
implicitly in most of the pattern documentation styles. Recently, there are some efforts to
pay more attention to the forces of a pattern [21, 26].

Table 3: A template to document architecture knowledge for SA evavluation process

Project Name: Which project needs this scenario?
Project domain: Domain of the project

Date: When was proposed?
Scenarios No: Serial number assigned to the scenario

Business goals Which business goals does this scenario achieve?
Stakeholders Which class of the stakeholders did suggest this scenario?
Attributes Which quality attributes are required by this scenario?
Description A brief description of the scenario.

Stimulus A condition that needs to be considered when it arrives at a system.
Context A system’s condition when a stimulus occurs, e.g. overloaded, running etc.
Response A measurable action that needs to be undertaken after the arrival of the stimulus
Complexity How complex is this scenario to realize? (Effect on macro or micro architecture)

Concrete
scenario

Priority How important is this scenario?
Pattern/Style Name of the architectural pattern or style that can support this scenario.
Design tactics What are the design tactics used by the pattern/style to support the scenarios?
Design rational What are reasons for using the patterns/tactics? How does it provide the desired quality attributes?

The abstract knowledge captured with the template 1 can be concretized for a specific
project. For example, general scenarios are concretized to specify quality attributes. Table 3
presents the second template for documenting architecture design knowledge for supporting
architecture evaluation, which needs concrete scenarios along with other information (e.g.
level of complexity and importance). Scenario-based approaches mainly gather scenarios
from stakeholders. We have found that many concrete scenarios can be derived from the
abstract scenarios extracted from patterns. It also increases confidence in an architecture’s
capability of satisfying certain concrete scenarios if these scenarios are instances of the
general scenarios extracted from a pattern used in that architecture [5].

Table 4: Abstract architecture knowledge extracted from J2EE Business Delegate pattern

Pattern Name: Business Delegate Pattern Type: Design pattern
Brief description This pattern reduces coupling between tiers by providing an entry point for accessing the

services another tier. It also supports results caching to improve performance…
Context A client may be exposed to the complexity of dealing with the distributed components…
Problem description Presentation-tier components interact directly with business services. Such a direct interaction

makes the clients vulnerable to any changes in the business services…
Suggested solution Reduce coupling between presentation-tier clients and business services. The Business

Delegate hides the underlying implementation details of the business service...
Forces Presentation-tier clients require access to business service.

It is desirable to minimize coupling to hide implementation details from clients.
Available tactics Delegate Proxy and Delegate Adapter

Positively Negatively Affected Attributes
Reduce coupling, manageability, performance Introduce new layer, increased complexity

S1 Presentation-tier components shall not be exposed to the implementation details of the
business services they use.

S2 System shall provide a caching mechanism to improve response to business service request.

General
scenarios

S3 Services calls across network or tiers shall be minimized to avoid degraded performance.
Examples E-commerce portals, online content providers, sports websites.

Table 4 demonstrates how the template (Table 2) can be used to structure and maintain

abstract architecture knowledge extracted from patterns. Table 4 contains the knowledge
extracted from Business Delegate J2EE pattern by following the pattern-mining process.

Table 5 demonstrates how the abstract knowledge captured by Table 4 can be concretized to
evaluate an architecture that is using Business Delegate pattern.

Table 5: A template to document architecture knowledge for software architecture evavluation

Project Name: Qualification Verification System
Project domain: E-Commerce application

Date: 12/06/2005
Scenarios No: Serial number assigned to the scenario

Business goals Customer satisfaction and process efficiency.
Stakeholders Business Manager, System sponsors, and End User.
Attributes Improved performance
Description The response to a business service request shall be improved to avoid users’ frustration and system

shall be able to handle up to 1000 users concurrently without any delay in the response time.
Stimulus A user request needs to be processed.
Context There are 1000 users, who may make simultaneous requests.
Response The system shall be able to respond to a request within seconds.
Complexity Medium

Concrete
scenario

Priority High
Pattern/Style Business Delete
Design tactics Delegate proxy and Caching
Design rational This pattern exposes an interface to the business service API by using proxy function to pass the

client methods to the session bean. It can cache any necessary data and references to the session
bean's home or remote objects to improve performance by reducing the number of lookups.

4. Utility of Architecture Knowledge

In this section, we discuss the potential utility of the architecture knowledge captured
from human sources or patterns, structured using the proposed templates, and stored and
managed by an architecture knowledge repository. We believe that the availability of such a
knowledge repository can improve architecture-based software development process by
providing a support mechanism to capture, store, and retrieve the required architecture
knowledge. For example, a design team can benefit from such a tool by logging unsolved
issues to be discussed and resolved during subsequent design meetings. We have reproduced
the Figure 1, architecture-based software development process model, in Figure 6 to
demonstrate the support provided by the AKR to different activities of the process.

Fig. 6: Supporting architecture-based development with the design experience repository

Architecture is usually designed iteratively by devising and reasoning about design
decisions with respect to the quality sensitive scenarios created during the architecture
requirements elicitation stage. Design decisions usually apply several architecture or design
patterns to achieve the desired set of quality attributes [11]. Knowledge of different technical
and functional domains is considered the raw material for architecture design process. That
is why a project manager attempts to staff a design team with people who can match the
knowledge needs of a project [45]. However, this seldom happens because of several reasons
such as shortfall of technical knowledge, thin distribution of domain knowledge, staff
attrition or movement and others. Thus, a design team’s main responsibilities includes
knowledge acquisition, knowledge sharing and knowledge integration [45], which can be
supported by the architecture knowledge repository populated by architecture knowledge
captured by following the techniques discussed in section 3.

Architects describe architectural decisions using different views such as procedural,
concurrency, code, development and others [11]. However, the knowledge about the process
that leads to a particular design decision is usually not captured [12], which results in several
problems discussed in Section 2.2. The AKR provides an environment to capture and
manage not only architecture design decision but also process knowledge to support
subsequent activities of architecture-based development. On the reusability of the design
knowledge, the generic architecture knowledge along with the contextual information should
help architects identify suitable patterns by comparing the scenarios and quality attributes
supported by different patterns with the ones required by the stakeholders. Moreover,
architects can also evaluate the suitability of generic architecture decisions suggested for a
particular context and they can contact the contributor of a particular architecture decision
for further explanation.

Software architecture evaluation activities can also be improved by using both generic
and project-specific knowledge about architecture artifacts and processes leading to those
artifacts. For example, generic architecture knowledge can help improve the task of
specifying quality attributes using scenario, select suitable reasoning frameworks to be used
to assess certain design decisions with respect to the desired quality attributes and increase
confidence in the capabilities of architecture to satisfy particular quality sensitive scenarios
as a result of using certain patterns [3, 47].

Project-specific knowledge helps designers, developers and maintainers to better
understand the architecture decisions, their constraints and reasoning behind it. Moreover,
the availability of the reasoning behind the architectural decisions helps architects explain
architectural choices and how they satisfy business goals [44]. Such knowledge is also
valuable during the architecture realization and maintenance stages (Figure 6) of
architecture-based development processes. For example, if the rationales underpinning
different design decisions are available, developers can gain invaluable insights into the
potential implications of different implementation choices for architectural decisions.
Moreover, architects themselves also need the architecture design process knowledge in
order to avoid the path they would have considered and discarded. We have designed an
empirical research program to assess different uses of the knowledge captured from pattern
and preliminary results are very encouraging [5].

5. PAKME – Process-centric Architecture Knowledge Management
Environment

In this section, we briefly introduce a prototype tool that we have been developing to

demonstrate the feasibility of the proposed conceptual framework for capturing and
managing architecture design knowledge. The Process-based Architecture Knowledge
Management Environment (PAKME) is a prototype web-based system to provide
knowledge management support for improving architecture-based software development
process. The PAKME has been built on top of an open source groupware platform,
Hipergate [1]. This provides various collaborative features including contact management,
project management, online collaboration tools and others. We have modified the data model
of the Hipergate to add the features required to capture, manage, and retrieve architecture
knowledge captured from human sources and patterns. The AKR database consists of 25
tables to store different types of architectural artifacts and rationales.

Figure 7: Front page of knowledge-based repository

The knowledge repository is logically divided into knowledge-based artifacts, generic
knowledge, and project-based artifacts. The generic knowledge is accumulated by using the
implicit knowledge capture techniques described in this paper. So far we have populated the
ARK by distilling architecture knowledge from several J2EE [6] patterns, architecture
patterns [13], and the Battle Control System (BCS) case study described in [15]. Project-
based architecture knowledge consists of the artifacts either instantiated from generic
knowledge or newly created during various architecture activities. Figure 7 shows the front
page of knowledge-based of the AKR.

Figure 8: A form for entering a new pattern in the AKR

Currently, the PAKME consists of four components; knowledge acquisition, knowledge
maintenance, knowledge retrieval, and knowledge presentation. The knowledge acquisition
component provides various forms and editing tools to enter new generic or project-specific
knowledge in the repository. The forms are based on the templates (e.g. Table 2) developed
to organize knowledge. Figure 8 shows a form for entering a new pattern in the AKR. While
entering a new artifact, an end user can view the existing artifacts in the background as
shown in Figure 8. For example, if a user’s search fails to retrieve a particular pattern, the
user may decide to enter that pattern in the repository.

Figure 9: Screen shots showing the search and navigation based retrieval from the AKR.

The knowledge acquisition component for project-specific knowledge provides various
features to acquire new architectural artifacts (such as scenarios, architecturally significant
requirements, design decisions and others) or import the generic artifacts for a particular
project. Figure 9 shows that a user can either enter a new ASR or import an existing ASR in
a project. The maintenance component provides various features to modify, delete and
instantiate different artifacts. It also includes repository administration functions.

Figure 10: Screen shots showing the search and navigation based retrieval from the AKR.

The retrieval component supports both basic and advanced searches to find and retrieve

the desired architecture artifacts and rationales. For example, a user can perform a search for
a suitable pattern to satisfy a particular quality attribute or to find a design decisions
suggested for a particular domain/context by a certain designer. To facilitate the search
based on keywords, the AKR allows the users to associated different keywords to each
architecture artifact when that artifact is entered in the repository or later on. The retrieval
component also enables a user to traverse to different related artifacts by navigating through
the knowledge space based on the initial results of a search query (Figure 10). Advanced
search facility enables a users to use logical operators (such as And, Or, Not) to include or
exclude certain architecture artifacts in the search results.

The knowledge presentation component supports generating different views of the
architecture knowledge residing in the AKR. For example, it presents utility (Figure 11) tree
to specify quality attributes along with their respective priority and level of complexity and
result tree based on the results of architecture evaluation sessions using a scenario based
evaluation method like ATAM [11] or SAAM [15].

Figure 11: A utility tree of concrete scenarios and their priorities and complexity.

To summarize, the two main objectives of the PAKME are:
• To provide a support mechanism for capturing, managing, and retrieving

architecture knowledge to improve the quality of architecture activities.
• To act as a source of architecture knowledge for those who need rapid access to

experience-based design decisions to assist in making new decisions or discovering
the rationale for past decisions.

6. Conclusion and Future Work

Our research is aimed at improving the effectiveness of SA processes by providing
suitable support mechanisms. Current approaches are deficient in providing the required
design knowledge or managing the knowledge generated. This leads to a lack of use of
existing SA knowledge as it is not available in a readily usable format at an appropriate level
of abstraction. Moreover, implicit knowledge is not normally captured to make it available
for decision support.

This paper emphasizes the importance of capturing and using implicit software
architecture design knowledge to improve architecture activities. We present a framework
for capturing implicit knowledge using various knowledge acquisition and pattern-mining
techniques and structuring and storing that knowledge in a knowledge repository developed
to support the proposed framework. This framework supports the strategic and operational
tasks of architecture knowledge management model presented in Section 2.3.

Future work includes enhancement of the tool with case-based approaches [24] and
incremental refinement of search queries based on the results of the basic search. We are
particularly keen to test the pattern-mining process and tool in industrial settings, so that
their applicability and scalability can be thoroughly assessed. The preliminary results of our
assessment of the pattern-mining process and the usefulness of the extracted knowledge are
very encouraging[5]. These give us confidence in the utility of our approach.

Acknowledgement: Several undergraduate students helped us build the tool. National
ICT Australia is funded through the Australian Government's Backing Australia's Ability
initiative, in part through the Australian Research Council.

References

[1] Hipergate - Open Source CRM and Groupware. Last accessed on 16th April, 2005, Available from:
http://www.hipergate.com.
[2] Al-Naeem, T., et al. A Quality-Driven Systematic Approach for Architecting Distributed Software
Applications. 27th Int'l. Conf. on Software Eng. 2005. St. Louis, USA.
[3] Ali-Babar, M. Scenarios, Quality Attributes, and Patterns: Capturing and Using their Synergistic
Relationships for Product Line Architectures. Int,l. Workshop on Adopting Product Line Software Engineering.
2004. Busan, South Korea.
[4] Ali-Babar, M., I. Gorton, and B. Kitchenham, A Framework for Supporting Architecture Knowledge and
Rationale Management, in Rationale Management in Software Engineering, A.H. Dutoit, et al., Editors. 2005,
Submitted for review.
[5] Ali-Babar, M., et al. Mining Patterns for Improving Architecting Activities - A Research Program and
Preliminary Assessment. 9th Int'l. conf. on Empirical Assessment in Software Engineering. 2005. Keele, UK.
[6] Alur, D., J. Crupi, and D. Malks, Core J2EE Patterns: Best Practices and Design Strategies. 2nd ed. 2003:
Sun Microsystem Press.
[7] Bachmann, F., L. Bass, and M. Klein, Deriving Architectural Tactics: A Step toward Methodical
Architectural Design, Tech Report CMU/SEI-2003-TR-004, SEI, Carnegie Mellon University, USA, 2003
[8] Basili, V.R. and G. Caldiera, Improving Software Quality Reusing Knowledge and Experience. Sloan
Management Review, 1995. 37(1): p. 55-64.
[9] Basili, V.R., G. Caldiera, and H.D. Rombach, The Experience Factory, in Encyclopedia of Software
Engineering, J.J. Marciniak, Editor. 2001, John Wiley & Sons.
[10] Bass, L. and R. Kazman, Architecture-Based Development, Tech Report CMU/SEI-99-TR-007, SEI,
Carnegie Mellon University, Pittsburgh, 1999
[11] Bass, L., P. Clements, and R. Kazman, Software Architecture in Practice. 2 ed. 2003: Addison-Wesley.
[12] Bosch, J. Software Architecture: The Next Step. European Workshop on Software Architecture. 2004.
[13] Buschmann, F., et al., Pattern-Oriented Software Architecture: A System of Patterns. 1996: John Wiley &
Sons.
[14] Clements, P., et al., Documenting Software Architectures: Views and Beyond. 2002: Addison-Wesley.
[15] Clements, P., R. Kazman, and M. Klein, Evaluating Software Architectures: Methods and Case Studies.
2002: Addison-Wesley.
[16] Davenport, T.H. and L. Prusak, Working Knowledge. 1998: Harvard Business School Press, Boston,
Massachusetts.
[17] Desouza, K.C. and J.R. Evaristo, Managing Knowledge in Distributed Projects. Communication of the
ACM, 2004. 47(4): p. 87-91.
[18] Dutoit, A.H. and B. Paech, Rationale Management in Software Engineering, in Handbook of Software
Engineering and Knowledge Engineering, S. Change, Editor. 2001, World Scientific Publishing, Singapore.
[19] Gamma, E., et al., Design Patterns-Elements of Reusable Object-Oriented Software. 1995, Reading, MA:
Addison-Wesley.
[20] Gorton, I. and J. Haack. Architecting in the Face of Uncertainty: An Experience Report. Proc. International
Conference on Software Engineering. 2004. Edinburgh, Scotland.
[21] Gross, D. and E. Yu. From Non-Functional Requirements to Design through Patterns. 6th Int'l Workshop on
Requirements Engineering Foundation for Software Quality. 2000. Sweden.
[22] Gruber, T.R. and D.M. Russell, Design Knowledge and Design Rationale: A Framework for Representing,
Capture, and Use, Tech Report KSL 90-45, Knowledge Systems Laboratory, Standford University, California,
USA, 1991
[23] Hansen, M.T., N. Nohria, and T. Tierney, What's your strategy for managing knowledge? Harvard Business
Review, March-April 1999: p. 106-116.
[24] Henninger, S., Tool Support for Experience-Based Software Development Methologies. Advances in
Computers, 2003. 59: p. 29-82.

[25] Jarczyk, A.P.J., P. Loffler, and F.M.S. III. Design Rationale for Software Engineering: A Survey. Proc. 25th
Hawaii Int'l. Conf. on System Sciences. 1992.
[26] John, B.E., et al. Bringing Usability Concerns to the Design of Software Architecture. 9th IFIP Working
Conference on Engineering for Human-Computer Interaction. 2004. Hamburg, Germany.
[27] Kazman, R., et al., Scenario-Based Analysis of Software Architecture. IEEE Software Engineering, Nov.
1996.
[28] Kruchten, P., The Rational Unified Process: An Introduction. 2nd ed. 2000: Addison-Wesley.
[29] Kruchten, P.B., The 4+1 View Model of architecture. Software, IEEE, 1995. 12(6): p. 42-50.
[30] Land, L.P.W., A. Aurum, and M. Handzic. Capturing Implicit Software Engineering Knowledge. Proc. 13th
Australian Software Engineering Conference. 2001. Canberra, Australia.
[31] Lassing, N., D. Rijsenbrij, and H.v. Vliet, How Well can we Predict Changes at Architecture Design Time?
Journal of Systems and Software, 2003. 65(2): p. 141-153.
[32] Liou, Y.I., Collaborative Knowledge Acquisition. Expert Systems With Applications, 1992. 5(1-2): p. 1-13.
[33] Niemela, E., J. Kalaoja, and P. Lago, Toward an Architectural Knowledge Base for Wireless Service
Engineering. IEEE Transactions of Software Engineering, 2005. 31(5): p. 361-379.
[34] Nonaka, I. and H. Takeuchi, The Knowledge-Creating Company. 1995: Oxford University Press.
[35] Probst, G.J.B. Practical Knowledge Management: A Model That Works. Last accessed on 14th March,
2005, Available from: http://know.unige.ch/publications/Prismartikel.PDF.
[36] Robillard, P.N., The role of knolwedge in software development. Communications of the ACM, 1991.
42(1): p. 87-92.
[37] Rus, I. and M. Lindvall, Knowledge Management in Software Engineering. IEEE Software, 2002. 19(3): p.
26-38.
[38] Schneider, K. and T. Schwinn, Maturing Experience Base Concepts at Daimler Chrysler. Software Process
Improvement and Practice, 2001. 6(2): p. 85-96.
[39] Scott, L., et al., Understanding the use of an electronic process guide. Journal of Information and Software
Technology, 2002. 44(10): p. 601-616.
[40] Shaw, M. and D. Garlan, Software Architecture: Perspectives on an Emerging Discipline. 1996, Upper
Saddle River, NJ: Prentice Hall.
[41] Skuce, B., Knowledge management in software design: a tool and a trial. Software Engineering Journal,
Sept. 995: p. 183-193.
[42] Terveen, L.G., P.G. Selfridge, and M.D. Long, Living Design Memory: Framework, Implementation,
Lessons Learned. Human-Computer Interaction, 1995. 10(1): p. 1-37.
[43] Tiwana, A., The Knowledge Management Toolkit: Orchestrating IT, Strategy, and Knowledge Platforms.
2nd ed. 2002: Prentice-Hall.
[44] Tyree, J. and A. Akerman, Architecture Decisions: Demystifying Architecture. IEEE Software, 2005. 22(2):
p. 19-27.
[45] Walz, D.B., J.J. Elam, and B. Curtis, Inside a Software Design Team: Knowledge Acquisition, Sharing, and
Integration. Communication of the ACM, 1993. 36(10): p. 63-77.
[46] Williams, L.G. and C.U. Smith. PASA: An Architectural Approach to Fixing Software Performance
Problems. Proc. of Int'l. Conference of the Computer Measurement Group. 2002. Reno, USA.
[47] Zhu, L., M. Ali-Babar, and R. Jeffery. Mining Patterns to Support Software Architecture Evaluation. 4th
Working IEEE/IFIP Conference on Software Architecture. 2004.

