

A Proposed Security Protocol for
Data Gathering Mobile Agents

Raja Al-Jaljouli
Software Engineering Department

School of Computer Science and Engineering
University of New South Wales

Sydney, NSW 2052
Australia

rjaljoli@cse.unsw.edu.au

Technical Report
UNSW-CSE-TR-0510

December 2004

THE UNIVERSITY OF
NEW SOUTH WALES

Abstract

This paper addresses the security issue of the data which mobile agents gather as they
are traversing the Internet. Several cryptographic protocols were presented in the
literature asserting the security of gathered data. The security is based on the
implementation of one or more of the following security technique: public key
encryption, digital signature, and message authentication code, backward chaining,
one-step forward chaining, and code-result binding. Formal verification of the
protocols reveals unforeseen security flaws, such as truncation or alteration of the
collected data, breaching the privacy of the gathered data, sending others data under the
private key of a malicious host, and replacing the collected data with data of similar
agents. So the existing protocols are not truly secure. In this paper, we present an
accurate security protocol [21] which aims to assert strong integrity, authenticity, and
confidentiality of the gathered data. The proposed protocol is derived from the Multi-
hops protocol [14], where the security relies on a message authentication code, a chain
of encapsulated offers, and a chained hash of a random nonce. The Multi-hops protocol
suffers from security flaws, e.g. an adversary might truncate/ replace collected data, or
sign others data with his own private key without being detected. The proposed protocol
[21] refines the Multi-hops protocol by implementing the following security techniques:
utilization of co-operating agents, scrambling the gathered offers, requesting a visited
host to clear its memory from any data acquired as a result of executing the agent before
the host dispatches the agent to the succeeding host, carrying out verifications during the
agent’s lifecycle in addition to the verifications upon agent’s return to the initiator. The
verifications are on the identity of the genuine initiator at the early execution of the agent
at a visited host. The proposed protocol also implements the common security
techniques such as public key encryption, digital signature, etc. The security techniques
implemented in the proposed protocol would rectify the security flaws revealed in the
existing protocols. We prove its correctness by analyzing the security properties using
STA [44, 45], a finite-state verification tool.

Keywords: Security protocols, data security, mobile agents, formal verification
methods, encryption.

 2

1 Introduction

Mobile agents are autonomous programs that have one or more goals. They control
where they execute and can run in heterogeneous environments. They act on behalf of
users, and have some level of intelligence. They can collaborate and communicate with
other programs and agents to accomplish their tasks. They traverse the Internet from one
host to another to come closer to their data and hence, overcome limitations of latency,
connectivity, and bandwidth. Also, they allow a large degree of flexibility in creating
computations and organize the use of distributed resources on the Internet.

Mobile agents have been proposed for e-commerce applications, such as shopping
applications [53]. They can be employed to search the network’s and fellow processes’
data to search for offers, negotiate the terms of agreements, or even purchase goods or
services.

Mobile agents are expected to run in partially unknown and untrustworthy

environments. They transport from one host to another host through insecure channels
and may execute on non-trusted hosts. Thus, they are vulnerable to direct security
attacks of intruders and non-trusted hosts, where intruders and non-trusted hosts can
perform any of the following malicious acts:

1. Truncation of the gathered data.

2. Alteration of the collected data. It takes place if hosts collude with each

other or the agent visits a host twice. The malicious host may send back the
agent to an earlier host in the agent’s itinerary. It could then truncate the data
intermediary hosts provided and may alter the data it formerly provided
without being detected if it replaces the current agent’s state with the state
that was present when the agent firstly visited it.

3. Impersonating the genuine initiator and hence breaching the privacy of the

gathered data. An adversary may possibly intercept a message signed by the
initiator of the agent. It could decrypt the signed message and then signs the
decrypted message with its private key impersonating the genuine initiator.
Executing hosts in the agent’s itinerary would encrypt the data they provide to
the agent with the public key of the adversary assuming it is the genuine
initiator of the message. Hence, the adversary would be able to breach the
privacy of the collected data.

4. Transmitting others data signed by the private key of a malicious host.

Executing hosts in the agent’s itinerary may send the data they provide to the
agent signed with the corresponding private keys. An adversary might

 3

intercept the signed data. It could decrypt the signed data and then signs the
data of a particular host with its private key impersonating the genuine
provider of the data.

5. Replacing the gathered data with data of similar agents. An adversary might

intercept the agent. It could then replace the current agent’s state with the
state of a similar agent.

The security of mobile agents relies on two components: (i) Program code and static

data. (ii) Dynamic data [27]. The dynamic data comprises three types of data [17] as
follows:

 Fixed size changeable, e.g. global variables.
 Dynamically allocated static. Commonly are referred to as execution results
 Dynamically allocated changeable, e.g. register content and stack.

The focus of this paper is on the security of the execution results of mobile agents.

The protocols presented in the literature [14, 20, 22, 23, 28, 29] build a proof on the
security of the execution results, particularly the integrity of results based on the
implementation of one or more of the following security technique: public key
encryption, digital signature, message authentication code, backward chaining, one-step
forward chaining, and code-result binding. The public key encryption uses the public key
of the initiator to cipher the execution results at visited hosts so as to achieve secrecy of
results. Also, it uses the public key of the succeeding host to encrypt particular
verification terms, such as a hashed nonce. The digital signature is used when a host
signs the results it provides with its private signing key so as to be authenticated as the
initiator of the execution result. The rest of the methods are intended to ensure the
integrity of results. The message authentication code incorporates the identity of the
succeeding host and the characteristics of the previous execution results into the
execution result at a host. The backward chaining incorporates characteristics of the
previous execution results into the execution result at a host. The one-step forward
chaining incorporates the identity of the succeeding host into the execution result at a
host. The code-result binding binds the signed code to the execution results so as to
ensure that the returned results belong to the code of concern. The methods are described
in details in [4].

The security techniques implemented in the existing protocols are not satisfactory for

the following reasons:

1. Initiators carry out verifications upon the agent’s return based on both static and
dynamic data that are stored within the migrating agent, which is susceptible to
tampering. It is essential to ensure that the initial verification data are in a secure
store independent of the store of the migrating agent. We propose to store the initial

 4

verification data, e.g. a nonce that identifies the protocol run and the identity of the
first host in the agent’s itinerary, securely within a stationary agent that resides at
the initiating host and co-operates with a major agent that traverses the Internet.

2. Initiators validate the data returned with the agent if the verification terms, e.g.
message authentication codes that they compute are consistent with the returned
verification terms that the agent stores. The verifications might not be accurate,
especially in the case of colluding attacks. An attack can take place when two
malicious hosts co-operate with each other to truncate the data acquired at
intermediary hosts or substitute new data for the data they had previously provided
to the agent. If a host conspires with a preceding host in the agent’s itinerary and
sends the agent back to it, then the preceding host would be able to truncate the data
acquired at the intermediary hosts without being detected by replacing the agent’s
dynamic data that is current with the data that the agent had when it firstly visited its
host, if the host had already stored the dynamic data including the register content
and stack. Thus to ensure that none of the acquired data has been truncated or
replaced and that the verification is fully accurate, it is essential to restrain colluding
attacks by attempting to clear host’s memory from any data acquired as a result of
executing the agent. Hence, a malicious host would not be able to replace the agent’s
dynamic data that is current with the data that the agent had when it firstly visited its
host. We propose to program the agent so that it requests an executing host to clear
its memory from any data acquired as a result of executing the agent before it
dispatches the agent to the succeeding host.

3. Executing agents encrypt the data they provide using the public key of the signer
of the agent, although the signer may not be the genuine initiator. This would result
in a breach of privacy of the collected data. It is essential to carry out verifications
at the early execution of the agent at visited hosts to verify the identity of the
genuine initiator and so ensure the encryption is done for the genuine initiator. We
propose to enclose a cipher within the major agent that has the identity of the
genuine initiator and carry out verifications, at the early execution of the agent at
visited hosts, on the identity of the genuine initiator based on the securely stored
cipher within the migrating agent. The verifications would detect if an adversary is
impersonating itself as the genuine initiator for the purpose of breach of privacy of
the gathered data.

4. Gathered results are arranged in the order of visit to executing hosts and
transmitted as a chain of data. Hence, a malicious host is able to infer the data that
belongs to the preceding host and may tamper with it. We propose to jumble the
gathered data within the chain to mislead an adversary trying to truncate the offer of
the preceding host. We propose to arrange the offers in a reverse order so having the
dummy offer, which the initiator generates, as the last offer within the chain of
offers. Assume that a non-trusted host has deleted the last offer/s in the chain. The

 5

initiator would detect the malicious act upon the agent’s return as it checks the
availability of the dummy offer within the chain of offers.

The proposed protocol aims to accomplish data-confidentiality, data-authenticity, and

strong data-integrity properties. It encompasses a comprehensive set of security
countermeasures, which would prohibit or at least detect the malicious acts of intruders
and non-trusted hosts, with emphasis on the attacks revealed in the existing protocols
[14, 20, 22, 23, 28, 29]. They include the special techniques presented in the previous
paragraph and the following techniques:

 Verifications upon the agent’s return to the initiator.

 Transmission of cryptographic proofs of the data that agents have already

gathered, along with the agent, which includes: (a) a counter that indicates the
number of the actually visited hosts, (b) a chain of the encrypted offers, where
each offer incorporates the following data: the data acquired at a host, an
identifier of the protocol run, the order of the host among visited hosts stored as
a chained hash of a random nonce, the identity of the genuine initiator, and the
identity of the succeeding host, and (c) a data integrity code that encapsulates the
execution results at the visited hosts.

The proposed protocol is derived from the Multi-hops protocol [14] where the

security relies on a chain of encapsulated offers, a chain of plain data, a message
authentication code, and a chained hash of a random nonce. The chain of encapsulated
offers is replaced by a chain of publicly encrypted offers. The offer does not incorporate
the execution results at the visited hosts. The message authentication code that
incorporates the execution results at the visited hosts is replaced by a data integrity code.
The Multi-hops protocol is found undetectable to the attacks, where an adversary might
truncate data, replace data, or sign others data with its own private key. The proposed
protocol refines the Multi-hops protocol by implementing the previously discussed set of
security countermeasures and that can be summarized as follows:

1. Utilization of co-operating agents where the initial verification data is securely

stored within a secondary agent that resides at the initiator and co-operates with
a major agent that traverses the Internet. The intention to store the initial
verification data within the secondary agent and not within the initiator’s
memory is to enable the initiator to trace any tampering with the initial
verification data through the execution trace it creates and stores of the
secondary agent, which Vigna recommends in [51].

2. Verifications at the early execution of the agent at visited hosts on the identity

of the genuine initiator of the agent.

 6

3. Scrambling the gathered offers so having a dummy offer, which the initiator
generates, as the last offer within the chain of offers. Hence the malicious act of
a non-trusted host, which has tried to delete the offer of its predecessor by
deleting the last offer in the chain of offers, would be detected upon the agent’s
return. The initiator would check the availability of the dummy offer within the
chain.

4. Clearing the memory of an executing host from any data acquired as a result of
executing the agent before the host sends out the agent to the succeeding host in
the agent’s itinerary. An executing host may not respond to the request. The
denial of clearing request can be traced by implementing the execution traces
technique recommended by Vigna in [51].

5. Verifications upon the agent’s return to the initiator.

6. Transmission of cryptographic proofs of the data that agents have already
gathered, along with the agent.

Research is still ongoing for advances in securing the data that mobile agents gather.

The security refers to certain security properties, such as authenticity, confidentiality,
integrity, etc. The security techniques can be divided into two categories: (a) preventive
techniques and (b) detective techniques. The preventive techniques hinder malicious acts
to take place, whereas the detective techniques reveal the malicious acts that took place
through verification processes.

Cryptographic protocols are used to secure the data acquired by mobile agents. The

literature presents several protocols that assert the security of data acquired by mobile
agents [12, 13, 20, 23, 28, 29, 42, 47, 50, 51, 54, 55, 56]. However, some of the existing
protocols lack rigorous proofs of their correctness, such as the family of protocols in
[23]: (i) Publicly verifiable chained digital signature. (ii) Chained digital signature
protocol with forward privacy. (iii) Chained Mac protocol. (iv) Publicly verifiable
chained signature.

From the early 90’s and onwards the formal methods have been commonly used in

the design and in the reasoning about the correctness of security protocols [4, 26, 30].
They provide rigorous analysis for the system design, and for establishing its correctness
and reliability. Thus, they help in developing error-free security protocols. On the other
hand, the testing of protocols is not enough to ensure the liability and correctness of their
implementation, because of the unpredictable behavior and unbounded capabilities of
adversaries, and the dynamic behavior of mobile agents. The analysis would be infinite
since there are infinite set of traces and it is impossible to capture all configurations of
the environment and processes and that may fail the system. The implementation and
verification of the existing protocols using formal methods have later revealed subtle

 7

flaws in security protocols and showed their failure to accomplish some or all of the
claimed properties [4, 28, 30]. Intruders and malicious hosts were able to spy out data,
alter data stored within agents, force unjust authenticity, etc. The CSP-based tools
Casper [25] and FDR [18] are used to verify the data integrity properties of mobile
agents in [20]. Also a model checker, which is based on symbolic data representation
and uses Spi-calculus, is used to verify data integrity properties of mobile agents in [28].

The soundness of a protocol can be checked using formal methods of verification.

We apply formal methods to model and verify proposed protocol. The protocol
specifications and security properties are modeled formally using the formal verification
method STA (Symbolic Trace Analyzer). STA is an infinite-state exploration that is
based on symbolic techniques. It models a protocol as a system of concurrent processes,
using syntax similar to the syntax of Spi-calculus [3]. A particular configuration of the
system is expressed as: (a) a trace of input and output actions that results from
interaction between a process and its environment, and (b) the environment’s initial
knowledge. Commonly, systems are analyzed by searching for an insecure state starting
from an initial state, which might result in search of infinite transitions. The problem can
be tackled by analyzing a finite state system by imposing restrictions e.g. finite number
of messages an adversary can generate, though finding no attacks on the compact system
does not guarantee that there would not be attacks on the large scale systems. STA
analyzes transitions between configurations using a symbolic transition relation. The
symbolic transition relation reduces infinite transitions to a single symbolic relation,
where each input action should be preceded by a corresponding output action. Thus, it
performs a complete exploration of the infinite state space [6, 7] without the need to
impose restrictions to the model, e.g. finite set of messages an adversary can synthesize.
According to the authors in [8, 9, 16] the symbolic analysis is sound and complete.
Detecting an attack on the symbolic model would imply that an attack exists in the
infinite standard model and vice versa. The Security properties are expressed as traces
the protocol generates, and are verified by implementing the symbolic transition relation.
We verified the proposed protocol for data confidentiality, data authenticity, and strong
data integrity and the verifications detected no security attacks on the proposed protocol.
Hence, the proposed protocol can truly accomplish the intended security properties: data
confidentiality, data authenticity, and strong data integrity.

The rest of the paper is organized as follows. Section 2 presents the common

notations used in describing protocols. In section 3 defines the security properties of the
execution results of mobile agents which the proposed protocol aims to accomplish.
Section 4 discusses the security protocols that have been presented in the literature,
which address the security of the execution results of mobile agents, and the respective
security flaws revealed in the protocols. Section 5 describes our security protocol and
states initial assumptions. Section 6 recalls formal methods of protocol verification.
Section 7 describes on the STA verification method. Section 8 models the proposed
protocol and specifies its properties formally using the STA method. Section 9 presents

 8

the results of analyzing the protocol using the STA method for different runs, such as
single protocol run and two parallel runs of the protocol with the presence of an
adversary. Section 10 summarizes our contribution in a conclusion. Section 11 discusses
future directions of this work.

2 Protocols’ Common Notations

 In describing the security protocols of mobile agents, common notations are used
[17, 29, 41]. The host that initiates a mobile agent is denoted as i0 and is called the
initiator. A host that the agent visits and where it gets executed is denoted as ij, where j
ranges from 1 to n respective to the order of visit. A terminating agent is an agent that
returns back to the initiator i0 following to its visit to the n executing hosts. Thus, the
itinerary of a terminating agent is denoted as i0, i1, i2, … , in, i0. The execution result of
the agent at host ij is denoted as mj. Through the agent’s migration, the transfer of data m
from host ij to host ik is denoted as ij → ik: m, where ij and ik are executing hosts in the
agent’s itinerary. The program code and the static data are both denoted as ∏. The
encryption of plaintext m into a ciphertext is written as {m} , where is the public
key of host in which encrypted the data. A digital signature is written as an encryption
with a private signing key . The bare signature is the union of the digital signature
and signed data and is writte s . It is assumed that it is possible to deduce
the identity of the signer from a s re. The concatenation of two data m1 and m2 is
denoted as m1||m2, where concatenation refers to appending data m2 to another data m1.
The hash function is denoted as h, and h(m) stands for the hashing of data m. Figure 1
shows the common notations used in describing protocols.

Ki nKi n

S
S

 i0 Initiating host
 i0, i1, i2, … , in, i0 Agent’s itinerary
 ij → ik: m Transfer of data m from host ij to host ik
 {m} Signing data m with the private key of host in
 {m} Encrypting data m with the public key of host in
 h(m)
 m1||m

3 Security P

In this sect
data. The agen
[27]. The dynam

Si n
-1

Ki n

2

Fig. 1 C

roperties

ion specific
t encompass

ic data com

n a
i n
-1
ommo

securi
es the
prises

ignatu
i n

(m
-1

)

H
C

n

ty
tw
th
ashing data m
oncatenation of data m2 to data m1

notations in protocols’ description

 properties will be defined with respect to agent’s
o types of data: (i) Static data. (ii) Dynamic data

e following data types [17]:

9

 Fixed size changeable
 Dynamically allocated static
 Dynamically allocated changeable.

 The fixed size changeable data are the data that are set at the initiation of the agent

but to which changes are authorized, such as global variables.

 The dynamically allocated static data are the data that are acquired during the life

cycle of the agent but to which no later changes are authorized. Commonly, they are
referred to as execution results.

 The dynamically allocated changeable data are the data that are acquired during the

life cycle of the agent and to which changes might be authorized, such as register content
and stack.

This paper focuses on the security of the execution results of terminating mobile
agents. The principal scheme of data gathering mobile agents is that the agent is initiated
by host i0 and is sent out to a set of hosts i1, i2, … , in. The agent gets executed at each of
the visited hosts in the agent’s itinerary. The agent stores the result of execution at host ij as
mj for (1 ≤ j ≤ n). The execution results are modeled as a chain of m1, m2, … , mn, which is
stored within the agent. The agent, following to its visit to n executing hosts, returns the
chain of results to the initiator i0. The returned chain is expressed as m′1, m′2, … , m′n. The
returned execution result might differ from the genuine execution result mj for (1 ≤ j ≤ n)
due to tampering acts of adversaries. Hence, it is denoted as m′j for (1 ≤ j ≤ n).

The security properties of the execution results of mobile agents are defined below
[17, 29].

1. Data integrity: During the migration of the agent or its execution at visited hosts,
tampering with the already stored execution results mj for (1 ≤ j ≤ n) is
prevented, or at least any tampering will always be detected by the initiator upon
agent’s return. The data integrity requires that the chain of execution results m′1,
m′2, … , m′n which is returned to the initiator i0 matches the genuine chain of
execution results m1, m2, … , mn. Otherwise, the initiator i0 has a proof that the
genuine execution results had been tampered with. The data integrity property
refers to the following classes of protection:

• Insertion resilience: Data can only be appended to the chain m1, … , mj for

(j < n).
• Deletion resilience: Deletion of an execution result mj for (1 ≤ j ≤ n) from the

chain of results m1, … , mn is prevented, or at least is detected upon the
agent’s return to the initiator. If an execution result mj is deleted and the
chain of execution results reduces to m1 , … , mj-1 , mj+1 , … , mn, then the

 10

initiator i0 has a proof that an execution result is deleted from the chain of
results.

• Truncation resilience: Truncation of the chain m1, … , mj , … , mn at host ij
and reducing it to the chain m1, … , mj for (j < n) is prevented, or at least is
detected upon agent’s return to the initiator i0. The computed verification
terms, e.g. message authentication code would indicate inconsistency with
the returned chain of execution results.

• Strong forward integrity: None of the execution results in a chain can be
modified. The property necessitates that the returned execution result m′j
matches mj for (1 ≤ j ≤ n).

• Strong data integrity requires the four classes of protection: insertion
resilience, deletion resilience, truncation resilience, and strong forward
integrity.

2. Data non-repudiability: The initiator i0 can build a proof about the identity

of host ij that added the execution result m’j (1 ≤ j ≤ n) to the chain of
results m′1 , m′2 , … , m′n.

3. Data confidentiality: The chain of execution results m1, … , mj,, … , mn stored

within the agent can only be read by the initiator i0. No one else is permitted to
learn the plain text of the ciphered execution results that are stored within the
agent. Therefore, the unauthorized retrieval of information is prevented and the
chain of the ciphered execution results should not reveal information about its
contents to unauthorized entities. Note that an adversary may of course see the
chain of ciphered execution results, shown below.

 {m1} , … , {mj,} , … , {mn}

Nevertheless, as long as he is not able to get hold of the decryption keys, he is
still unable to deduce the plain text mj for (1 ≤ j ≤ n) and the system is still
deemed secure. Thus, it is fundamental to keep the encryption keys confidential
during the run of a protocol session.

Ki 1
Ki j

Ki n

4. Data authenticity: Upon agent’s return, the initiator i0 can determine for sure the
identity of host ij that appended m′j to the chain of execution results m′1, m′2, … , m′n.
The initiator i0 can be sure that the results that purport to be from a certain host were
indeed provided by that host. Thus, an adversary should not be able to impersonate a
host.

5. Origin-confidentiality: The identity of host ij for (1 ≤ j ≤ n) that generated and

added the execution result mj to the chain m1 , … , mn can only be known at host
i0. An executing host ik should not be able to deduce the identity of the
previously visited hosts ij for (1 ≤ j < k) from the agent. Though, it is possible for

 11

a malicious host ik to get the identity of host ik-1 where the execution result mj
was generated by analyzing the agent’s dynamic data just before and after the
agent visited it. Also, the identity of host ij-1 will possibly be revealed on the
network layer. This can be prevented by using anonymous connections [49]
which hide the identity of the previously visited host.

The objective of the proposed protocol is to accomplish authenticity,

confidentiality, and strong integrity of the execution results of mobile agents.

4 Related work and Security flaws

Several cryptographic protocols have been presented in the literature [14, 20, 22, 23, 28, 29]
that aim to secure the execution results of mobile agents. In this section we briefly discuss the
protocols that aim to preserve the confidentiality, authenticity, or integrity of data gathered by
mobile agents. The protocols are as follows:

 Targeted state protocol [22]
 Append only container protocol [22]
 Multi-hops protocol [14]
 Publicly verifiable chained digital signature protocol [23]
 Chained Digital Signature Protocol with Forward Privacy [23]
 Chained MAC Protocol [23]
 Publicly Verifiable Chained Signature Protocol [23]
 Configurable mobile agent data protection protocol [29]
 Mobile agent integrity protocol [20, 28]

4.1 Existing mobile agent security protocols

 Reasoning about the correctness of the protocols reveals several security flaws
[17, 28, 41]. The following discussion of the security protocols summarizes existing
security techniques.

 The Targeted State Protocol [22] is proposed to ensure the confidentiality of data

carried by a mobile agent. It is based on encrypting the data that should only be available
to a trusted host with the public key of the host. The initiator may intend to transmit
confidential data to a number of trusted hosts, so that a trusted host would only be able to
learn the confidential data that is intended for it. The initiator encrypts each confidential
data with the public key of the host for which the data should only be revealed, and then
signs it with its private key. The targeted state would be as follows:

in → in+1 : { {m1} , … , {mn} } Si 0
-1 Ki 1

Ki n

 12

The security flaw is that an adversary can strip off the initiator’s signature from the
targeted state, and then copy the targeted state into an agent of its own. Next, the
adversary signs the targeted state with its private key impersonating itself as the genuine
initiator. Next, the adversary sends its own agent to executing hosts i1, …, in. Each host
inspects the targeted state, decrypts the cipher text it can decrypt using its private
decryption key and makes the plain text m1, … , mn available to the agent. The agent
migrates back to the adversary carrying the plain text. Subsequently, the adversary
possesses the text that is supposed to be confidential and the initiator would never detect
such breach of privacy. The attack is illustrated by considering the agent’s targeted state
to contain a single plain text m1 encrypted with the public key of host i1. The initiator i0
sends out the agent code ∏0 and its targeted state to i1, as follows:

i0 → i1 : ∏0 , { {m1} } Si 0
-1 Ki 1

An adversary ia intercepts the communication, and then strips off the initiator’s
signature. Next, it copies the targeted state {m1} into an agent ∏a of its own, and then
signs the targeted state with its own signature. Next, it sends out the agent to host i1 as
follows:

Ki 1

ia → i1 : ∏a , { {m1} } Si a

-1 Ki 1
Host i1 innocently decrypts the cipher text using its private key hence it makes the plain
text m1 available to the adversary. The agent migrates back to the adversary as follows:

i1 → ia : ∏a , { m1} Si a
-1

 The Append Only Container Protocol [22] is proposed so that new objects can be

appended to a container of objects in an agent but any subsequent modification or
deletion of an object contained therein can be detected by the initiator i0 upon agent’s
return. Also, the insertion of a new object can be detected. The protocol relies on an
encrypted checksum Cn. The initial value of the checksum C0 is a nonce r that is chosen
randomly by the initiator and is encrypted with its public key so having {r} . The
nonce must be kept secret by the initiator, and is used in the verification of the protocol
upon agent’s return.

Ki 0

The agent migrates to n hosts. Each host executes the agent, signs the execution results
mn with its digital signing key , computes a new checksum Cn from the previous
checksum Cn-1 and the signed results mn , appends the execution results to the chain of
objects, and then sends out the agent with the new chain to the succeeding host in the
agent’s itinerary. The Append Only Container Protocol is defined as follows:

 Si n
-1

in → in+1 :{{m1} , … , {mn} , Cn } Si n

-1 Si 1
-1

 13

The checksum Cn is updated as follows:

Cn = {Cn-1 || (mn)} S
-1

Ki 0i n
Upon agent’s return, the initiator successively decrypts the checksums, and then

extracts the signatures of executing hosts. Next, it verifies the extracted signatures with
the corresponding objects in the container. The last verified checksum must be equal to
the initial nonce r.

The security flaw is that an adversary may collude with a host ij, which the agent

had previously visited, and then learn the checksum Cj at ij. Next, the adversary can
truncate the container up to the jth object without being detected if it replaces the
most recent checksum Cn with the checksum Cj that was present when the agent
firstly visited host ij for (1 ≤ j < n). Moreover, the adversary can replace the initially
provided execution result mj with a new execution result m′j if it computes a new
valid checksum based on the learnt Cj-1. The same type of attack can take place if the
agent visits a malicious host more than once. The attack violates the data integrity
property. Suppose, the agent visits a malicious host ij twice during its life cycle, then
host ij is able to perform any of the two attacks without being detected: (i) Truncate
the chain at mj so it is reduced to m1, … , mj . Moreover, it can send out the agent
with the reduced chain to a new set of executing hosts i′j+1 , … , i′n and replace the
chain of results m1, … , mj,, … , mn with m1, … , mj , m′j+1 , … , m′n. (ii) Replace the
initially provided execution result mj with a new execution result m′j and then
dispatch the agent again to hosts ik for (j < k ≤ n). Another security flaw is that an
adversary can append arbitrary objects to the container without being detected if it
updates the checksum accordingly.

The Multi-hops Protocol [14] has the same purpose as the Append Only Container
Protocol. The protocol uses: (a) a hash chain γn, (b) a message authentication code µn, (c)
a static part ∏ that includes: program code, and static (initialization) data, (d) a chain of
execution results in plain Mn, and (e) A chain of encapsulated execution results Pn. The
chain of execution results Mn at host in is the concatenation of the execution results mj at
visited hosts for (1 ≤ j ≤ n), and the corresponding hosts’ identities in. The protocol binds
the static part ∏ to the terms: Mn,Pn, γn, and µn. At instantiation, γn is set to γ0 = h(r)
where r is chosen randomly by the initiator i0, and the terms: µn, Mn,Pn are left empty. At
each executing host, the agent updates the terms Mn,Pn, γn, and µn to incorporate the
execution result at the host. The protocol is described as follows:

γn = h (γn−1)
µn = h (mn, γn−1, µn−1, in+1)
Pn = Pn−1 || (µn) Si n

-1

 14

Mn = Mn−1 || mn || in
in → in+1 : (∏, Mn, Pn), {γn} , µn

Ki n+1

 The message authentication code µn that is computed at host in acts as a chaining
relation that incorporates: (a) the nonce computed at the preceding host γn−1, (b) the
message authentication code computed at the preceding host µn-1, which summarizes all
execution results previously obtained by the agent, (c) the execution result at the current
host mn, and (d) the identity of next host in+1 in the agent’s itinerary. The protocol data Pn is
a chain of the signed message authentication codes µn for (1 ≤ j ≤ n).

 The security flaw is that an adversary can collude with host ij, which the agent had
previously visited, and then learn γj−1 and µj−1. Next, it can truncate the gathered data just
after data of host ij and then send the agent with the learnt values of γj−1 and µj−1 to host/s
of its selection. The visited hosts would append data to the protocol and compute valid
values for γj and µj using the learnt values of γj−1 and µj−1. Moreover, the adversary can
replace the initially provided execution result mj with a new execution result m′j if it
computes valid values for γj and µj using the learnt values of γj−1 and µj−1. Hence, the
initiator would never detect the data truncation or replacement.

 The Publicly Verifiable Chained Digital Signature Protocol [23] aims to preserve the

confidentiality and integrity of data acquired by mobile agents. The protocol uses a hash
chain Cn and a chain of encapsulated execution results (M1 , … , Mn). The hash chain Cn
binds the encapsulated execution result at the preceding host Mn−1 to the identity of the
next host in the agent’s itinerary in+1. The encapsulated execution result Mn incorporates the
execution result at the current host mn, the randomly selected nonce rn, and the hash chain
Cn. The nonce rn prevents an adversary from attacking the encryption. The m0 is a dummy
data provided by the initiator i0.

The protocol is defined as follows:

Mn = { {mn , rn } ,Cn } K Si n
-1

Cn = h (Mn−1, in+1)
i 0

M0 = {{m0 , r0} ,C0 } K Si 0
-1

i 0

C0 = h (r0, i1)
in → in+1 : { M0 , … , Mn}

The security of the protocol is based on the assumption that an attacker does not change
the last element Mn in the chain.

 The security flaw is that an adversary can truncate chain elements and can grow a
fake stem, since the input to all previous chaining relations is known. Elements can be

 15

appended to the chain at the discretion of the adversary, though the validity of the
chaining relation is maintained. The adversary sends the agent with a chain of execution
results, e.g. M0, … , Mj-1 to host ij of its own choice and repeats the process until it is
satisfied with the collected elements. Then, the adversary chooses an element and pastes
it into agent and sends the agent to ij+1. Another security flaw is that an adversary can
append arbitrary objects, generated for the terms of the adversary rather than the
initiator, to the container without being detected.

 The Chained Digital Signature Protocol with Forward Privacy [23] has the same

purpose as the Publicly Verifiable Chained Digital Signature Protocol as well as forward
privacy/ origin confidentiality. It proposes a change in the order of encrypting and signing
the execution results so as to accomplish forward privacy. The execution results at a visited
host are firstly signed by the host and then are encrypted with the public key of the initiator.
Hence, no one other than the initiator can decrypt the ciphered execution results. The
protocol uses a hash chain Cn and a chain of encapsulated execution results (M1 , … , Mn).
The hash chain Cn binds the encapsulated execution result at the preceding host Mn−1 to the
identity of the next host in the agent’s itinerary in+1 and a random nonce the host selects rn .
The encapsulated execution result Mn incorporates the execution result at the current host mn,
the randomly selected nonce rn, and the hash chain Cn. The nonce rn prevents an adversary
from attacking the encryption. The m0 is a dummy data provided by the initiator i0.

-1

The protocol is defined as follows:

Mn = {{mn } , rn} , Cn

Cn = h (Mn−1, rn , in+1)
 n

 Si
-1 Ki 0

M0 = {{m0 } , r0 } , C0 -1 Ki

C0 = h (r0, i1)
 Si 0 0

in → in+1 : { M0 , … , Mn}

 The problem with the protocol is that executing hosts would not be able to know the
identity of the initiator of agent, since the signature of the initiator is encrypted within
M0.

 The security flaw of the protocol is that an adversary can truncate chain elements
and can grow a fake stem, since the input to all previous chaining relations is known.
Elements can be appended to the chain at the discretion of the adversary, though the
validity of the chaining relation is maintained. The adversary sends the agent with a
chain of execution results, e.g. M0, … , Mj-1 to host ij of its own choice and repeats the
process until it is satisfied with the collected elements. Then, the adversary chooses an
element and pastes it into agent and sends the agent to ij+1. Another security flaw is that
an adversary can append arbitrary objects, generated for the terms of the adversary rather
than the initiator, to the agent without being detected.

 16

 The Chained MAC Protocol [23] aims to preserve confidentiality, integrity, and
forward privacy of data acquired by mobile agents. It does not provide authenticity. The
protocol uses a hash chain Cn and a chain of encapsulated execution results (M0, … ,
Mn). The executing host in computes the hash chain of the succeeding host Cn+1. The hash
chain Cn+1 binds the identity of the succeeding host in+1 to the hash chain Cn, execution
results mn, and a random nonce rn generated at the current host in. The encapsulated
execution result at a host Mn binds the random nonce rn and the execution results mn
generated at the host to the identity of the succeeding host in+1. -1

Mn = { rn , mn , in+1} for n ≥ 0 K

Cn+1 = h (Cn , rn , mn , in+1) for n ≥ 1
C0 = {r0 , m0 , i1 }
in → in+1 : { M0 , … , Mn}, Cn+1 for n ≥ 0

i 0

Ki 0

 The problem with the protocol is that executing hosts would not be able to know the
identity of the initiator of agent.

 The security flaw of the protocol is that an adversary can collude with host ij, which
the agent had previously visited and had stored the hash chain Cj , and sends the agent
back to it. The host can then truncate the gathered data just after data of host ij and
replace its initial encapsulated execution result Mj with a new encapsulated execution
result M′j . Next, it sends the agent with the updated hash chain C′j+1 to host/s of its
selection. Hence, the initiator would never detect the data truncation or replacement.
Another security flaw is that an adversary can truncate chain elements and can grow a
fake stem, since the input to all previous chaining relations is known. Elements can be
appended to the chain at the discretion of the adversary, though the validity of the
chaining relation is maintained. The adversary sends the agent with a chain of execution
results, e.g. M0, … , Mj-1 to host ij of its own choice and repeats the process until it is
satisfied with the collected elements. Then, the adversary chooses an element and pastes
it into agent and sends the agent to ij+1. Another security flaw is that an adversary can
append arbitrary objects, generated for the terms of the adversary rather than the
initiator, to the container without being detected.

 The Publicly Verifiable Chained Signature Protocol [23] aims to preserve

confidentiality and integrity of data acquired by mobile agents. The protocol does not
provide authenticity. The protocol uses temporary key pairs (private signing key, and the
corresponding verification key) and a chain of encapsulated execution results. Each host
generates a pair of keys (private and public). The host encloses the public key yn+1 it
generates within the encapsulated execution result computed at its host Mn and then signs
the encapsulated execution result with the private key yn it received from its predecessor.
It provides its successor with the private key it generates yn+1. At initiation, the initiator
provides the agent with a dummy data m0 and an initial key pair. It encloses the public

 17

key y1 it generates within the encapsulated execution result M0 and then signs the
encapsulated execution result with its private key. It provides host i1 with the private key
y1. The hash chain Cn at a host bins the encapsulated execution results at the preceding
host Mn-1 to the identity of the succeeding host in+1. The encapsulated execution result Mn
incorporates the following data terms that are generated at the host: data mn , a random
nonce rn , a hash chain Cn , and a public verification key corresponding to the succeeding
host yn+1.

Mn = {{ mn , rn } , Cn , yn+1 } for n ≥ 1
M0 = {{ m0 , r0 } , C0 , y1 }
Cn = h (Mn-1 , in+1) for n ≥ 1
C0 = h{ r0 , i1}
in → in+1 : { M0 , … , Mn}, yn+1 for n ≥ 0

 The security flaws of the protocol are: (i) An adversary can intercept the agent and
then decrypts the encapsulated execution result M0 with the signature verification
key of the signer. Next, it signs the decrypted term of M0 with its private key
impersonating the genuine initiator. Executing hosts would encrypt the data they
provide to the agent with the public key of the adversary believing that it is the
genuine initiator. Hence, the adversary can breach the privacy of the gathered data.
(ii) An adversary can collude with host ij, which the agent had previously visited and
had stored the private key it had received from the preceding host yn , and sends the
agent back to it. The host can then truncate the gathered data just after data of host ij and
replace its initial encapsulated execution result Mj with a new encapsulated execution
result M′j . Next, it sends the agent to host/s of its selection. Hence, the initiator would
never detect the data truncation or replacement. (iii) An adversary can truncate chain
elements and can grow a fake stem, since the input to all previous chaining relations is
known. Elements can be appended to the chain at the discretion of the adversary, though
the validity of the chaining relation is maintained. The adversary sends the agent with
a chain of execution results, e.g. M0, … , Mj-1 to host ij of its own choice and repeats
the process until it is satisfied with the collected elements. Then, the adversary chooses
an element and pastes it into agent and sends the agent to ij+1. (iv) An adversary can
append arbitrary objects, generated for the terms of the adversary rather than the
initiator, to the container without being detected.

Ki 0
-1

Sy n
Ki 0

-1 Si 0

 The Configurable Mobile Agent Data Protection Protocol [29] is intended to

accomplish a combination of the security properties: authenticity, confidentiality,
integrity, origin confidentiality/ forward privacy, and non-repudiation. The protocol can
be configured for the properties of concern. The security is based on: (a) securely storing
the addresses of next hosts to be visited, and (b) binding the static part (program code
and static data) ∏ to a chain of encapsulated execution results at hosts in the agent’s

 18

itinerary (M0 , …, Mn) [40, 41]. The static part ∏ is paired with a timestamp t and signed
by the initiator so having ∏0 = {∏,t} . The P0 is the agent’s initial itinerary. The Pn
is the set of new hosts added to agent’s initial itinerary. The Mn is a chain of
encapsulated execution results. The Mn is composed of two parts: Dn and Cn. The Dn
binds the execution results at a host dn to Pn. The Cn binds the static part ∏0 to: (a) the Cn-

1 that is computed at the preceding host, (b) the identity of the succeeding host in+1, (c)
the execution result dn at host in , and (d) the addresses of new hosts Pn added to agent’s
initial itinerary P0.

-1 Si 0

 The protocol configuration for data-authenticity, data-confidentiality, and data-
integrity properties is as follows:

in in+1 : ∏0, {M0, … , Mn}
where, ∏0 = {∏, t} , and Mn = Dn || Cn -1 Si 0

 P0 if in = i0
Dn = {dn} , Pn otherwise

 (P0, ∏0, i1) if in = i0

Cn= { (dn, Pn, ∏0, Cn-1 , in+1)} otherwise

Ki 0
+

-1 Si 0
Ki 0
 + -1 Si n

 The security flaw is that an adversary ia may intercept the communication between i1
and i0, and then can strip off the initiator’s signature from ∏0 and learn the pair (∏, t) in
plain text. Next, it extracts the tuple (P0, ∏0

 , i1), and then appends its signature to the tuple
so having (P0, ∏0

 , i1). Next, it signs the pair (∏, t) with its private key so having
∏0′= {∏, t} , and computes C0′ = (P0, ∏0

 , i1). Next, it sends the agent with the
fake identifiers ∏0′, and C0′ rather than the original identities ∏0, and C0 to host i1
impersonating the genuine initiator. Host i1 would receive the agent and incorrectly
authenticate ia as the genuine initiator of the agent. Thus, it would encrypt its own data
with the public key of the adversary ia rather than that of the genuine initiator i0. The
agent continues migrating till all hosts defined in the set {P0, … , Pn} are visited. Next,
the adversary intercepts the agent and spies out the gathered data. Next, the intruder ia
sends the agent with the initial identifiers ∏0, D0, C0 as a fresh protocol instance. The
attack would result in erroneous authenticity to ia and breach of privacy of the gathered
data. Actually, host ia sends two instances of the protocol. The first instance with D0 and
the fake identifiers: ∏0′, and C0′, and the second instance with original identifiers: ∏0,
D0, and C0. As a result, the adversary would possess the data that should only be
revealed to the genuine initiator. The initiator would never detect such breach of privacy.
Another attack is that an adversary can truncate the data acquired at hosts visited
between the first and the second visits of the agent to its host hence can alter the data it
has provided to the agent in the first visit maintaining the consistency of checksums of

-1 Si a -1 Si a
-1 Si a

 19

the gathered data.

 The Mobile Agent Integrity Protocol [20, 28] aims to preserve the integrity of data

gathered by mobile agents. The protocol is based on the chain of execution results ADn,
a message integrity code MICn, and hash chain of a nonce Cn. The ADn is a chain of
execution results at hosts in the agent’s itinerary as {D1, … , Dn}. The MICn binds the
execution result Dn and hash chain of the nonce Cn computed at the current host to the
MICn-1 computed at the preceding host. Upon agent’s return, the code is verified to
detect any tampering with the already gathered data. At instantiation, Cn is set to C0 = r
where r is chosen randomly by the initiator i0. The MIC0, and AD0 are left empty. The
protocol is defined as follows:

ADn = {D1, … , Dn} = ADn-1 U {Di}
MICn = h (Dn, Cn, MICn-1)

Cn = h (Cn-1)
in in+1 : MICn ,{Cn} , ADn

K

 Upon agent’s return, the initiator
{D1, … , Dn} and then verifies that
the message integrity code that has ju

 The security flaw is that an ad
already gathered data, since the ter
integrity code MICn at host in are kn
can append arbitrary objects, gener
initiator, to the container without bei

4.2 Causes of security flaws and re

 The discussion in section 4
specifications that would result in se
protocol that: (a) implements the
protocols’ specifications that may
preventing or detecting the security
summarizes the flaws revealed in exi

 +

i n+1

computes MIC′n from the values of {C0 , … , Cn} and
the computed message integrity code MIC′n matches
st been received from the agent.

versary can read and append arbitrary data to the
ms MICn-1 and Cn-1 that are needed to compute the
own. Another security flaw is that a non-trusted host
ated for the terms of the adversary rather than the
ng detected.

medies

.1 is advantageous in identifying the protocol
curity flaws and guiding us in proposing a security
reliable existing security techniques, (b) avoids

 result in security flaws, and (c) is capable of
threats that existing protocols fail to detect. Table 1
sting security protocols.

20

Table 1. Flaws revealed in the mobile agents security protocols
Security protocol Aimed

properties

Failed property Type of flaw/s *

Targeted state protocol Confidentiality Confidentiality Adversary can breach privacy
of collected data

Append only container
protocol

Authenticity

Integrity

Authenticity

Integrity

Returned data are erroneously
authenticated
Co-operating hosts can truncate
collected data
Adversary can append fake
data. Hence, returned data may
not belong to agent of concern

Multi-hops protocol Integrity
Authenticity

Integrity

Co-operating hosts can truncate
collected data.
Adversary can append fake
data. Hence, returned data may
not belong to agent of concern

Publicly verifiable chained
digital signature protocol

Integrity
Confidentiality

Integrity Co-operating hosts can truncate
collected data
Adversary can append fake
data. Hence, returned data may
not belong to agent of concern

Chained Digital Signature
Protocol with Forward
Privacy Protocol

Integrity
Confidentiality
Forward privacy

Integrity Co-operating hosts can truncate
collected data
Adversary can append fake
data. Hence, returned data may
not belong to agent of concern

Chained MAC Protocol Integrity
Confidentiality
Forward privacy

Integrity

Co-operating hosts can truncate
collected data
Adversary can append fake
data. Hence, returned data may
not belong to agent of concern

Publicly Verifiable Chained
Signature Protocol

Integrity
Confidentiality

Integrity

Co-operating hosts can truncate
collected data
Adversary can append fake
data. Hence, data may not
belong to agent of concern

Configurable mobile agent
data protection protocol

Confidentiality
Authenticity
Integrity
Non-repudiation
Forward privacy

Confidentiality

Integrity

Adversary can breach privacy
of collected data
Co-operating hosts can truncate
collected data

Mobile agent integrity
protocol

Integrity Integrity Co-operating hosts can truncate
collected data
Adversary can append fake
data. Hence, returned data may
not belong to agent of concern

* Flaws would not be detected by the initiator i0.

 21

The security flaws are attributed to the followings with respect to the security attack:

A. Breach of privacy

Problem: In the Targeted State Protocol and static part in the Configurable Mobile Agent
Data Protection Protocol are signed with the initiator’s private key. An adversary might
intercept the agent and decrypts the signed data/ part. It would then send the decrypted
data/ part signed with its private key. Recipients would assume that the signer is the
genuine initiator of the agent, and would then encrypt the data they provide to the agent
with the public key of the adversary. Hence, the adversary would be able to learn the
encrypted data.

Remedy: the initiator should follow the signing of a term by an encryption with the
public key of the recipient. The term would be received signed with the signature of the
genuine initiator. An adversary would not be able to decrypt the signed term and signs it
with its private key.

B. Erroneous authentication

Problem: In the Append Only Container Protocol, the execution result at a host is
just encrypted with the private key of the host. An adversary may intercept the
agent and decrypts the execution results. It would then sign the execution results
with private keys of co-operating hosts, and update the checksum accordingly.
Consequently, the initiator would assume that the returned data were provided by
genuine executing hosts. The same flaw exists in the Chained MAC Protocol and
the Publicly Verifiable Chained Signature Protocol. The two protocols do not aim to
preserve authenticity, but it is just a remark.

Remedy: an executing host should firstly sign the data it provides to the agent with its
private key and then encrypts it with the public key of the initiator. The data would be
received at the initiator signed with the respective private keys of the genuine executing
hosts.

C. Appending a fake stem to the agent

The inputs that are needed to compute an encapsulated execution results at a hosts are
available. Hence, an adversary can append fake execution results to the agent without
being detected as follows:

1. An intruder may intercept the agent and append an offer to the results of the agent’s

execution. The intruder is a non-scheduled host in the agent’s itinerary. The initiator
would not detect the malicious act upon the agent’s return. The attack is possible in
the Append Only Container Protocol.

 22

Remedy: The terms that are necessary to compute an encapsulated execution result
at a host and were computed at the predecessor host should be transmitted from the
predecessor host to the host encrypted with the public key of the host. The terms are
depicted in Table 2

In the following protocols, a non-trusted host that participates in the protocol may
send the agent to a succeeding host of its selection. The succeeding host would
append its offer to the execution results of the agent, though the initiator would
detect the malicious act upon the agent’s return. Each partial execution result
incorporates the identity of the respective succeeding host.

 Multi-Hops Protocol
 Publicly Verifiable Chained Digital Signature Protocol
 Mobile Agent Integrity Protocol
 Chained MAC Protocol
 Publicly Verifiable Chained Signature Protocol
 Configurable Mobile Agent Data Protection Protocol
 Chained Digital Signature Protocol with Forward Privacy Protocol

2. The execution results that are returned to the agent might be generated for a different

protocol run or for a different initiator.

 The execution results of the Append Only Container protocol neither
incorporate an identifier of the protocol run of concern nor the identity of the
initiator within the execution results.

 The execution results of the following protocols incorporate a random nonce
generated by the initiator within the execution results:

− Multi-Hops Protocol
− Mobile Agent Integrity Protocol

 The execution results of the Configurable Mobile Agent Data Protection
Protocol incorporate the followings within the execution results.

° Timestamp generated by the initiator and uniquely identifies the
protocol run of concern

° Identity of the first host in the agent’s itinerary
° Identity of the initiator within the execution results

 The execution results of the following protocols:

 23

− Publicly verifiable chained digital signature protocol
− Chained Digital Signature Protocol with Forward Privacy Protocol
− Chained MAC Protocol
− Publicly Verifiable Chained Signature Protocol

 incorporate the followings within the execution results:

° Random nonce generated by the initiator that uniquely identifies the

protocol run of concern
° Dummy data generated by the initiator
° Identity of the first host in the agent’s itinerary
° Identity of the initiator within the execution results.

Remedy: incorporate the following terms within each encapsulated execution result.

° Random nonce generated by the initiator or a timestamp generated by
the initiator and uniquely identifies the protocol run of concern

° Dummy data generated by the initiator
° Identity of the first host in the agent’s itinerary
° Identity of the initiator within the execution results.

Moreover, store the terms securely with an agent that is stationary at the initiator. It
might be assumed that it is enough to store the terms securely in the memory of the
initiator, though an adversary might tamper with the memory of initiator. Hence, the
verifications of the two terms would not be accurate. The use of a secondary agent to
store the verification terms (identity of the initiator and the identifier of the protocol
run) would enable the initiator to trace any manipulation with the terms by the use of
execution traces. Vigna in [51] recommends the agent executor to create a trace of
the agent’s execution. The trace contains the lines of the agent’s code that were
executed as well as any new values assigned to initial verification terms that were
stored within the stationary agent. The trace of the agent’s execution is to be stored
at the executing host for a limited time. Upon the initiator’s request, each executing
the host signs the execution trace and forwards it to the succeeding host in the
agent’s itinerary. The accumulative execution traces are forwarded to the initiator.
We propose to implement the technique to store the trace of execution of the
secondary at the initiator, thus the initiator would be able to verify the terms upon
the agent’s return through the stored execution trace. Usually execution traces
require large amounts of resources to the storage of validating information.
Conversely the execution trace of the secondary agent would be short as compared
to the execution traces of the migrating agent.

 24

D. Truncation and/ or substitution of execution results

Problem: An adversary can truncate the data acquired at hosts visited between the first
and the second visits of the agent to its host hence can alter the data it has provided to
the agent in the first visit maintaining the consistency of the chaining relation of the
gathered data. The attack requires that the non-trusted host has stored the chaining
relation that was present when the agent has firstly visited it. Table 2 identifies the terms
computed at the predecessor host that are necessary to enable an adversary to truncate
and/ or alter gathered data and to maintain the consistency of chaining relation/s. Hence,
the initiator would not be able to detect the malicious act of the adversary.
Remedy: Ensure that an executing host clears its memory from any terms acquired as a
result of executing the agent before it dispatches the agent to the next host in the agent’s
itinerary. We propose to design the migrating agent in such a way that it requests an
executing host to clear its memory from any terms acquired as a result of executing the
agent before it dispatches the agent to the next host in the agent’s itinerary. However, an
executing host may not respond to the request. The denial of clearing request can be
traced by implementing the execution traces technique recommended by Vigna in [51].
The technique requests an executing host to create and sign the execution trace, and to
store it so as to be forwarded to the initiator upon request. We recommend the execution
trace to be limited to the line of code that requests the clearing of the memory of the
executing hosts; otherwise the trace of all executable lines of the agent would be
extremely long and require large amounts of resources of storage at the executing hosts.
Moreover, it would lead to overburden the communication channels as traces are
transmitted to the initiator upon request.

Table 2 Terms computed at the predecessor host and are necessary for an adversary to
perform a non-detectable data truncation/ alteration

Security protocol Necessary terms
Targeted state protocol None
Append only container protocol Checksum Cn-1

Multi-hops protocol Message authentication code µn-1 , hash
chain γn-1

Publicly verifiable chained digital signature protocol Encapsulated execution results Mn-1

Chained Digital Signature Protocol with Forward Privacy
Protocol

Encapsulated execution results Mn-1

Chained MAC Protocol Hash chain Cn computed at its predecessor

Publicly Verifiable Chained Signature Protocol Encapsulated execution results Mn-1, and
the private signature it received from its
predecessor yn-1

Configurable mobile agent data protection protocol Static part and a timestamp signed by
initiator ∏0, chaining relation Cn-1

Mobile agent integrity protocol Hash chain of the nonce Cn-1 , and a
Message Integrity Code MICn-1

 25

5 The Proposed Protocol

 In the previous section, we can notice that the existing protocols failed to hinder or
detect at least one of the following security threats:

 Breach of privacy
 Erroneous authentication
 Truncation of data
 Irrelevant data gathering

 The breach of privacy can be prohibited by encrypting the data with the public key
of the recipient host, whereas, the erroneous authentication cannot be prohibited just by
transmitting a digitally signed data. An adversary can decrypt the signed data with the
respective public verification key and then signs the data with its private key. However,
a host can prohibit the erroneous authentication flaw by transmitting the signed data
encrypted with the public key of the recipient host. The irrelevant data gathering can
be detected by incorporating initial verification terms within the gathered data. The
verification terms identify the agent of concern. The initiator could then check the
availability of the terms within the data returned to the agent. If the check fails, then the
gathered data are irrelevant to the agent of concern. The truncation of data is the
common flaw in the existing security protocols and is the most difficult to deter. In this
paper, we propose a security protocol that aims to preserve authenticity, confidentiality,
and strong integrity of the execution results of data gathering mobile agents. The main
focus is to ensure the strong integrity of the results with the emphasis on robustness to
data-truncation.

In setting up the protocol, we assume free-roaming mobile agents, which are free to
autonomously choose the next host in the agent’s itinerary. The choice would be based
on the data acquired through their execution. Agents are assumed to migrate through
public channels. Also, we assume that hosts execute the right code of an agent. Thus, an
agent migrating from one host to another is simply represented by a message that only
contains the execution results of the agent. The public encryption keys of the initiator
and a preceding host in the agent’s itinerary, which a participating host would need for
encrypting the data to transmit, can be found in the server’s known-hosts list or are
distributed to the host upon the request of the key from the relevant host. We consider
the Dolev-Yao model of intruder [55] and apply it to mobile agents. A mobile agent
migrates to every host in the agent’s itinerary where it gets executed and gathers the
execution results. Finally the agent returns to the initiator where the execution results are
decrypted, verified and sorted out for a decision making. The intruder may impose an
attack on the data provided by one or more of the executing hosts. It would be able to
intercept, read, delete, fake, append, insert, or replace any of the data gathered by mobile
agents. The initial knowledge of an adversary includes channels names, identities of

 26

participating hosts and their respective public keys and signature verification keys, a message
it can intercept, and an old nonce.

5.1 Notations specific to the protocol

Figure 2 summarizes the notations that are used to describe the proposed protocol.

A Major agent

As Secondary agent
n Number of visited hosts
j Order of the current host among the visited hosts
i0 Identity of the initiator
ij Identity of an executing host, where 1 ≤ j ≤ n
r Nonce freshly generated by the initiator that identifies a protocol run
mj Data requested by the major agent A and generated by host ij

m0 Dummy data generated by host i0
δj Data integrity code at ij
λj Offer provided at host ij
λ Chain of jumbled offers (λj , λj-1 , … , λ1 , λ0)
γj Hash chain of a nonce that indicates the number of the actually visited

hosts

Fig.2 Notations used in describing the protocol

5.2 Formal description of the proposed protocol

The proposed protocol requires the initiator to create two co-operating agents A and
As. The agent A is a major agent that traverses the Internet and gathers particular data. At
the first instance of the protocol run, the initiator i0 generates a fresh nonce r that
identifies the run. Next, the initiator dispatches the agent A to host i1, and then the agent
is free to autonomously choose the next host to visit at each migration step during its life
cycle. Each visited host provides the agent A with the requested data. When the agent A
completes its execution at last host in the agent’s itinerary, it returns to the initiator with
the results of execution at the visited hosts. Upon the agent’s return, the agent A co-
operates with the secondary agent As, which resides at the initiating host and securely
stores the initial verification data, and carries out a set of verifications on the execution
results. The collective data from the two agents would be utilized in the detection of any
malicious act performed on the execution results, and would be sufficient to identify any
tampering with the results. The agent A can be represented as a sequence of messages
communicated between the executing hosts, with the initiating host starting the sequence
of messages by sending a preliminary message and finally receiving the summary
message that summarizes the execution results at different executing servers. The

 27

migration of the agent A from one host to anther is simply modeled by sending a data
message. The protocol can be described as follows:

γj = h(γj-1), where γ0 = r
δj = h(mj , δj-1) , where δ0 = h(i0)

λj = { {mj , δ0 , ij+1 , γj } } , where λ0 = {m0}

ij ij+1 : { λj , … , λ1 , … ,

K
+

K
+ -Si j

5.3 Sequence of messages in the propose

 The protocol can be expressed as a se
the hosts participating in the protocol run. F
the protocol of an initiator and three execut
the initiator i0. Next, it migrates to hosts i1,
initiator i0 with the execution results. Figure 3
of messages.

Message 1 i0 → i1: { {m0} , h(i0), {h

Message 2 i1 → i2: { { {m1, h(i0), i2, h

Ki 0
+

 h (m1, h(i0)), {h(i0)

Message 3 i2 → i3: { { {m2, h(i0), i3, h2

 { {m1, h(i0) , i2, h(r

 h(m2, h(m1, h(i0)))

Message 4 i3 → i0: { { {m3, h(i0), i0, h3

 { {m2, h(i0), i3, h2(

 { {m1, h(i0) , i2, h(r

 h(m3, h(m2, h(m1, h

Fig. 3 Sequence of messag

 2
 1
 λ0, δj , { δ0} , γj }
i 0 i 0

Si 0

 -1

d protocol

quence of messages co
or simplicity, we consid
ing hosts. The agent s
i2, and i3 successively.
shows the protocol ex

 (i0)} , r }

(r)} } , {m0} ,
Si 0
-1Si 1

Ki 1
+

Ki 0
+ Ki 0

+

} , h(r)} -1Si 0
Ki 2

+

(r)} } , Ki 0
+ -1Si 2

)} } , {m0} , -1Si 1 Ki 0
+ Ki 0

+

, {h(i0)} , h2(r)} -1Si 0 Ki 3
+

(r)} } , -1Si 3
Ki 0

+

r)} } , -1Si 2 Ki 0
+

)} } , {m0} , -1Si 1
Ki 0

+ Ki 0
+

(i0)))), {h(i0)} , -1Si 0

es in the proposed protoc

8

+

Ki j+1

mmunicated between
er a small instance of

tarts its itinerary from
Finally, it returns to the
pressed as a sequence
 -1
 h3(r)} Ki 0
+
ol

5.4 Origin of the proposed protocol

The proposed protocol is derived from the Multi-hops protocol [14], which was
described in section 4. The security of the Multi-hops protocol relies on : (a) a hash chain
γn, (b) a message authentication code µn, (c) a static part ∏ that includes: program code,
and static (initialization) data, (d) a chain of the execution results Mn in plain, and (e) a
chain of encapsulated offers Pn. In the Multi-hops protocol, the message authentication
code µn at host in incorporates: (a) the data mn that the host provides, (b) the identity of the
succeeding host in+1, (c) the message authentication code computed at the preceding host
µn-1, and (d) a chained hash of a nonce γn. A message authentication code µn is secured by
applying a hash function to the relation. Subsequently, the hash of the message
authentication code is digitally signed by host in so that the initiator would authenticate
host in as the provider of the data. At initialization the γn is set to γ0 = h(r), where r is a
random nonce chosen by the initiator i0. The chain of the execution results Mn at host in is
the concatenation of the execution results mj at the visited hosts for (1 ≤ j ≤ n) and the
corresponding hosts’ identities in.. The a ent’s transmission between host in and host in+1 is
represented by the tuple (∏, Mn, Pn ,{γn}

-

In the Multi-hops protocol, an ad

without being detected. The proposed
introducing the followings security tech

1. Creating two co-operating age
which is stationary at the init
initialization data necessary fo
agent’s return.

2. Carrying out verifications on t
execution of the agent at visited
and contained within the migra
of the genuine initiator.

3. Jumbling the gathered offers to
of the preceding host.

4. Requesting a visited host to cle
result of executing the agent
succeeding host in the agent’s i

In addition, the proposed protocol mod
protocol as described below.

1. Remove the static part ∏ and th

description

g1

 , µn). Ki n+1

+

versary can truncate data and/ or replace data
 protocol rectifies the Multi-hops protocol by
niques:

nts. A migrating agent and a secondary agent,
iator. The secondary agent securely stores the
r accurate verifications of the protocol upon the

he identity of the genuine initiator, at the early
 hosts, using a cipher text signed by the initiator

ting agent. The cipher securely stores the identity

 mislead an adversary trying to truncate the offer

ar its own memory from any data acquired as a
, before the host sends out the agent to the
tinerary.

ifies the cryptographic proofs of the Multi-hops

e chain of execution results Mn from the protocol

29

2. The chain of encapsulated offers Pn is replaced with a chain of publicly encrypted
offers.

3. In the Multi-hops protocol, the encrypted offer incorporates the execution results
at the previously visited hosts. The proposed protocol instead incorporates the
cipher that securely stores the identity of the genuine initiator. The offer a host
provides incorporates: (a) the data a host provides, (b) the cipher that securely
stores the identity of the genuine initiator, (c) the identity of the succeeding host,
and (d) a hash chain.

4. In the Multi-hops protocol, each executing host computes a hash of the offer it
provides and then signs the computed hash with its private key, whereas each
executing host in the proposed protocol signs the offer with its private key and
then encrypts it with the public key of the initiator.

5. The message authentication code µn, which is computed at the most recently
visited host and incorporates the execution results at visited hosts, is replaced with
a data integrity code. The data integrity code is computed as a hash of the data a
host provides, and the data integrity code computed at the preceding host.

6. In the Multi-hops protocol the most recently computed hash chain, which
stands alone and is not within an offer, is encrypted with the public key
of the succeeding host in the agent’s itinerary. In the proposed protocol,
the accumulative execution results are encrypted with the public key of
the succeeding host in the agent’s itinerary.

7. In the Multi-hops protocol the agent’s transmission is represented by a message
that incorporates: the static part; a chain of execution results; a chain of
encapsulated offers; the most recent hash chain and encrypted with the public key
of the succeeding host; the most recent hash chain. In the proposed protocol, the
agent’s transmission is represented by an encrypted message that incorporates: the
chain of the publicly encrypted offers; the most recent data integrity code; a
cipher that securely stores the identity of the genuine initiator; the most recent
hash chain. The message is encrypted with the public key of the succeeding host
in the agent’s itinerary.

5.5 Informal description of the proposed protocol

 Initialization

The initiator i0 completes the followings in the sequence given below:

1. Creates two co-operating agents A and As. The agent A is a migrating agent,
while the agent As is stationary at host i0.

2. Picks a nonce r randomly and assigns it to γ0,

3. Chooses the first host in the agent’s itinerary i1.

 30

4. Generates a dummy data m0 and computes λ0 by encrypting m0 with its public
key, so having λ0 = {m0} .

5. Computes δ0 as a hash of i0, and then signs it with its own private key.
The term δ0 securely stores the identity of the genuine initiator, which would be
used for the verifications at the arly execution of the agent at visited hosts.

Ki 0
+

6. Encrypts the tuple (λ0, δ0, {δ0}
in the agent’s itinerary .

-
Si

7. Securely stores the tuple (m0 , i1,
for an accurate verifications up
out verifications upon agent’s ret
stored within the migrating agen
the initial verification data as t
thus the verifications carried o
accurate. It is essential to ensure
independent of the store of the m
propose to store the data securel
migrating agent. The storing of
agent ensures that the data rem
to store the terms securely with
might tamper with the memory
be accurate. The use of a secon
enable the initiator to trace an
execution traces recommended

Ki 1
+

8. Dispatches the agent A with th
itinerary.

 At an executing hosts

 When the agent A arrives at host i
given below:

1. The host decrypts the ciphered m
2. The host deduces the identity of

the signed term. Next, the agen
then verifies that the compu
verification fails the execution
continues. The verification is in
impersonate the genuine initiat
identity is truly the identity of
encrypt the data host ij provides

3. The host provides the agent with

e
1

 , γ0) with the public key of the succeeding host
 0

r) within the secondary agent As, which is needed
on the agent’s return. Commonly, initiators carry
urn based on the initial verification data, which are
t. Nevertheless, an adversary might tamper with
he agent transfers through public channels, and
ut upon the agent’s return would not be truly
that the initial verification data are in a secure store
igrating agent that is susceptible to tampering. We
y with a stationary agent that co-operates with the
the initial verification data within the secondary
ain intact. It might be assumed that it is enough
in the initiator’s memory, though an adversary
 of initiator. Hence, the verifications would not
dary agent to store the verification terms would
y manipulation with the terms by the use of

by Vigna in [51].
e encrypted tuple to the first host in the agent’s

j, the followings are completed in the sequence

essage using its own decryption key.
 the signer of the term {δ0} , and
t computes a hash of the deduced

ted hash matches the decrypted
of the agent terminates, otherwise
tended to detect if an adversary is
or. If the verification passes, then
 the genuine initiator and it woul
 to the agent.

-Si

 data mj.

31
1
then decrypts
 identity, and
term. If the

the execution
attempting to
 the deduced
d be used to

0

4. The agent chooses the next host to visit.
5. The agent computes the hash chain γj as a hash of the received hash chain γj-1

that was computed at the proceeding host ij-1. The hash chain γj indicates the
number of the actually visited hosts.

6. The agent generates an offer that incorporates:

 Data host ij provided mj to the agent
 Initial data integrity code δ0
 Identity of the succeeding host in the agent’s itinerary ij+1
 Hash chain γj

7. The offer is the tuple (mj, δ0 , ij+1, γj) signed by host ij, and then encrypted with

the public key of the host that signed the initial data integrity code δ0 and its
identity is deduced, so having the offer λj .

8. The agent jumbles the collected offers { λ0 , … , λj } in such a way that the most
recent offer is the first offer in the chain of offers, and the dummy offer is the
last offer in the chain of offers, i.e. offers are arranged in a reverse order within
the chain of offers. Hence, the chain would be stored as { λj , λj-1 , … , λ1 , λ0 }.
The jumbling is intended to mislead an adversary trying to truncate the data
collected at a preceding host.

9. The agent A computes the data integrity code δj as a hash of the data mj host ij
provided to the agent, and the received data integrity code δj-1 that was
computed at the preceding host ij-1.

10. The agent encloses the cumulative results in a tuple (λj , … , λ0, δj , { δ0} , γj)
and encrypts it with the public key of the succeeding host in the agent’s itinerary.

-1Si 0

11. The agent requests the current host ij to clear its memory from any data
acquired as a result of executing the agent.

12. The host dispatches the encrypted tuple to the succeeding host ij+1 in the agent’s
itinerary.

 Termination

The agent returns to the initiator with the following message:

{ λ′n , … , λ′j , … , λ′0 , δ′n ,{ δ0} , γ′n }
Si 0 ′

 -1

Upon the agent’s return, the initiator completes the follo
below.

1. Decrypts the message using its own decryption key
2. Decrypts the offer λ′j (0 ≤ j ≤ n) using its own decry

 32
 K+

i 0

wings in the sequence given

ption key.

3. Deduces the identity of the signer of the offer λ′j, and then decrypts the offer
using the signature verification key of the signer. The decrypted offer would be a
tuple of the form of (m′j , δ′0 , i′j+1 , γ′j). If the decryption succeeds, it then
authenticates that the data mj is provided by host ij. Next, it constructs the set of
data provided by the visited hosts { m′n , … , m′0 }.

4. Checks that m′0 matches m0, which is securely stored with the secondary agent.
5. Counts the number of elements in the set { m′n , … , m′0 }excluding m′0, which

is supposed to be the dummy offer generated by the initiator, e.g. x. The
count x is supposed to be equal to the actual number of visited hosts, though the
count x might differ from the actual number of visited hosts due to the data-
truncation attack by adversaries. Next, it computes the hash chain γ′n based on
the following equation:

γ′n = h
x
(r) , where x is the count of the returned offers

 r is the nonce stored within the secondary agent

 The γ′n is computed by hashing r as many times as x. Next, it checks that the
computed hash chain γ′n matches the returned γn.

6. Computes a data integrity δ′n based on the following equations:

δ′0 = h(i0)
δ′n = h(m′n , δ′n-1)

and using the set { m′n , … , m′0 }. Next, it checks that δ′n matches the returned
data integrity code δn. If they do not match, then it implies that the data acquired
at the visited host were truncated or was illegitimately inserted into the
execution results of the agent.

7. Assembles the actual agent’s itinerary from the received chain of offers {λ′n ,
… , λ′j , … , λ′1}, where each offer λ′j for (1 ≤ j ≤ n) indicates the identity of
the executing host ij, and incorporates the identity of the succeeding host ij+1.
Next, it verifies that the first host in the assembled agent’s itinerary matches
the identity of the first host i1, which is stored within the secondary agent.
Next, it checks that the partial agent’s itineraries are consistent.

8. Verifies that the received offer λ′j for (1 ≤ j ≤ n) was generated for the genuine
initiator i0 of the agent, by comparing the term δ′0, which is enclosed within the
received offer with a hash of the identity of the initiator h(i0).

9. Verifies that the received offer λ′j for (1 ≤ j ≤ n) was generated for the protocol run
of concern, which is identified by the random nonce r. It computes the hash chain
γ′j for each received offer λj for (1 ≤ j ≤ n), by hashing the nonce r that is stored
within the secondary agent as many times as the order of the visited host within the

 33

assembled agent’s itinerary, e.g. if the host is the second visited host then γ′j = h2(r).
Next, it verifies that the computed chained hash γ′j matches the returned hash chain
γj, which is enclosed within the respective offer λ′j for (1 ≤ j ≤ n).

 If the whole set of verifications passes, then the data returned within the agent A are truly
authenticated, intact, confidential and belong to the protocol run of concern. Adversaries
were not able to truncate, delete, or alter any of the gathered offers. Also, adversaries
were not able to illegitimately insert data into the gathered offers. The privacy of the
gathered data could not be breached and the data could be accurately authenticated, since
each visited host uses the public key of the verified genuine initiator to encrypt the offer
it signs and provides to the agent. Hence, we can be certain that the execution results have
not been tampered with and would be accepted with confidence.

5.6 Sequence of processes of the proposed protocol

 The sequence of processes at the initiator is depicted in figure 4, whereas the sequence
of processes at an executing agent in the agent’s itinerary is depicted in Figure 5.

5.7 The proposed protocol vs. the Multi-hops protocol

The protocol is derived from the Multi-hops protocol [14] with some enhancements
and amendments which are intended to hinder the type of flaws revealed in the existing
protocols [14, 20, 22, 23, 28, 29] as follows:

1. The offers λ0 , … , λn , which are provided by the visited hosts, are jumbled within
the chain of offers λ to mislead an adversary trying to delete the recently gathered
offer/s. Hence, deleting the last offer from the chain of the gathered offers does not mean
that it deleted the most recently gathered offer (the offer acquired at the preceding host).
Also, the chain of offers is initiated with a dummy offer λ0 that has to be positioned as
the last offer in the chain of the gathered offers each time offers are jumbled, so having
the chain of offers arranged in a reverse order as {λn , λn-1 , … , λ1 , λ0}. Hence, it would
appear as if it is the offer provided by the most recently visited host.

 34

 35

 36

2. The term {h(i0)} is appended to the protocol to enable the verification on the
identity of the genuine
early execution of the
signer of the transmitt
verification key of the
the result is the same a
public encryption key o
execution of the agent
impersonating the genu
to be gathered from sub
the execution of the age
impersonating the genu
improbable. The Multi
preserve the confidentia
public key of the genu
initiator for which offer
genuine initiator of the
provide with the public
privacy of the encrypte
genuine initiator. The m

-Si 0

3. The offer which a v
then it is encrypted wit
confidential, and correc
not be deduced. In the M
and as a hash of the p
encryption scheme enab
the deletion of offer/s of

4. The execution resul
succeeding host in the a
Multi-hops protocol it i
encryption would prev
execution results it may

5. The data integrity
integrity code δj is a has
the identity of the genu
code µn binds the previo
data the current host pro
were generated for ano
whereas the Multi-hops

 1

 initiator of the agent during the life cycle of the agent. At the
agent at a visited host the agent deduces the identity of the
ed term, and then decrypts the signed term with the signature
 signer. Next, it hashes the deduced identity and verifies that
s the decrypted term. If the verification passes, then it uses the
f the signer to encrypt the offer the host provides. Otherwise, the
terminates. The verification can detect if a malicious host is

ine initiator, with the intension to breach the privacy of the data
sequent hosts at some time later. If the malicious act is detected,
nt terminates. Hence, the protocol can detect the malicious act of
ine initiator and the breach of privacy of the gathered data is
-hops protocol, does not aim to preserve confidentiality. To
lity of gathered offers, it is necessary to encrypt offers with the
ine initiator. The protocol does not indicate the identity of the
s should be encrypted. An adversary might mask it-self as the
 agent. Hence, executing hosts would encrypt the offers they
key of the adversary. The adversary would be able to breach the
d offers and then encrypts the offers with the public key of the
alicious act would not be detected by the initiator.

isited host provides is digitally signed with its private key, and
h the public key of the initiator. Therefore, the offer would be
tly authenticated. Also, the identity of the providing host could
ulti-hops protocol, the offer is sent in two forms: as a plain text

rovided offer signed by the private of the executing host. The
les an intruder to infer the identity of the signer of an offer, thus
 competitive host/s would be straight forward and accurate.

ts of the agent should be encrypted with the public key of the
gent’s itinerary, before the results are transmitted, while in the

s just the hash chain γn that should be encrypted. The proposed
ent an intruder from learning or tampering with any of the
 intercept.

code δj replaces the message authentication code µn. The data
h chain of the data acquired at the visited hosts and is based on
ine initiator of the agent, whereas the message authentication
usly gathered data and the identity of the succeeding host to the
vides. An adversary might replace the agent’s data with data that
ther initiator. The proposed protocol would detect the attack,
protocol would not detect the attack.

37

The proposed protocol can detect the attack as follows:

Upon the agent’s return, the initiator decrypts each of the gathered offers in the chain
{λ′n , λ′n-1 , … , λ′1 , λ′0} using its private key. Next, it deduces the identity of the
signer of the offer λ′j for (1 ≤ j ≤ n), and then decrypts the offer with the signature
verification key of the respective signer. Next, it computes the data integrity code δ′n
based on the identity of the genuine initiator of the agent i0, and then checks if the
computed data integrity code δ′n matches the data integrity code returned with the
agent δn. If the verification passes, it implies that the returned data were generated for
the genuine initiator i0 and the data are intact. But, if the verification fails it implies
that tampering with the gathered data took place.

The Multi-hops protocol would not detect the attack, since the message authentication
code is not based on the identity of the genuine initiator.

6. In the multi-hops protocol the static part ∏ is coupled with the dynamic part of the
agent to be able to verify that the returned data belong to the agent of concern. Though,
the verification may not be accurate, e.g. the returned data might be generated for a
different initiator. In our protocol we omitted the coupling of the static code ∏ with the
dynamic code and made use of the co-operating agent As, which securely stores: (a) the
random nonce r that uniquely identifies the agent and the protocol run, (b) the first
scheduled host i1 in the agent’s itinerary, and (c) the dummy data generated by the
initiator m0. Upon the agent’s return, the terms would be called from the secondary agent
to verify accurately that the returned data belong to the agent of concern and to the
particular protocol run.

7. The chain Mn is omitted so as to ensure the confidentiality of the transmitted offers.
In the Multi-hops protocol, the chain consists of the data that each visited host provides
and the identity of the respective host in plain text. The transmission of plain text
violates the confidentiality of data. The proposed protocol incorporates the data that the
host provides mn in the encrypted offer λn.

8. The data integrity code δ0 is enclosed within the offer λj for (1 ≤ j ≤ n) to indicate the
identity of the initiator for which the offer is generated. If the data integrity code δ′0 that
is enclosed within the received offer λ′j for (1 ≤ j ≤ n) does not match h(i0), then it
implies that an adversary has impersonated the genuine initiator.

9. In order to prevent the data-truncation and data-alteration attack, we propose the agent
to be programmed in such a way that it instructs each visited host ik to clear its memory
from any data acquired as a result of executing the agent before the host dispatches the
agent to the next host in the agent’s itinerary. In the data truncation and data alteration
attacks, host ik would co-operate with host ij to delete the offers mx for (k < x < j) and

 38

replace its previously provided offer λk with a new offer λ′k. When host ij receives the
agent, it sends the agent back to host ik, which has already stored the agent’s state that was
present when the agent firstly visited it. Host ik would then replace the current agent’s state
with the state that was present when the agent firstly visited it and append an offer λ′k to
the agent’s state.

5.8 Security scheme of the proposed protocol

Our attempt to accomplish the security properties is described below:

• Data-authenticity: the data that each host provides is signed digitally with the private
key of the host. Hence, a host cannot forge the data it signed with its private key.
However, a signed message does not truly indicate the genuine signer. An adversary
might intercept a signed message, and can then strip off the signature from the signed
message. Next, the adversary signs the message with its private key. Hence, the recipient
of the signed message is deceived on the identity of the genuine signer. In order to
ensure accurate authenticity in mobile agents, the digital signing of the data that a host
provides should be followed by the encryption of the signed message with the public key
of the initiator i0. An adversary might be able to intercept the transmitted data, however
it would not able to decrypt the data, or impersonate the genuine sender, since the data is
encrypted and the needed decryption key is private to the initiator i0. Consequently, the
proposed encryption scheme ensures accurate authentication.

• Data-confidentiality: the data that hosts provide are encrypted with the initiator’s
public key . Hence, an adversary would not be able to decrypt the data since it needs
the decryption key which is private to the initiator i0.

Ki 0
+

Ki 0
−

• Data-integrity: the property is the commonly breached property and the most difficult
to accomplish. It requires a very careful and thorough analysis, especially the capabilities
of the adversary who would intrude the data that mobile agents acquire in different ways,
as follows:

1. Delete the data acquired at the visited hosts in the agent’s itinerary.
2. Illegitimately insert or append data to the agent’s execution results.
3. Truncate the acquired data.
4. Replace the agent’s dynamic data with data of a similar agent or a different

protocol run.

 We set the protocol to include specific terms and to use certain encryption keys,
which would ensure the robustness of the protocol to the four kinds of malicious acts of
adversaries. The terms and encryption keys that the protocol implements are described
below:

 39

 Data integrity code δj: It is used to verify if any of the data acquired at visited
hosts was deleted. The data integrity code δj at a host ij for (1 ≤ j ≤ n) is a hash
of the data the host provides mj and the data integrity code that was computed at
the preceding host δj-1 , as described below:

δj = h(mj , δj-1)

The initial parameter δ0 is set to h(i0).

 Encryption key of the succeeding host in the agent’s itinerary : Following to

the execution of the agent at host ij, the agent encrypts the execution results with
the public key of the succeeding host ij+1 in the agent’s itinerary. Next, the host
dispatches the agent to host ij+1. An intruder might intercept the communication
between host ij and host ij+1, and then would acquire the encrypted execution
results of the agent. However, it would not be able to learn the plain execution
results. It has to have the decryption keys of the initiator and of scheduled
succeeding host , which are private to the hosts i0 and ij+1 respectively.
Moreover, the intruder would not be able to append any valid offer to the chain
of offers. It has to have the terms: δ0, δj, and γj that are necessary to compute a
valid offer, though the terms are encrypted with the public key of host ij+1. Thus,
the encryption scheme reduces the chances of an intruder to tamper with the
execution results and prevents the illegitimate insertion/ appending of offers to
the chain of offers.

K

i j+1
+

i 0

Ki j+1
+

 Offer λj : The data that host ij provides is firstly signed with its private key
and then it is encrypted with the public key of the initiator . Thus, the
contained within the offer is confidential and would be correctly authenticat

K

i
+
0

 Terms δj , {δ0} , γj : When host ij+1 receives the agent from host ij it deduc
identity of the signer from the term {δ0} , and then decrypts the term wi
signature verification key of the signer. Next, it computes a hash of the ded
identity, and then checks that the computed hash matches the decrypted te
the check passes, then it uses the deduced identity to encrypt the offer to the
ij+1 provides to the agent. The terms δj and γj are necessary to compute the
integrity code δj+1, and the hash chain hash γj+1 respective to the current host

-Si 0 Si 0

 Chain of offers {λn , λn-1 , … , λ1 , λ0}: The offers that are provided by the v
hosts ij for (1 ≤ j ≤ n) are jumbled to deceive any adversary trying to trunca
data acquired at the preceding host. They are arranged in a reverse
Assume the offers are jumbled such as λ′4, λ′3, λ′2, λ′1, λ′0 and the adve
deleted the last two offers, so the chain of offers reduces to λ4, λ3, λ2. Upo
agent’s return, the initiator decrypts each encrypted offer, and then learn
data m′2, m′3, and m′4 , which were provided by the hosts i2 , i3, and i4. N

 40
S
-1
 data
ed.

i j

es the
 1

th
u

rm

.

is
te
or
r
n
s

ex
 the

-1
 K +
ced
. If

host
data

ited
 the
der.
sary
 the
 the
t, it

computes the data integrity code δ′n using m′2, m′3, m′4 and using the following
equations

δ′0 = h(i0)

δ′n = h(m′n , δ′n-1) , where (2 ≤ n ≤ 4)

It then checks that the computed data integrity code δ′n matches the data
integrity code enclosed within the agent δn. The verification would show that the
two data integrity codes do not match. Hence, it implies that an adversary has
truncated offer/s from the chain of offers.

 Offer λj : the offer of host ij incorporates the tuple (mj, δ0, ij+1 , γj), where mj is the

data provided by host ij. The data integrity code δ0 is enclosed within the offer λj
for (1 ≤ j ≤ n) to indicate the identity of the initiator for which the offer is
generated. If the data integrity code δ0 that is enclosed within the received offer
λj for (1 ≤ j ≤ n) does not match h(i0), then it implies that the returned data were
not generated for the genuine initiator. The identity of the successor host ij+1 is
included to record the agent’s partial itinerary. The chained hash γj is included to
indicate the actual number of visited hosts. The parameter γj is initially set to a
random nonce r. The random nonce r is expected to be hashed as many times as
the number of visited hosts.

 The data integrity code δj is only encrypted with the public key of the succeeding

host ij+1. So adversaries would not be able to learn the terms: δ0, δj, and γj that are
necessary to compute a valid offer. Only the intended succeeding host ij+1 would
be able to compute a valid offer.

Table 3 summarizes the security scheme of the proposed protocol with respect to the

aimed for security properties, and in the view of the threats of adversaries and the flaws
revealed in the existing security protocols.

Table 3 The security scheme of the proposed protocol

Security
properties

Adversaries’ attempts to
violate security

Security scheme Threat
status

Confidentiality

Breach the privacy of the
collected offers

A host signs its offer digitally,
and then encrypts it with the
encryption key of the initiator.
Next, it encrypts the agent’s
execution results with the public
encryption key of the succeeding
host in the agent’s itinerary.

prevented

 41

Table 3 The security scheme of the proposed protocol

Security
properties

Adversaries’ attempts to
violate security

Security scheme Threat
status

Confidentiality

Impersonate the genuine
initiator 1

At the early execution of the
agent at a visited host, the host
deduces the identity of the
signer of (δ0) and then it
decrypts the term using the
decryption verification key of
the signer. Next, it computes a
hash of the deduced identity
and then it verifies that the
computed hash is the same as
decrypted term, otherwise the
agent execution terminates.

Detected

Authenticity Impersonate the genuine
provider of an offer 1

The offer λj is digitally signed
with the private key of host ij,
and then encrypted with the
public key of the initiator.
Hence, an adversary would not
be able to read the offer or send
the offer under its private key.

Prevented

 Append arbitrary or fake
offer 1

A host should sign the offer it
provides with its private key.
Hence, an adversary would not
append an arbitrary offer for
which it is held responsible and
can not repudiate it.

Prevented

Integrity Replace the collected data
with data of a similar
protocol run

Upon the agent’s return, the initiator
should do the followings in
sequence:
− Computes a count (λ) and

assigns it to a variable x.
− Computes a hash of the random

nonce r stored within the
secondary agent, i.e. h

w
(r),

where w = x -1.
− Checks that the computed hash

chain matches the hash chain γ′n
returned with the agent.

The check would fail if the
attack took place. Hence, the
protocol detects the attack.

Detected

Si 0
 -1

 42

Table 3 The security scheme of the proposed protocol

Security
properties

Adversaries’ attempts to
violate security

Security scheme Threat
status

The terms r, m0, and i1 returned
within the agent A are verified with
the corresponding terms stored
within the secondary agent As. The
verification would fail if the attack
took place.

Detected

Integrity

Replace the collected data
with data of a similar
agent

Truncate data:

- Try to delete the offer of
the preceding host

- Delete the dummy offer λ0

- Delete the offer λ1

Delete the offers λ1 and λ0

Collected offers are jumbled so the
dummy offer is arranged at the end
of the collected offers to conceive an
adversary trying to delete the offer
of the preceding host

Upon the agent’s return, the initiator
calls the dummy data m0 which is
securely stored within the secondary
agent. Next, it checks the availability
of the same data within the data
returned with the agent. The
unavailability of the data implies
that the attack took place.

Upon the agent’s return, the initiator
checks that the first host in the
assembled agent’s itinerary is host i1.
If the check fails, it implies that
the attack took place.

Upon the agent’s return, the initiator
does the followings:
− Calls the dummy data m0 which is

securely stored within the
secondary agent. Next, it checks
the availability of the same data
within the data returned with the
agent. The unavailability of the
data implies that the attack took
place.

− Checks that the first host in the
assembled agent’s itinerary is host
i1. If the checks fail, it implies
that the attack took place

Not
possibly
accurate

Detected

Detected

Detected

 43

Table 3 The security scheme of the proposed protocol

Security
properties

Adversaries’ attempts to
violate security

Security scheme Threat
status

Integrity

Delete the offer λ2

Delete the offer λK

Upon the agent’s return, the initiator
decrypts the offer λ1 and learns the
identity of the succeeding host to
host i1 as given in the offer. Next,
it checks that the succeeding host
exists in the assembled agent’s
itinerary. If the check fails, it
implies that the attack took
place.

Upon the agent’s return, the initiator
should do the followings in
sequence:

- Computes a hash of the random
nonce r stored within the
secondary agent, i.e. h

w
(r), where

w = x -1. Next, it checks that the
computed hash matches the hash
chain γ′n returned with the agent.
The check would fail and it
implies the attack took place.

- Deduces the partial agent’s
itineraries, where each signed
offer λj includes the identity of
the succeeding host. Next, it
Checks that the partial agent’s
itineraries are consistent. The
assembled agent’s itinerary would
indicate a missing connection and it
implies that the attack took place.

- Checks that the computed data
integrity code matches the returned
data integrity code. The data
integrity code is a hash chain of
the data acquired at the visited
host. The check would fail and it
implies that the attack took place.

Detected

Detected

 44

Table 3 The security scheme of the proposed protocol

Security
properties

Adversaries’ attempts to
violate security

Security scheme Threat
status
Prevented/
Detected

Prevented

Integrity

Upon the second visit of
the agent to the host ik, it
replaces its previous offer

λk with a new offer λ′k so
as to substitute m′k for mk

Illegitimately insert or
append offer/s 2

Terms that are necessary to
replace a previous offer with a
new valid offer, are assumed to
be cleared from the memory of
the host during the first visit of
the agent to the host and just
before the host dispatches the
agent to the succeeding host.
Hence, the attack is not possible.
However, a malicious host may
not clear its memory from the
terms then the next check would
detect the attack if it took place.

Checks that the computed data
integrity code matches the returned
data integrity code. The data
integrity code is a hash chain of
the data acquired at the visited
host. The check would fail and it
implies that the attack took place.

The intruder needs to learn the
terms that are necessary to
compute a new offer. But, the
terms are encrypted with the
public key of scheduled
succeeding host in the agent’s
itinerary. Hence, the intruder
would not be able to insert or
append offer/s.

1 The act of a malicious participating host
2 The act of an intruder

6 Related Formal Verification Methods

 Formal methods have played an important role in specifying, modeling, verifying
and revealing unforeseen flaws in the existing security protocols. They have the
following capabilities [26]:

 45

 Characterize the system specifications precisely.
 Define accurately the desired security properties.
 Set clearly the interaction between the system and its environment.
 Identify security flaw/s in protocols if any exists.
 Provide systematic and exhaustive analysis of protocols.
 Provide a proof of security, if a system meets the desired properties.
 Provide verification tools at design stages as well as analysis stages. Applying

formal methods at the design stage would save the expense of redesign of an
existing flawed protocol.

The existing formal methods can be classified into five categories [26] as follows:

- Methods based on modal logic
- Methods based on finite-state exploration
- Methods based on theorem proving
- Methods based on modal algebra
- Methods based on infinite-state exploration

- Methods based on modal logic require translating a protocol into a set of logic
statements about the initial beliefs or knowledge in a distributed system. The verification
of a protocol is a deductive reasoning process, where inference rules are used to derive
new beliefs from the initial beliefs and/ or new knowledge from the initial knowledge. If
the derived beliefs are equivalent to the required beliefs, then the protocol is considered
correct by proofs. The disadvantages of modal logic are: (a) the verification is usually
done manually, and (b) the verification is error-prone and non-systematic. The best
known and most influential logic is BAN logic [11] (logic of authentication). BAN logic
does not attempt to model either trust or knowledge. Therefore, BAN logic can not be
used to prove results about secrecy. It can only be used to reason about authentication.
BAN logic found flaws in the Needham-Schroeder public key and the Kerberos
protocols.

- Methods based on finite-state exploration model the honest hosts that participate in a
protocol and an intruder as communicating processes and analyze the system under the
Dolev-Yao intruder model [55]. The intruder may store, hide, replace, or replay messages
transmitted over the Internet. Moreover, the intruder can generate new messages by
decrypting, encrypting, faking intercepted messages. They model a certain protocol as a
finite-state system and verify by exhaustive search that all reachable states satisfy some
properties. Properties are stated in some logic (usually temporal logic). The advantages of
the finite-state exploration methods are: (i) Properties can be verified automatically. (ii)
Little user intervention is required. (iii) If the protocol fails, it is able to generate the
sequence of events that invalidates the protocol. On the other hand, the disadvantages are:
(i) It is usually applied to systems of finite number of states, hence, if no attack is found

 46

there still may be an attack on the real system with large number of states. (ii) The
method becomes intractable for large state systems due to state explosion problem. In
order to keep the model finite, it is necessary to place a bound on the number of protocol
runs and a bound on the number of messages the intruder can generate. The Methods
include: Interrogator [32], NRL protocol Analyzer [31], CSP model checker FDR [24,
25], SPIN model checker [27], Murϕ [35]. The NRL has been used to find several
previously undiscovered security flaws in cryptographic protocols.

- Methods based on theorem proving use logical notations to model a protocol and
specify its properties, and use logic theories to verify if the protocol satisfies the
properties. The advantage of the method is that it can be used to verify real protocols
with large number of states. Whereas, the disadvantage is that it requires expert
guidance. The Induction method [38] uses the Isabelle Theorem Prover to verify the TLS
Internet protocol and the Kerberos protocol.

- Methods based on modal algebra use algebra to express a protocol as a set of concurrent
communicating processes. The protocol is modeled as a set of hosts which send messages
to each other and an environment modeling malicious hosts or intruders who can perform
any sort of attack. Security properties can be expressed via the notion of equivalence (e.g.
may-testing) between two parallel processes. The disadvantage of modal algebra is that
equivalences suffer from universal quantification over attackers, which makes equivalence
checking between processes very hard as having infinitely many such processes. Modal
algebra methods include: π-Calculus [1], applied-π Calculus [2], Spi-Calculus [3],
Distributed-π calculus [44], seal calculus [52], and Crypto-loc Calculus [5].

- Methods based on infinite-state exploration are based on a variety of symbolic
techniques [8]. The intruder is not modeled explicitly and it makes no assumptions on
the type and number of messages it can generate. These methods are promising in two
aspects: (i) They can accomplish a complete exploration of the state space based on
symbolic runs of processes. (ii) They do not suffer from any state explosion problem that
is usually induced by the exchange of messages, since every input action gives rise
exactly to one symbolic transition and properties are formalized as correspondence
assertions, where each execution of an action must be preceded by the execution of a
corresponding action [6, 7], thus improving the run time and the accuracy of verification.
The STA [46] is an infinite-state exploration method based on symbolic execution.

 The formal methods have been successfully employed in the verification of the
security properties of the classical message-based protocols, such as authentication
protocols, though the specification and verification of the security of mobile agent
paradigms deal with new aspects: locations and mobility on the top of cryptography.
There have been good advances in expressing mobility using process algebra [3, 6, 19,
33, 43, 52]. Some experiments used existing formal methods to verify data protection
protocols of mobile agents. The data integrity properties of mobile agents are verified

 47

using CSP-based tools Casper [25] and FDR [18] in [20], and a model checker that is
based on symbolic data representation and uses Spi-calculus in [28]. In this paper, we
utilize the STA formal method to analyze the security properties of the proposed
protocol. The STA describes a protocol using process algebra, and specifies and verifies
the system using symbolic techniques, which explore the whole state space.

7 STA Automatic Verifier

 The STA (Symbolic Trace Analyzer) [7, 45, 46] is a tool for the analysis of security
protocols. It is a recent approach that takes advantage of concepts derived from process
calculi. It is based on symbolic trace analysis that performs a complete exploration of
the whole infinite-state model. It detects the flaws in Needham-Schroeder, Yahalom,
Otway-Rees, and Kerberos protocols [6, 46].

 We use the STA formal method in the analysis of the proposed protocol as it is
characterized by the followings:

 It does not suffer from state explosion problem [9, 16]. A protocol in STA is
modeled as a set of processes and properties are verified by considering the
computation traces of processes. Generally, the set of computation traces are
infinite. STA implements symbolic techniques that reduce infinite transition
to a single symbolic relation, where every input action should be preceded
by a corresponding output action. STA can analyze the whole infinite state
space generated by a finite set of participants. According to the authors in [8, 9,
16] the symbolic analysis is sound and complete. Detecting an attack on the
symbolic model would imply that an attack exists in the infinite standard model
and detecting no attack on the symbolic model would imply that the security
property is satisfied. The verification on a finite set can be using symbolic
techniques in two stages. The first is the symbolic reduction of processes where
inputs are evaluated formally. The symbolic runs of a process are finite. The
second is the symbolic procedure that uses the knowledge of the environment to
construct symbolic models of processes comprising the symbolic runs. The
symbolic models do not yield the state-explosion problem induced by message
exchange, since every input action gives rise exactly to one symbolic transition
and properties are formalized as correspondence assertions, where every
execution of action α must be preceded by some execution of action β for a
given α and β [6, 7]. Conversely, the finite state exploration methods analyze
execution traces of systems by searching for an insecure state starting from an
initial state and assume that the Internet is under the control of adversaries. The
search might be infinite due to the unpredictable behavior of adversaries. An
adversary might generate arbitrary number of new messages, and replay, replace,
or delete an intercepted message. According to the authors in [26] the state space

 48

of a system might increase exponentially as the size of the system grows
linearly. Therefore, methods require that systems have a finite number of states
by imposing the following restrictions on the model to analyze [7, 9, 16, 26]:

− Finite set of participants
− Finite set of messages a participant in a protocol would receive
− Finite set of states a participant may enter
− Finite set of steps a participant may perform in the protocol
− Finite number of messages the attacker can generate and send to

participants in the protocol

 If any of the restrictions is not imposed, infinite transitions would be
generated. The problems with the finite model are as follows [7, 16]:

− The restrictions are not always precise.
− If no attack is detected on a small system there might be an attack on a

larger system.
− Establishing proper restrictions would require familiarity of how the

protocol works.
− Attackers may send messages of any size by manipulating messages

available in the environment. Hence, analyzing systems of finite set of
participants might sometimes result in a search of infinite traces.

 It does not require expert guidance: Modeling and verifying the system is

simple and straight forward, whereas the theorem proving methods are time
consuming and require a lot of expertise [4, 15]. In STA, modeling the system
requires familiarity with process algebras. The system configuration is the
parallel composition of the roles of participating hosts and the initial knowledge
of an intruder, such as an intercepted message, public keys of participating hosts,
etc. The security properties are expressed in terms of correspondence assertions.
In theorem proving, modeling the system and specifying properties require
acquaintance with logic theories. Protocols are modeled as a set of all possible
traces encoded in logic and properties are verified by induction on the traces.
The verification can be long and require human guidance to develop lemmas and
theorems as needed [4].

 It does not need to model the intruder explicitly: The intruder is represented by

the environment’s initial knowledge, e.g. an intercepted message, and the public
keys, the signature verification keys, and the identities of the participating hosts,
whereas the model checking methods assume that the intruder is a participant in
the system, and capable of initiating communication with a participating host. It
requires modeling the intruder explicitly [6, 7, 35]. Modeling the intruder is

 49

often relatively complicated and time consuming, due to the unlimited
capabilities and unpredictable behavior of the intruder.

 The verification is automatic: Automatic verification saves time as compared to

methods which require hand-written proofs, such as the methods based on modal
logic or modal algebra. Modal algebra methods require checking equivalence of
processes. The checking of two processes that they are indistinguishable for any
tester process is difficult, especially processes are infinite and proofs are hand-
written [15].

 STA is a simple and an efficient tool for the analysis of security protocols. The
analysis of Needham-shroeder and Kerberos protocols with STA in [46] and with Murϕ
in [35] shows the advantages of using symbolic methods over finite-state exploration
methods.

 The STA is an ML [34] based tool, where, ML is basically a functional polymorphic
programming language that allows parallel processing and is employed to develop
verification tools [36, 39, 48]. The theory underlying the STA is explained in full details
in [9]. The STA tool requires the Moscow ML [37], a compiler for the standard ML.

 According to Boreale and Buscemi in [7], a protocol in STA is modeled as a system
of concurrent processes and a state of the system is modeled as a pair 〈s, P〉 called
configuration. The s is a trace of past I/O actions that results from interaction between a
process and its environment, and represents the current intruder’s knowledge. The P is a
Spi-calculus term that describes the intended behavior of honest participants. The syntax
of the STA is analogous to the syntax of Spi-calculus [3] with slight differences and is
shown in Table 4. The syntax of STA is as follows: a!M is an output action. a?x is an
input action, where a is a reference to I/O action. M is a message. x is a variable. stop is a
terminated process. >> is a sequence of actions. P1 || P2 is a parallel composition. K
new_in is a fresh name K. (M)^+K is a asymmetric encryption of M with the public key
K (-K is private). (M)^+sigK is a digital signing of M with the private key +sigK (-sigK
is public). (M1, M2) is a pairing. (M is N) is an equality test. In the STA, cryptographic
functions are modeled as process operators.

 Transitions between the configurations represent interactions between s and P, and
take the form of <s, P> → <s′, P′>. The STA analyzes the execution traces of the
system to detect possible faults of security properties of the protocol. However,
searching all execution traces for an insecure state starting from an initial configuration
may result in search of infinite transitions. The STA introduces a transition relation →s
that condenses infinite transitions to a single symbolic transition, where each input
action should be preceded by a corresponding action.

 50

Table 4. Syntax of the STA

A! M Output action
A? x Input action
Stop Terminated process
>> Sequence of actions
P1 || P2 Parallel composition of the processes P1 and P2
+K Public encryption key
+SigK Digital signing key
(M is N) Equality test of the terms M and N
(M1, M2) Pairing of the terms M1 and M2
hsh(M) Hash of the term M
M pkdecr(-K, x) Decryption of the variable x with the public key –K to get

the plain message M (asymmetric decryption)
M pkdecr(-SigK, x) Decryption of the variable x with the signature verification

key –SigK to get the plain message M
(asymmetric decryption)

Security properties are expressed in terms of the traces the protocol generates. In

particular, properties are formularized as correspondence assertions, that is given a
configuration 〈s, P〉 and a trace s′, then (α β) means that every instance of β must be
preceded by the corresponding instance of α. Authentication property is expressed in
terms of a trace of the kind that any message that is accepted by B at the final step
should actually originate from A. Secrecy is expressed by using the “absurd” action ⊥ in
the formula: ⊥ α which means an action α should never take place. The secrecy of the
protocol P is such that it does not reveal the sensitive data d in the presence of a guardian g
that can at any time pick up one message x from the network. The relation: P || g(x).0 and
the deduction relation |= can be used to express how the environment can generate new
messages starting from an initial set of messages. Thus, the secrecy property can be
expressed as : 〈ε, P || g (x).0〉 |= ⊥ g〈d〉, where ε is the empty trace. Upon the
verification, if no attack against the security property exists then the tool reports “No
attack was found”. Otherwise, it reports the attack in the form of an execution trace that
violates the specified property.

 In the STA, the protocol can be specified using four kinds of declarations [45]:
identifiers declarations, processes declarations, configurations declarations, and
properties declarations. Table 5 summarizes the STA declarations. The declarations of
the four kinds are described below.

- Identifiers are names, variables, and labels. A name can be an encryption key, a host
identity, or the data generated at a host. A variable is a received term, which might differ
from the original transmitted term. Suppose a host A transmits a name, then host B might
receive it altered by the malicious acts of adversaries. Thus, it is considered received as a

 51

variable. A label is a reference for I/O action. The declaration of identifiers should
conform to the following rules: (i) Names must begin with a capital letter. (ii) Variables
must begin with one of the letters u, x, y, w or z. (iii) Labels take any of the remaining
letters. The declarations of identifiers can be as follows [45]:

 DecName $ K1, K2, … , Km $;
 DecVar $ x1, x2, … , xr $;
 DecLabel $ a1, a2, … , an $;

- Process is the sequence of I/O actions at a host. The declaration of a participating host
named Pr can be as follows:

val Pr = P;

The P is the sequence of I/O actions at the host Pr.

- Configuration is the pair 〈s, P〉, where s is the initial environment’s knowledge and P is a
description of processes at honest participants. The declaration is as follows:

 val Conf = (L @ Pr);

The L is the initial environment’s knowledge representing the adversary’s knowledge, and
the Pr is a process or the parallel composition of processes that are previously declared.

- Property is a trace that the protocol generates. In particular, any action should be
preceded by a single action. The declaration is as follows:

 val Prop = (A ← B);

The Prop is a property name such as Auth, and A and B are I/O actions.

Suppose host A sends a name X through an output action a2!X1 and host B receives it as
a variable wX1 through an input action b1?wX1, then host B would not authenticate host
A as the provider of the variable wX1 unless the input action was preceded by the name
X1 sent out through the output action a2!. The declaration would be as follows:

 val Auth = (a2!X1 ← b1?wX1);

The protocol to analyze should be modeled and specified using the four kinds of STA
declarations, then the STA script should be saved as *.sml file. Next, the file should be
compiled with STA, and then the properties should be verified. The command used to
analyze a security property is as follows:

 52

CHECK Conf Prop

 The Conf is the configuration of the system, and Prop is the property to check. The
configuration and security properties should be declared in the STA script. The STA
carries out trace analysis on the symbolic traces and verifies the correspondence
assertions.

Table 5. STA declarations

Identifiers
Named
Variables
Labels

DecName $ K1, K2, … , Km $;
DecVar $ x1, x2, … , xr $;
DecLabel $ a1, a2, … , an $;

Processes val Pr = P;
Configuration val Conf = (L @ Pr);
Properties val Prop = (A ← B);

8 Modeling the Protocol and Specifying Properties Formally

8.1 Modeling the system
Modeling a security protocol [7, 9, 16] in a finite-state model checker requires

approximation of the actual model to make the analysis finite. It is necessary to reduce
the model by the establishment of two bounds: (a) a bound on the number of protocol
runs, and (b) a bound on the number of possible messages the attacker can generate
and send to trusted hosts participating in the protocol [9, 16]. Conversely, symbolic
methods can analyze the whole infinite state space generated by a limited number of
participants based on symbolic techniques. It discards the bound (b), since modeling
the adversary is not required and it is sufficient to specify the environment’s initial
knowledge [9, 16].

The verification is carried out for an instance of the protocol. There are factors that

have to be considered when choosing a size of the instance to be verified. They are: (i)
The execution slows down as the number of participants and consequently the possible
number of data values increases [7]. Therefore, the instance to analyze has to have a
limited number of participants. (ii) The instance should be susceptible to the various
malicious acts of intruders, especially the colluding attacks. For example, considering
a model of an initiator and two executing hosts would not analyze the system for the
colluding attacks. The smallest reasonable instance size would be four hosts including
the initiator, which would allow the analysis of the colluding attacks. The second and
the fourth hosts can be malicious hosts trying to truncate the data gathered at the
intermediary host (the third host in the agent’s itinerary). Also, any of the visited hosts
might be malicious and try to attack the data that the agent has already gathered. The
instance we considered is of three executing hosts A, B, and C and the initiator I.

 53

Hosts A and C might be un-trusted hosts that co-operate with each other to amend the
data they already provided, delete the data acquired at the intermediate hosts, spy out
the gathered data, or insert arbitrary data to the gathered data. Also, hosts A, B, or C
can be malicious hosts attempting individually to truncate the trailing data, append
arbitrary data, impersonate the genuine initiator or spy out some confidential data. The
selection of a model of four hosts would improve efficiency in terms of execution
time, memory occupation, and execution traces. We would say that the selection of a
model of four nodes is reasonable. The system would be susceptible to colluding
attacks as well as individual attacks of adversaries.

The model we considered is depicted in Figure 6. The agent is initialized by the initiator

I, then it migrates to hosts A, B, and C in order to gather some data, and finally it returns to
the initiator I.

The STA script of the proposed protocol consists of the d
processes, system configuration, and properties. The notatio
are shown in Figure 7.

For illustration, the I/O actions at host I are: i1! is an ou
action, and i3? is an input action by the secondary agent th
the initial verification terms to the major (migrating) agent. A
output action is disclose!(Rold), which denotes an output
nonce Rold to the environment. The action would represen
knowledge.

In STA, an identifier that begins with x, y, z, or w is
received term that might differ from originally sent term
adversaries. For example, M1 is a name that host A transmit
would be received at host B as a variable denoted as yM1.

I

C AM1

M3

M2

Execution result at host inMn

Output/ input channel

Executing host

M
S

B

 Fig. 6 Instance of proposed protocol with an initiator I and the v

 54
ajor (migrating) agent

econdary agent
eclarations of: identifiers,
ns used in the declarations

tput action, i2? is an input
at communicates (outputs)

n example of the disclose
action that leaks the old

t the initial environment’s

 a variable representing a
due to malicious acts of

s to host B, then the name

isited hosts A, B, and C

I, A, B, C Identities of the initiator, and the three honest
hosts that participate in the protocol respectively

R Fresh nonce that the initiator chooses randomly
and would uniquely identify the protocol run

Rold Old nonce
M0 Dummy data that the initiator generates
M1, M2, M3 Data that the initiator gathers from hosts A, B, and

C respectively
+sigI, +sigA, +sigB, +sigC Digital signature of hosts: I, A, B, and C

respectively
+KI, +KA, +KB, +KC Public key of hosts: I, A, B, and C respectively
-sigI, -sigA, -sigB, -sigC Signature verification keys of hosts I, A, B, and C

respectively
i1, i2, i3 (I/O) actions at hosts I
a1, a2 (I/O) actions at host A
b1, b2 (I/O) actions at host B
c1, c2 (I/O) actions at host C
Accept! Output action that outputs the gathered data that

pass all the necessary security verifications
guard? Input action ‘guardian’ that can detect if the

environment learns some piece of confidential
data

disclose! Output action that leaks some sensible data to the
environment

Fig. 7 Notations used in the STA script of the proposed protocol

The declarations of labels, names, and variables used in the STA script of the proposed

protocol are as follows:

DeclLabel $ a1, a2, b1, b2, c1, c2, i1, i2, i3, disclose, guard, Accept $;
DeclName $ Rold, R, SigI, SigA, SigB, SigC, I, A, B, C, M0, M1, M2, M3,
 KI, KA, KB, KC $;
DeclVar $ xM0, yM0, yM1, zM2, zM1, zM0, wM3, wM2, wM1, wM0,
 x, y, w, z, x1, x2, x3, x4, x4', x5, u, x1, x2, x3, x4, x4', x5,
 y1, y2, y3, y4, y5, y6, y5',
 w1, w2, w3, w4, w5, w6, w7, w1', w2', w3', w4', w6', w7',
 xIC, yIC, zIC, wIC, yDIC, zDIC, wDIC,
 xR, yR, zR, wR0, wR1, wR2, wR3, y,
 xIS, xID, yIS, yID, zIS, zID, wID, wIS $;

 55

The declaration of the I/O actions at the initiating host I is as follows:

val iI = M0 new_in R new_in
 i1!((M0)^+KI, hsh (I), (hsh (I))^+SigI, R)^+KA >>
 i2?(((wM3, wID, I, wR3)^+SigC)^+KI,
 ((wM2, wID, C, wR2)^+SigB)^+KI,
 ((wM1, wID, B, wR1)^+SigA)^+KI,
 (wM0)^+KI, wDIC, wIS, wR3)^+KI >> (wID pkdecr (-SigI, wIS)) >>

 (wID is hsh(I)) >>
 i3?(M0, A, R) >>
 (wDIC is hsh(wM3, hsh(wM2, hsh(wM1, hsh(I))))) >>
 (wR3 is hsh(hsh(hsh(R)))) >>
 (wR2 is hsh(hsh(R))) >>
 (wR1 is hsh(R)) >>
 (wID is hsh(I)) >>
 (wM0 is M0) >>
 Accept!((A,M1), (B,M2), (C,M3)) >> stop;

The declaration of the I/O actions at the participating host A is as follows:

val rA = M1 new_in
 a1?(xM0, xIC, xIS, xR)^+KA >> (xID pkdecr (-SigI, xIS)) >>

 (xID is hsh(I)) >>
 a2!(((M1, xID, B, hsh(xR))^+SigA)^+KI,

 xM0, hsh(M1, xIC), xIS, hsh(xR))^+KB >> stop;

The declaration of the I/O actions at the participating host B is as follows:

val rB = M2 new_in
 b1?(yM1, yM0, yDIC, yIS, yR)^+KB >> (yID pkdecr (-SigI, yIS)) >>
 (yID is hsh(I)) >>
 b2!(((M2, yID, C, hsh(yR))^+SigB)^+KI,
 yM1, yM0, hsh(M2, yDIC), yIS, hsh(yR))^+KC >> stop;

The declaration of the I/O actions at the participating host C is as follows:

val rC = M3 new_in
 c1?(zM2, zM1, zM0, zDIC, zIS, zR)^+KC >> (zID pkdecr (-SigI, zIS)) >>
 (zID is hsh(I)) >>
 c2!(((M3, zID, I, hsh(zR))^+SigC)^+KI,
 zM2, zM1, zM0, hsh(M3, zDIC), zIS, hsh(zR))^+KI >> stop;

 56

 The system declaration consists of: (a) the parallel composition of the role of the
honest hosts that participate in the protocol and the respective public keys, and (b) a
‘guardian’ that can detect if the environment learns some sensible information, like y.
The declaration of the system Sys is as follows:

val Sys = KI new_in KA new_in KB new_in KC new_in iI || rA || rB || rC ||
 guard?y >> stop;

 The initial configuration of the system consists of: (a) the initial environment’s
knowledge where the disclose! output action leaks information to the environment, such
as the public encryption keys and signature verification keys of hosts participating in the
protocol, and (b) the role of the system Sys. The declaration of the configuration Conf is
as follows:

val Conf = ([disclose!(Rold, I, A, B, C, +KI, +KA, +KB, +KC, -SigI, -SigA,
 -SigB, -SigC)]@Sys);

 The proposed protocol carries out two types of verifications during the lifecycle of
the agent. They are as follows:

1. Verifications on the identity of the genuine initiator at the early execution of the
agent at the visited hosts. The verifications are necessary to detect if an
adversary is impersonating the genuine initiator, and consequently to terminate
the agent execution at the visited host if the malicious attack is detected.

2. Verifications upon the agent’s return to the initiator. The verifications are

necessary to analyze the authenticity, confidentiality, and strong integrity of the
data that the mobile agent has gathered and returned to the initiator, and
consequently to output the data if the verifications are passed.

 The two types of verifications are explained in details and are expressed in STA as
described below.

1. Initially, the agent is dispatched from host I to the first host in the agent’s itinerary,
which is host A. The term (hsh(I)^+SigI) that securely store the identity of the
genuine originator would be received at host A as a variable denoted as xIS, as
depicted in Figure 8. Upon the reception of the agent at host A, the host decrypts the
agent’s execution result with its private key -KA, and then it decrypts the term xIS,
with the signature verification key of the initiator –SigI, so having the term xID. If
the decryption is successful, then it compares the term xID with the hash of the
identity of the genuine initiator hsh(I). If the verification fails it terminates the
agent’s execution, otherwise it continues the execution of the agent. The offer that

 57

host A provides and signs is to be encrypted with the public key of the genuine
initiator I. The verification is expressed in STA as follows:

 (xID pkdecr (-SigI, xIS)) >> (xID is hsh(I)) (1)

 The verification is repeated upon the reception of the agent at every visited host
in the agent’s itinerary. The term (hsh(I)^+SigI) that securely store the identity of the
genuine originator would be received at host B as a variable denoted as yIS, as
depicted in Figure 8. The verification at host B would be as follows:

 (yID pkdecr (-SigI, yIS)) >> (yID is hsh(I)) (2)

 The term (hsh(I)^+SigI) that securely store the identity of the genuine originator
would be received at host C as a variable denoted as zIS, as depicted in Figure 8. The
verification at host C would be as follows:

 (zID pkdecr (-SigI, zIS)) >> (zID is hsh(I)) (3)

 In brief, the verification (1), (2), and (3) detect if an adversary is impersonating
the genuine initiator so as to breach the privacy of the gathered data. And
subsequently the executing host terminates the execution of the agent if the malicious
act is detected.

2. Upon the reception of the agent at host I, the initiator performs the verifications
depicted in Table 3 to detect any violation of the data integrity property. The
verifications are expressed in STA as described below.

 The initial verification terms (r, m0, i1) that are stored within the secondary
agent are verified with the terms that are returned with the major (migrating) agent.
Figure 8 shows the flow of certain verification terms and the corresponding
variables names as received at honest hosts participating in the protocol.

 For example, host I transmits the initial verification term r as a name R, then
host A receives the term as a variable xR. Next, host A computes hsh(xR) and
transmits hsh(xR) to host B, and then host B receives it as a variable yR and within
the offer of host A. Next, host B computes hsh(yR) and transmits it to host C, and
then host C receives it as a variable zR and within the offers of hosts A, and B.
Next, host C computes hsh(zR) and transmits it to host I, and then host I receives it
as a variable wR1 within the offer signed by host A , a variable wR2 within the
offer signed by host B, and a variable wR3 within the offer signed by host C. Also,
host I receives wR3 as the last term in the execution results of the migrating agent.
The flow of the term is illustrated in Figure 8. The returned variables wR1, wR2,

 58

and wR3 are expected to have the following values:

 wR3 = hsh(hsh(hsh(R)))
 wR2 = hsh(hsh(R))
 wR1 = hsh(R)

 Upon the agent’s return, the major agent carries out the verifications in (4), (5), and
(6) to check that the gathered and returned data belong to the protocol run of concern,
which is identified by the term R, using the term R that is securely stored with the
secondary agent and that is communicated to the agent through the input action a3!.

 (wR3 is hsh(hsh(hsh(R)))) (4)
 (wR2 is hsh(hsh(R))) (5)
 (wR1 is hsh(R)) (6)

 Initially host I generates a dummy offer M0 and transmits it within the
migrating agent. Finally, it receives the offer as a variable wM0, as depicted in
Figure 8. Upon the agent’s return, the major agent carries out the verification in (7)
to check that the returned dummy offer wM0 that the initiator generated at the
initialization of the agent is returned intact using the term M0, which is securely
stored within the secondary agent and that is communicated to the migrating agent
through the input action a3!.

 (wM0 is M0) (7)

 At the initiation, host I digitally signs the term hsh(I) and transmits it within the

agent’s execution results. Finally, it receives the signed term as a variable wIS, as
depicted in Figure 8. Upon the agent’s return, the initiator verifies that the returned
data are generated for genuine initiator that signed the term hsh(I). The initiator
decrypts the agent’s execution results with its private key -KI, and then decrypts the
varaible wIS using the signature verification key of the initiator -SigI so having the
variable wID. If the decryption is successful, it compares the variable wID to hsh(I).
If the verification passes, then it asserts that the gathered and returned data were
generated for the genuine initiator host I. The decryption of the signed term wIS and
the verification on the identity of the signer is expressed in STA and given in (8).

 (wID pkdecr (-SigI, wIS)) >> (wID is hsh(I)) (8)

 The returned data integrity code wDIC is a chained hash of the data acquired at
the visited hosts, as depicted in Figure 8. Upon the agent’s return, the agent
computes the data integrity code DIC using the terms wM1, wM2, and wM3 that
are enclosed within the returned offers as in (9).

 59

 DIC = hsh(wM3, (hsh(wM2, (hsh(wM1, (hsh(I))))))) (9)

 Next, it verifies that the computed data integrity DIC matches the variable wDIC.
If the verification fails, then it deduces that data truncation took place and discards
the gathered and returned data. The verification is expressed in STA as in (10).

 (wDIC is hsh(wM3, hsh(wM2, hsh(wM1, hsh(I))))) (10)

 The specifications and the security properties of the proposed protocol are expressed
in STA as shown in Appendix A. The sequence of the verifications the proposed
protocol carries is depicted in Figure 9. The major (migrating) agent starts its itinerary
from host I and is dispatched by the initiator to host A. The process at host I starts with
an output action i1, and then host A receives the agent through the input action a1?.
Next, host A executes the agent and carries out the verification on the identity of the
genuine initiator. If the verification passes, it provides its offer to the agent and
dispatches the agent to host B through an output action a2!. Host B receives the agent
through the input action b1?. Next, host B executes the agent and carries out the
verification on the identity of the genuine initiator. If the verification passes, it provides
its offer to the agent and dispatches the agent to host C through an output action b2!.
Host C receives the agent through the input action c1?. Next, host C executes the agent
and carries out the verification on the identity of the genuine initiator. If the verification
passes, it provides its offer to the agent and dispatches the agent to host I through an
output action c2!. Finally, host I receives the agent through the input action i2?, and then
carries out the final verifications. If the verifications pass, then it sends out the gathered
data through the output action i3!.

 60

 61

R hsh(I)^+SigI(M0)^+KI Hsh(I)

xR xIS xM0xIC

hsh(xR)
hsh(xR) within the offer of
host A

xIS xM0hsh(M1, xIC)

Host I

Agent transmission

Agent transmission

Host A

Agent transmission

yR
Stored within the offer of host A

yIS yM0 yDIC

hsh(yR)
hsh(yR) within the offer of host B
Stored within the offer of host A

yIS yM0 hsh(M2, yDIC) Host B

Agent transmission

Agent transmission

Host C

zR
Stored within the offer of host A
Stored within the offer of host B

zM0 zIS zDIC

Agent transmission

hsh(zR)
hsh(zR) within the offer of host C
Stored within the offer of host A
Stored within the offer of host B

 hsh (M3, zDIC) zIS zM0

Agent transmission

 wDIC wIS wM0 wR3
wR3 within the offer of host C
wR1 within the offer of host A Host I wR2 within the offer of host B

Fig. 8 The flow of the verification terms and the corresponding variables’ names

(λI)^+KI
((λA))^+SigA^+KI
((λB))^+SigB^+KI
((λC))^+SigC^+KI
wDIC, wIS, wR3

Verifyies: M0, A,
R with those stored
with secondary
agent, data integrity
code, no. of hosts

[(λI)^+KI
hsh(I)
Hsh(I)^+SigI
R]^+KA

xM0, xIC
xIS, xR

Verifies:
xIS is signed
by genuine
initiator

[((λA))^+SigA^+KI
xM0, hsh(M1, xIC)
xIS, hsh(xR)]^+KB

M0,
 I, R

i3?

a1?

a2!

i2?

i1!

M1, M2,
M3

Accept!

Termination

Start

True

False

True

Processes at
Host A
Processes at
Host I

yM1, yM0
yDIC, yIS, yR

Verifies:
yIS is signed
by genuine
initiator

[((λB))^+SigB^+KI
yM1, yM0,
hsh(M2, yDIC),
yIS, hsh(yR)]^+KC b2!

b1?

Termination

False

True
Processes at
Host B

zM2, zM1, zM0
zDIC, zIS, zR

[((λC))^+SigC^+KI
zM2, zM1, zM0,
hsh(M3, zDIC),
zIS, hsh(zR)]^+KI

Verifies: zIS
is signed by
genuine
initiator

c2!

c1?

Termination

False

True

Processes at
Host C
 62

Fig. 9 A flow chart of the sequence of verifications in the proposed protocol

Termination

False

Input/ output channel
e.g. c2

8.2 Modeling the environment
The environment represents the intruder’s knowledge and capabilities. An intruder

may intercept, fake, delete, insert, append, replace messages, or spy out confidential
data. Also, two intruders may co-operate with each other to delete the data acquired at
intermediate hosts or append the data of hosts of their own selection.

8.3 Formalizing the security properties

We are concerned with data authenticity, data confidentiality and strong data
integrity of the data gathered by mobile agents. The properties are formalized as follows:
- The Authentication of A towards B requires that every trace generated by B’s input
action is preceded by an A’s output of the same message. In our model, the hosts A, B,
and C transmit M1, M2, and M3 representing m1, m2, and m3 respectively, through the
output actions a2!, b2!, and c2!. Upon the agent’s return, the initiator receives the three
variables: wM1, wM2, wM3 through the input actions i2?. We need to verify that the
three variables actually originated from the respective hosts: A, B, and C. Each variable
is contained within the offer that the respective host provided. Hence, verifying the
authenticity of an offer concludes the authenticity of the respective variable.

 The offer that host A provides is denoted as w3 and is sent through the output action
a2!. The offer w3 encloses the data M1 that host A provided to the agent. Host I receives
the offer through the input action i2? as w3'. The authentication of the data M1 is
expressed in STA as in (11).

val Auth8 = (a2!(w3, w4, w5, w6, w7) <-- i2?(w1, w2, w3', w4, w5, w6', w7)); (11)

 The Auth8 property means that the input action i2?wM1 is really preceded by the
corresponding output action of a2!M1. To verify Auth8 property for the declared
configuration conf, the following command is to be given at the ML interaction window:

 > CHECK Conf Auth8; (12)

 If the check (12) passes then it authenticates that wM1 is the term M1 which truly
originated from host A.

 The offer that host B provides is denoted as w2 and is sent through the output action
b2!. The offer w2 encloses the data M2 that host B provided to the agent. Host I receives
the offer through the input action i2? as w2'. The authentication of the data M2 is
expressed in STA as in (13).

val Auth9 = (b2!(w2, w3, w4, w5, w6, w7) <-- i2?(w1, w2', w3, w4, w5, w6', w7)); (13)

 63

 The Auth9 property means that the input action i2?wM2 is really preceded by the
corresponding output action of b2!M2. To verify Auth9 property for the declared
configuration conf, the following command is to be given at the ML interaction window:

 > CHECK Conf Auth9; (14)

 If the check (14) passes then it authenticates that wM2 is the term M2 which truly
originated from host B.

 The offer that host C provides is denoted as w1 and is sent through the output action
c2!. The offer w1 encloses the data M3 that host C provided to the agent. Host I receives
the offer through the input action i2? as w1'. The authentication of the data M3 is
expressed in STA as in (15).

val Auth10 = (c2!(w1, w2, w3, w4, w5, w6, w7) <-- i2?(w1', w2, w3, w4, w5, w6', w7)); (15)

 The Auth10 property means that the input action i2?wM3 is really preceded by the
corresponding output action of c2!M3. To verify Auth10 property for the declared
configuration conf, the following command is to be given at the ML interaction window:

 > CHECK Conf Auth10; (16)

 If the check (16) passes then it authenticates that wM3 is the term M3 which truly
originated from host C.

If any of the authenticity verifications fails: (12), (14), (16), then the authenticity is
unjust.

- The Data secrecy is such that an intruder can not reveal any communicated secret
term. In our model the terms: M0, M1, M2, and M3 are secret terms that should not be
revealed except to the initiator I. Secrecy of the terms M0, M1, M2, and M3 is expressed
in STA as in (17), (18), (19), and (20) respectively.

 val Secrecy1 = (Absurd ← guard?M0); (17)
 val Secrecy2 = (Absurd ← guard?M1); (18)
 val Secrecy3 = (Absurd ← guard?M2); (19)
 val Secrecy4 = (Absurd ← guard?M3); (20)

For example, the Secrecy1 property is verified by assuming a guardian that can at any

time pick a message and tries to synthesize the secret M1. The input action guard?M1 is
such that the secret M1 is learnt through the input action ‘guard’, and the property:
Absurd ← guard?M1 is such that the input action guard?M1 never takes place. To verify

 64

the secrecy properties: (17) , … , (20) for the declared configuration Conf, the following
commands should be given at the ML interaction window:

> CHECK Conf Secrecy1; (21)
> CHECK Conf Secrecy2; (22)
> CHECK Conf Secrecy3; (23)
> CHECK Conf Secrecy4; (24)

 A check passes if the guardian never learns the secret M1. If any of the secrecy
verifications (21), … , (24) fails, then the secrecy property is breached.

- The Strong Data integrity property would be verified by carrying out the following
four types verifications:

1. Verifying that the data term (M1, M2, M3) gathered at the respective hosts A, B,
and C are received intact at host I. The data gathered are received at host I as
variables (wM1, wM2, wM3). Each variable is contained within an offer that the
host provided. Hence verifying that the offers that are received at host I
correspond to those acquired at the hosts A, B, and C, implies that the data terms
are received intact at host I. The verification would detect any of the following
malicious acts of non-trusted hosts or intruders:

a. Deletion of the data acquired at intermediate host/s, or alteration of the data
the non-trusted host provided to the agent at an earlier time

b. Truncation of the data acquired at the visited hosts

 Each offer is signed with the private key of the corresponding host. Then no
one would be able to alter the data contained within the offer. Hence, verifying
the authenticity of each offer ensures the integrity of the offers.

 The offer that host A transmitted through the output action a2! is denoted as
w3, and is received through the input action i2? as w3′. The identity of the
initiator for whom the offer was generated at host A is transmitted as w6 through
the output action a2!, and is received as w6′ through the input action i2?. Also,
the identity of the initiator of the agent is contained within w3 and w3′. The
verification is expressed in STA as given in (12).

 The offer that host B transmitted through the output action b2! is denoted as
w2, and the offer is received through the input action i2? as w2′. The identity of
the initiator for whom an offer was generated at host B is transmitted as w6
through the output action b2!, and is received as w6′ through the input action i2?.

 65

Also, the identity of the initiator of the agent is contained within w2 and w2′. The
verification is expressed in STA as given in (14).

 The offer which host C transmitted through the output action c2! is denoted as
w1, and the offer is received through the input action i2? as w1′. The identity of
the initiator for whom an offer was generated at host C is transmitted as w6
through the output action c2!, and is received as w6’ through the input action i2?
. Also, the identity of the initiator of the agent is contained within w1 and w1′.
The verification is expressed in STA as given in (16).

2. Verifying that the term R, which uniquely identifies the protocol run of the agent
that host I initiated is maintained intact during the agent’s lifetime. The
verification would detect if an adversary is able to replace the agent’s dynamic
data with the data of a similar protocol run without being detected. The
verification requires two sorts of verifications, as follows:

a. Verifying that the chained hash of the term R is maintained intact during its
transmission from one host to the succeeding host in the agent’s itinerary. The
verifications are among the following input and output actions through which the
chained hash of the term R is transmitted/ received:

 i1! and a1?
 a2! and b1?
 b2! and c1?
 c2! and i2?

 The chained hash of the term R is transmitted through the output actions i1!,
a2!, b2!, and c2! as w7, and then it is received through the input actions a1?, b1?,
c1?, and i2?, respectively as w7′. To express that every w7 is preceded by the
corresponding w7′ during the lifecycle of the agent, the following properties are
declared in STA:

val Auth4 = (i1!(w4, w5, w6, w7) <-- a1?(w4, w5, w6', w7')); (25)
val Auth5 = (a2!(w3, w4, w5, w6, w7) <-- b1?(w3, w4, w5, w6', w7')); (26)
val Auth6 = (b2!(w2, w3, w4 ,w5, w6, w7) <-- c1?(w2, w3, w4, w5, w6', w7')); (27)
val Auth7 = (c2!(w1, w2, w3, w4, w5 ,w6 ,w7) <-- i2?(w1, w2, w3, w4, w5, w6', w7')); (28)

To verify the properties: (25), … , (28) for the declared configuration Conf, the
following commands should be given at the ML interaction window:

> CHECK Conf Auth4; (29)
> CHECK Conf Auth5; (30)
> CHECK Conf Auth6; (31)

 66

> CHECK Conf Auth7; (32)

b. Verifying that a participating host transmits a hash of the chained hash of R
that the host received. For example, host B receives hsh(R) as yR, then it should
transmit it as hsh(yR). The verifications are among the following input and
output actions through which the chained hash of R is transmitted/ received:

 a1? and a2!
 b1? and b2!
 c1? and c2!

 At initialization, host I transmits the term R to host A. The term R is received at
host A through the input action a1? as xR. We need to verify that the host
transmits a hash of the term xR through the output action a2!. The
correspondence assertion is expressed in STA as given in the Auth1 property
(33). Next, the hashed term hsh(xR) is received at host B through the input
action b1? as yR. We need to verify that the host transmits a hash of the term yR
through the output action b2!. The correspondence assertion is expressed in STA
as given in the Auth2 property (34). Then, the hashed term hsh(yR) is received at
host C through the input action c1? as zR. We need to verify that the host
transmits a hash of the term zR through the output action c2!. The
correspondence assertion is expressed in STA as given in (35).

 val Auth1 = (a1?xR <-- a2!hsh(xR)); (33)
 val Auth2 = (b1?yR <-- b2!hsh(yR)); (34)
 val Auth3 = (c1?zR <-- c2!hsh(zR)); (35)

To verify the properties in (33), … , (35) for the declared configuration Conf, the
following commands should be given at the ML interaction window:

> CHECK Conf Auth1; (36)
> CHECK Conf Auth2; (37)
> CHECK Conf Auth3; (38)

3. Verifying that the term ((H(I)^+SigI) that identifies the genuine initiator is
maintained intact during the agent’s lifetime. The verification would detect if an
adversary was able to impersonate the genuine initiator without being detected
during the agent’s lifetime. The malicious act is usually intended for a breach of
privacy of the collected data. The verification requires two sorts of verifications,
as follows:

 67

a. Verifying that the term (H(I)^+SigI)) is maintained intact during its
transmission from one host to the succeeding host in the agent’s itinerary. The
verifications are among the following input and output actions:

 i1! and a1?
 a2! and b1?
 b2! and c1?
 c2! and i2?

 The term (H(I)^+SigI) is transmitted through the output actions i1!, a2!, b2!,
and c2! as w6, and then is received through the input actions a1?, b1?, c1?, and
i2?, respectively as w6′. The verifications are expressed in STA as given in (29),
(30), (31), and (32).

b. Verifying that an executing host transmits the term (H(I)^+SigI) the same as
it is received without any tampering. The verifications are among the following
input and output actions through which the signed term is transmitted/ received:

 a1? and a2!
 b1? and b2!
 c1? and c2!

 The term (H(I)^+SigI) is received through the input actions a1?, b1?, and c1?
as w6 and is transmitted through the output actions a2!, b2!, and c2!,
respectively as w6′. The correspondence assertion is expressed in STA as given
below.

val Auth12 = (a1?(w4, w5, w6, w7) <-- a2!(w3, w4, w5, w6', w7)); (39)
val Auth13 = (b1?(w3, w4, w5, w6, w7) <-- b2!(w2, w3, w4, w5, w6', w7)); (40)
val Auth14 = (c1?(w2, w3, w4, w5, w6, w7) <-- c2!(w1, w2, w3, w4, w5, w6', w7)); (41)

To verify the properties: (39), … , (41) for the declared configuration Conf, the
following commands should be given at the ML interaction window:

> CHECK Conf Auth12; (42)
> CHECK Conf Auth13; (43)
> CHECK Conf Auth14; (44)

4. Verifying that the dummy offer M0 which host I generated at the initiation of the
agent is returned intact. The offer is encrypted with the public key of the host I
and transmitted through the output action i1! as w4 and is returned to the host
through the input action i2? as w4'. The correspondence assertion is expressed in
STA as given in (45).

 68

val Auth11 = (i1!(w4, w5, w6, w7) <-- i2?(w1, w2, w3, w4', w5, w6, w7)); (45)

To verify the property for the declared configuration conf, the following command
should be given at the ML interaction window:

> CHECK Conf Auth11; (46)

If any of the four integrity verifications given in (12), (14), (16), (29) , … , (32), (36) ,
… , (38), (42) , … , (44), (46) fails, then the strong data integrity property is violated.
Hence, the gathered data should be discarded.

9 Formal Verification of the Protocol

 We analyzed the protocol for the following key configurations:

1. Configuration 1: A single run of the protocol with an initiator I and three executing

hosts A, B, and C. The agent’s itinerary is I, A, B, C, I. The protocol run is identified
by a fresh nonce R that has been randomly chosen by the initiator, and a dummy
data generated by the initiator: M0. The I/O actions of the protocol run are
referenced as: i1!, i2?, i3?, a1?, a2!, b1?, b2!, c1?, and c2!. The configuration is
depicted in Figure 10.

2. Two parallel runs of the protocol for three different configurations, as described

below.

a. Configuration 2: Two parallel runs. The first run with the initiator I and three
executing hosts A, B, and C. The second run with initiator I and three executing
hosts E, B, and C. The agent’s itinerary in the first run is I, A, B, C, I, whereas
the itinerary in the second run is I, E, B, C, I. The host E is a malicious host that
has registered it-self as a participating host. The first and the second protocol
runs are identified by a distinct nonce: R, and R′, respectively, and have been
randomly chosen by the initiator I. The first protocol run is identified by a
distinct nonce R that has been randomly chosen by the initiator, and a dummy
data generated by the initiator: M0. The second protocol run is identified by a
distinct nonce R′ that has been randomly chosen by the initiator, and a dummy
data generated by the initiator: M′0. The I/O actions of the first protocol run are
referenced as: i1!, i2?, i3?, a1?, a2!, b1?, b2!, c1?, and c2! . The I/O actions for
the second protocol run are referenced as: i′1!, i′2?, b′1?, b′2!, c′1?, and
c′2!.The configuration is depicted in Figure 11.

b. Configuration 3: Two parallel runs. The first run with the initiator I and three

executing hosts A, B, and C. Hosts A and C are malicious hosts that have

 69

registered themselves as participating hosts. The second run with initiator I and
three executing hosts E, B, and C. The host E is a malicious host that has
registered it-self as a participating host. The agent’s itinerary in the first run is I,
A, B, C, I, whereas the itinerary in the second run is I, E, B, C, I. The first
protocol run is identified by a distinct nonce R that has been randomly chosen
by the initiator, and a dummy data generated by the initiator: M0. The second
protocol run is identified by a distinct nonce R′ that has been randomly chosen
by the initiator, and a dummy data generated by the initiator: M′0. The I/O
actions of the first protocol run are referenced as: i1!, i2?, i3?, b1?, and b2! .
The I/O actions for the second protocol run are referenced as: i′1!, i′2?, b′1?,
and b′2!. The configuration is depicted in Figure 12.

c. Configuration 4: Two parallel runs. The first run with the initiator I1 and three

executing hosts A, B, and C. The second run with initiator I2 and three
executing hosts E, B, and C. The agent’s itinerary in the first run is I1, A, B, C,
I1, whereas the itinerary in the second run is I2, E, B, C, I2. The first protocol
run is identified by a distinct nonce R that has been randomly chosen by the
initiator I1, and a dummy data generated by the initiator: M0. The second
protocol run is identified by a distinct nonce R′ that has been randomly chosen
by the initiator I2, and a dummy data generated by the initiator: M′0. The I/O
actions of the first protocol run are referenced as: i1!, i2?, i3?, a1?, a2!, b1?,
b2!, c1?, and c2! . The I/O actions for the second protocol run are referenced
as: i′1!, i′2?, a′1?, a′2!, b′1?, b′2!, c′1?, and c′2!. The configuration is depicted
in Figure 13.

The role of a malicious host is not explicitly modeled. It is implicitly modeled by the

environment that is described in the configuration Conf.

The STA scripts of the four protocol runs are shown in Appendices A, B, C, and D

respectively, including the declaration of identifiers, system processes, configuration, and
properties due to limitation in space. In the configuration we set the environment initial
knowledge to: (a) old nonce Rold, (b) participating hosts’ identities and the associated
public keys and signature verification keys, and (c) an intercepted message.

 The verification of data authenticity, strong data integrity and data confidentiality
properties using STA reported no attacks. The results of verifications of the proposed
protocol with the reached symbolic configurations are shown in Figures 14, 15, 16 and 17
respectively. The results of the analysis of the small instance of the protocol in the four
key configurations implies that the proposed protocol is free of security flaws and would
provide a motivation for a proof of security of the protocol of an arbitrary size.

 70

 71

 72

> val it = "No attack was found 327 symbolic configurations reached." : string

Fig. 14 Result of analyzing the configuration 1 with a single run of the proposed protocol

> val it = "No attack was found 109603 symbolic configurations reached." : string

Fig. 15 Result of analyzing the configuration 2 of two parallel runs of the proposed protocol.
The 2nd run with a malicious host

> val it = "No attack was found 328 symbolic configurations reached." : string

Fig. 16 Result of analyzing the configuration 3 of two parallel runs of the proposed protocol:
(a) the 1st run with a malicious, and (b) the 2nd with two co-operating malicious hosts

> val it = "No attack was found 1959 symbolic configurations reached." : string

Fig. 17 Result of analyzing the configuration 4 of two parallel runs of the proposed protocol with
different initiators: I1, and I2

The results of analyzing the proposed protocol with the reachable states are
summarized in Table 6.

Table 6. The verification results of the proposed protocol with the reachable states

Configurations of the protocol runs Verification results
a single run of the proposed protocol No attack, 327 states
Two parallel runs of the proposed protocol. The 2nd
run with a malicious host

No attack, 109603 states

Two parallel runs of the proposed protocol:
(a) the 1st run with a malicious
(b) the 2nd with two co-operating malicious hosts

No attack, 328 states

Two parallel runs of the proposed protocol with
different initiators: I1, and I2

No attack, 1959 states

10 Conclusion and Motivation

 Several protocols were presented in the literature aim to assert the security properties
of mobile agent’s execution results such as integrity, confidentiality, and authenticity in

 73

the presence of malicious hosts and intruders. However, they were not able to
completely achieve the aimed for security properties. They did not achieve particular
security properties, such as strong data integrity [14, 20, 22, 23, 28, 29]. It is attributed to
incomplete designs, where a proper design of a security protocol should consist of: (a)
precise security requirements, (b) clear assumptions, (c) various capabilities of
adversaries, especially the conspiracy of non-trusted hosts, (d) formal specifications and
properties, (e) and formal verification of the security properties a protocol aims to
accomplish.

In this paper we present a security protocol which is intended for the protection of the
execution results of mobile agents and targets strong data integrity, authenticity, and
confidentiality. The protocol is derived from the Multi-hops protocol [14], where the
security relies on a chain of signed offers, a message authentication code and a chained
hashing of a random nonce. The Multi-hops protocol does not accomplish strong data
integrity. It is not able to detect the data truncation or replacement attacks, which can take
place when a host conspires with a preceding host in agent’s itinerary and sends the agent
back to it, so the preceding host would be able to truncate the data acquired at the
intermediary hosts and alter the data it formerly provided without being detected by
replacing the recent agent’s dynamic data with the former data that was current when the
agent firstly visited it, as long as it is still storing the former data. Also, it can not detect the
attack, where an adversary might sign others data with its own private key, since the
collected data are transmitted in plain text in Mn. We enhanced the protocol so that it
hinders or at least detects the attacks which the Multi-hops protocol and the protocols
presented in the literature [20, 22, 23, 28, 29] were not able to detect. The proposed
protocol refines the Multi-hops protocol by: (a) employing two co-operating agents, a
migrating agent and a stationary agent, (b) requesting any executing host to clear its
memory from the data acquired as a result of executing the agent before it dispatches the
agent to the succeeding host, (c) jumbling of collected offers to mislead an adversary
trying to truncate offers collected at preceding hosts, and (d) carrying out intermediate
verifications at visited hosts on the identity of the genuine initiator, based on storing
securely the identity of the genuine initiator within the migrating agent.

 The two co-operating agents are a major agent and a secondary agent. The major
agent traverses the Internet searching for particular data, and the secondary agent resides
at the initiating host and securely stores the terms needed for accurate verifications on:
(a) the nonce r which uniquely identifies a particular protocol run, (b) the dummy data
generated by the initiator m0 , and (c) the identity of the first host in agent’s itinerary i1.
Upon agent’s return, the secondary agent communicates the terms to the initiator to carry
out the followings: (i) Verify that the computed γ′n with r as an initial value matches the
returned γn . (ii) Deduce the actual agent’s itinerary from hosts’ identities which are
enclosed within the chain λ, and then verify that first host in the assembled agent’s
itinerary is i1. (iii) Verify the γj enclosed in each encapsulated offer λj matches the
computed γ′j based on the order of the host in the assembled agent’s itinerary for all

 74

offers in the chain λ. (iv) Verify that the last decrypted term in the chain λ matches m0.
Commonly, verifications are based on initial data that are stored within the migrating
agent. However, an adversary might tamper with the initial data as the agent transfers
through public communication channels, and thus the verifications are not truly accurate.
Hence, the storing of the initial verification data within the secondary agent ensures that
the data are intact and verifications are truly accurate. The intention to store the initial
verification data within the secondary agent and not within the initiator’s memory is to
enable the initiator to trace any tampering with the initial verification data. Adversaries
might attempt to tamper with the initiator’s memory. The execution traces, which Vigna
recommends in [51], might be implemented. The technique requests an agent executor to
create and store a trace of the execution of the secondary agent. Upon the agent’s return,
the initiator verifies the initial verification data stored within the secondary agent
through the stored execution trace. If the verification passes, then the subsequent
verifications would be accurate.

The protocol implements certain security techniques which would ensure the

integrity of the acquired data such as jumbling of the acquired offers, and computing
data integrity code and a counter of the actually visited hosts. The jumbling of offers is
intended to deceive an adversary trying to delete the offers acquired at preceding host/s.
The offers are jumbled so having the dummy offer, which is generated by the initiator, as
the last offer within the chain of offers. Hence, the malicious act of deletion of the last
offer in the chain of offers would be detected upon the agent’s return to the initiator. The
initiator checks if the dummy offer is within the chain of offers. If the verification fails,
then it implies that tampering with the chain of offers took place. The data integrity code
and the counter of visited hosts are used to detect any tampering with the acquired offers
such as deletion, insertion or modification of data. Each acquired offer includes the data
provided by the executing host, the data integrity code as computed at the host, the
identity of the succeeding host, and the term which identifies the genuine initiator for
whom the offer is generated. Intermediate verifications are carried out during the
execution of the agent at executing hosts to verify the identity of the genuine initiator.
Each executing host, at the early execution of the agent should verify that the signed
term matches the hash of the identity of the genuine initiator, otherwise the execution
terminates. Also, the transmitted data is encrypted with the public key of the succeeding
host in agent’s itinerary to reduce the chances of intruders to learn any of the terms
enclosed within the transmitted message in case the intruder intercepts the message. The
enclosed terms include the identity of the genuine initiator, the nonce which identifies
the protocol run, the terms needed to append or insert a new offer e.g. data integrity
code. In order to accomplish strong data integrity, and prevent or at least detect two
malicious hosts co-operating with each other with the intension of truncating the data
acquired at intermediate hosts, and replacing the data which they already provided with a
new data trying to have agent’s decision in their favors, the protocol requests each
executing host to clear its memory from the terms acquired during the execution of the
agent such as the data integrity code before the host transmits the agent to the

 75

succeeding host. An executing host may not respond to the request. The denial of
clearing request can be traced by implementing the execution traces technique
recommended by Vigna in [51]. Also, the initiator can assemble the actual agent’s
itinerary from the chain λ which binds the identity of an executing host to the identity of
the succeeding host as acknowledged in the acquired offers. Moreover, the initiator can
deduce the actual the number of visited hosts by counting the number of times the nonce
is hashed. Hence, the initiator can detect the malicious act of deletion, truncation or
insertion of offers.

The proposed protocol accomplishes the proper design stages of security protocols.

We used formal methods to model the system and to analyze its security properties. A
small instance of the protocol is verified for the security properties: strong data integrity,
data authenticity, and confidentiality. The results of the formal verification showed that he
protocol is free of security flaws in a four key configurations. Moreover, we reasoned
about the security of the protocol of a general model in section 5.8 and showed that the
protocol is capable of preventing or at least detecting the attacks revealed in the existing
protocols. Hence, we can say that the proposed protocol is free of the flaws revealed in
the existing protocols and would overcome the attacks of adversaries which were revealed
in [14, 20, 22, 23, 28, 29]: (a) truncation of collected data, (b) alteration of the data which
a host formerly provided in case the host co-operates with a succeeding malicious host,
(c) impersonating the genuine initiator and hence breach the privacy of collected data, (d)
sending others data under the private key of a malicious host, and (e) replacing the
collected data with data of similar agents.

This paper demonstrates the usefulness of employing formal methods in analyzing

the proposed security protocol. We verified the security protocol using the STA tool for
data authenticity, data confidentiality, and strong data integrity properties. The STA tool
is as an automatic verification tool that is used to analyze the properties of security
protocols. It performs a complete exploration of the state space and analyzes execution
traces based on symbolic transitions, which would lead to a compact model, whereas the
analysis of execution traces in model checking or the checking of the may-testing
equivalence of Spi-calculus suffer from state-explosion problem. The STA tool is
practically efficient compared to other formal methods, such as theorem proving. It takes
less than half an hour to write the STA script of a protocol run. According to the authors
in [8, 9, 16] the symbolic analysis is sound and complete. Detecting an attack on the
symbolic model would imply that an attack exists in the infinite standard model and vice
versa. The execution is automatic, though, it slows down as the number of data
values increases.

In conclusion, the proposed mobile agent security protocol is analyzed and formally

verified for various kinds of attacks and the verification of the different runs of the
protocol showed no flaws in the protocol. We found that the protocol is secure for the
modeled configuration and would satisfy the intended security properties. Hence, the

 76

proposed protocol would inspire the deployment of mobile agents in e-commerce
applications having assurance in the searched and gathered data.

11 Future Works

A protocol designer should specify and verify a new protocol formally before
presenting it for implementation and claiming the assertion of particular security
properties. Many of the existing protocols are not yet formally described and verified. It
is very beneficial to apply formal methods to existing protocols, which would help in
fixing such protocols or getting a formal proof of their correctness and safety, as
applicable. This would be the issue of future work. Care should be taken in selecting a
formal method for the verification of a security protocol. In section 6 various formal
methods were briefly discussed. The modal logic methods lack automated tools, model
particular security properties such as authentication, and are error-prone. The theorem
proving methods require special skills. The modal algebra methods require checking
equivalence of processes and the checking that two processes are indistinguishable for
any tester process is difficult, especially the proofs are not automated. The model
checking methods relies on finite approximation of the actual model, which requires a
bound on the number of protocol runs and the number of possible messages the attacker
can generate and send to honest participating hosts at any moment. Hence, a prior
knowledge of the protocol to analyze is required. Also, the adversary has to be modeled
explicitly. The symbolic methods make no assumption with respect to the infinite model.
The adversary is represented by the environment’s initial knowledge and no explicit
modeling of the adversary is required. Thus, it does not require prior knowledge of the
protocol to analyze. It requires familiarity with process algebra. The state space of a
system might increase exponentially as the size of the system grows linearly, and
accordingly the execution slows down. Thus, a variety of factors should be considered
when selecting a formal method [7]: (i) Usability, such as a high level user interface
[25]. The user interface of STA is rudimentary. However, specifying the protocol in STA
requires about half an hour if being familiar with process algebras. (ii) Required
knowledge and skills to model the system. (iii) System specifications of interest, e.g. the
security properties of interest. (iv) Memory occupation. According to Boreale and
Buscemi, STA implements a depth-first search approach, which controls the memory
occupation appropriately [7]. (v) Availability of automatic proofs and the expected
execution time. For example, the execution time is greatly shorter in STA as compared
to Murϕ [7, 35], which depends on the number of possible transitions branching from
states. (vi) The model size, as the model is expected to increase dramatically as the
number of participants and consequently the possible data values increase. (vii) Explicit
modeling of the adversary. For example, in Murϕ it takes more than half of the
time required to model the protocol [35]. The appropriate selection of a method
would result in an efficient verification and would certainly detect flaws in a
protocol, if any exists.

 77

It is worthy to verify the security properties of the proposed protocol using other

formal methods, such as model checking and theorem proving, so as to compare the
results of verification in terms of simplicity, usability, accuracy and efficiency.

Acknowledgement

I am grateful to Nandan Parameswaran, Kai Engelhardt, Amjad Hudaib, Ralf Huuck,
and John Zic for their close guidance, and the frequent and fruitful discussions
contributed to the writing of the paper in its final form. Also, I would like to express my
appreciation to Cathy Meadows for the thorough reviewing of the paper and providing
valuable comments, and to Marzia Buscemi for commenting on the paper, especially the
fine comments on the sections of design and analysis of the proposed protocol.

 78

References

1. Abadi, M., and Blanchet, B., and Fournet, C. Just fast keying in the Pi. Manuscript.
Available at: http://www.di.ens.fr/~blanchet/crypto/jfk.html, Dec. 2003.

2. Abadi, M., and Fournet, C. Mobile values, new values, and secure communications. In
28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’01), pp. 104-115, Jan. 2001.

3. Abadi, M., and Gordon, A. D. A calculus for cryptographic protocols: The Spi-Calculus.
In Information and Computation, 148(1): 1-70, 1999.

4. Aziz, B., Gray, D., Hamilton, G., Oehil, F., Power, J., and Sinclair, D. Implementing
protocol verification for E-commerce. In Proceedings of the 2001 International
Conference on Advances in Infrastructure for Electronic Business, Science, and
Education on the Internet (SSGRR 2001), L’Aquila, Italy, 6-12 Aug. 2001.

5. Blanchet, B., and Aziz B. A Calculus for Secure Mobility. In 18th Asian Computing
Science Conference (ASIAN’03), volume 2896 of LNCS, pp. 188-204, Springer-Verlag,
2003.

6. Boreale, M. and Gorla, D. Process calculi and the verification of security protocols. In
Journal of Telecommunications and Information Technology – Special Issue on
Cryptographic Protocol Verification (JTIT 2002/4), Warsaw, Poland, 2002.

7. Boreale, M. G., and Buscemi, M. Experimenting with STA, a tool for automatic analysis
of security protocols. ACM Symposium on Applied Computing 2002, ACM Press, 2002.

8. Boreale, M. Symbolic trace analysis of cryptographic protocols. In Proceedings Of
ICALP’01, volune 2076 of LNCS, Springer, 2001.

9. Boreale, M., and Buscemi, M. G. A framework for the analysis of security protocols. In
Proceedings of the 13th International Conference on Concurrency Theory (CONCUR
2002). Lecture Notes in Computer Science, vol. 2076. Springer-Verlag, Heidelberg, 667-
681.

10. Bradshaw, J. M. An Introduction to software agents, In Software Agents, J. M.
Bradshaw, Ed., Chapter 1, pp. 3-46, AAAI Press, 1997.

11. Burrows, M., Abadi, M., and Needham, R. A logic of authentication, ACM Transactions
in Computer Systems, 8(1): 18-36, Feb. 1990.

12. Cachin, C., Camenisch, J., and Kilian, J., and Müller, J. One round secure computation and
secure autonomous mobile agents. In Proceedings of 27th International Colloquium on
Automata, Languages and Programming (ICALP), U. Montanari, J. P. Rolim, and E. Welzl,
editors, volume 1853 of LNCS, pp. 512-523, Springer-Verlag, 2000.

13. Corradi, A., Montanari, R., and Stefanelli, C. Mobile agents integrity in E-commerce
applications. In Proceedings of the 19th IEEE International Conference on Distributed
Computing Systems Workshop (ICDCS’99), IEEE Computer Society Press, pp. 59-64,
Austin, Texas, May 31- June 5, 1999.

14. Corradi, A., Montanari, R., and Stefanelli, C. Mobile agents protection in the Internet
environment. In the 23rd Annual International Computer Software and Applications
Conference (COMPSAC ’99), pp 80 – 85, 1999.

15. Durante, L., Sisto, R., and Valenzano, A. A state-exploration technique for spi-calculus
testing equivalence verification. In Proceedings of the IFIP International Joint
Conference on Formal Description Techniques for Distributed Systems and

 79

Communication Protocols (FORTE XIII) and Protocol Specification, Testing and
Verification (PSTV XX) 2000. Kluwer Academic Publishers, Dordrecht, 155-170.

16. Fiore, M., and Abadi, M. Computing Symbolic models for verifying cryptographic
protocols. In Proceedings of the 14th IEEE ComputerSecurity Foundations Workshop
(CSFW 2001). IEEE Computer Society Press, Washington, 160-173.

17. Fischer, L. Protecting integrity and secrecy of mobile agents on trusted and non-trusted
agent places. Thesis Dissertation, University of Bremen, Germany, April 2003.
Available at:
http://www.sec.informatik.tu-armstadt.de/lang_neutral/diplomarbeiten/docs/fischer_diplom.pdf.

18. Formal Systems (Europe) Ltd. Failures Divergence Refinement. FDR2 User Manual.
Available at: http://www.formal.demon.co.uk/fdr2manual/index.html, 3May 2000.

19. Fournet, C., Gonthier, G., Lévy, J. J., Maranget, L., and Rémy, D. A calculus for mobile
agents. In 7th International Conference on concurrency Theory (CONCUR’96), volume
1119 of LNCS, pp. 406-421, Springer, Aug. 1996.

20. Hannotin, X., Maggi, P., and Sisto, R. Formal specification and verification of mobile
agent data integrity properties: A case study. Volume 2240 of LNCS, pp. 42-53,
Springer-Verlag, 2001.

21. Jaljouli, R. Boosting m-Business using a truly secured protocol for information gathering
mobile agents. To appear in Proceedings of the 4th International Conference on Mobile
Business, IEEE Computer Society Press, 2005.

22. Kanik, N., and Tripathi, A. Security in the Ajanta mobile agent system. Technical Report
TR-5-99, University of Minnesota, Minneapolis, MN 55455, U.S.A., May 1999.

23. Karjoth,G., Asokan, N. and Gülcü, C. Protecting the computation results of free-roaming
agents. In K. Rothermel and F. Hohl editors, Proceedings of the 2nd International Workshop
on Mobile Agents, volume 1477 LNCS, pp. 195-207, Springer-Verlag, Heidelberg, Germany,
1998.

24. Lowe, G. Breaking and fixing the Needham-Schroeder public key protocol using FDR.
In Proc. Tools and Algorithms for the construction and Analysis of systems (TACAS’06),
volume 1055 of LNCS, pp. 147 – 166, Springer-Verlag, 1996.

25. Lowe, G. Casper, A compiler for the analysis of security protocols. In Proceedings of
the 10th Computer Security Foundation Workshop (PCSFW), IEEE Computer Society
Press, 1997.

26. Ma, L., and Tsai, J. J. P. Formal Verification Techniques for Computer Communication
Security Protocols. In Handbook of Software Engineering and Knowledge Engineering
vol. 1. Available at: ftp://cs.pitt.edu/chang/handbook/12.pdf

27. Maggi, P., and Sisto, R. Using SPIN to Verify Security Properties of Cryptographic
Protocols. In Proceedings 9th International Spin Workshop on Model Checking of
Software (SPIN 2002), volume 2318 of LNCS, pp. 187-204, Grenoble, France, April
2002.

28. Maggi, P., Sisto, R. Experiments on formal verification of mobile agent data integrity
properties. Available at: http://www.labic.disco.unimib.it/woa2002/papers/15.pdf

29. Maggi., P and Sisto, R. A configurable mobile agent data protection protocol. In
Proceedings of AAMAS’03, ACM Press, New York, NY, USA, 2003, pp. 851–858.

30. Meadows, C. Formal Verification of Cryptographic Protocols: A Survey. In Advances in
Cryptography – ASIACRYPT’94, pp. 135-150.

31. Meadows, C. Language generation and verification in the NRL protocol analyzer. In 9th
IEEE Computer Society Foundations Workshop, Kenmare, Ireland, March 1996.

 80

32. Millen, J. K., Clark, S. C., and Freedman, S. B. The interrogator: protocol security
analysis, IEEE Transactions on software engineering, SE-13(2), 1987.

33. Milner, R., Parrow, J., Walker, D. A calculus for mobile processes (part I and II). In
Information and Computation, 100:1-77, 1992.

34. Milner, R., Tofte, M., Harper, R., and MacQueen, D. The definition of standard ML-Revised,
MIT Press, 1997.

35. Mitchell, J. C., Mitchell, M., and Stern, U. Automated analysis of cryptographic
protocols using Murϕ. In Proceedings of Symposiums on Security and Privacy, IEEE
Computer Society Press, 1997, pp. 141-153.

36. Mobility Workbench. Available at: http://www.it.uu.se/research/group/mobility/mwb
37. Moscow ML. Available at: http://www.dina.dk/~sestoft/mosml.html
38. Paulson, L. C. Proving properties of security protocols by induction. In Proceedings of

the 10th Computer Society Foundations Workshop, June 1997.
39. Process Algebra Compiler. Available at: http://www.reactive-systems.com/pac
40. Roth, V. Empowering mobile software agents. In Proceedings 6th IEEE Mobile Agents

Conference, Suri, N. editor, volume 2535 of LNCS, pp. 47-63, Springer-Verlag, Oct.
2002.

41. Roth, V. Programming Satan’s agents. In Proceedings of the 1st International Workshop on
Secure Mobile Multi-Agent Systems, Montreal, Canada, 2001.

42. Sander, T., and Tschudin, C. F. Protecting mobile agents against malicious hosts. In Mobile
agents and Security, volume 1419 of LNCS, pp. 379-386, Springer-Verlag, 1998.

43. Sangiori, D. Expressing mobility in process algebra: first order and higher order
paradigms, PHD thesis, university of Edinburgh, 1992.

44. Sewell, P. Global/ Local Subtyping and Capability Inference for a Distributed Calculus.
In Automata, Languages and Programming, 25th International Colloquium (ICALP’98),
volume 1443 of LNCS, pp. 695-706, Springer-Verlag, July 1998.

45. STA Documentation. Available at: http://www.dsi.unifi.it/~boreale/documentation.html.
46. STA: a tool for trace analysis of cryptographic protocols. ML object code and examples,

2001. Available at: http://www.dsi.unifi.it/~boreale/tool.html.
47. Stephen, R., and KE Xu, T. Mobile agent security through multi-agent cryptographic

protocols. In Proceedings of the 4th International Conference on Internet Computing (IC
2003), volume 2003, pp. 462-468, 2003.

48. Symbolic Model Prover. Available at:
 http://www-2.cs.cmu.edu/~modelcheck/symp.html

49. Syverson, P.F., Goldschlag, M., and Reed, M. G. Anonymous connections and onion
routing. In IEEE Symposium on Security and Privacy, pp. 44-54, Oakland, California,
1997.

50. Tschudin, C. Mobile agent security. In Intelligent Information Agents: Cooperative, Rational
and Adaptive Information Gathering on the Internet, Klusch, M. editor, LNCS, pp. 431-446,
Springer-Verlag, Barlin, Germany, 1999.

51. Vigna, G. Cryptographic traces for mobile agents. In Mobile Agent Security, Vigna, G.,
editor, 1419 LNCS, pp. 137-153, Springer-Verlag, Heidelberg, Germany, 1998.

52. Vitek, J., and Gastagna, G. Seal: A Framework for Secure Mobile Computations. In
Internet Programming Language ICCL’98 Workshop, volume 1686 of LNCS, pp. 47-
77, Springer-Verlag, May 1999.

53. Wang, T., Guan, S., and Chan, T. Integrity protection for Code-on-Demand mobile
agents in e-commerce. In Systems and software, 60(3): 211-221, 15 February 2002.

 81

54. Wang, X. F., Yi, X., Lam, K. Y., and Okamoto, E. Secure information gathering agent for
internet trading. In Proceedings of the 4th Australian Workshop on Distributed Artificial
Intelligence on multi-Agent Systems: theories, Languages, and Applications (DAI-98),
Zhang, C., and Lukose, D. editors, volume 1544 of LNCS, pp. 183-193, Springer-Verlag:
Heidelberg, Germany, July 1998.

55. Yao, Y., and Dolev, D. On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2): 198-208, March 1983.

56. Yee, B. S. A sanctuary for mobile agents. Technical Report CS97-537, UC San Diego,
Department of Computer Science and Engineering, April 1997.

 82

Appendix A

STA script for a single run of the protocol with R as a fresh nonce generated by the
initiator i0.

(* A single run of the proposed protocol
I: initiator; A: 1st executing host, B: 2nd executing host,
C: 3rd executing host, Adv: adversary, R: fresh none, Rold: old nonce,
M0: dummy data generated by host I, M1: execution result at host A,
M2: execution result at host B, M3: execution result at host C

Host I sends the mobile agent to gather information from hosts A, B, and C. At the end
of the protocol, host I needs to analyze the integrity, confidentiality, and authenticity of
the returned execution results M1, M2, and M3 acquired at hosts A, B, and C
respectively.

Notations used in declaring identifiers are as given below.
i1!: output action at host I, i2?: input action at host I,
i3?: input action at host I that follows the output action of the secondary agent As which
communicates the initial verification data to major agent A,
a1?: input action at host A, a2!: output action at host A,
b1?: input action at host B, b2!: output action at host B,
c1?: input action at host C, c2!: output action at host C,
disclose!: an output action that leaks information to the environment,
guard?: an input action ‘guard’ such that a guardian learns some secret data,
accept!: an output action that outputs the execution results which satisfy the intended
security properties to host I upon agent’s return,
KA, KB, KC, KI: public keys of hosts A, B, C, and I respectively,
SigA, SigB, sigC, SigI: private signing keys of hosts A, B, C, I respectively)

DeclLabel $ a1, a2, b1, b2, c1, c2, i1, i2, i3, disclose, guard, Accept $;
DeclName $ Rold, R, SigI, SigA, SigB, SigC, I, A, B, C, M0, M1, M2, M3, KI, KA,
 KB, KC $;
DeclVar $ xM0, yM0, yM1, zM2, zM1, zM0, wM3, wM2, wM1, wM0,

 y, w1, w2, w3, w4, w5, w6, w7, w1', w2', w3', w4', w6', w7',
 xIC, yIC, zIC, wIC, yDIC, zDIC, wDIC,

 xR, yR, zR, wR0, wR1, wR2, wR3,
 xIS, xID, yIS, yID, zIS, zID, wID, wIS $;

(*The process at the initiator is declared as iI)
val iI = M0 new_in R new_in
 i1!((M0)^+KI, hsh (I), (hsh (I))^+SigI, R)^+KA >>
 i2?(((wM3, wID, I, wR3)^+SigC)^+KI,

 83

 ((wM2, wID, C, wR2)^+SigB)^+KI,
 ((wM1, wID, B, wR1)^+SigA)^+KI,
 (wM0)^+KI, wDIC, wIS, wR3)^+KI >> (wID pkdecr (-SigI, wIS)) >>

 (wID is hsh(I)) >>
 i3?(M0, A, R) >>
 (wDIC is hsh(wM3, hsh(wM2, hsh(wM1, hsh(I))))) >>
 (wR3 is hsh(hsh(hsh(R)))) >>
 (wR2 is hsh(hsh(R))) >>
 (wR1 is hsh(R)) >>
 (wID is hsh(I)) >>
 (wM0 is M0) >>
 Accept!((A,M1), (B,M2), (C,M3)) >> stop;

(*The process at the 1st executing host is declared as rA)
val rA = M1 new_in
 a1?(xM0, xIC, xIS, xR)^+KA >> (xID pkdecr (-SigI, xIS)) >>

 (xID is hsh(I)) >>
 a2!(((M1, xID, B, hsh(xR))^+SigA)^+KI,

 xM0, hsh(M1, xIC), xIS, hsh(xR))^+KB >> stop;

(*The process at the 2nd executing host is declared as rB)
val rB = M2 new_in
 b1?(yM1, yM0, yDIC, yIS, yR)^+KB >> (yID pkdecr (-SigI, yIS)) >>
 (yID is hsh(I)) >>
 b2!(((M2, yID, C, hsh(yR))^+SigB)^+KI,
 yM1, yM0, hsh(M2, yDIC), yIS, hsh(yR))^+KC >> stop;

(*The process at the 3rd executing host is declared as rC)
val rC = M3 new_in
 c1?(zM2, zM1, zM0, zDIC, zIS, zR)^+KC >> (zID pkdecr (-SigI, zIS))
 >>(zID is hsh(I)) >>
 c2!(((M3, zID, I, hsh(zR))^+SigC)^+KI,
 zM2, zM1, zM0, hsh(M3, zDIC), zIS, hsh(zR))^+KI >> stop;

(*The whole system is declared as: (1) the parallel composition of the role of hosts
participating in the protocol and their respective public keys; (2) a ‘guardian’ that can
detect if the environment learns some piece of sensible information, like y)
val Sys = KI new_in KA new_in KB new_in KC new_in iI || rA || rB || rC ||
 guard?y >> stop;

(*The initial configuration consists of: (1) the environment’s initial knowledge where the
disclose channel leaks information to the environment, such as the public encryption

 84

keys and signature verification keys of hosts participating in the protocol; (2) the role of
the system Sys)
val Conf = ([disclose!(Rold, I, A, B, C, +KI, +KA, +KB, +KC, -SigI, -SigA,
 -SigB, -SigC)]@Sys);

(*Checks integrity of the nonce that uniquely identifies the protocol run)
val Auth1 = (a1?xR <-- a2!hsh(xR));
val Auth2 = (b1?yR <-- b2!hsh(yR));
val Auth3 = (c1?zR <-- c2!hsh(zR));

(*Checks the integrity of the two identifiers: (1) identifier of the genuine initiator; (2)
identifier of the protocol run of concern, as the agent migrates through the output action
of a preceding host and is received at the input action of a host, i.e. an intruder did not
tamper with the two identifiers as the agent migrates through communication channels)
val Auth4 = (i1!(w4, w5, w6, w7) <-- a1?(w4, w5, w6', w7'));
val Auth5 = (a2!(w3, w4, w5, w6, w7) <-- b1?(w3, w4, w5, w6', w7'));
val Auth6 = (b2!(w2, w3, w4 ,w5, w6, w7) <-- c1?(w2, w3, w4, w5, w6', w7'));
val Auth7 = (c2!(w1, w2, w3, w4, w5 ,w6 ,w7) <-- i2?(w1, w2, w3, w4, w5, w6', w7'));

(*Checks the integrity of the execution result M1 provided by host A)
val Auth8 = (a2!(w3, w4, w5, w6, w6, w7) <-- i2?(w1, w2, w3', w4, w5, w6, w7));

(*Checks the integrity of the execution result M2 provided by host B)
val Auth9 = (b2!(w2, w3, w4, w5, w6, w7) <-- i2?(w1, w2', w3, w4, w5, w6, w7));

(*Checks the integrity of the execution result M3 provided by host C)
val Auth10 = (c2!(w1, w2, w3, w4, w5, w6, w7) <-- i2?(w1', w2, w3, w4, w5, w6, w7));

(*Checks the integrity of the dummy data M0 generated at host I)
val Auth11 = (i1!(w4, w5, w6, w7) <-- i2?(w1, w2, w3, w4', w5, w6, w7));

(*Checks the integrity of the identifier of genuine host as the agent is executed at a host
participating in the protocol, i.e a host does not tamper with the identifier)
val Auth12 = (a1?(w4, w5, w6, w7) <-- a2!(w3, w4, w5, w6', w7));
val Auth13 = (b1?(w3, w4, w5, w6, w7) <-- b2!(w2, w3, w4, w5, w6', w7));
val Auth14 = (c1?(w2, w3, w4, w5, w6, w7) <-- c2!(w1, w2, w3, w4, w5, w6', w7));

(*Checks the secrecy of the execution results M1, M2, M3, and the dummy data
provided by hosts A, B, C, and I respectively)
val Secrecy1 = (Absurd <-- guard?M0);
val Secrecy2 = (Absurd <-- guard?M1);
val Secrecy3 = (Absurd <-- guard?M2);
val Secrecy4 = (Absurd <-- guard?M3);

 85

Appendix B

The STA script of two parallel runs of the protocol with R, and R’ as identifiers of the
first and the second protocol runs respectively. The agent’s itinerary in the first run is I,
A, B, C, I, whereas the itinerary in the second run is I, E, B, C, I. Host E is a malicious
host. The role of the host is not explicitly modeled.

(* A single run of the proposed protocol
I: initiator; A: 1st executing host, B: 2nd executing host
C: 3rd executing host, Adv: adversary, R: fresh none, Rold: old nonce
M0: dummy data generated by host I, M1: execution result at host A
M2: execution result at host B, M3: execution result at host C

Host I sends the mobile agent to gather information from hosts A, B, and C. At the end
of the protocol, host I needs to analyze the integrity, confidentiality, and authenticity of
the returned execution results M1, M2, and M3 acquired at hosts A, B, and C
respectively.

Notations used in declaring identifiers are as given below.

i1!: output action at host I, i2?: input action at host I
i3?: input action at host I that follows the output action of the secondary agent As which
communicates the initial verification data to major agent A
i’1!: output action at host I, i’2?: input action at host I
a1?: input action at host A, a2!: output action at host A
b1?: input action at host B, b2!: output action at host B
b’1?: input action at host B, b’2!: output action at host B
c1?: input action at host C, c2!: output action at host C
c’1?: input action at host C, c’2!: output action at host C
disclose!: an output action that leaks information to the environment
guard?: an input action ‘guard’ such that a guardian learns some secret data
accept1!: an output action that outputs the execution results which satisfy the intended
security properties to host I upon agent’s return
KA, KB, KC, KI: public keys of hosts A, B, C, and I respectively
SigA, SigB, sigC, SigI: private signing keys of hosts A, B, C, I respectively)

DeclLabel $ a1, a2, b1, b2, c1, c2, i1, i2, i3, i'3,
 i'1, i'2, b'1, b'2, c'1, c'2, disclose, guard, Accept1, Accept2 $;
DeclName $ Rold, R, SigI, SigA, SigB, SigC, SigE, I, A, B, C, E,
 M0, M1, M2, M3, KI, KA, KB, KC, KE, M'0, M'1, M'2, M'3, R' $;
DeclVar $ xM0, yM0, yM1, zM2,zM1, zM0, wM3, wM2, wM1, wM0, wM'0, wM'1,
 wM'2, wM'3, y, w1, w2, w3, w4, w5, w6, w7, w7',
 w1', w2', w3', w4', w6', xIC, yIC, zIC, wIC, yDIC, zDIC, wDIC,

 86

 xR, yR, zR, wR0, wR1, wR2, wR3, wM'3 , w'R3, wM'2, w'R2, wM'1,
 w'R1, w'DIC, yM'1, yM'0, y'DIC, y'R, zM'2, zM'1, zM'0, z'DIC, z'R, xIS,
 xID, yIS, yID, zIS, zID, wID, wIS $;

(*The process at the initiator is declared as iI)
val iI = M0 new_in R new_in
 i1!((M0)^+KI, hsh (I), (hsh (I))^+SigI, R)^+KA >>
 i2?(((wM3, wID, I, wR3)^+SigC)^+KI,
 ((wM2, wID, C, wR2)^+SigB)^+KI,
 ((wM1, wID, B, wR1)^+SigA)^+KI,

 (wM0)^+KI, wDIC, wIS, wR3)^+KI >> (wID pkdecr (-SigI, wIS))
 >>(wID is hsh(I)) >>

 i3?(M0, A, R) >>
 (wDIC is hsh(wM3, hsh(wM2, hsh(wM1, hsh(I))))) >>
 (wR3 is hsh(hsh(hsh(R)))) >>
 (wR2 is hsh(hsh(R))) >>
 (wR1 is hsh(R)) >>
 (wID is hsh(I)) >>
 (wM0 is M0) >>
 Accept1!((A,M1), (B,M2), (C,M3)) >> stop

||
 M'0 new_in R' new_in
 i'1!((M'0)^+KI, hsh(I), (hsh(I))^+SigI, R')^+KE >>
 i'2?(((wM'3, wID, I, w'R3)^+SigC)^+KI,
 ((wM'2, wID, C, w'R2)^+SigB)^+KI,
 ((wM'1, wID, B, w'R1)^+SigE)^+KI,
 (wM'0)^+KI, w'DIC, wIS, w'R3)^+KI >> stop ;

(*The process at the 1st executing host is declared as rA)
val rA = M1 new_in
 a1?(xM0, xIC, xIS, xR)^+KA >> (xID pkdecr (-SigI, xIS)) >>

 (xID is hsh(I)) >>
 a2!(((M1, xIC, B, hsh(xR))^+SigA)^+KI, xM0,
 hsh(M1, xIC), xIS, hsh(xR))^+KB >> stop;

(*The process at the 2nd executing host is declared as rB)
val rB = M2 new_in
 b1?(yM1, yM0, yDIC, yIS, yR)^+KB >> (yID pkdecr (-SigI, yIS)) >>
 (yID is hsh(I)) >>
 b2!(((M2, yID, C, hsh(yR))^+SigB)^+KI,
 yM1, yM0, hsh(M2, yDIC), yIS, hsh(yR))^+KC >> stop

 ||
 M'2 new_in

 87

 b'1?(yM'1, yM'0, y'DIC, yIS, y'R)^+KB >> (yID pkdecr (-SigI, yIS)) >>
 (yID is hsh(I)) >>

 b'2!(((M'2, yID, C, hsh(y'R))^+SigB)^+KI,
 yM'1, yM'0, hsh(M'2, y'DIC), yIS, hsh(y'R))^+KC >> stop;

(*The process at the 3rd executing host is declared as rC)
val rC = M3 new_in
 c1?(zM2, zM1, zM0, zDIC, zIS, zR)^+KC >> (zID pkdecr (-SigI, zIS))

 >>(zID is hsh(I)) >>
 c2!(((M3, zID, I, hsh(zR))^+SigC)^+KI,
 zM2, zM1, zM0, hsh(M3, zDIC), zIS, hsh(zR))^+KI >> stop

 ||
 M'3 new_in
 c'1?(zM'2, zM'1, zM'0, z'DIC, zIS, z'R)^+KC >> (zID pkdecr (-SigI, zIS))
 >>(zID is hsh(I)) >>
 c'2!(((M'3, zID, I, hsh(z'R))^+SigC)^+KI,
 zM'2, zM'1, zM'0, hsh(M'3, z'DIC), zIS, hsh(z'R))^+KI >> stop;

(*The whole system is declared as: (1) the parallel composition of the role of hosts
participating in the protocol and their respective public keys; (2) a ‘guardian’ that can
detect if the environment learns some piece of sensible information, like y)
val Sys = KI new_in KA new_in KB new_in KC new_in iI || rA || rB || rC ||
 guard?y >> stop;

(*The initial configuration consists of: (1) the environment’s initial knowledge where the
disclose channel leaks information to the environment, such as the public encryption
keys and signature verification keys of hosts participating in the protocol; (2) the role of
the system Sys)
val Conf = ([disclose!(Rold, I, A, B, C, +KI, +KA, +KB, +KC, KE, -SigE, -SigI,
 -SigA, -SigB, -SigC)]@Sys);

(*Checks integrity of the nonce that uniquely identifies the protocol run)
val Auth1 = (a1?xR <-- a2!hsh(xR));
val Auth2 = (b1?yR <-- b2!hsh(yR));
val Auth3 = (c1?zR <-- c2!hsh(zR));

(*Checks the integrity of the two identifiers: (1) identifier of the genuine initiator; (2)
identifier of the protocol run of concern, as the agent migrates through the output action
of a preceding host and is received at the input action of a host, i.e. an intruder did not
tamper with the two identifiers as the agent migrates through communication channels)
val Auth4 = (i1!(w4, w5, w6, w7) <-- a1?(w4, w5, w6', w7'));
val Auth5 = (a2!(w3, w4, w5, w6, w7) <-- b1?(w3, w4, w5, w6', w7'));
val Auth6 = (b2!(w2, w3, w4 ,w5, w6, w7) <-- c1?(w2, w3, w4, w5, w6', w7'));

 88

val Auth7 = (c2!(w1, w2, w3, w4, w5 ,w6 ,w7) <-- i2?(w1, w2, w3, w4, w5, w6', w7'));

(*Checks the integrity of the execution result M1 provided by host A)
val Auth8 = (a2!(w3, w4, w5, w6, w6, w7) <-- i2?(w1, w2, w3', w4, w5, w6, w7));

(*Checks the integrity of the execution result M2 provided by host B)
val Auth9 = (b2!(w2, w3, w4, w5, w6, w7) <-- i2?(w1, w2', w3, w4, w5, w6, w7));

(*Checks the integrity of the execution result M3 provided by host C)
val Auth10 = (c2!(w1, w2, w3, w4, w5, w6, w7) <-- i2?(w1', w2, w3, w4, w5, w6, w7));

(*Checks the integrity of the dummy data M0 generated at host I)
val Auth11 = (i1!(w4, w5, w6, w7) <-- i2?(w1, w2, w3, w4', w5, w6, w7));

(*Checks the integrity of the identifier of genuine host as the agent is executed at a host
participating in the protocol, i.e a host does not tamper with the identifier)
val Auth12 = (a1?(w4, w5, w6, w7) <-- a2!(w3, w4, w5, w6', w7));
val Auth13 = (b1?(w3, w4, w5, w6, w7) <-- b2!(w2, w3, w4, w5, w6', w7));
val Auth14 = (c1?(w2, w3, w4, w5, w6, w7) <-- c2!(w1, w2, w3, w4, w5, w6', w7));

(*Checks the secrecy of the execution results M1, M2, M3, and the dummy data
provided by hosts A, B, C, and I respectively)
val Secrecy1 = (Absurd <-- guard?M0);
val Secrecy2 = (Absurd <-- guard?M1);
val Secrecy3 = (Absurd <-- guard?M2);
val Secrecy4 = (Absurd <-- guard?M3);

 89

Appendix C

(*The STA script of two parallel runs of the protocol with R, and R’ as identifiers of the
first and the second protocol runs respectively. The agent’s itinerary in the first run is I,
A, B, C, I, whereas the itinerary in the second run is I, E, B, C, I. Hosts A and C are two
malicious hosts, which co-operate with each other, in the first run and host E is a
malicious host in the second run. The roles of the malicious hosts A, C, and E are not
explicitly modeled.

Notations used in declaring identifiers are as given below.

i1!: output action at host I, i2?: input action at host I
i3?: input action at host I that follows the output action of the secondary agent As which
communicates the initial verification data to major agent A
b1?: input action at host B, b2!: output action at host B
disclose!: an output action that leaks information to the environment
guard?: an input action ‘guard’ such that a guardian learns some secret data
accept1!: an output action that outputs the execution results which satisfy the intended
security properties to host I upon agent’s return
KA, KB, KC, KI: public keys of hosts A, B, C, and I respectively
SigA, SigB, sigC, SigI: private signing keys of hosts A, B, C, I respectively)

DeclLabel $ b1, b2, i1, i2, i3, i'1, i'2, b'1, b'2, disclose, guard, Accept1 $;
DeclName $ Rold, R, SigI, SigA, SigB, SigC, SigE, I, A, B, C, E,
 M0, M1, M2, M3, KI, KA, KB, KC, KE, M'0, M'1, M'2, M'3, R', IC $;
DeclVar $ xM0, yM0, yM1, zM2,zM1, zM0, wM3, wM2, wM1, wM0, wM'0,
 wM'1, wM'2, wM'3, y, w1, w2, w3, w4, w5, w6, w7, w7',
 w1', w2', w3', w4', w6', xIC, yIC, zIC, wIC, yDIC, zDIC, wDIC,
 xR, yR, zR, wR0, wR1, wR2, wR3, y, wM'3 , w'R3, w'R2,
 w'R1, w'DIC, yM'1, yM'0, y'DIC, y'R, zM'2, zM'1, zM'0, z'DIC,
 z'R, xIS, xID, yIS, yID, zIS, zID, wID, wIS $;

(*The process at the initiator is declared as iI)
val iI = M0 new_in R new_in
 i1! ((M0)^+KI, hsh (I), (hsh (I))^+SigI, R)^+KA >>
 i2? (((wM3, wID, I, wR3)^+SigC)^+KI,
 ((wM2, wID, C, wR2)^+SigB)^+KI,
 ((wM1, wID, B, wR1)^+SigA)^+KI,
 (wM0)^+KI, wDIC, wIS, wR3)^+KI >> (wID pkdecr (-SigI, wIS)) >>
 (wID is hsh(I)) >>
 i3? (M0, A, R) >>
 (wDIC is hsh(wM3, hsh(wM2, hsh(wM1, hsh(I))))) >>
 (wR3 is hsh(hsh(hsh(R)))) >>

 90

 (wR2 is hsh(hsh(R))) >>
 (wR1 is hsh(R)) >>
 (wID is hsh(I)) >>
 (wM0 is M0) >>
 Accept1!((A,M1), (B,M2), (C,M3)) >> stop
 ||
 M'0 new_in R' new_in
 i'1! ((M'0)^+KI, hsh(I), (hsh(I))^+SigI, R')^+KE >>
 i'2?(((wM'3, wID, I, w'R3)^+SigC)^+KI,
 ((wM'2, wID, C, w'R2)^+SigB)^+KI,
 ((wM'1, wID, B, w'R1)^+SigE)^+KI,
 (wM'0)^+KI, w'DIC, wIS, w'R3)^+KI >> stop ;

(*The process at the 2nd executing host is declared as rB)
val rB = M2 new_in
 b1?(yM1, yM0, yDIC, yIS, yR)^+KB >> (yID pkdecr (-SigI, yIS)) >>
 (yID is hsh(I)) >>
 b2! (((M2, yID, C, hsh(yR))^+SigB)^+KI,
 yM1, yM0, hsh(M2, yDIC), yIS, hsh(yR))^+KC >> stop
 ||
 M'2 new_in
 b'1?(yM'1, yM'0, y'DIC, yIS, y'R)^+KB >> (yID pkdecr (-SigI, yIS)) >>
 (yID is hsh(I)) >>
 b'2! (((M'2, yID, C, hsh(y'R))^+SigB)^+KI,
 yM'1, yM'0, hsh(M'2, y'DIC), yIS, hsh(y'R))^+KC >> stop;

(*The whole system is declared as: (1) the parallel composition of the role of hosts
participating in the protocol and their respective public keys; (2) a ‘guardian’ that can
detect if the environment learns some piece of sensible information, like y)
val Sys = KI new_in KA new_in KB new_in KC new_in iI || rB || guard?y >> stop;

(*The initial configuration consists of: (1) the environment’s initial knowledge where the
disclose channel leaks information to the environment, such as the public encryption
keys and signature verification keys of hosts participating in the protocol; (2) the role of
the system Sys)
val Conf = ([disclose!(Rold, I, A, B, C, E, +KI, +KA, +KB, +KC, KE, -SigE,
 -SigI, -SigA, -SigB, -SigC)]@Sys);

(*Checks the integrity of the nonce that uniquely identifies the protocol run)
val Auth1 = (b1?yR <-- b2!hsh(yR));

(*Checks the integrity of the execution result M2 provided by host B)
val Auth2 = (b2!(w2, w3, w4, w5, w6, w7) <-- i2?(w1, w2', w3, w4, w5, w6, w7));

 91

(*Checks the integrity of the dummy data M0 generated at host I)
val Auth3 = (i1!(w4, w5, w6, w7) <-- i2?(w1, w2, w3, w4', w5, w6', w7));

(*Checks the integrity of the identifier of genuine host as the agent is executed at a host
participating in the protocol, i.e a host does not tamper with the identifier)
val Auth4 = (b1?(w3, w4, w5, w6, w7) <-- b2!(w2, w3, w4, w5, w6', w7));

(*Checks the secrecy of the execution result M0 and the dummy data provided by hosts
B, and I respectively)
val Secrecy1 = (Absurd <-- guard?M0);
val Secrecy2 = (Absurd <-- guard?M2);

 92

Appendix D
(*The STA script of two parallel runs of the protocol. The first run is initiated by host I1,
and the second run is initiated by host I2. The first run is identified by R and the second
is identified by R’. The agent’s itinerary in the first run is I1, A, B, C, I1, whereas the
itinerary in the second run is I2, E, B, C, I2.

Notations used in declaring identifiers are as given below.

i1!: output action at host I1, i2?: input action at host I1
i3?: input action at host I1 that follows the output action of the secondary agent As which
communicates the initial verification data to major agent A
i’1!: output action at host I2, i’2?: input action at host I2
a1?: input action at host A, a2!: output action at host A
a’1?: input action at host A, a’2!: output action at host A
b1?: input action at host B, b2!: output action at host B
b’1?: input action at host B, b’2!: output action at host B
c1?: input action at host C, c2!: output action at host C
c’1?: input action at host C, c’2!: output action at host C
disclose!: an output action that leaks information to the environment
guard?: an input action ‘guard’ such that a guardian learns some secret data
accept1!: an output action that outputs the execution results which satisfy the intended
security properties to host I1 upon agent’s return
KA, KB, KC, KI1, KI2: public keys of hosts A, B, C, and I1, and I2, respectively
SigA, SigB, sigC, SigI, SigI: private signing keys of hosts A, B, C, I1, and I2
respectively)

DeclLabel $ a1, a2, a'1, a'2, b1, b2, c1, c2, i1, i2, i3,
 i'1, i'2, b'1, b'2, c'1, c'2, disclose, guard, Accept1 $;
DeclName $ Rold, R, SigI1, SigI2, SigA, SigB, SigC, I1, I2, A, B, C,
 M0, M1, M2, M3, KI1, KI2, KA, KB, KC, KE, M'0, M'1, M'2, M'3, R',
 IC $;
DeclVar $ xM0, yM0, yM1, zM2,zM1, zM0, wM3, wM2, wM1, wM0, wM'0,
 wM'1, wM'2, wM'3, y, w1, w2, w3, w4, w5, w6, w7, w7',
 w1', w2', w3', w4', w6', xIC, yIC, zIC, wIC, yDIC, zDIC, wDIC,
 xR, yR, zR, wR0, wR1, wR2, wR3,
 wM'3 , w'R3, wM'2, w'R2, wM'1, w'R1, w'DIC, yM'1, yM'0, y'DIC,
 y'R, zM'2, zM'1, zM'0, z'DIC, z'R, x'IC, x'IS, x'R, xM'0, x'ID,
 x'IS, M'1, y'IS, y'ID, y'IS, y'R, M'2, z'IS, z'ID, M'3, w'ID,
 wM'0, w'IS, xIS, xID, yIS, yID, zIS, zID, wID, wIS $;

(*The process at the initiator is declared as iI1)
val iI1= M0 new_in R new_in
 i1!((M0)^+KI1, hsh (I1), (hsh (I1))^+SigI1, R)^+KA >>

 93

 i2?(((wM3, wID, I1, wR3)^+SigC)^+KI1,
 ((wM2, wID, C, wR2)^+SigB)^+KI1,
 ((wM1, wID, B, wR1)^+SigA)^+KI1,

 (wM0)^+KI1, wDIC, wIS, wR3)^+KI1 >> (wID pkdecr (-SigI1, wIS))
 >>(wID is hsh(I1)) >>

 i3?(M0, A, R) >>
 (wDIC is hsh(wM3, hsh(wM2, hsh(wM1, hsh(I1))))) >>
 (wR3 is hsh(hsh(hsh(R)))) >>
 (wR2 is hsh(hsh(R))) >>
 (wR1 is hsh(R)) >>
 (wID is hsh(I1)) >>
 (wM0 is M0) >>
 Accept1!((A,M1), (B,M2), (C,M3)) >> stop;

(*The process at the initiator is declared as iI2)
val iI2= M'0 new_in R' new_in
 i'1!((M'0)^+KI2, hsh(I2), (hsh(I2))^+SigI2, R')^+KA >>
 i'2?(((wM'3, w'ID, I2, w'R3)^+SigC)^+KI2,
 ((wM'2, w'ID, C, w'R2)^+SigB)^+KI2,
 ((wM'1, w'ID, B, w'R1)^+SigA)^+KI2,
 (wM'0)^+KI2, w'DIC, w'IS, w'R3)^+KI2 >> stop ;

(*The process at the 1st executing host is declared as rA)
val rA = M1 new_in
 a1?(xM0, xIC, xIS, xR)^+KA >> (xID pkdecr (-SigI1, xIS)) >>
 (xID is hsh(I1)) >>
 a2!(((M1, xIC, B, hsh(xR))^+SigA)^+KI1, xM0,
 hsh(M1, xIC), xIS, hsh(xR))^+KB >> stop
 ||
 M'1 new_in
 a'1?(xM'0, x'IC, x'IS, x'R)^+KA >> (x'ID pkdecr (-SigI2, x'IS)) >>
 (x'ID is hsh(I2)) >>
 a'2!(((M'1, x'IC, B, hsh(x'R))^+SigA)^+KI2, xM'0,
 hsh(M'1, x'IC), x'IS, hsh(x'R))^+KB >> stop;

(*The process at the 2nd executing host is declared as rB)
val rB = M2 new_in
 b1?(yM1, yM0, yDIC, yIS, yR)^+KB >> (yID pkdecr (-SigI1, yIS)) >>
 (yID is hsh(I1)) >>
 b2!(((M2, yID, C, hsh(yR))^+SigB)^+KI,
 yM1, yM0, hsh(M2, yDIC), yIS, hsh(yR))^+KC >> stop
 ||
 M'2 new_in

 94

 b'1?(yM'1, yM'0, y'DIC, y'IS, y'R)^+KB >> (y'ID pkdecr (-SigI2, y'IS))
 >>(y'ID is hsh(I2)) >>

 b'2!(((M'2, y'ID, C, hsh(y'R))^+SigB)^+KI2,
 yM'1, yM'0, hsh(M'2, y'DIC), y'IS, hsh(y'R))^+KC >> stop;

(*The process at the 3rd executing host is declared as rC)
val rC = M3 new_in
 c1?(zM2, zM1, zM0, zDIC, zIS, zR)^+KC >> (zID pkdecr (-SigI1, zIS))
 >>(zID is hsh(I1)) >>
 c2!(((M3, zID, I1, hsh(zR))^+SigC)^+KI1,
 zM2, zM1, zM0, hsh(M3, zDIC), zIS, hsh(zR))^+KI1 >> stop
 ||
 M'3 new_in
 c'1?(zM'2, zM'1, zM'0, z'DIC, z'IS, z'R)^+KC >>
 (z'ID pkdecr (-SigI2, z'IS)) >>(z'ID is hsh(I2)) >>
 c'2!(((M'3, z'ID, I2, hsh(z'R))^+SigC)^+KI2,
 zM'2, zM'1, zM'0, hsh(M'3, z'DIC), z'IS, hsh(z'R))^+KI2 >> stop;

(*The whole system is declared as: (1) the parallel composition of the role of hosts
participating in the protocol and their respective public keys; (2) a ‘guardian’ that can
detect if the environment learns some piece of sensible information, like y)
val Sys = KI new_in KA new_in KB new_in KC new_in iI1 || iI2 || rA || rB || rC ||
 guard?y >> stop;

(*The initial configuration consists of: (1) the environment’s initial knowledge where the
disclose channel leaks information to the environment, such as the public encryption
keys and signature verification keys of hosts participating in the protocol; (2) the role of
the system Sys)
val Conf = ([disclose!(Rold, I1, I2, A, B, C, +KI1, KI2, +KA, +KB, +KC, KE, -SigI1,
 -SigI2, -SigA, -SigB, -SigC)]@Sys);

(*Checks integrity of the nonce that uniquely identifies the protocol run)
val Auth1 = (a1?xR <-- a2!hsh(xR));
val Auth2 = (b1?yR <-- b2!hsh(yR));
val Auth3 = (c1?zR <-- c2!hsh(zR));

(*Checks the integrity of the two identifiers: (1) identifier of the genuine initiator; (2)
identifier of the protocol run of concern, as the agent migrates through the output action
of a preceding host and is received at the input action of a host, i.e. an intruder did not
tamper with the two identifiers as the agent migrates through communication channels)
val Auth4 = (i1!(w4, w5, w6, w7) <-- a1?(w4, w5, w6', w7'));
val Auth5 = (a2!(w3, w4, w5, w6, w7) <-- b1?(w3, w4, w5, w6', w7'));

 95

val Auth6 = (b2!(w2, w3, w4 ,w5, w6, w7) <-- c1?(w2, w3, w4, w5, w6', w7'));
val Auth7 = (c2!(w1, w2, w3, w4, w5 ,w6 ,w7) <-- i2?(w1, w2, w3, w4, w5, w6', w7'));

(*Checks the integrity of the execution result M1 provided by host A)
val Auth8 = (a2!(w3, w4, w5, w6, w6, w7) <-- i2?(w1, w2, w3', w4, w5, w6, w7));

(*Checks the integrity of the execution result M2 provided by host B)
val Auth9 = (b2!(w2, w3, w4, w5, w6, w7) <-- i2?(w1, w2', w3, w4, w5, w6, w7));

(*Checks the integrity of the execution result M3 provided by host C)
val Auth10 = (c2!(w1, w2, w3, w4, w5, w6, w7) <-- i2?(w1', w2, w3, w4, w5, w6, w7));

(*Checks the integrity of the dummy data M0 generated at host I)
val Auth11 = (i1!(w4, w5, w6, w7) <-- i2?(w1, w2, w3, w4', w5, w6, w7));

(*Checks the integrity of the identifier of genuine host as the agent is executed at a host
participating in the protocol, i.e a host does not tamper with the identifier)
val Auth12 = (a1?(w4, w5, w6, w7) <-- a2!(w3, w4, w5, w6', w7));
val Auth13 = (b1?(w3, w4, w5, w6, w7) <-- b2!(w2, w3, w4, w5, w6', w7));
val Auth14 = (c1?(w2, w3, w4, w5, w6, w7) <-- c2!(w1, w2, w3, w4, w5, w6', w7));

(*Checks the secrecy of the execution results M1, M2, M3, and the dummy data
provided by hosts A, B, C, and I respectively)
val Secrecy1 = (Absurd <-- guard?M0);
val Secrecy2 = (Absurd <-- guard?M1);
val Secrecy3 = (Absurd <-- guard?M2);
val Secrecy4 = (Absurd <-- guard?M3);

-
(*Checks integrity of the nonce that uniquely identifies the protocol run)
val Auth1 = (a1?xR <-- a2!hsh(xR));
val Auth2 = (b1?yR <-- b2!hsh(yR));
val Auth3 = (c1?zR <-- c2!hsh(zR));

(*Checks the integrity of the two identifiers: (1) identifier of the genuine initiator; (2)
identifier of the protocol run of concern, as the agent migrates through the output action
of a preceding host and is received at the input action of a host, i.e. an intruder did not
tamper with the two identifiers as the agent migrates through communication channels)
val Auth5 = (i1!(w4, w5, w6, w7) <-- a1?(w4, w5, w6', w7'));
val Auth6 = (a2!(w3, w4, w5, w6, w7) <-- b1?(w3, w4, w5, w6', w7'));
val Auth7 = (b2!(w2, w3, w4 ,w5, w6, w7) <-- c1?(w2, w3, w4, w5, w6', w7'));

(*Checks the integrity of the execution result M1 provided by host A)

 96

val Auth8 = (c2!(w1, w2, w3, w4, w5 ,w6 ,w7) <-- i2?(w1, w2, w3, w4, w5, w6', w7'));

(*Checks the integrity of the execution result M2 provided by host B)
val Auth9 = (a2!(w3, w4, w5, w6, w6, w7) <-- i2?(w1, w2, w3', w4, w5, w6, w7));

(*Checks the integrity of the execution result M3 provided by host C)
val Auth10 = (b2!(w2, w3, w4, w5, w6, w7) <-- i2?(w1, w2', w3, w4, w5, w6, w7));

(*Checks the integrity of the dummy data M0 generated at host I)
val Auth11 = (c2!(w1, w2, w3, w4, w5, w6, w7) <-- i2?(w1', w2, w3, w4, w5, w6, w7));

(*Checks the integrity of the identifier of genuine host as the agent is executed at a host
participating in the protocol, i.e a host does not tamper with the identifier)
val Auth12 = (i1!(w4, w5, w6, w7) <-- i2?(w1, w2, w3, w4', w5, w6', w7));
val Auth14 = (a1?(w4, w5, w6, w7) <-- a2!(w3, w4, w5, w6', w7));
val Auth15 = (b1?(w3, w4, w5, w6, w7) <-- b2!(w2, w3, w4, w5, w6', w7));
val Auth16 = (c1?(w2, w3, w4, w5, w6, w7) <-- c2!(w1, w2, w3, w4, w5, w6', w7));

val Secrecy1 = (Absurd <-- guard?M0);
val Secrecy2 = (Absurd <-- guard?M1);
val Secrecy3 = (Absurd <-- guard?M2);
val Secrecy4 = (Absurd <-- guard?M3);

 97

 .

 98

