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Abstract 
 

This paper addresses the security issue of the data which mobile agents gather as they 
are traversing the Internet. Several cryptographic protocols were presented in the 
literature asserting the security of gathered data. The security is based on the 
implementation of one or more of the following security technique: public key 
encryption, digital signature, and message authentication code, backward chaining, 
one-step forward chaining, and code-result binding. Formal verification of the 
protocols reveals unforeseen security flaws, such as truncation or alteration of the 
collected data, breaching the privacy of the gathered data, sending others data under the 
private key of a malicious host, and replacing the collected data with data of similar 
agents. So the existing protocols are not truly secure. In this paper, we present an 
accurate security protocol [21] which aims to assert strong integrity, authenticity, and 
confidentiality of the gathered data. The proposed protocol is derived from the Multi-
hops protocol [14], where the security relies on a message authentication code, a chain 
of encapsulated offers, and a chained hash of a random nonce. The Multi-hops protocol 
suffers from security flaws, e.g. an adversary might truncate/ replace collected data, or 
sign others data with his own private key without being detected. The proposed protocol 
[21] refines the Multi-hops protocol by implementing the following security techniques: 
utilization of co-operating agents, scrambling the gathered offers, requesting a visited 
host to clear its memory from any data acquired as a result of executing the agent before 
the host dispatches the agent to the succeeding host, carrying out verifications during the 
agent’s lifecycle in addition to the verifications upon agent’s return to the initiator. The 
verifications are on the identity of the genuine initiator at the early execution of the agent 
at a visited host. The proposed protocol also implements the common security 
techniques such as public key encryption, digital signature, etc. The security techniques 
implemented in the proposed protocol would rectify the security flaws revealed in the 
existing protocols. We prove its correctness by analyzing the security properties using 
STA [44, 45], a finite-state verification tool.  
 
 
Keywords: Security protocols, data security, mobile agents, formal verification 
methods, encryption. 
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1 Introduction 
 

Mobile agents are autonomous programs that have one or more goals. They control 
where they execute and can run in heterogeneous environments. They act on behalf of 
users, and have some level of intelligence. They can collaborate and communicate with 
other programs and agents to accomplish their tasks. They traverse the Internet from one 
host to another to come closer to their data and hence, overcome limitations of latency, 
connectivity, and bandwidth. Also, they allow a large degree of flexibility in creating 
computations and organize the use of distributed resources on the Internet. 
 

Mobile agents have been proposed for e-commerce applications, such as shopping 
applications [53]. They can be employed to search the network’s and fellow processes’ 
data to search for offers, negotiate the terms of agreements, or even purchase goods or 
services.  

 
Mobile agents are expected to run in partially unknown and untrustworthy 

environments. They transport from one host to another host through insecure channels 
and may execute on non-trusted hosts. Thus, they are vulnerable to direct security 
attacks of intruders and non-trusted hosts, where intruders and non-trusted hosts can 
perform any of the following malicious acts:  

 
1. Truncation of the gathered data.  
 
2. Alteration of the collected data. It takes place if hosts collude with each 

other or the agent visits a host twice. The malicious host may send back the 
agent to an earlier host in the agent’s itinerary. It could then truncate the data 
intermediary hosts provided and may alter the data it formerly provided 
without being detected if it replaces the current agent’s state with the state 
that was present when the agent firstly visited it. 

 
3. Impersonating the genuine initiator and hence breaching the privacy of the 

gathered data. An adversary may possibly intercept a message signed by the 
initiator of the agent. It could decrypt the signed message and then signs the 
decrypted message with its private key impersonating the genuine initiator. 
Executing hosts in the agent’s itinerary would encrypt the data they provide to 
the agent with the public key of the adversary assuming it is the genuine 
initiator of the message. Hence, the adversary would be able to breach the 
privacy of the collected data. 

 
4. Transmitting others data signed by the private key of a malicious host. 

Executing hosts in the agent’s itinerary may send the data they provide to the 
agent signed with the corresponding private keys. An adversary might 
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intercept the signed data. It could decrypt the signed data and then signs the 
data of a particular host with its private key impersonating the genuine 
provider of the data. 

 
5. Replacing the gathered data with data of similar agents. An adversary might 

intercept the agent. It could then replace the current agent’s state with the 
state of a similar agent.  

 
The security of mobile agents relies on two components: (i) Program code and static 

data. (ii) Dynamic data [27]. The dynamic data comprises three types of data [17] as 
follows: 

 
 Fixed size changeable, e.g. global variables.  
 Dynamically allocated static. Commonly are referred to as execution results  
 Dynamically allocated changeable, e.g. register content and stack.  

 
The focus of this paper is on the security of the execution results of mobile agents.  

The protocols presented in the literature [14, 20, 22, 23, 28, 29] build a proof on the 
security of the execution results, particularly the integrity of results based on the 
implementation of one or more of the following security technique: public key 
encryption, digital signature, message authentication code, backward chaining, one-step 
forward chaining, and code-result binding. The public key encryption uses the public key 
of the initiator to cipher the execution results at visited hosts so as to achieve secrecy of 
results. Also, it uses the public key of the succeeding host to encrypt particular 
verification terms, such as a hashed nonce. The digital signature is used when a host 
signs the results it provides with its private signing key so as to be authenticated as the 
initiator of the execution result. The rest of the methods are intended to ensure the 
integrity of results. The message authentication code incorporates the identity of the 
succeeding host and the characteristics of the previous execution results into the 
execution result at a host. The backward chaining incorporates characteristics of the 
previous execution results into the execution result at a host. The one-step forward 
chaining incorporates the identity of the succeeding host into the execution result at a 
host. The code-result binding binds the signed code to the execution results so as to 
ensure that the returned results belong to the code of concern. The methods are described 
in details in [4].  

 
The security techniques implemented in the existing protocols are not satisfactory for 

the following reasons:  
 

1. Initiators carry out verifications upon the agent’s return based on both static and 
dynamic data that are stored within the migrating agent, which is susceptible to 
tampering. It is essential to ensure that the initial verification data are in a secure 
store independent of the store of the migrating agent. We propose to store the initial 
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verification data, e.g. a nonce that identifies the protocol run and the identity of the 
first host in the agent’s itinerary, securely within a stationary agent that resides at 
the initiating host and co-operates with a major agent that traverses the Internet.  

 
2. Initiators validate the data returned with the agent if the verification terms, e.g. 
message authentication codes that they compute are consistent with the returned 
verification terms that the agent stores. The verifications might not be accurate, 
especially in the case of colluding attacks. An attack can take place when two 
malicious hosts co-operate with each other to truncate the data acquired at 
intermediary hosts or substitute new data for the data they had previously provided 
to the agent. If a host conspires with a preceding host in the agent’s itinerary and 
sends the agent back to it, then the preceding host would be able to truncate the data 
acquired at the intermediary hosts without being detected by replacing the agent’s 
dynamic data that is current with the data that the agent had when it firstly visited its 
host, if the host had already stored the dynamic data including the register content 
and stack. Thus to ensure that none of the acquired data has been truncated or 
replaced and that the verification is fully accurate, it is essential to restrain colluding 
attacks by attempting to clear host’s memory from any data acquired as a result of 
executing the agent. Hence, a malicious host would not be able to replace the agent’s 
dynamic data that is current with the data that the agent had when it firstly visited its 
host. We propose to program the agent so that it requests an executing host to clear 
its memory from any data acquired as a result of executing the agent before it 
dispatches the agent to the succeeding host.  

 
3. Executing agents encrypt the data they provide using the public key of the signer 
of the agent, although the signer may not be the genuine initiator. This would result 
in a breach of privacy of the collected data. It is essential to carry out verifications 
at the early execution of the agent at visited hosts to verify the identity of the 
genuine initiator and so ensure the encryption is done for the genuine initiator. We 
propose to enclose a cipher within the major agent that has the identity of the 
genuine initiator and carry out verifications, at the early execution of the agent at 
visited hosts, on the identity of the genuine initiator based on the securely stored 
cipher within the migrating agent. The verifications would detect if an adversary is 
impersonating itself as the genuine initiator for the purpose of breach of privacy of 
the gathered data.  

 
4. Gathered results are arranged in the order of visit to executing hosts and 
transmitted as a chain of data. Hence, a malicious host is able to infer the data that 
belongs to the preceding host and may tamper with it. We propose to jumble the 
gathered data within the chain to mislead an adversary trying to truncate the offer of 
the preceding host. We propose to arrange the offers in a reverse order so having the 
dummy offer, which the initiator generates, as the last offer within the chain of 
offers. Assume that a non-trusted host has deleted the last offer/s in the chain. The 
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initiator would detect the malicious act upon the agent’s return as it checks the 
availability of the dummy offer within the chain of offers.  

 
The proposed protocol aims to accomplish data-confidentiality, data-authenticity, and 

strong data-integrity properties. It encompasses a comprehensive set of security 
countermeasures, which would prohibit or at least detect the malicious acts of intruders 
and non-trusted hosts, with emphasis on the attacks revealed in the existing protocols 
[14, 20, 22, 23, 28, 29]. They include the special techniques presented in the previous 
paragraph and the following techniques:  

 
 Verifications upon the agent’s return to the initiator.  

 
 Transmission of cryptographic proofs of the data that agents have already 

gathered, along with the agent, which includes: (a) a counter that indicates the 
number of the actually visited hosts, (b) a chain of the encrypted offers, where 
each offer incorporates the following data: the data acquired at a host, an 
identifier of the protocol run, the order of the host among visited hosts stored as 
a chained hash of a random nonce, the identity of the genuine initiator, and the 
identity of the succeeding host, and (c) a data integrity code that encapsulates the 
execution results at the visited hosts.  

 
The proposed protocol is derived from the Multi-hops protocol [14] where the 

security relies on a chain of encapsulated offers, a chain of plain data, a message 
authentication code, and a chained hash of a random nonce. The chain of encapsulated 
offers is replaced by a chain of publicly encrypted offers. The offer does not incorporate 
the execution results at the visited hosts. The message authentication code that 
incorporates the execution results at the visited hosts is replaced by a data integrity code. 
The Multi-hops protocol is found undetectable to the attacks, where an adversary might 
truncate data, replace data, or sign others data with its own private key. The proposed 
protocol refines the Multi-hops protocol by implementing the previously discussed set of 
security countermeasures and that can be summarized as follows:  

 
1. Utilization of co-operating agents where the initial verification data is securely 

stored within a secondary agent that resides at the initiator and co-operates with 
a major agent that traverses the Internet. The intention to store the initial 
verification data within the secondary agent and not within the initiator’s 
memory is to enable the initiator to trace any tampering with the initial 
verification data through the execution trace it creates and stores of the 
secondary agent, which Vigna recommends in [51].  

 
2. Verifications at the early execution of the agent at visited hosts on the identity 

of the genuine initiator of the agent.  
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3. Scrambling the gathered offers so having a dummy offer, which the initiator 
generates, as the last offer within the chain of offers. Hence the malicious act of 
a non-trusted host, which has tried to delete the offer of its predecessor by 
deleting the last offer in the chain of offers, would be detected upon the agent’s 
return. The initiator would check the availability of the dummy offer within the 
chain. 
 

4. Clearing the memory of an executing host from any data acquired as a result of 
executing the agent before the host sends out the agent to the succeeding host in 
the agent’s itinerary. An executing host may not respond to the request. The 
denial of clearing request can be traced by implementing the execution traces 
technique recommended by Vigna in [51]. 
 

5. Verifications upon the agent’s return to the initiator.  
 

6. Transmission of cryptographic proofs of the data that agents have already 
gathered, along with the agent. 

 
Research is still ongoing for advances in securing the data that mobile agents gather. 

The security refers to certain security properties, such as authenticity, confidentiality, 
integrity, etc. The security techniques can be divided into two categories: (a) preventive 
techniques and (b) detective techniques. The preventive techniques hinder malicious acts 
to take place, whereas the detective techniques reveal the malicious acts that took place 
through verification processes.  

 
Cryptographic protocols are used to secure the data acquired by mobile agents. The 

literature presents several protocols that assert the security of data acquired by mobile 
agents [12, 13, 20, 23, 28, 29, 42, 47, 50, 51, 54, 55, 56]. However, some of the existing 
protocols lack rigorous proofs of their correctness, such as the family of protocols in 
[23]: (i) Publicly verifiable chained digital signature. (ii) Chained digital signature 
protocol with forward privacy. (iii) Chained Mac protocol. (iv) Publicly verifiable 
chained signature. 

 
From the early 90’s and onwards the formal methods have been commonly used in 

the design and in the reasoning about the correctness of security protocols [4, 26, 30]. 
They provide rigorous analysis for the system design, and for establishing its correctness 
and reliability. Thus, they help in developing error-free security protocols. On the other 
hand, the testing of protocols is not enough to ensure the liability and correctness of their 
implementation, because of the unpredictable behavior and unbounded capabilities of 
adversaries, and the dynamic behavior of mobile agents. The analysis would be infinite 
since there are infinite set of traces and it is impossible to capture all configurations of 
the environment and processes and that may fail the system. The implementation and 
verification of the existing protocols using formal methods have later revealed subtle 
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flaws in security protocols and showed their failure to accomplish some or all of the 
claimed properties [4, 28, 30].  Intruders and malicious hosts were able to spy out data, 
alter data stored within agents, force unjust authenticity, etc. The CSP-based tools 
Casper [25] and FDR [18] are used to verify the data integrity properties of mobile 
agents in [20]. Also a model checker, which is based on symbolic data representation 
and uses Spi-calculus, is used to verify data integrity properties of mobile agents in [28]. 

 
The soundness of a protocol can be checked using formal methods of verification. 

We apply formal methods to model and verify proposed protocol. The protocol 
specifications and security properties are modeled formally using the formal verification 
method STA (Symbolic Trace Analyzer). STA is an infinite-state exploration that is 
based on symbolic techniques. It models a protocol as a system of concurrent processes, 
using syntax similar to the syntax of Spi-calculus [3]. A particular configuration of the 
system is expressed as: (a) a trace of input and output actions that results from 
interaction between a process and its environment, and (b) the environment’s initial 
knowledge. Commonly, systems are analyzed by searching for an insecure state starting 
from an initial state, which might result in search of infinite transitions. The problem can 
be tackled by analyzing a finite state system by imposing restrictions e.g. finite number 
of messages an adversary can generate, though finding no attacks on the compact system 
does not guarantee that there would not be attacks on the large scale systems. STA 
analyzes transitions between configurations using a symbolic transition relation. The 
symbolic transition relation reduces infinite transitions to a single symbolic relation, 
where each input action should be preceded by a corresponding output action. Thus, it 
performs a complete exploration of the infinite state space [6, 7] without the need to 
impose restrictions to the model, e.g. finite set of messages an adversary can synthesize. 
According to the authors in [8, 9, 16] the symbolic analysis is sound and complete. 
Detecting an attack on the symbolic model would imply that an attack exists in the 
infinite standard model and vice versa. The Security properties are expressed as traces 
the protocol generates, and are verified by implementing the symbolic transition relation. 
We verified the proposed protocol for data confidentiality, data authenticity, and strong 
data integrity and the verifications detected no security attacks on the proposed protocol. 
Hence, the proposed protocol can truly accomplish the intended security properties: data 
confidentiality, data authenticity, and strong data integrity. 

 
The rest of the paper is organized as follows. Section 2 presents the common 

notations used in describing protocols. In section 3 defines the security properties of the 
execution results of mobile agents which the proposed protocol aims to accomplish. 
Section 4 discusses the security protocols that have been presented in the literature, 
which address the security of the execution results of mobile agents, and the respective 
security flaws revealed in the protocols. Section 5 describes our security protocol and 
states initial assumptions. Section 6 recalls formal methods of protocol verification. 
Section 7 describes on the STA verification method. Section 8 models the proposed 
protocol and specifies its properties formally using the STA method. Section 9 presents 
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the results of analyzing the protocol using the STA method for different runs, such as 
single protocol run and two parallel runs of the protocol with the presence of an 
adversary. Section 10 summarizes our contribution in a conclusion. Section 11 discusses 
future directions of this work. 

2  Protocols’ Common Notations  

 In describing the security protocols of mobile agents, common notations are used 
[17, 29, 41]. The host that initiates a mobile agent is denoted as i0 and is called the 
initiator. A host that the agent visits and where it gets executed is denoted as ij, where j 
ranges from 1 to n respective to the order of visit. A terminating agent is an agent that 
returns back to the initiator i0 following to its visit to the n executing hosts. Thus, the 
itinerary of a terminating agent is denoted as i0, i1, i2, … , in, i0. The execution result of 
the agent at host ij is denoted as mj. Through the agent’s migration, the transfer of data m 
from host ij to host ik is denoted as ij → ik: m, where ij and ik are executing hosts in the 
agent’s itinerary. The program code and the static data are both denoted as ∏. The 
encryption of plaintext m into a ciphertext is written as {m}      , where     is the public 
key of host in which encrypted the data. A digital signature is written as an encryption 
with a private signing key    . The bare signature is the union of the digital signature 
and signed data and is writte s         . It is assumed that it is possible to deduce 
the identity of the signer from a s re. The concatenation of two data m1 and m2 is 
denoted as m1||m2, where concatenation refers to appending data m2 to another data m1. 
The hash function is denoted as h, and h(m) stands for the hashing of data m. Figure 1 
shows the common notations used in describing protocols. 

Ki   nKi   n
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 i0 Initiating host 
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 Fixed size changeable 
 Dynamically allocated static 
 Dynamically allocated changeable. 

 
 The fixed size changeable data are the data that are set at the initiation of the agent 

but to which changes are authorized, such as global variables.  
 
 The dynamically allocated static data are the data that are acquired during the life 

cycle of the agent but to which no later changes are authorized. Commonly, they are 
referred to as execution results.  
 
 The dynamically allocated changeable data are the data that are acquired during the 

life cycle of the agent and to which changes might be authorized, such as register content 
and stack.  
 

This paper focuses on the security of the execution results of terminating mobile 
agents. The principal scheme of data gathering mobile agents is that the agent is initiated 
by host i0 and is sent out to a set of hosts i1, i2, … , in. The agent gets executed at each of 
the visited hosts in the agent’s itinerary. The agent stores the result of execution at host ij as 
mj for (1 ≤ j ≤ n). The execution results are modeled as a chain of m1, m2, … , mn, which is 
stored within the agent. The agent, following to its visit to n executing hosts, returns the 
chain of results to the initiator i0. The returned chain is expressed as m′1, m′2, … , m′n. The 
returned execution result might differ from the genuine execution result mj for (1 ≤ j ≤ n) 
due to tampering acts of adversaries. Hence, it is denoted as m′j for (1 ≤ j ≤ n). 
 

The security properties of the execution results of mobile agents are defined below 
[17, 29].  
 

1. Data integrity: During the migration of the agent or its execution at visited hosts, 
tampering with the already stored execution results mj for (1 ≤ j ≤ n) is 
prevented, or at least any tampering will always be detected by the initiator upon 
agent’s return. The data integrity requires that the chain of execution results m′1, 
m′2, … , m′n which is returned to the initiator i0 matches the genuine chain of 
execution results m1, m2, … , mn. Otherwise, the initiator i0 has a proof that the 
genuine execution results had been tampered with. The data integrity property 
refers to the following classes of protection: 

 
• Insertion resilience: Data can only be appended to the chain m1, … , mj  for 

(j < n). 
• Deletion resilience: Deletion of an execution result mj for (1 ≤ j ≤ n) from the 

chain of results m1, … , mn is prevented, or at least is detected upon the 
agent’s return to the initiator. If an execution result mj is deleted and the 
chain of execution results reduces to m1 , … , mj-1 , mj+1 , … , mn, then the 
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initiator i0 has a proof that an execution result is deleted from the chain of 
results. 

• Truncation resilience: Truncation of the chain m1, … , mj , … , mn  at host ij  
and reducing it to the chain m1, … , mj for (j < n) is prevented, or at least is 
detected upon agent’s return to the initiator i0. The computed verification 
terms, e.g. message authentication code would indicate inconsistency with 
the returned chain of execution results. 

• Strong forward integrity: None of the execution results in a chain can be 
modified. The property necessitates that the returned execution result m′j 
matches mj for (1 ≤ j ≤ n). 

• Strong data integrity requires the four classes of protection: insertion 
resilience, deletion resilience, truncation resilience, and strong forward 
integrity. 

 
2. Data non-repudiability: The initiator i0 can build a proof about the identity 

of host ij that added the execution result m’j (1 ≤ j ≤ n) to the chain of 
results m′1 , m′2 , … , m′n. 

 
3. Data confidentiality: The chain of execution results m1, … , mj,, … , mn  stored 

within the agent can only be read by the initiator i0. No one else is permitted to 
learn the plain text of the ciphered execution results that are stored within the 
agent. Therefore, the unauthorized retrieval of information is prevented and the 
chain of the ciphered execution results should not reveal information about its 
contents to unauthorized entities. Note that an adversary may of course see the 
chain of ciphered execution results, shown below.   

 
 {m1}   , … , {mj,}   , … , {mn} 

 
Nevertheless, as long as he is not able to get hold of the decryption keys, he is 
still unable to deduce the plain text mj for (1 ≤ j ≤ n) and the system is still 
deemed secure. Thus, it is fundamental to keep the encryption keys confidential 
during the run of a protocol session. 

 

Ki   1
Ki   j

Ki   n

4. Data authenticity: Upon agent’s return, the initiator i0 can determine for sure the 
identity of host ij that appended m′j to the chain of execution results m′1, m′2, … , m′n. 
The initiator i0 can be sure that the results that purport to be from a certain host were 
indeed provided by that host. Thus, an adversary should not be able to impersonate a 
host. 

 
5. Origin-confidentiality: The identity of host ij for (1 ≤ j ≤ n) that generated and 

added the execution result mj to the chain m1 , … , mn can only be known at host 
i0. An executing host ik should not be able to deduce the identity of the 
previously visited hosts ij for (1 ≤ j < k) from the agent. Though, it is possible for 
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a malicious host ik to get the identity of host ik-1 where the execution result mj 
was generated by analyzing the agent’s dynamic data just before and after the 
agent visited it. Also, the identity of host ij-1 will possibly be revealed on the 
network layer. This can be prevented by using anonymous connections [49] 
which hide the identity of the previously visited host. 

 
The objective of the proposed protocol is to accomplish authenticity, 

confidentiality, and strong integrity of the execution results of mobile agents. 

4 Related work and Security flaws 

Several cryptographic protocols have been presented in the literature [14, 20, 22, 23, 28, 29] 
that aim to secure the execution results of mobile agents. In this section we briefly discuss the 
protocols that aim to preserve the confidentiality, authenticity, or integrity of data gathered by 
mobile agents. The protocols are as follows: 
 

 Targeted state protocol [22] 
 Append only container protocol [22] 
 Multi-hops protocol [14] 
 Publicly verifiable chained digital signature protocol [23] 
 Chained Digital Signature Protocol with Forward Privacy [23] 
 Chained MAC Protocol [23] 
 Publicly Verifiable Chained Signature Protocol [23] 
 Configurable mobile agent data protection protocol [29] 
 Mobile agent integrity protocol [20, 28] 

 
4.1  Existing mobile agent security protocols 
 
 Reasoning about the correctness of the protocols reveals several security flaws 
[17, 28, 41]. The following discussion of the security protocols summarizes existing 
security techniques. 
 
 The Targeted State Protocol [22] is proposed to ensure the confidentiality of data 

carried by a mobile agent. It is based on encrypting the data that should only be available 
to a trusted host with the public key of the host. The initiator may intend to transmit 
confidential data to a number of trusted hosts, so that a trusted host would only be able to 
learn the confidential data that is intended for it. The initiator encrypts each confidential 
data with the public key of the host for which the data should only be revealed, and then 
signs it with its private key. The targeted state would be as follows: 
  

in  →  in+1 : { {m1}        , … , {mn}     } Si   0
-1 Ki   1

Ki   n 
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The security flaw is that an adversary can strip off the initiator’s signature from the 
targeted state, and then copy the targeted state into an agent of its own. Next, the 
adversary signs the targeted state with its private key impersonating itself as the genuine 
initiator. Next, the adversary sends its own agent to executing hosts i1, …, in. Each host 
inspects the targeted state, decrypts the cipher text it can decrypt using its private 
decryption key and makes the plain text m1, … , mn available to the agent. The agent 
migrates back to the adversary carrying the plain text. Subsequently, the adversary 
possesses the text that is supposed to be confidential and the initiator would never detect 
such breach of privacy. The attack is illustrated by considering the agent’s targeted state 
to contain a single plain text m1 encrypted with the public key of host i1. The initiator i0 
sends out the agent code ∏0 and its targeted state to i1, as follows: 
 

i0  →  i1 : ∏0 , { {m1}     } Si   0
-1 Ki   1 

An adversary ia intercepts the communication, and then strips off the initiator’s 
signature. Next, it copies the targeted state {m1}    into an agent ∏a of its own, and then 
signs the targeted state with its own signature. Next, it sends out the agent to host i1 as 
follows: 

Ki   1

 
ia  →  i1 : ∏a , { {m1}     } Si a

-1 Ki   1 
Host i1 innocently decrypts the cipher text using its private key hence it makes the plain 
text m1 available to the adversary. The agent migrates back to the adversary as follows: 
 

i1  →  ia : ∏a , { m1} Si a
-1 

 
 The Append Only Container Protocol [22] is proposed so that new objects can be 

appended to a container of objects in an agent but any subsequent modification or 
deletion of an object contained therein can be detected by the initiator i0 upon agent’s 
return. Also, the insertion of a new object can be detected. The protocol relies on an 
encrypted checksum Cn. The initial value of the checksum C0 is a nonce r that is chosen 
randomly by the initiator and is encrypted with its public key so having {r}    . The 
nonce must be kept secret by the initiator, and is used in the verification of the protocol 
upon agent’s return.  
 

Ki   0

The agent migrates to n hosts. Each host executes the agent, signs the execution results 
mn with its digital signing key      , computes a new checksum Cn from the previous 
checksum Cn-1 and the signed results mn , appends the execution results to the chain of 
objects, and then sends out the agent with the new chain to the succeeding host in the 
agent’s itinerary. The Append Only Container Protocol is defined as follows: 

 Si n
-1 

 
in  →  in+1 :{{m1}      , … , {mn}      , Cn }   Si   n

-1  Si   1
-1 
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The checksum Cn is updated as follows: 
 

Cn = {Cn-1 ||       (mn)} S
-1 

Ki   0i   n  
Upon agent’s return, the initiator successively decrypts the checksums, and then 

extracts the signatures of executing hosts. Next, it verifies the extracted signatures with 
the corresponding objects in the container. The last verified checksum must be equal to 
the initial nonce r.  

 
The security flaw is that an adversary may collude with a host ij, which the agent 

had previously visited, and then learn the checksum Cj at ij. Next, the adversary can 
truncate the container up to the jth object without being detected if it replaces the 
most recent checksum Cn with the checksum Cj that was present when the agent 
firstly visited host ij for (1 ≤ j < n). Moreover, the adversary can replace the initially 
provided execution result mj with a new execution result m′j if it computes a new 
valid checksum based on the learnt Cj-1. The same type of attack can take place if the 
agent visits a malicious host more than once. The attack violates the data integrity 
property. Suppose, the agent visits a malicious host ij twice during its life cycle, then 
host ij is able to perform any of the two attacks without being detected: (i) Truncate 
the chain at mj so it is reduced to m1, … , mj . Moreover, it can send out the agent 
with the reduced chain to a new set of executing hosts i′j+1 , … , i′n and replace the 
chain of results m1, … , mj,, … , mn with  m1, … , mj , m′j+1 , … , m′n. (ii) Replace the 
initially provided execution result mj with a new execution result m′j and then 
dispatch the agent again to hosts ik  for (j < k ≤ n). Another security flaw is that an 
adversary can append arbitrary objects to the container without being detected if it 
updates the checksum accordingly.  
 
The Multi-hops Protocol [14] has the same purpose as the Append Only Container 
Protocol. The protocol uses: (a) a hash chain γn, (b) a message authentication code µn, (c) 
a static part ∏ that includes: program code, and static (initialization) data, (d) a chain of 
execution results in plain Mn, and (e) A chain of encapsulated execution results Pn. The 
chain of execution results Mn at host in is the concatenation of the execution results mj at 
visited hosts for (1 ≤ j ≤ n), and the corresponding hosts’ identities in. The protocol binds 
the static part ∏ to the terms: Mn,Pn, γn, and µn. At instantiation, γn is set to γ0 = h(r) 
where r is chosen randomly by the initiator i0, and the terms: µn, Mn,Pn are left empty. At 
each executing host, the agent updates the terms Mn,Pn, γn, and µn to incorporate the 
execution result at the host. The protocol is described as follows:  

 
γn = h (γn−1)  
µn = h (mn, γn−1, µn−1, in+1)  
Pn = Pn−1 ||       (µn)  Si   n

-1 
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Mn = Mn−1 || mn || in  
in  →  in+1 :   ( ∏, Mn, Pn ), {γn}        , µn

  
 

Ki  n+1

 The message authentication code µn that is computed at host in acts as a chaining 
relation that incorporates: (a) the nonce computed at the preceding host γn−1, (b) the 
message authentication code computed at the preceding host µn-1, which summarizes all 
execution results previously obtained by the agent, (c) the execution result at the current 
host mn, and (d) the identity of next host in+1 in the agent’s itinerary. The protocol data Pn is 
a chain of the signed message authentication codes µn for (1 ≤  j ≤ n).   
 
 The security flaw is that an adversary can collude with host ij, which the agent had 
previously visited, and then learn γj−1 and µj−1. Next, it can truncate the gathered data just 
after data of host ij and then send the agent with the learnt values of γj−1 and µj−1 to host/s 
of its selection. The visited hosts would append data to the protocol and compute valid 
values for γj and µj using the learnt values of γj−1 and µj−1. Moreover, the adversary can 
replace the initially provided execution result mj with a new execution result m′j if it 
computes valid values for γj and µj using the learnt values of γj−1 and µj−1. Hence, the 
initiator would never detect the data truncation or replacement.  
 
 The Publicly Verifiable Chained Digital Signature Protocol [23] aims to preserve the 

confidentiality and integrity of data acquired by mobile agents. The protocol uses a hash 
chain Cn and a chain of encapsulated execution results (M1 , … , Mn). The hash chain Cn 
binds the encapsulated execution result at the preceding host Mn−1 to the identity of the 
next host in the agent’s itinerary in+1. The encapsulated execution result Mn incorporates the 
execution result at the current host mn, the randomly selected nonce rn, and the hash chain 
Cn. The nonce rn prevents an adversary from attacking the encryption. The m0 is a dummy 
data provided by the initiator i0. 
 
The protocol is defined as follows:  
 

Mn = { {mn , rn }      ,Cn } K  Si   n
-1 

Cn = h (Mn−1,  in+1)  
i   0

M0 = {{m0 , r0}       ,C0 } K  Si   0
-1 

i  0

C0 = h (r0, i1)  
in  →  in+1 :  { M0 , … , Mn} 
 

The security of the protocol is based on the assumption that an attacker does not change 
the last element Mn in the chain.  
 
 The security flaw is that an adversary can truncate chain elements and can grow a 
fake stem, since the input to all previous chaining relations is known. Elements can be 
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appended to the chain at the discretion of the adversary, though the validity of the 
chaining relation is maintained. The adversary sends the agent with a chain of execution 
results, e.g. M0, … , Mj-1 to host ij of its own choice and repeats the process until it is 
satisfied with the collected elements. Then, the adversary chooses an element and pastes 
it into agent and sends the agent to ij+1. Another security flaw is that an adversary can 
append arbitrary objects, generated for the terms of the adversary rather than the 
initiator, to the container without being detected. 
 
 The Chained Digital Signature Protocol with Forward Privacy [23] has the same 

purpose as the Publicly Verifiable Chained Digital Signature Protocol as well as forward 
privacy/ origin confidentiality. It proposes a change in the order of encrypting and signing 
the execution results so as to accomplish forward privacy. The execution results at a visited 
host are firstly signed by the host and then are encrypted with the public key of the initiator. 
Hence, no one other than the initiator can decrypt the ciphered execution results. The 
protocol uses a hash chain Cn and a chain of encapsulated execution results (M1 , … , Mn). 
The hash chain Cn binds the encapsulated execution result at the preceding host Mn−1 to the 
identity of the next host in the agent’s itinerary in+1 and a random nonce the host selects rn . 
The encapsulated execution result Mn incorporates the execution result at the current host mn, 
the randomly selected nonce rn, and the hash chain Cn. The nonce rn prevents an adversary 
from attacking the encryption. The m0 is a dummy data provided by the initiator i0. 

-1 

 
The protocol is defined as follows:  
 

Mn = {{mn }      , rn}      , Cn 

Cn = h (Mn−1,  rn , in+1)  
 n

 Si 
-1 Ki   0 

M0 = {{m0 }        , r0 }     , C0 -1 Ki 

C0 = h (r0, i1)  
 Si   0  0

in  →  in+1 :  { M0 , … , Mn} 
 
 The problem with the protocol is that executing hosts would not be able to know the 
identity of the initiator of agent, since the signature of the initiator is encrypted within 
M0.  
 
 The security flaw of the protocol is that an adversary can truncate chain elements 
and can grow a fake stem, since the input to all previous chaining relations is known. 
Elements can be appended to the chain at the discretion of the adversary, though the 
validity of the chaining relation is maintained. The adversary sends the agent with a 
chain of execution results, e.g. M0, … , Mj-1 to host ij of its own choice and repeats the 
process until it is satisfied with the collected elements. Then, the adversary chooses an 
element and pastes it into agent and sends the agent to ij+1. Another security flaw is that 
an adversary can append arbitrary objects, generated for the terms of the adversary rather 
than the initiator, to the agent without being detected. 
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 The Chained MAC Protocol [23] aims to preserve confidentiality, integrity, and 
forward privacy of data acquired by mobile agents. It does not provide authenticity. The 
protocol uses a hash chain Cn and a chain of encapsulated execution results (M0, … , 
Mn). The executing host in computes the hash chain of the succeeding host Cn+1. The hash 
chain Cn+1 binds the identity of the succeeding host in+1 to the hash chain Cn, execution 
results mn, and a random nonce rn generated at the current host in. The encapsulated 
execution result at a host Mn binds the random nonce rn and the execution results mn 
generated at the host to the identity of the succeeding host in+1. -1  

Mn = { rn , mn  , in+1}      for n ≥ 0 K

Cn+1 = h (Cn ,  rn , mn ,  in+1)  for n  ≥ 1 
C0 = {r0   , m0  ,  i1 } 
in  →  in+1 :  { M0 , … , Mn}, Cn+1 for n ≥ 0 
 

 

i   0

Ki   0

 The problem with the protocol is that executing hosts would not be able to know the 
identity of the initiator of agent. 
 
 The security flaw of the protocol is that an adversary can collude with host ij, which 
the agent had previously visited and had stored the hash chain Cj , and sends the agent 
back to it. The host can then truncate the gathered data just after data of host ij and 
replace its initial encapsulated execution result Mj with a new encapsulated execution 
result M′j . Next, it sends the agent with the updated hash chain C′j+1 to host/s of its 
selection. Hence, the initiator would never detect the data truncation or replacement. 
Another security flaw is that an adversary can truncate chain elements and can grow a 
fake stem, since the input to all previous chaining relations is known. Elements can be 
appended to the chain at the discretion of the adversary, though the validity of the 
chaining relation is maintained. The adversary sends the agent with a chain of execution 
results, e.g. M0, … , Mj-1 to host ij of its own choice and repeats the process until it is 
satisfied with the collected elements. Then, the adversary chooses an element and pastes 
it into agent and sends the agent to ij+1. Another security flaw is that an adversary can 
append arbitrary objects, generated for the terms of the adversary rather than the 
initiator, to the container without being detected. 
 
 The Publicly Verifiable Chained Signature Protocol [23] aims to preserve 

confidentiality and integrity of data acquired by mobile agents. The protocol does not 
provide authenticity. The protocol uses temporary key pairs (private signing key, and the 
corresponding verification key) and a chain of encapsulated execution results. Each host 
generates a pair of keys (private and public). The host encloses the public key yn+1 it 
generates within the encapsulated execution result computed at its host Mn and then signs 
the encapsulated execution result with the private key yn it received from its predecessor. 
It provides its successor with the private key it generates yn+1. At initiation, the initiator 
provides the agent with a dummy data m0 and an initial key pair. It encloses the public 
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key y1 it generates within the encapsulated execution result M0 and then signs the 
encapsulated execution result with its private key. It provides host i1 with the private key 
y1. The hash chain Cn at a host bins the encapsulated execution results at the preceding 
host Mn-1 to the identity of the succeeding host in+1. The encapsulated execution result Mn 
incorporates the following data terms that are generated at the host: data mn , a random 
nonce rn , a hash chain Cn , and a public verification key corresponding to the succeeding 
host yn+1.   
 

Mn = {{ mn  , rn }      ,  Cn ,  yn+1  } for n ≥ 1 
M0 = {{ m0  , r0 }      ,  C0 ,  y1  }  
Cn = h (Mn-1 ,  in+1)  for n  ≥ 1 
C0 =  h{ r0   ,  i1}   
in  →  in+1 :  { M0 , … , Mn}, yn+1  for n ≥ 0 

 
 The security flaws of the protocol are: (i) An adversary can intercept the agent and 
then decrypts the encapsulated execution result M0 with the signature verification 
key of the signer. Next, it signs the decrypted term of M0 with its private key 
impersonating the genuine initiator. Executing hosts would encrypt the data they 
provide to the agent with the public key of the adversary believing that it is the 
genuine initiator. Hence, the adversary can breach the privacy of the gathered data. 
(ii) An adversary can collude with host ij, which the agent had previously visited and 
had stored the private key it had received from the preceding host yn , and sends the 
agent back to it. The host can then truncate the gathered data just after data of host ij and 
replace its initial encapsulated execution result Mj with a new encapsulated execution 
result M′j . Next, it sends the agent to host/s of its selection. Hence, the initiator would 
never detect the data truncation or replacement. (iii) An adversary can truncate chain 
elements and can grow a fake stem, since the input to all previous chaining relations is 
known. Elements can be appended to the chain at the discretion of the adversary, though 
the validity of the chaining relation is maintained. The adversary sends the agent with 
a chain of execution results, e.g. M0, … , Mj-1 to host ij of its own choice and repeats 
the process until it is satisfied with the collected elements. Then, the adversary chooses 
an element and pastes it into agent and sends the agent to ij+1. (iv) An adversary can 
append arbitrary objects, generated for the terms of the adversary rather than the 
initiator, to the container without being detected. 

Ki   0
-1 

 

Sy n
Ki   0

-1 Si   0

 
 The Configurable Mobile Agent Data Protection Protocol [29] is intended to 

accomplish a combination of the security properties: authenticity, confidentiality, 
integrity, origin confidentiality/ forward privacy, and non-repudiation. The protocol can 
be configured for the properties of concern. The security is based on: (a) securely storing 
the addresses of next hosts to be visited, and (b) binding the static part (program code 
and static data) ∏ to a chain of encapsulated execution results at hosts in the agent’s 
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itinerary (M0 , …, Mn) [40, 41]. The static part ∏ is paired with a timestamp t and signed 
by the initiator so having ∏0 = {∏,t}       .  The P0 is the agent’s initial itinerary.  The Pn 
is the set of new hosts added to agent’s initial itinerary. The Mn is a chain of 
encapsulated execution results. The Mn is composed of two parts: Dn and Cn. The Dn 
binds the execution results at a host dn to Pn. The Cn binds the static part ∏0 to: (a) the Cn-

1 that is computed at the preceding host, (b) the identity of the succeeding host in+1, (c) 
the execution result dn at host in , and (d) the addresses of new hosts Pn added to agent’s 
initial itinerary P0.    
 

-1 Si   0

 The protocol configuration for data-authenticity, data-confidentiality, and data-
integrity properties is as follows: 
 

in    in+1 : ∏0, {M0, … , Mn} 
where, ∏0  = {∏, t}        , and Mn  = Dn || Cn -1 Si   0
 

    P0   if  in = i0
Dn = {dn}        , Pn  otherwise 
 
 ( P0, ∏0, i1)  if  in = i0 

Cn= {         (dn, Pn, ∏0, Cn-1 , in+1)} otherwise 

Ki   0
+ 

-1 Si   0
Ki   0
   + -1 Si   n 

 The security flaw is that an adversary ia may intercept the communication between i1 
and i0, and then can strip off the initiator’s signature from ∏0 and learn the pair (∏, t) in 
plain text. Next, it extracts the tuple (P0, ∏0

 , i1), and then appends its signature to the tuple 
so having      (P0, ∏0

 , i1). Next, it signs the pair (∏, t) with its private key so having 
∏0′= {∏, t}      , and computes C0′ =      (P0, ∏0

 , i1). Next, it sends the agent with the 
fake identifiers ∏0′, and C0′ rather than the original identities ∏0, and C0 to host i1 
impersonating the genuine initiator. Host i1 would receive the agent and incorrectly 
authenticate ia as the genuine initiator of the agent. Thus, it would encrypt its own data 
with the public key of the adversary ia rather than that of the genuine initiator i0. The 
agent continues migrating till all hosts defined in the set {P0, … , Pn} are visited. Next, 
the adversary intercepts the agent and spies out the gathered data. Next, the intruder ia 
sends the agent with the initial identifiers ∏0, D0, C0 as a fresh protocol instance. The 
attack would result in erroneous authenticity to ia and breach of privacy of the gathered 
data. Actually, host ia sends two instances of the protocol. The first instance with D0 and 
the fake identifiers: ∏0′, and C0′, and the second instance with original identifiers: ∏0, 
D0, and C0. As a result, the adversary would possess the data that should only be 
revealed to the genuine initiator. The initiator would never detect such breach of privacy. 
Another attack is that an adversary can truncate the data acquired at hosts visited 
between the first and the second visits of the agent to its host hence can alter the data it 
has provided to the agent in the first visit maintaining the consistency of checksums of 

-1 Si   a -1 Si  a
-1 Si   a
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the gathered data.  
 
 The Mobile Agent Integrity Protocol [20, 28] aims to preserve the integrity of data 

gathered by mobile agents. The protocol is based on the chain of execution results ADn, 
a message integrity code MICn, and hash chain of a nonce Cn. The ADn is a chain of 
execution results at hosts in the agent’s itinerary as {D1, … , Dn}. The MICn binds the 
execution result Dn and hash chain of the nonce Cn computed at the current host to the 
MICn-1 computed at the preceding host. Upon agent’s return, the code is verified to 
detect any tampering with the already gathered data. At instantiation, Cn is set to C0 = r 
where r is chosen randomly by the initiator i0. The MIC0, and AD0 are left empty. The 
protocol is defined as follows: 
 

ADn = {D1, … , Dn} = ADn-1 U {Di} 
MICn = h (Dn, Cn, MICn-1) 

Cn = h (Cn-1)  
in    in+1 : MICn ,{Cn} ,  ADn 
 

K

 Upon agent’s return, the initiator 
{D1, … , Dn} and then verifies that 
the message integrity code that has ju
 
 The security flaw is that an ad
already gathered data, since the ter
integrity code MICn at host in are kn
can append arbitrary objects, gener
initiator, to the container without bei
 
4.2 Causes of security flaws and re
 
 The discussion in section 4
specifications that would result in se
protocol that: (a) implements the 
protocols’ specifications that may
preventing or detecting the security 
summarizes the flaws revealed in exi
 
 
 
 
 
 
 

 

         + 

i n+1

computes MIC′n from the values of {C0 , … , Cn} and 
the computed message integrity code MIC′n matches 
st been received from the agent.  

versary can read and append arbitrary data to the 
ms MICn-1 and Cn-1 that are needed to compute the 
own. Another security flaw is that a non-trusted host 
ated for the terms of the adversary rather than the 
ng detected. 

medies 

.1 is advantageous in identifying the protocol 
curity flaws and guiding us in proposing a security 
reliable existing security techniques, (b) avoids 

 result in security flaws, and (c) is capable of 
threats that existing protocols fail to detect. Table 1 
sting security protocols.  
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Table 1. Flaws revealed in the mobile agents security protocols 
Security protocol Aimed 

properties 
 

Failed property Type of flaw/s * 

Targeted state protocol Confidentiality Confidentiality Adversary can breach privacy 
of collected  data 

Append only container 
protocol 

Authenticity 
 
Integrity  

Authenticity 
 
Integrity 
 

Returned data are erroneously 
authenticated  
Co-operating hosts can truncate 
collected data  
Adversary can append fake 
data. Hence, returned data may 
not belong to agent of concern 

Multi-hops protocol Integrity  
Authenticity 
 

Integrity 
 

Co-operating hosts can truncate 
collected data.  
Adversary can append fake 
data. Hence, returned data may 
not belong to agent of concern 

Publicly verifiable chained 
digital signature protocol 

Integrity 
Confidentiality 
 

Integrity Co-operating hosts can truncate 
collected data  
Adversary can append fake 
data. Hence, returned data may 
not belong to agent of concern 

Chained Digital Signature 
Protocol with Forward 
Privacy Protocol 

Integrity 
Confidentiality 
Forward privacy 

Integrity Co-operating hosts can truncate 
collected data  
Adversary can append fake 
data. Hence, returned data may 
not belong to agent of concern 

Chained MAC Protocol Integrity 
Confidentiality 
Forward privacy 

Integrity 
 
 
 

Co-operating hosts can truncate 
collected data  
Adversary can append fake 
data. Hence, returned data may 
not belong to agent of concern 

Publicly Verifiable Chained 
Signature Protocol 

Integrity 
Confidentiality 
 

Integrity 
 
 
 
 

Co-operating hosts can truncate 
collected data  
Adversary can append fake 
data. Hence,  data may  not 
belong to agent of concern 

Configurable mobile agent 
data protection protocol 

Confidentiality 
Authenticity 
Integrity 
Non-repudiation 
Forward privacy 

Confidentiality 
 
Integrity 
 

Adversary can breach privacy 
of collected data 
Co-operating hosts can truncate 
collected data  
 

Mobile agent integrity 
protocol 

Integrity Integrity Co-operating hosts can truncate 
collected data  
Adversary can append fake 
data. Hence, returned data may 
not belong to agent of concern 

* Flaws would not be detected by the initiator i0. 
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The security flaws are attributed to the followings with respect to the security attack: 
 
A. Breach of privacy 
 
Problem: In the Targeted State Protocol and static part in the Configurable Mobile Agent 
Data Protection Protocol are signed with the initiator’s private key. An adversary might 
intercept the agent and decrypts the signed data/ part. It would then send the decrypted 
data/ part signed with its private key. Recipients would assume that the signer is the 
genuine initiator of the agent, and would then encrypt the data they provide to the agent 
with the public key of the adversary. Hence, the adversary would be able to learn the 
encrypted data.  
 
Remedy: the initiator should follow the signing of a term by an encryption with the 
public key of the recipient. The term would be received signed with the signature of the 
genuine initiator. An adversary would not be able to decrypt the signed term and signs it 
with its private key. 
 
B. Erroneous authentication 
 
Problem: In the Append Only Container Protocol, the execution result at a host is 
just encrypted with the private key of the host. An adversary may intercept the 
agent and decrypts the execution results. It would then sign the execution results 
with private keys of co-operating hosts, and update the checksum accordingly. 
Consequently, the initiator would assume that the returned data were provided by 
genuine executing hosts. The same flaw exists in the Chained MAC Protocol and 
the Publicly Verifiable Chained Signature Protocol. The two protocols do not aim to 
preserve authenticity, but it is just a remark. 
 
Remedy: an executing host should firstly sign the data it provides to the agent with its 
private key and then encrypts it with the public key of the initiator. The data would be 
received at the initiator signed with the respective private keys of the genuine executing 
hosts. 
 
C. Appending a fake stem to the agent 
 
The inputs that are needed to compute an encapsulated execution results at a hosts are 
available. Hence, an adversary can append fake execution results to the agent without 
being detected as follows: 
 
1. An intruder may intercept the agent and append an offer to the results of the agent’s 

execution. The intruder is a non-scheduled host in the agent’s itinerary. The initiator 
would not detect the malicious act upon the agent’s return. The attack is possible in 
the Append Only Container Protocol. 
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Remedy: The terms that are necessary to compute an encapsulated execution result 
at a host and were computed at the predecessor host should be transmitted from the 
predecessor host to the host encrypted with the public key of the host. The terms are 
depicted in Table 2 
 
In the following protocols, a non-trusted host that participates in the protocol may 
send the agent to a succeeding host of its selection. The succeeding host would 
append its offer to the execution results of the agent, though the initiator would 
detect the malicious act upon the agent’s return. Each partial execution result 
incorporates the identity of the respective succeeding host. 
 

 Multi-Hops Protocol 
 Publicly Verifiable Chained Digital Signature Protocol 
 Mobile Agent Integrity Protocol 
 Chained MAC Protocol 
 Publicly Verifiable Chained Signature Protocol 
 Configurable Mobile Agent Data Protection Protocol 
 Chained Digital Signature Protocol with Forward Privacy Protocol 

 
2. The execution results that are returned to the agent might be generated for a different 

protocol run or for a different initiator.  
 

 The execution results of the Append Only Container protocol neither 
incorporate an identifier of the protocol run of concern nor the identity of the 
initiator within the execution results. 
 

 The execution results of the following protocols incorporate a random nonce 
generated by the initiator within the execution results: 

 
− Multi-Hops Protocol 
− Mobile Agent Integrity Protocol 

 The execution results of the Configurable Mobile Agent Data Protection 
Protocol incorporate the followings within the execution results.  
 

° Timestamp generated by the initiator and uniquely identifies the 
protocol run of concern 

° Identity of the first host in the agent’s itinerary 
° Identity of the initiator within the execution results 

 
 The execution results of the following protocols: 
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− Publicly verifiable chained digital signature protocol 
− Chained Digital Signature Protocol with Forward Privacy Protocol 
− Chained MAC Protocol 
− Publicly Verifiable Chained Signature Protocol 

 
 incorporate the followings within the execution results: 

 
° Random nonce generated by the initiator that uniquely identifies the 

protocol run of concern 
° Dummy data generated by the initiator 
° Identity of the first host in the agent’s itinerary 
° Identity of the initiator within the execution results. 

 
Remedy: incorporate the following terms within each encapsulated execution result.  
 

° Random nonce generated by the initiator or a timestamp generated by 
the initiator and uniquely identifies the protocol run of concern 

° Dummy data generated by the initiator 
° Identity of the first host in the agent’s itinerary 
° Identity of the initiator within the execution results. 

  
Moreover, store the terms securely with an agent that is stationary at the initiator. It 
might be assumed that it is enough to store the terms securely in the memory of the 
initiator, though an adversary might tamper with the memory of initiator. Hence, the 
verifications of the two terms would not be accurate. The use of a secondary agent to 
store the verification terms (identity of the initiator and the identifier of the protocol 
run) would enable the initiator to trace any manipulation with the terms by the use of 
execution traces. Vigna in [51] recommends the agent executor to create a trace of 
the agent’s execution. The trace contains the lines of the agent’s code that were 
executed as well as any new values assigned to initial verification terms that were 
stored within the stationary agent. The trace of the agent’s execution is to be stored 
at the executing host for a limited time. Upon the initiator’s request, each executing 
the host signs the execution trace and forwards it to the succeeding host in the 
agent’s itinerary. The accumulative execution traces are forwarded to the initiator. 
We propose to implement the technique to store the trace of execution of the 
secondary at the initiator, thus the initiator would be able to verify the terms upon 
the agent’s return through the stored execution trace. Usually execution traces 
require large amounts of resources to the storage of validating information. 
Conversely the execution trace of the secondary agent would be short as compared 
to the execution traces of the migrating agent. 
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D. Truncation and/ or substitution of execution results 
 
Problem: An adversary can truncate the data acquired at hosts visited between the first 
and the second visits of the agent to its host hence can alter the data it has provided to 
the agent in the first visit maintaining the consistency of the chaining relation of the 
gathered data. The attack requires that the non-trusted host has stored the chaining 
relation that was present when the agent has firstly visited it. Table 2 identifies the terms 
computed at the predecessor host that are necessary to enable an adversary to truncate 
and/ or alter gathered data and to maintain the consistency of chaining relation/s. Hence, 
the initiator would not be able to detect the malicious act of the adversary. 
Remedy: Ensure that an executing host clears its memory from any terms acquired as a 
result of executing the agent before it dispatches the agent to the next host in the agent’s 
itinerary. We propose to design the migrating agent in such a way that it requests an 
executing host to clear its memory from any terms acquired as a result of executing the 
agent before it dispatches the agent to the next host in the agent’s itinerary. However, an 
executing host may not respond to the request. The denial of clearing request can be 
traced by implementing the execution traces technique recommended by Vigna in [51]. 
The technique requests an executing host to create and sign the execution trace, and to 
store it so as to be forwarded to the initiator upon request. We recommend the execution 
trace to be limited to the line of code that requests the clearing of the memory of the 
executing hosts; otherwise the trace of all executable lines of the agent would be 
extremely long and require large amounts of resources of storage at the executing hosts. 
Moreover, it would lead to overburden the communication channels as traces are 
transmitted to the initiator upon request.  

Table 2   Terms computed at the predecessor host and are necessary for an adversary to 
perform a non-detectable data truncation/ alteration 

Security protocol Necessary terms 
Targeted state protocol None 
Append only container protocol Checksum Cn-1 

Multi-hops protocol Message authentication code µn-1 , hash 
chain γn-1

Publicly verifiable chained digital signature protocol Encapsulated execution results Mn-1  
 

Chained Digital Signature Protocol with Forward Privacy 
Protocol 

Encapsulated execution results Mn-1  
 

Chained MAC Protocol Hash chain Cn  computed at its predecessor 

Publicly Verifiable Chained Signature Protocol Encapsulated execution results Mn-1, and 
the private signature it received from its 
predecessor yn-1  

Configurable mobile agent data protection protocol Static part and a timestamp signed by 
initiator ∏0, chaining relation Cn-1

Mobile agent integrity protocol Hash chain of the nonce Cn-1 , and a 
Message Integrity Code MICn-1  
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5 The Proposed Protocol 

 In the previous section, we can notice that the existing protocols failed to hinder or 
detect at least one of the following security threats:  
 

 Breach of privacy 
 Erroneous authentication 
 Truncation of data 
 Irrelevant data gathering 

 
 The breach of privacy can be prohibited by encrypting the data with the public key 
of the recipient host, whereas, the erroneous authentication cannot be prohibited just by 
transmitting a digitally signed data. An adversary can decrypt the signed data with the 
respective public verification key and then signs the data with its private key. However, 
a host can prohibit the erroneous authentication flaw by transmitting the signed data 
encrypted with the public key of the recipient host. The irrelevant data gathering can 
be detected by incorporating initial verification terms within the gathered data. The 
verification terms identify the agent of concern. The initiator could then check the 
availability of the terms within the data returned to the agent. If the check fails, then the 
gathered data are irrelevant to the agent of concern. The truncation of data is the 
common flaw in the existing security protocols and is the most difficult to deter. In this 
paper, we propose a security protocol that aims to preserve authenticity, confidentiality, 
and strong integrity of the execution results of data gathering mobile agents. The main 
focus is to ensure the strong integrity of the results with the emphasis on robustness to 
data-truncation. 
 

In setting up the protocol, we assume free-roaming mobile agents, which are free to 
autonomously choose the next host in the agent’s itinerary. The choice would be based 
on the data acquired through their execution. Agents are assumed to migrate through 
public channels. Also, we assume that hosts execute the right code of an agent. Thus, an 
agent migrating from one host to another is simply represented by a message that only 
contains the execution results of the agent. The public encryption keys of the initiator 
and a preceding host in the agent’s itinerary, which a participating host would need for 
encrypting the data to transmit, can be found in the server’s known-hosts list or are 
distributed to the host upon the request of the key from the relevant host. We consider 
the Dolev-Yao model of intruder [55] and apply it to mobile agents.  A mobile agent 
migrates to every host in the agent’s itinerary where it gets executed and gathers the 
execution results. Finally the agent returns to the initiator where the execution results are 
decrypted, verified and sorted out for a decision making. The intruder may impose an 
attack on the data provided by one or more of the executing hosts. It would be able to 
intercept, read, delete, fake, append, insert, or replace any of the data gathered by mobile 
agents. The initial knowledge of an adversary includes channels names, identities of 
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participating hosts and their respective public keys and signature verification keys, a message 
it can intercept, and an old nonce.  
 
5.1 Notations specific to the protocol 
 
Figure 2 summarizes the notations that are used to describe the proposed protocol. 

A  Major agent 

As  Secondary agent
n Number of visited hosts 
j Order of the current host among the visited hosts 
i0  Identity of the initiator 
ij  Identity of an executing host, where 1 ≤  j  ≤ n 
r  Nonce freshly generated by the initiator that identifies a protocol run  
mj  Data requested by the major agent A and generated by host ij

m0 Dummy data generated by host i0 
δj Data integrity code at ij 
λj Offer provided at host ij 
λ Chain of jumbled offers (λj , λj-1 , … , λ1 , λ0) 
γj Hash chain of a nonce that indicates the number of the actually visited 

hosts 

Fig.2 Notations used in describing the protocol 

5.2 Formal description of the proposed protocol 

The proposed protocol requires the initiator to create two co-operating agents A and 
As. The agent A is a major agent that traverses the Internet and gathers particular data. At 
the first instance of the protocol run, the initiator i0 generates a fresh nonce r that 
identifies the run. Next, the initiator dispatches the agent A to host i1, and then the agent 
is free to autonomously choose the next host to visit at each migration step during its life 
cycle. Each visited host provides the agent A with the requested data. When the agent A 
completes its execution at last host in the agent’s itinerary, it returns to the initiator with 
the results of execution at the visited hosts. Upon the agent’s return, the agent A co-
operates with the secondary agent As, which resides at the initiating host and securely 
stores the initial verification data, and carries out a set of verifications on the execution 
results. The collective data from the two agents would be utilized in the detection of any 
malicious act performed on the execution results, and would be sufficient to identify any 
tampering with the results. The agent A can be represented as a sequence of messages 
communicated between the executing hosts, with the initiating host starting the sequence 
of messages by sending a preliminary message and finally receiving the summary 
message that summarizes the execution results at different executing servers. The 
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migration of the agent A from one host to anther is simply modeled by sending a data 
message. The protocol can be described as follows: 

 
γj = h(γj-1),            where  γ0 = r 
δj = h(mj , δj-1) ,    where δ0 = h(i0)  

λj = { {mj  ,  δ0 , ij+1  ,  γj }      }      , where  λ0 = {m0} 

ij    ij+1 : { λj , … , λ1 , … ,

K
+ 

K
+ -Si  j

 
5.3 Sequence of messages in the propose
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5.4 Origin of the proposed protocol 

The proposed protocol is derived from the Multi-hops protocol [14], which was 
described in section 4. The security of the Multi-hops protocol relies on : (a) a hash chain 
γn, (b) a message authentication code µn, (c) a static part ∏ that includes: program code, 
and static (initialization) data, (d) a chain of the execution results Mn in plain, and (e) a 
chain of encapsulated offers Pn. In the Multi-hops protocol, the message authentication 
code µn at host in incorporates: (a) the data mn that the host provides, (b) the identity of the 
succeeding host in+1, (c) the message authentication code computed at the preceding host 
µn-1, and (d) a chained hash of a nonce γn. A message authentication code µn is secured by 
applying a hash function to the relation. Subsequently, the hash of the message 
authentication code is digitally signed by host in so that the initiator would authenticate 
host in as the provider of the data. At initialization the γn is set to γ0 = h(r), where r is a 
random nonce chosen by the initiator i0. The chain of the execution results Mn at host in is 
the concatenation of the execution results mj at the visited hosts for (1 ≤ j ≤ n) and the 
corresponding hosts’ identities in.. The a ent’s transmission between host in and host in+1 is 
represented by the tuple (∏, Mn, Pn ,{γn} 

- 
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2. The chain of encapsulated offers Pn is replaced with a chain of publicly encrypted 
offers.  

3. In the Multi-hops protocol, the encrypted offer incorporates the execution results 
at the previously visited hosts. The proposed protocol instead incorporates the 
cipher that securely stores the identity of the genuine initiator. The offer a host 
provides incorporates: (a) the data a host provides, (b) the cipher that securely 
stores the identity of the genuine initiator, (c) the identity of the succeeding host, 
and (d) a hash chain.  

4. In the Multi-hops protocol, each executing host computes a hash of the offer it 
provides and then signs the computed hash with its private key, whereas each 
executing host in the proposed protocol signs the offer with its private key and 
then encrypts it with the public key of the initiator. 

5. The message authentication code µn, which is computed at the most recently 
visited host and incorporates the execution results at visited hosts, is replaced with 
a data integrity code. The data integrity code is computed as a hash of the data a 
host provides, and the data integrity code computed at the preceding host.   

6. In the Multi-hops protocol the most recently computed hash chain, which 
stands alone and is not within an offer, is encrypted with the public key 
of the succeeding host in the agent’s itinerary. In the proposed protocol, 
the accumulative execution results are encrypted with the public key of 
the succeeding host in the agent’s itinerary. 

7. In the Multi-hops protocol the agent’s transmission is represented by a message 
that incorporates: the static part; a chain of execution results; a chain of 
encapsulated offers; the most recent hash chain and encrypted with the public key 
of the succeeding host; the most recent hash chain. In the proposed protocol, the 
agent’s transmission is represented by an encrypted message that incorporates: the 
chain of the publicly encrypted offers; the most recent data integrity code; a 
cipher that securely stores the identity of the genuine initiator; the most recent 
hash chain. The message is encrypted with the public key of the succeeding host 
in the agent’s itinerary. 

5.5 Informal description of the proposed protocol 

 Initialization 

The initiator i0 completes the followings in the sequence given below: 

1. Creates two co-operating agents A and As. The agent A is a migrating agent, 
while the agent As is stationary at host i0. 

2. Picks a nonce r randomly and assigns it to γ0,  

3. Chooses the first host in the agent’s itinerary i1.  
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4. Generates a dummy data m0 and computes λ0 by encrypting m0 with its public 
key, so having λ0 = {m0}       .    

5. Computes δ0 as a hash of i0, and then signs it with its own private key. 
The term δ0 securely stores the identity of the genuine initiator, which would be 
used for the verifications at the arly execution of the agent at visited hosts.   

Ki 0
+
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4. The agent chooses the next host to visit. 
5. The agent computes the hash chain γj as a hash of the received hash chain γj-1 

that was computed at the proceeding host ij-1. The hash chain γj indicates the 
number of the actually visited hosts.   

6. The agent generates an offer that incorporates:  
 

 Data host ij provided mj to the agent  
 Initial data integrity code δ0  
 Identity of the succeeding host in the agent’s itinerary ij+1  
 Hash chain γj 

 
7. The offer is the tuple (mj, δ0 , ij+1, γj) signed by host ij, and then encrypted with 

the public key of the host that signed the initial data integrity code δ0 and its 
identity is deduced, so having the offer λj .  

8. The agent jumbles the collected offers { λ0 , … , λj } in such a way that the most 
recent offer is the first offer in the chain of offers, and the dummy offer is the 
last offer in the chain of offers, i.e. offers are arranged in a reverse order within 
the chain of offers. Hence, the chain would be stored as { λj , λj-1 , … , λ1 , λ0 }. 
The jumbling is intended to mislead an adversary trying to truncate the data 
collected at a preceding host.  

9. The agent A computes the data integrity code δj as a hash of the data mj host ij 
provided to the agent, and the received data integrity code δj-1 that was 
computed at the preceding host ij-1.  

10. The agent encloses the cumulative results in a tuple ( λj , … ,  λ0,  δj , { δ0}       ,  γj ) 
and encrypts it with the public key of the succeeding host in the agent’s itinerary.  

-1Si   0

11. The agent requests the current host ij to clear its memory from any data 
acquired as a result of executing the agent.  

12. The host dispatches the encrypted tuple to the succeeding host ij+1 in the agent’s 
itinerary.  

 

 Termination 
 
The agent returns to the initiator with the following message: 
 

{ λ′n , … , λ′j  , … , λ′0 ,  δ′n ,{ δ0}      ,  γ′n }  
Si 0 ′

 -1 

 
Upon the agent’s return, the initiator completes the follo
below. 
 

1. Decrypts the message using its own decryption key
2. Decrypts the offer λ′j (0 ≤ j ≤ n) using its own decry
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3. Deduces the identity of the signer of the offer λ′j, and then decrypts the offer 
using the signature verification key of the signer. The decrypted offer would be a 
tuple of the form of (m′j , δ′0 , i′j+1 , γ′j ). If the decryption succeeds, it then 
authenticates that the data mj is provided by host ij. Next, it constructs the set of 
data provided by the visited hosts { m′n , … , m′0 }.  

4. Checks that m′0 matches m0, which is securely stored with the secondary agent. 
5. Counts the number of elements in the set { m′n , … , m′0 }excluding m′0, which 

is supposed to be the dummy offer generated by the initiator, e.g. x. The 
count x is supposed to be equal to the actual number of visited hosts, though the 
count x might differ from the actual number of visited hosts due to the data-
truncation attack by adversaries. Next, it computes the hash chain γ′n based on 
the following equation: 

   

γ′n = h
x
(r) , where x is the count of the returned offers 

    r is the nonce stored within the secondary agent 
 

 The γ′n is computed by hashing r as many times as x. Next, it checks that the 
computed hash chain γ′n matches the returned γn. 

6. Computes a data integrity δ′n based on the following equations: 
 

δ′0 = h(i0)  
δ′n = h(m′n , δ′n-1) 
 

and using the set { m′n , … , m′0 }. Next, it checks that δ′n matches the returned 
data integrity code δn. If they do not match, then it implies that the data acquired 
at the visited host were truncated or was illegitimately inserted into the 
execution results of the agent.  

7. Assembles the actual agent’s itinerary from the received chain of offers {λ′n , 
… , λ′j , … , λ′1}, where each offer λ′j for (1 ≤ j ≤ n) indicates the identity of 
the executing host ij, and incorporates the identity of the succeeding host ij+1. 
Next, it verifies that the first host in the assembled agent’s itinerary matches 
the identity of the first host i1, which is stored within the secondary agent. 
Next, it checks that the partial agent’s itineraries are consistent.  

8. Verifies that the received offer λ′j for (1 ≤ j ≤ n) was generated for the genuine 
initiator i0 of the agent, by comparing the term δ′0, which is enclosed within the 
received offer with a hash of the identity of the initiator h(i0). 

9. Verifies that the received offer λ′j for (1 ≤ j ≤ n) was generated for the protocol run 
of concern, which is identified by the random nonce r. It computes the hash chain 
γ′j for each received offer λj for (1 ≤ j ≤ n), by hashing the nonce r that is stored 
within the secondary agent as many times as the order of the visited host within the 
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assembled agent’s itinerary, e.g. if the host is the second visited host then γ′j = h2(r). 
Next, it verifies that the computed chained hash γ′j matches the returned hash chain 
γj, which is enclosed within the respective offer λ′j for (1 ≤ j ≤ n).  

 
 If the whole set of verifications passes, then the data returned within the agent A are truly 
authenticated, intact, confidential and belong to the protocol run of concern. Adversaries 
were not able to truncate, delete, or alter any of the gathered offers. Also, adversaries 
were not able to illegitimately insert data into the gathered offers. The privacy of the 
gathered data could not be breached and the data could be accurately authenticated, since 
each visited host uses the public key of the verified genuine initiator to encrypt the offer 
it signs and provides to the agent. Hence, we can be certain that the execution results have 
not been tampered with and would be accepted with confidence. 

5.6 Sequence of processes of the proposed protocol 

 The sequence of processes at the initiator is depicted in figure 4, whereas the sequence 
of processes at an executing agent in the agent’s itinerary is depicted in Figure 5. 

5.7 The proposed protocol vs. the Multi-hops protocol 

The protocol is derived from the Multi-hops protocol [14] with some enhancements 
and amendments which are intended to hinder the type of flaws revealed in the existing 
protocols [14, 20, 22, 23, 28, 29] as follows: 

 
1. The offers λ0 , … , λn , which are provided by the visited hosts, are jumbled within 
the chain of offers λ to mislead an adversary trying to delete the recently gathered 
offer/s. Hence, deleting the last offer from the chain of the gathered offers does not mean 
that it deleted the most recently gathered offer (the offer acquired at the preceding host).  
Also, the chain of offers is initiated with a dummy offer λ0 that has to be positioned as 
the last offer in the chain of the gathered offers each time offers are jumbled, so having 
the chain of offers arranged in a reverse order as {λn , λn-1 , … , λ1 , λ0}. Hence, it would 
appear as if it is the offer provided by the most recently visited host. 
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The proposed protocol can detect the attack as follows: 
 

Upon the agent’s return, the initiator decrypts each of the gathered offers in the chain 
{λ′n , λ′n-1 , … , λ′1 , λ′0} using its private key. Next, it deduces the identity of the 
signer of the offer λ′j for (1 ≤ j ≤ n), and then decrypts the offer with the signature 
verification key of the respective signer. Next, it computes the data integrity code δ′n 
based on the identity of the genuine initiator of the agent i0, and then checks if the 
computed data integrity code δ′n matches the data integrity code returned with the 
agent δn. If the verification passes, it implies that the returned data were generated for 
the genuine initiator i0 and the data are intact. But, if the verification fails it implies 
that tampering with the gathered data took place.  

 
The Multi-hops protocol would not detect the attack, since the message authentication 
code is not based on the identity of the genuine initiator.  

 
6. In the multi-hops protocol the static part ∏ is coupled with the dynamic part of the 
agent to be able to verify that the returned data belong to the agent of concern. Though, 
the verification may not be accurate, e.g. the returned data might be generated for a 
different initiator. In our protocol we omitted the coupling of the static code ∏ with the 
dynamic code and made use of the co-operating agent As, which securely stores: (a) the 
random nonce r that uniquely identifies the agent and the protocol run, (b) the first 
scheduled host i1 in the agent’s itinerary, and (c) the dummy data generated by the 
initiator m0. Upon the agent’s return, the terms would be called from the secondary agent 
to verify accurately that the returned data belong to the agent of concern and to the 
particular protocol run.  

 
7. The chain Mn is omitted so as to ensure the confidentiality of the transmitted offers. 
In the Multi-hops protocol, the chain consists of the data that each visited host provides 
and the identity of the respective host in plain text. The transmission of plain text 
violates the confidentiality of data. The proposed protocol incorporates the data that the 
host provides mn in the encrypted offer λn.  

 
8. The data integrity code δ0 is enclosed within the offer λj for (1 ≤ j ≤ n) to indicate the 
identity of the initiator for which the offer is generated. If the data integrity code δ′0 that 
is enclosed within the received offer λ′j for (1 ≤ j ≤ n) does not match h(i0), then it 
implies that an adversary has impersonated the genuine initiator.  
 
9. In order to prevent the data-truncation and data-alteration attack, we propose the agent 
to be programmed in such a way that it instructs each visited host ik to clear its memory 
from any data acquired as a result of executing the agent before the host  dispatches the 
agent to the next host in the agent’s itinerary. In the data truncation and data alteration 
attacks, host ik would co-operate with host ij to delete the offers mx for (k < x < j ) and 
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replace its previously provided offer λk with a new offer λ′k. When host ij receives the 
agent, it sends the agent back to host ik, which has already stored the agent’s state that was 
present when the agent firstly visited it. Host ik would then replace the current agent’s state 
with the state that was present when the agent firstly visited it and append an offer λ′k to 
the agent’s state. 

5.8 Security scheme of the proposed protocol 

Our attempt to accomplish the security properties is described below: 
 
• Data-authenticity: the data that each host provides is signed digitally with the private 
key of the host. Hence, a host cannot forge the data it signed with its private key. 
However, a signed message does not truly indicate the genuine signer. An adversary 
might intercept a signed message, and can then strip off the signature from the signed 
message. Next, the adversary signs the message with its private key. Hence, the recipient 
of the signed message is deceived on the identity of the genuine signer. In order to 
ensure accurate authenticity in mobile agents, the digital signing of the data that a host 
provides should be followed by the encryption of the signed message with the public key 
of the initiator i0. An adversary might be able to intercept the transmitted data, however 
it would not able to decrypt the data, or impersonate the genuine sender, since the data is 
encrypted and the needed decryption key is private to the initiator i0. Consequently, the 
proposed encryption scheme ensures accurate authentication. 
 
• Data-confidentiality: the data that hosts provide are encrypted with the initiator’s 
public key    . Hence, an adversary would not be able to decrypt the data since it needs 
the decryption key        which is private to the initiator i0. 

Ki   0
+ 

Ki   0
− 

 
• Data-integrity: the property is the commonly breached property and the most difficult 
to accomplish. It requires a very careful and thorough analysis, especially the capabilities 
of the adversary who would intrude the data that mobile agents acquire in different ways, 
as follows: 
 

1. Delete the data acquired at the visited hosts in the agent’s itinerary. 
2. Illegitimately insert or append data to the agent’s execution results. 
3. Truncate the acquired data. 
4. Replace the agent’s dynamic data with data of a similar agent or a different 

protocol run. 
 
 We set the protocol to include specific terms and to use certain encryption keys, 
which would ensure the robustness of the protocol to the four kinds of malicious acts of 
adversaries. The terms and encryption keys that the protocol implements are described 
below: 
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 Data integrity code δj: It is used to verify if any of the data acquired at visited 
hosts was deleted. The data integrity code δj at a host ij  for (1 ≤ j ≤ n) is a hash 
of the data the host provides mj and the data integrity code that was computed at 
the preceding host δj-1 , as described below: 

 
δj = h(mj , δj-1) 

 
The initial parameter δ0 is set to h(i0). 

 
 Encryption key of the succeeding host in the agent’s itinerary       : Following to 

the execution of the agent at host ij, the agent encrypts the execution results with 
the public key of the succeeding host ij+1 in the agent’s itinerary. Next, the host 
dispatches the agent to host ij+1. An intruder might intercept the communication 
between host ij and host ij+1, and then would acquire the encrypted execution 
results of the agent. However, it would not be able to learn the plain execution 
results. It has to have the decryption keys of the initiator     and of scheduled 
succeeding host    , which are private to the hosts i0 and ij+1 respectively. 
Moreover, the intruder would not be able to append any valid offer to the chain 
of offers. It has to have the terms: δ0, δj, and γj that are necessary to compute a 
valid offer, though the terms are encrypted with the public key of host ij+1. Thus, 
the encryption scheme reduces the chances of an intruder to tamper with the 
execution results and prevents the illegitimate insertion/ appending of offers to 
the chain of offers. 

K

 

i j+1
+ 

i 0
 

Ki j+1
+ 

 Offer λj : The data that host ij provides is firstly signed with its private key  
and then it is encrypted with the public key of the initiator        . Thus, the
contained within the offer is confidential and would be correctly authenticat

K

 

i  
+ 
0

 Terms δj , {δ0}    , γj : When host ij+1 receives the agent from host ij it deduc
identity of the signer from the term {δ0}        , and then decrypts the term  wi
signature verification key of the signer. Next, it computes a hash of the ded
identity, and then checks that the computed hash matches the decrypted te
the check passes, then it uses the deduced identity to encrypt the offer to the
ij+1 provides to the agent. The terms δj and γj are necessary to compute the
integrity code δj+1, and the hash chain hash γj+1 respective to the current host

 

-Si 0  Si 0

 Chain of offers {λn , λn-1 , … , λ1 , λ0}: The offers that are provided by the v
hosts ij for (1 ≤ j ≤ n) are jumbled to deceive any adversary trying to trunca
data acquired at the preceding host. They are arranged in a reverse 
Assume the offers are jumbled such as λ′4, λ′3, λ′2, λ′1, λ′0 and the adve
deleted the last two offers, so the chain of offers reduces to λ4, λ3, λ2. Upo
agent’s return, the initiator decrypts each encrypted offer, and then learn
data m′2, m′3, and m′4 , which were provided by the hosts i2 , i3, and i4. N
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computes the data integrity code δ′n using m′2, m′3, m′4 and using the following 
equations 

 
δ′0 = h(i0)  

δ′n = h(m′n , δ′n-1)   , where (2 ≤  n ≤ 4)  
 

It then checks that the computed data integrity code δ′n matches the data 
integrity code enclosed within the agent δn. The verification would show that the 
two data integrity codes do not match. Hence, it implies that an adversary has 
truncated offer/s from the chain of offers.  

 
 Offer λj : the offer of host ij incorporates the tuple (mj, δ0, ij+1 , γj), where mj is the 

data provided by host ij. The data integrity code δ0 is enclosed within the offer λj 
for (1 ≤ j ≤ n) to indicate the identity of the initiator for which the offer is 
generated. If the data integrity code δ0 that is enclosed within the received offer 
λj for (1 ≤ j ≤ n) does not match h(i0), then it implies that the returned data were 
not generated for the genuine initiator. The identity of the successor host ij+1 is 
included to record the agent’s partial itinerary. The chained hash γj is included to 
indicate the actual number of visited hosts. The parameter γj is initially set to a 
random nonce r. The random nonce r is expected to be hashed as many times as 
the number of visited hosts.  

 
 The data integrity code δj is only encrypted with the public key of the succeeding 

host ij+1. So adversaries would not be able to learn the terms: δ0, δj, and γj that are 
necessary to compute a valid offer. Only the intended succeeding host ij+1 would 
be able to compute a valid offer. 

 
Table 3 summarizes the security scheme of the proposed protocol with respect to the 

aimed for security properties, and in the view of the threats of adversaries and the flaws 
revealed in the existing security protocols. 

 
Table 3  The security scheme of the proposed protocol 

Security 
properties 

Adversaries’ attempts to  
violate security 

Security scheme Threat 
status 

Confidentiality 
 

 
 

 

Breach the privacy of the 
collected offers 
 
 
 
 
 

A host signs its offer digitally, 
and then encrypts it with the 
encryption key of the initiator. 
Next, it encrypts the agent’s 
execution results with the public 
encryption key of the succeeding 
host in the agent’s itinerary. 

prevented 
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Table 3  The security scheme of the proposed protocol 

Security 
properties 

Adversaries’ attempts to  
violate security 

Security scheme Threat 
status 

Confidentiality 
 

 
 

 

 

 

Impersonate the genuine 
initiator 1

At the early execution of the 
agent at a visited host, the host 
deduces the identity of the 
signer of (δ0)   and then it 
decrypts the term using the 
decryption verification key of 
the signer. Next, it computes a 
hash of the deduced identity 
and then it verifies that the 
computed hash is the same as 
decrypted term, otherwise the 
agent execution terminates. 
 

Detected 

Authenticity Impersonate the genuine 
provider of an offer 1

The offer λj is digitally signed 
with the private key of host ij, 
and then encrypted with the 
public key of the initiator. 
Hence, an adversary would not 
be able to read the offer or send 
the offer under its private key. 
 

Prevented 

 Append arbitrary or fake 
offer 1

A host should sign the offer it 
provides with its private key. 
Hence, an adversary would not 
append an arbitrary offer for 
which it is held responsible and 
can not repudiate it. 
 

Prevented 

Integrity Replace the collected data 
with data of a similar 
protocol run 

Upon the agent’s return, the initiator 
should do the followings in 
sequence: 
− Computes a count (λ) and 

assigns it to a variable x.  
− Computes a hash of the random 

nonce r stored within the 
secondary agent, i.e. h

w
(r), 

where w = x -1. 
− Checks that the computed hash 

chain matches the hash chain γ′n 
returned with the agent. 

The check would fail if the 
attack took place. Hence, the 
protocol detects the attack. 

Detected 

Si  0
 -1 
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Table 3  The security scheme of the proposed protocol 

Security 
properties 

Adversaries’ attempts to  
violate security 

Security scheme Threat 
status 

The terms r, m0, and i1 returned 
within the agent A are verified with 
the corresponding terms stored 
within the secondary agent As. The 
verification would fail if the attack 
took place. 
 

Detected 
 
 
 
 
 
 

Integrity 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Replace the collected data 
with data of a similar 
agent 
 
 
 
 
Truncate data: 
 
- Try to delete the offer of 
the preceding host 
 
 
 
 
- Delete the dummy offer λ0
 
 
 
 
 
 
 
 
- Delete the offer λ1
 
 
 
 
 
Delete the offers λ1 and  λ0
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Collected offers are jumbled so the 
dummy offer is arranged at the end 
of the collected offers to conceive an 
adversary trying to delete the offer 
of the preceding host 
 
Upon the agent’s return, the initiator 
calls the dummy data m0 which is 
securely stored within the secondary 
agent. Next, it checks the availability 
of the same data within the data 
returned with the agent. The 
unavailability of the data implies 
that the attack took place. 
 
Upon the agent’s return, the initiator 
checks that the first host in the 
assembled agent’s itinerary is host i1. 
If the check fails, it implies that 
the attack took place. 
 
Upon the agent’s return, the initiator 
does the followings: 
− Calls the dummy data m0 which is 

securely stored within the 
secondary agent. Next, it checks 
the availability of the same data 
within the data returned with the 
agent. The unavailability of the 
data implies that the attack took 
place. 

− Checks that the first host in the 
assembled agent’s itinerary is host 
i1. If the checks fail, it implies 
that the attack took place 

 
 
Not 
possibly 
accurate 
 
 
 
Detected 
 
 
 
 
 
 
 
 
Detected 
 
 
 
 
 
Detected 
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Table 3  The security scheme of the proposed protocol 

Security 
properties 

Adversaries’ attempts to  
violate security 

Security scheme Threat 
status 

Integrity 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Delete the offer λ2
 
 
 
 
 
 
 
 
 
Delete the offer λK
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Upon the agent’s return, the initiator 
decrypts the offer λ1 and learns the 
identity of the succeeding host to 
host i1 as given in the offer. Next, 
it checks that the succeeding host 
exists in the assembled agent’s 
itinerary. If the check fails, it 
implies that the attack took 
place. 
 
Upon the agent’s return, the initiator 
should do the followings in 
sequence: 
 
- Computes a hash of the random 
nonce r stored within the 
secondary agent, i.e. h

w
(r), where 

w = x -1. Next, it checks that the 
computed hash matches the hash 
chain γ′n returned with the agent. 
The check would fail and it 
implies the attack took place. 
 
- Deduces the partial agent’s 
itineraries, where each signed 
offer λj includes the identity of 
the succeeding host. Next, it 
Checks that the partial agent’s 
itineraries are consistent. The 
assembled agent’s itinerary would 
indicate a missing connection and it 
implies that the attack took place. 
 
- Checks that the computed data 
integrity code matches the returned 
data integrity code. The data 
integrity code is a hash chain of 
the data acquired at the visited 
host. The check would fail and it 
implies that the attack took place. 
 
 
 

Detected 
 
 
 
 
 
 
 
 
 
Detected 
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Table 3  The security scheme of the proposed protocol 

Security 
properties 

Adversaries’ attempts to  
violate security 

Security scheme Threat 
status 
Prevented/ 
Detected 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Prevented 
 
 
 
 
 
 
 
 
 

Integrity 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Upon the second visit of 
the agent to the host ik, it 
replaces its previous offer 

λk with a new offer λ′k so 
as to substitute m′k for mk
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Illegitimately insert or 
append offer/s 2  

Terms that are necessary to  
replace a previous offer with a 
new valid offer, are assumed to 
be cleared from the memory of 
the host during the first visit of 
the agent to the host and just 
before the host dispatches the 
agent to the succeeding host. 
Hence, the attack is not possible. 
However, a malicious host may 
not clear its memory from the 
terms then the next check would 
detect the attack if it took place. 
 
Checks that the computed data 
integrity code matches the returned 
data integrity code. The data 
integrity code is a hash chain of 
the data acquired at the visited 
host. The check would fail and it 
implies that the attack took place. 
 
 
The intruder needs to learn the 
terms that are necessary to 
compute a new offer. But, the 
terms are encrypted with the 
public key of scheduled 
succeeding host in the agent’s 
itinerary. Hence, the intruder 
would not be able to insert or 
append offer/s. 
 

 
1 The act of a malicious participating host 
2 The act of an intruder 

6 Related Formal Verification Methods 

 Formal methods have played an important role in specifying, modeling, verifying 
and revealing unforeseen flaws in the existing security protocols. They have the 
following capabilities [26]: 
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 Characterize the system specifications precisely.  
 Define accurately the desired security properties.  
 Set clearly the interaction between the system and its environment.  
 Identify security flaw/s in protocols if any exists.  
 Provide systematic and exhaustive analysis of protocols.  
 Provide a proof of security, if a system meets the desired properties. 
 Provide verification tools at design stages as well as analysis stages. Applying 

formal methods at the design stage would save the expense of redesign of an 
existing flawed protocol. 

 
The existing formal methods can be classified into five categories [26] as follows: 

 
- Methods based on modal logic 
- Methods based on finite-state exploration 
- Methods based on theorem proving 
- Methods based on modal algebra 
-  Methods based on infinite-state exploration 
 

- Methods based on modal logic require translating a protocol into a set of logic 
statements about the initial beliefs or knowledge in a distributed system. The verification 
of a protocol is a deductive reasoning process, where inference rules are used to derive 
new beliefs from the initial beliefs and/ or new knowledge from the initial knowledge. If 
the derived beliefs are equivalent to the required beliefs, then the protocol is considered 
correct by proofs. The disadvantages of modal logic are: (a) the verification is usually 
done manually, and (b) the verification is error-prone and non-systematic. The best 
known and most influential logic is BAN logic [11] (logic of authentication). BAN logic 
does not attempt to model either trust or knowledge. Therefore, BAN logic can not be 
used to prove results about secrecy. It can only be used to reason about authentication. 
BAN logic found flaws in the Needham-Schroeder public key and the Kerberos 
protocols.  
 
- Methods based on finite-state exploration model the honest hosts that participate in a 
protocol and an intruder as communicating processes and analyze the system under the 
Dolev-Yao intruder model [55]. The intruder may store, hide, replace, or replay messages 
transmitted over the Internet. Moreover, the intruder can generate new messages by 
decrypting, encrypting, faking intercepted messages. They model a certain protocol as a 
finite-state system and verify by exhaustive search that all reachable states satisfy some 
properties. Properties are stated in some logic (usually temporal logic). The advantages of 
the finite-state exploration methods are: (i) Properties can be verified automatically. (ii) 
Little user intervention is required. (iii) If the protocol fails, it is able to generate the 
sequence of events that invalidates the protocol. On the other hand, the disadvantages are: 
(i) It is usually applied to systems of finite number of states, hence, if no attack is found 
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there still may be an attack on the real system with large number of states. (ii) The 
method becomes intractable for large state systems due to state explosion problem. In 
order to keep the model finite, it is necessary to place a bound on the number of protocol 
runs and a bound on the number of messages the intruder can generate. The Methods 
include: Interrogator [32], NRL protocol Analyzer [31], CSP model checker FDR [24, 
25], SPIN model checker [27], Murϕ [35]. The NRL has been used to find several 
previously undiscovered security flaws in cryptographic protocols. 
 
- Methods based on theorem proving use logical notations to model a protocol and 
specify its properties, and use logic theories to verify if the protocol satisfies the 
properties. The advantage of the method is that it can be used to verify real protocols 
with large number of states. Whereas, the disadvantage is that it requires expert 
guidance. The Induction method [38] uses the Isabelle Theorem Prover to verify the TLS 
Internet protocol and the Kerberos protocol.  
 
- Methods based on modal algebra use algebra to express a protocol as a set of concurrent 
communicating processes. The protocol is modeled as a set of hosts which send messages 
to each other and an environment modeling malicious hosts or intruders who can perform 
any sort of attack. Security properties can be expressed via the notion of equivalence (e.g. 
may-testing) between two parallel processes. The disadvantage of modal algebra is that 
equivalences suffer from universal quantification over attackers, which makes equivalence 
checking between processes very hard as having infinitely many such processes. Modal 
algebra methods include: π-Calculus [1], applied-π Calculus [2], Spi-Calculus [3], 
Distributed-π calculus [44], seal calculus [52], and Crypto-loc Calculus [5].  
 
- Methods based on infinite-state exploration are based on a variety of symbolic 
techniques [8]. The intruder is not modeled explicitly and it makes no assumptions on 
the type and number of messages it can generate. These methods are promising in two 
aspects: (i) They can accomplish a complete exploration of the state space based on 
symbolic runs of processes. (ii) They do not suffer from any state explosion problem that 
is usually induced by the exchange of messages, since every input action gives rise 
exactly to one symbolic transition and properties are formalized as correspondence 
assertions, where each execution of an action must be preceded by the execution of a 
corresponding action [6, 7], thus improving the run time and the accuracy of verification. 
The STA [46] is an infinite-state exploration method based on symbolic execution.  
 
 The formal methods have been successfully employed in the verification of the 
security properties of the classical message-based protocols, such as authentication 
protocols, though the specification and verification of the security of mobile agent 
paradigms deal with new aspects: locations and mobility on the top of cryptography. 
There have been good advances in expressing mobility using process algebra [3, 6, 19, 
33, 43, 52]. Some experiments used existing formal methods to verify data protection 
protocols of mobile agents. The data integrity properties of mobile agents are verified 

 47



 

using CSP-based tools Casper [25] and FDR [18] in [20], and a model checker that is 
based on symbolic data representation and uses Spi-calculus in [28]. In this paper, we 
utilize the STA formal method to analyze the security properties of the proposed 
protocol. The STA describes a protocol using process algebra, and specifies and verifies 
the system using symbolic techniques, which explore the whole state space. 

7 STA Automatic Verifier 

 The STA (Symbolic Trace Analyzer) [7, 45, 46] is a tool for the analysis of security 
protocols. It is a recent approach that takes advantage of concepts derived from process 
calculi.  It is based on symbolic trace analysis that performs a complete exploration of 
the whole infinite-state model. It detects the flaws in Needham-Schroeder, Yahalom, 
Otway-Rees, and Kerberos protocols [6, 46].  
 
 We use the STA formal method in the analysis of the proposed protocol as it is 
characterized by the followings: 
 

 It does not suffer from state explosion problem [9, 16]. A protocol in STA is 
modeled as a set of processes and properties are verified by considering the 
computation traces of processes. Generally, the set of computation traces are 
infinite. STA implements symbolic techniques that reduce infinite transition 
to a single symbolic relation, where every input action should be preceded 
by a corresponding output action. STA can analyze the whole infinite state 
space generated by a finite set of participants. According to the authors in [8, 9, 
16] the symbolic analysis is sound and complete. Detecting an attack on the 
symbolic model would imply that an attack exists in the infinite standard model 
and detecting no attack on the symbolic model would imply that the security 
property is satisfied. The verification on a finite set can be using symbolic 
techniques in two stages. The first is the symbolic reduction of processes where 
inputs are evaluated formally. The symbolic runs of a process are finite. The 
second is the symbolic procedure that uses the knowledge of the environment to 
construct symbolic models of processes comprising the symbolic runs. The 
symbolic models do not yield the state-explosion problem induced by message 
exchange, since every input action gives rise exactly to one symbolic transition 
and properties are formalized as correspondence assertions, where every 
execution of action α must be preceded by some execution of action β for a 
given α and β [6, 7]. Conversely, the finite state exploration methods analyze 
execution traces of systems by searching for an insecure state starting from an 
initial state and assume that the Internet is under the control of adversaries. The 
search might be infinite due to the unpredictable behavior of adversaries. An 
adversary might generate arbitrary number of new messages, and replay, replace, 
or delete an intercepted message. According to the authors in [26] the state space 
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of a system might increase exponentially as the size of the system grows 
linearly. Therefore, methods require that systems have a finite number of states 
by imposing the following restrictions on the model to analyze [7, 9, 16, 26]: 

 
− Finite set of participants 
− Finite set of messages a participant in a protocol would receive 
− Finite set of states a participant may enter 
− Finite set of steps a participant may perform in the protocol 
− Finite number of messages the attacker can generate and send to 

participants in the protocol  
 

 If any of the restrictions is not imposed, infinite transitions would be 
generated. The problems with the finite model are as follows [7, 16]: 
 

− The restrictions are not always precise.  
− If no attack is detected on a small system there might be an attack on a 

larger system. 
− Establishing proper restrictions would require familiarity of how the 

protocol works. 
− Attackers may send messages of any size by manipulating messages 

available in the environment. Hence, analyzing systems of finite set of 
participants might sometimes result in a search of infinite traces.   

 
 It does not require expert guidance: Modeling and verifying the system is 

simple and straight forward, whereas the theorem proving methods are time 
consuming and require a lot of expertise [4, 15]. In STA, modeling the system 
requires familiarity with process algebras. The system configuration is the 
parallel composition of the roles of participating hosts and the initial knowledge 
of an intruder, such as an intercepted message, public keys of participating hosts, 
etc. The security properties are expressed in terms of correspondence assertions. 
In theorem proving, modeling the system and specifying properties require 
acquaintance with logic theories. Protocols are modeled as a set of all possible 
traces encoded in logic and properties are verified by induction on the traces. 
The verification can be long and require human guidance to develop lemmas and 
theorems as needed [4]. 

 
 It does not need to model the intruder explicitly: The intruder is represented by 

the environment’s initial knowledge, e.g. an intercepted message, and the public 
keys, the signature verification keys, and the identities of the participating hosts, 
whereas the model checking methods assume that the intruder is a participant in 
the system, and capable of initiating communication with a participating host. It 
requires modeling the intruder explicitly [6, 7, 35]. Modeling the intruder is 
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often relatively complicated and time consuming, due to the unlimited 
capabilities and unpredictable behavior of the intruder. 

 
 The verification is automatic: Automatic verification saves time as compared to 

methods which require hand-written proofs, such as the methods based on modal 
logic or modal algebra. Modal algebra methods require checking equivalence of 
processes. The checking of two processes that they are indistinguishable for any 
tester process is difficult, especially processes are infinite and proofs are hand-
written [15]. 

 
 STA is a simple and an efficient tool for the analysis of security protocols. The 
analysis of Needham-shroeder and Kerberos protocols with STA in [46] and with Murϕ 
in [35] shows the advantages of using symbolic methods over finite-state exploration 
methods. 
 
 The STA is an ML [34] based tool, where, ML is basically a functional polymorphic 
programming language that allows parallel processing and is employed to develop 
verification tools [36, 39, 48]. The theory underlying the STA is explained in full details 
in [9]. The STA tool requires the Moscow ML [37], a compiler for the standard ML.  
 
 According to Boreale and Buscemi in [7], a protocol in STA is modeled as a system 
of concurrent processes and a state of the system is modeled as a pair 〈s, P〉 called 
configuration. The s is a trace of past I/O actions that results from interaction between a 
process and its environment, and represents the current intruder’s knowledge. The P is a 
Spi-calculus term that describes the intended behavior of honest participants. The syntax 
of the STA is analogous to the syntax of Spi-calculus [3] with slight differences and is 
shown in Table 4. The syntax of STA is as follows: a!M is an output action. a?x is an 
input action, where a is a reference to I/O action. M is a message. x is a variable. stop is a 
terminated process. >> is a sequence of actions. P1 || P2 is a parallel composition. K 
new_in is a fresh name K. (M)^+K is a asymmetric encryption of M with the public key 
K (-K is private). (M)^+sigK is a digital signing of M with the private key +sigK (-sigK 
is public). (M1, M2) is a pairing. (M is N) is an equality test. In the STA, cryptographic 
functions are modeled as process operators.   
 
 Transitions between the configurations represent interactions between s and P, and 
take the form of  <s, P> → <s′, P′>. The STA analyzes the execution traces of the 
system to detect possible faults of security properties of the protocol. However, 
searching all execution traces for an insecure state starting from an initial configuration 
may result in search of infinite transitions. The STA introduces a transition relation →s 
that condenses infinite transitions to a single symbolic transition, where each input 
action should be preceded by a corresponding action. 
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Table 4.   Syntax of the STA 

A! M Output action 
A? x Input action 
Stop Terminated process 
>> Sequence of actions 
P1 || P2 Parallel composition of the processes P1 and P2 
+K Public encryption key 
+SigK Digital signing key 
(M is N) Equality test of the terms M and N 
(M1, M2)  Pairing of the terms M1 and M2 
hsh(M) Hash of the term M 
M pkdecr(-K, x) Decryption of the variable x with the public key –K to get 

the plain message M (asymmetric decryption) 
M pkdecr(-SigK, x) Decryption of the variable x with the signature verification 

key –SigK to get the plain message  M 
(asymmetric decryption) 

 
Security properties are expressed in terms of the traces the protocol generates. In 

particular, properties are formularized as correspondence assertions, that is given a 
configuration 〈s, P〉 and a trace s′, then (α       β) means that every instance of β must be 
preceded by the corresponding instance of α. Authentication property is expressed in 
terms of a trace of the kind that any message that is accepted by B at the final step 
should actually originate from A. Secrecy is expressed by using the “absurd” action ⊥ in 
the formula:  ⊥      α which means an action α should never take place. The secrecy of the 
protocol P is such that it does not reveal the sensitive data d in the presence of a guardian g 
that can at any time pick up one message x from the network. The relation: P || g(x).0 and 
the deduction relation |=  can be used to express how the environment can generate new 
messages starting from an initial set of messages. Thus, the secrecy property can be 
expressed as  : 〈ε, P || g (x).0〉 |=  ⊥        g〈d〉, where ε is the empty trace. Upon the 
verification, if no attack against the security property exists then the tool reports “No 
attack was found”. Otherwise, it reports the attack in the form of an execution trace that 
violates the specified property.  
  
 In the STA, the protocol can be specified using four kinds of declarations [45]: 
identifiers declarations, processes declarations, configurations declarations, and 
properties declarations. Table 5 summarizes the STA declarations. The declarations of 
the four kinds are described below.  
 
- Identifiers are names, variables, and labels. A name can be an encryption key, a host 
identity, or the data generated at a host. A variable is a received term, which might differ 
from the original transmitted term. Suppose a host A transmits a name, then host B might 
receive it altered by the malicious acts of adversaries. Thus, it is considered received as a 
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variable. A label is a reference for I/O action. The declaration of identifiers should 
conform to the following rules: (i) Names must begin with a capital letter. (ii) Variables 
must begin with one of the letters u, x, y, w or z. (iii) Labels take any of the remaining 
letters. The declarations of identifiers can be as follows [45]:  
 

 DecName $ K1, K2, … , Km $;  
 DecVar $ x1, x2, … , xr $; 
 DecLabel $ a1, a2, … , an $;  
 

- Process is the sequence of I/O actions at a host. The declaration of a participating host 
named Pr can be as follows: 
 

val Pr = P;   
 
The P is the sequence of I/O actions at the host Pr. 
 
- Configuration is the pair 〈s, P〉, where s is the initial environment’s knowledge and P is a 
description of processes at honest participants. The declaration is as follows: 
 
  val Conf = (L @ Pr); 
 
The L is the initial environment’s knowledge representing the adversary’s knowledge, and 
the Pr is a process or the parallel composition of processes that are previously declared. 
 
- Property is a trace that the protocol generates. In particular, any action should be 
preceded by a single action. The declaration is as follows: 
 
 val Prop = (A ← B); 
 
The Prop is a property name such as Auth, and A and B are I/O actions. 
 
Suppose host A sends a name X through an output action a2!X1 and host B receives it as 
a variable wX1 through an input action b1?wX1, then host B would not authenticate host 
A as the provider of the variable wX1 unless the input action was preceded by the name 
X1 sent out through the output action a2!. The declaration would be as follows: 
 
 val Auth = (a2!X1 ← b1?wX1); 
 
 
The protocol to analyze should be modeled and specified using the four kinds of STA 
declarations, then the STA script should be saved as *.sml file. Next, the file should be 
compiled with STA, and then the properties should be verified. The command used to 
analyze a security property is as follows: 
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CHECK Conf  Prop 
 
 The Conf is the configuration of the system, and Prop is the property to check. The 
configuration and security properties should be declared in the STA script. The STA 
carries out trace analysis on the symbolic traces and verifies the correspondence 
assertions. 
 

Table 5.  STA declarations  

Identifiers 
Named 
Variables 
Labels 

 
DecName $ K1, K2, … , Km $;  
DecVar $ x1, x2, … , xr $; 
DecLabel $ a1, a2, … , an $;  

Processes val Pr = P; 
Configuration val Conf = (L @ Pr); 
Properties val Prop = (A ← B); 

8 Modeling the Protocol and Specifying Properties Formally 

8.1  Modeling the system 
Modeling a security protocol [7, 9, 16] in a finite-state model checker requires 

approximation of the actual model to make the analysis finite. It is necessary to reduce 
the model by the establishment of two bounds: (a) a bound on the number of protocol 
runs, and (b) a bound on the number of possible messages the attacker can generate 
and send to trusted hosts participating in the protocol [9, 16]. Conversely, symbolic 
methods can analyze the whole infinite state space generated by a limited number of 
participants based on symbolic techniques. It discards the bound (b), since modeling 
the adversary is not required and it is sufficient to specify the environment’s initial 
knowledge [9, 16].  

 
The verification is carried out for an instance of the protocol. There are factors that 

have to be considered when choosing a size of the instance to be verified. They are: (i) 
The execution slows down as the number of participants and consequently the possible 
number of data values increases [7]. Therefore, the instance to analyze has to have a 
limited number of participants. (ii) The instance should be susceptible to the various 
malicious acts of intruders, especially the colluding attacks. For example, considering 
a model of an initiator and two executing hosts would not analyze the system for the 
colluding attacks. The smallest reasonable instance size would be four hosts including 
the initiator, which would allow the analysis of the colluding attacks. The second and 
the fourth hosts can be malicious hosts trying to truncate the data gathered at the 
intermediary host (the third host in the agent’s itinerary). Also, any of the visited hosts 
might be malicious and try to attack the data that the agent has already gathered. The 
instance we considered is of three executing hosts A, B, and C and the initiator I.  
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Hosts A and C might be un-trusted hosts that co-operate with each other to amend the 
data they already provided, delete the data acquired at the intermediate hosts, spy out 
the gathered data, or insert arbitrary data to the gathered data. Also, hosts A, B, or C 
can be malicious hosts attempting individually to truncate the trailing data, append 
arbitrary data, impersonate the genuine initiator or spy out some confidential data. The 
selection of a model of four hosts would improve efficiency in terms of execution 
time, memory occupation, and execution traces. We would say that the selection of a 
model of four nodes is reasonable. The system would be susceptible to colluding 
attacks as well as individual attacks of adversaries. 

 
The model we considered is depicted in Figure 6. The agent is initialized by the initiator 

I, then it migrates to hosts A, B, and C in order to gather some data, and finally it returns to 
the initiator I. 
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I, A, B, C  Identities of the initiator, and the three honest 
hosts that participate in the protocol respectively 

R  Fresh nonce that the initiator chooses randomly 
and would uniquely identify the protocol run 

Rold  Old nonce 
M0  Dummy data that the initiator generates 
M1, M2, M3  Data that the initiator gathers from hosts A, B, and 

C respectively 
+sigI, +sigA, +sigB, +sigC  Digital signature of hosts: I, A, B, and C 

respectively 
+KI, +KA, +KB, +KC  Public key of hosts: I, A, B, and C respectively 
-sigI, -sigA, -sigB, -sigC  Signature verification keys of hosts I, A, B, and C 

respectively 
i1, i2, i3  (I/O) actions at hosts I 
a1, a2 (I/O) actions at host A 
b1, b2 (I/O) actions at host B 
c1, c2 (I/O) actions at host C 
Accept!  Output action that outputs the gathered data that 

pass all the necessary security verifications 
guard?  Input action ‘guardian’ that can detect if the 

environment learns some piece of confidential 
data  

disclose! Output action that leaks some sensible data to the 
environment 

Fig. 7 Notations used in the STA script of the proposed protocol 
 
The declarations of labels, names, and variables used in the STA script of the proposed 

protocol are as follows: 
 
DeclLabel $  a1, a2, b1, b2, c1, c2, i1, i2, i3, disclose, guard, Accept $; 
DeclName $  Rold, R, SigI, SigA, SigB, SigC, I, A, B, C, M0, M1, M2, M3,  
 KI, KA, KB, KC  $ ; 
DeclVar $   xM0, yM0, yM1, zM2, zM1, zM0, wM3, wM2, wM1, wM0, 
 x, y, w, z, x1, x2, x3, x4, x4', x5, u, x1, x2, x3, x4, x4', x5, 
 y1, y2, y3, y4, y5, y6, y5',  
 w1, w2, w3, w4, w5, w6, w7, w1', w2', w3', w4', w6', w7', 
      xIC, yIC, zIC, wIC, yDIC, zDIC, wDIC, 
 xR, yR, zR, wR0, wR1, wR2, wR3, y,  
 xIS, xID, yIS, yID, zIS, zID, wID, wIS $; 
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The declaration of the I/O actions at the initiating host I is as follows: 
 
val iI = M0 new_in R new_in 
            i1!((M0)^+KI, hsh (I), (hsh (I))^+SigI, R)^+KA >> 
            i2?(((wM3, wID, I, wR3)^+SigC)^+KI, 
                 ((wM2, wID, C, wR2)^+SigB)^+KI, 
                 ((wM1, wID, B, wR1)^+SigA)^+KI, 
                 (wM0)^+KI, wDIC, wIS, wR3)^+KI >> (wID pkdecr (-SigI, wIS)) >> 

    (wID is hsh(I)) >>  
            i3?(M0, A, R) >> 
                 (wDIC is hsh(wM3, hsh(wM2, hsh(wM1, hsh(I))))) >> 
                 (wR3 is hsh(hsh(hsh(R)))) >> 
                 (wR2 is hsh(hsh(R))) >> 
                 (wR1 is hsh(R)) >> 
                 (wID is hsh(I)) >> 
                 (wM0 is M0) >> 
                 Accept!((A,M1), (B,M2), (C,M3)) >>   stop; 
 
The declaration of the I/O actions at the participating host A is as follows: 
 
val rA = M1 new_in 
               a1?(xM0, xIC, xIS, xR)^+KA >> (xID pkdecr (-SigI, xIS)) >> 

       (xID is hsh(I)) >>  
               a2!(((M1, xID, B, hsh(xR))^+SigA)^+KI,  

        xM0, hsh(M1, xIC), xIS, hsh(xR))^+KB >> stop; 
 
The declaration of the I/O actions at the participating host B is as follows: 
 
val rB = M2 new_in 
               b1?(yM1, yM0, yDIC, yIS, yR)^+KB >> (yID pkdecr (-SigI, yIS)) >> 
                    (yID is hsh(I)) >>  
               b2!(((M2, yID, C, hsh(yR))^+SigB)^+KI, 
                     yM1, yM0, hsh(M2, yDIC), yIS, hsh(yR))^+KC >> stop; 
 
The declaration of the I/O actions at the participating host C is as follows: 
 
val rC = M3 new_in 
              c1?(zM2, zM1, zM0, zDIC, zIS, zR)^+KC >> (zID pkdecr (-SigI, zIS)) >> 
                    (zID is hsh(I)) >>  
              c2!(((M3, zID, I, hsh(zR))^+SigC)^+KI, 
                     zM2, zM1, zM0, hsh(M3, zDIC), zIS, hsh(zR))^+KI >> stop; 
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 The system declaration consists of: (a) the parallel composition of the role of the 
honest hosts that participate in the protocol and the respective public keys, and (b) a 
‘guardian’ that can detect if the environment learns some sensible information, like y. 
The declaration of the system Sys is as follows: 
 
val Sys = KI new_in KA new_in KB new_in KC new_in iI || rA || rB || rC || 
                guard?y >> stop; 
 
 The initial configuration of the system consists of: (a) the initial environment’s 
knowledge where the disclose! output action leaks information to the environment, such 
as the public encryption keys and signature verification keys of hosts participating in the 
protocol, and (b) the role of the system Sys. The declaration of the configuration Conf is 
as follows: 
 
val Conf = ( [disclose!(Rold, I, A, B, C, +KI, +KA, +KB, +KC, -SigI, -SigA, 
                      -SigB, -SigC) ]@Sys); 
 
  
 The proposed protocol carries out two types of verifications during the lifecycle of 
the agent. They are as follows: 
 

1. Verifications on the identity of the genuine initiator at the early execution of the 
agent at the visited hosts. The verifications are necessary to detect if an 
adversary is impersonating the genuine initiator, and consequently to terminate 
the agent execution at the visited host if the malicious attack is detected. 

 
2. Verifications upon the agent’s return to the initiator. The verifications are 

necessary to analyze the authenticity, confidentiality, and strong integrity of the 
data that the mobile agent has gathered and returned to the initiator, and 
consequently to output the data if the verifications are passed.  

 
 The two types of verifications are explained in details and are expressed in STA as 
described below. 
 
1. Initially, the agent is dispatched from host I to the first host in the agent’s itinerary, 
which is host A. The term (hsh(I)^+SigI) that securely store the identity of the 
genuine originator would be received at host A as a variable denoted as xIS, as 
depicted in Figure 8. Upon the reception of the agent at host A, the host decrypts the 
agent’s execution result with its private key -KA, and then it decrypts the term xIS, 
with the signature verification key of the initiator –SigI, so having the term xID. If 
the decryption is successful, then it compares the term xID with the hash of the 
identity of the genuine initiator hsh(I). If the verification fails it terminates the 
agent’s execution, otherwise it continues the execution of the agent. The offer that 
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host A provides and signs is to be encrypted with the public key of the genuine 
initiator I. The verification is expressed in STA as follows: 
 
 (xID pkdecr (-SigI, xIS))  >>  (xID is hsh(I))   (1) 
 
 
 The verification is repeated upon the reception of the agent at every visited host 
in the agent’s itinerary. The term (hsh(I)^+SigI) that securely store the identity of the 
genuine originator would be received at host B as a variable denoted as yIS, as 
depicted in Figure 8. The verification at host B would be as follows: 
  
 (yID pkdecr (-SigI, yIS))  >>  (yID is hsh(I)) (2) 

 
 The term (hsh(I)^+SigI) that securely store the identity of the genuine originator 
would be received at host C as a variable denoted as zIS, as depicted in Figure 8. The 
verification at host C would be as follows: 

 
 (zID pkdecr (-SigI, zIS))  >>  (zID is hsh(I)) (3) 

 
 In brief, the verification (1), (2), and (3) detect if an adversary is impersonating 
the genuine initiator so as to breach the privacy of the gathered data. And 
subsequently the executing host terminates the execution of the agent if the malicious 
act is detected. 
 
2. Upon the reception of the agent at host I, the initiator performs the verifications 
depicted in Table 3 to detect any violation of the data integrity property. The 
verifications are expressed in STA as described below. 
 

  The initial verification terms (r, m0, i1) that are stored within the secondary 
agent are verified with the terms that are returned with the major (migrating) agent. 
Figure 8 shows the flow of certain verification terms and the corresponding 
variables names as received at honest hosts participating in the protocol.  
 
 For example, host I transmits the initial verification term r as a name R, then 
host A receives the term as a variable xR. Next, host A computes hsh(xR) and 
transmits hsh(xR) to host B, and then host B receives it as a variable yR and within 
the offer of host A. Next, host B computes hsh(yR) and transmits it to host C, and 
then host C receives it as a variable zR and within the offers of hosts A, and B. 
Next, host C computes hsh(zR) and transmits it to host I, and then host I receives it 
as a variable wR1 within the offer signed by host A , a variable wR2 within the 
offer signed by host B, and a variable wR3 within the offer signed by host C. Also, 
host I receives wR3 as the last term in the execution results of the migrating agent. 
The flow of the term is illustrated in Figure 8. The returned variables wR1, wR2, 
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and wR3 are expected to have the following values: 
 

 wR3 = hsh(hsh(hsh(R))) 
 wR2 = hsh(hsh(R)) 
 wR1 = hsh(R) 
 

 Upon the agent’s return, the major agent carries out the verifications in (4), (5), and 
(6) to check that the gathered and returned data belong to the protocol run of concern, 
which is identified by the term R, using the term R that is securely stored with the 
secondary agent and that is communicated to the agent through the input action a3!. 
 

 (wR3 is hsh(hsh(hsh(R))))  (4) 
         (wR2 is hsh(hsh(R)))  (5) 
 (wR1 is hsh(R))  (6) 
 

 Initially host I generates a dummy offer M0 and transmits it within the 
migrating agent. Finally, it receives the offer as a variable wM0, as depicted in 
Figure 8. Upon the agent’s return, the major agent carries out the verification in (7) 
to check that the returned dummy offer wM0 that the initiator generated at the 
initialization of the agent is returned intact using the term M0, which is securely 
stored within the secondary agent and that is communicated to the migrating agent 
through the input action a3!.  
                   
 (wM0 is M0)  (7) 
 
  At the initiation, host I digitally signs the term hsh(I) and transmits it within the 

agent’s execution results. Finally, it receives the signed term as a variable wIS, as 
depicted in Figure 8. Upon the agent’s return, the initiator verifies that the returned 
data are generated for genuine initiator that signed the term hsh(I). The initiator 
decrypts the agent’s execution results with its private key -KI, and then decrypts the 
varaible wIS using the signature verification key of the initiator -SigI so having the 
variable wID. If the decryption is successful, it compares the variable wID to hsh(I). 
If the verification passes, then it asserts that the gathered and returned data were 
generated for the genuine initiator host I. The decryption of the signed term wIS and 
the verification on the identity of the signer is expressed in STA and given in (8). 

 
 (wID pkdecr (-SigI, wIS))  >>  (wID is hsh(I)) (8) 
 

  The returned data integrity code wDIC is a chained hash of the data acquired at 
the visited hosts, as depicted in Figure 8. Upon the agent’s return, the agent 
computes the data integrity code DIC using the terms wM1, wM2, and wM3 that 
are enclosed within the returned offers as in (9).  
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 DIC = hsh(wM3, (hsh(wM2, (hsh(wM1, (hsh(I)))))))  (9) 
 

 Next, it verifies that the computed data integrity DIC matches the variable wDIC. 
If the verification fails, then it deduces that data truncation took place and discards 
the gathered and returned data. The verification is expressed in STA as in (10). 
 

 (wDIC is hsh(wM3, hsh(wM2, hsh(wM1, hsh(I))))) (10)  
  
 The specifications and the security properties of the proposed protocol are expressed 
in STA as shown in Appendix A. The sequence of the verifications the proposed 
protocol carries is depicted in Figure 9. The major (migrating) agent starts its itinerary 
from host I and is dispatched by the initiator to host A. The process at host I starts with 
an output action i1, and then host A receives the agent through the input action a1?. 
Next, host A executes the agent and carries out the verification on the identity of the 
genuine initiator. If the verification passes, it provides its offer to the agent and 
dispatches the agent to host B through an output action a2!. Host B receives the agent 
through the input action b1?. Next, host B executes the agent and carries out the 
verification on the identity of the genuine initiator. If the verification passes, it provides 
its offer to the agent and dispatches the agent to host C through an output action b2!. 
Host C receives the agent through the input action c1?. Next, host C executes the agent 
and carries out the verification on the identity of the genuine initiator. If the verification 
passes, it provides its offer to the agent and dispatches the agent to host I through an 
output action c2!. Finally, host I receives the agent through the input action i2?, and then 
carries out the final verifications. If the verifications pass, then it sends out the gathered 
data through the output action i3!.  
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Fig. 8 The flow of the verification terms and the corresponding variables’ names 



 

(λI)^+KI 
((λA))^+SigA^+KI 
((λB))^+SigB^+KI 
((λC))^+SigC^+KI 
wDIC, wIS, wR3 

Verifyies: M0, A, 
R with those stored 
with secondary 
agent, data integrity 
code, no. of  hosts 

 
[ (λI)^+KI 
hsh(I) 
Hsh(I)^+SigI 
R ]^+KA 

 
 
xM0, xIC 
xIS, xR 

 

Verifies:  
xIS is signed 
by genuine 
initiator

[ ((λA))^+SigA^+KI 
xM0, hsh(M1, xIC) 
xIS, hsh(xR) ]^+KB 

 

M0, 
 I, R 

i3?

a1? 

a2! 

i2? 

i1! 

M1, M2, 
M3 

Accept! 

Termination 

 

 

Start 

True 

False 

True 
 
Processes at
Host A 
Processes at
Host I 
 
yM1, yM0 
yDIC, yIS, yR 

Verifies:  
yIS is signed 
by genuine 
initiator

[ ((λB))^+SigB^+KI 
yM1, yM0,  
hsh(M2, yDIC), 
yIS, hsh(yR) ]^+KC b2! 

b1? 

Termination 

 

False 

True 
Processes at
Host B 
 
zM2, zM1, zM0 
zDIC, zIS, zR 

 

[ ((λC))^+SigC^+KI 
zM2, zM1, zM0, 
hsh(M3, zDIC), 
zIS, hsh(zR) ]^+KI 

Verifies: zIS 
is signed by  
genuine 
initiator

c2! 

c1? 

Termination  

 

False 

True 

Processes at
Host C 
 62
 

Fig. 9   A flow chart of the sequence of verifications in the proposed protocol 
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8.2 Modeling the environment 
The environment represents the intruder’s knowledge and capabilities. An intruder 

may intercept, fake, delete, insert, append, replace messages, or spy out confidential 
data. Also, two intruders may co-operate with each other to delete the data acquired at 
intermediate hosts or append the data of hosts of their own selection.  
  
8.3 Formalizing the security properties 

We are concerned with data authenticity, data confidentiality and strong data 
integrity of the data gathered by mobile agents. The properties are formalized as follows: 
- The Authentication of A towards B requires that every trace generated by B’s input 
action is preceded by an A’s output of the same message. In our model, the hosts A, B, 
and C transmit M1, M2, and M3 representing m1, m2, and m3 respectively, through the 
output actions a2!, b2!, and c2!. Upon the agent’s return, the initiator receives the three 
variables: wM1, wM2, wM3 through the input actions i2?. We need to verify that the 
three variables actually originated from the respective hosts: A, B, and C. Each variable 
is contained within the offer that the respective host provided. Hence, verifying the 
authenticity of an offer concludes the authenticity of the respective variable.  
 
 The offer that host A provides is denoted as w3 and is sent through the output action 
a2!. The offer w3 encloses the data M1 that host A provided to the agent. Host I receives 
the offer through the input action i2? as w3'. The authentication of the data M1 is 
expressed in STA as in (11). 
 
val Auth8 = (a2!(w3, w4, w5, w6, w7) <-- i2?(w1, w2, w3', w4, w5, w6', w7));    (11) 

 
  The Auth8 property means that the input action i2?wM1 is really preceded by the 
corresponding output action of a2!M1. To verify Auth8 property for the declared 
configuration conf, the following command is to be given at the ML interaction window: 
 
 > CHECK Conf Auth8; (12) 
 
 If the check (12) passes then it authenticates that wM1 is the term M1 which truly 
originated from host A. 
 
 The offer that host B provides is denoted as w2 and is sent through the output action 
b2!. The offer w2 encloses the data M2 that host B provided to the agent. Host I receives 
the offer through the input action i2? as w2'. The authentication of the data M2 is 
expressed in STA as in (13). 

 
val Auth9 = (b2!(w2, w3, w4, w5, w6, w7) <-- i2?(w1, w2', w3, w4, w5, w6', w7));  (13) 

 

 63



 

  The Auth9 property means that the input action i2?wM2 is really preceded by the 
corresponding output action of b2!M2. To verify Auth9 property for the declared 
configuration conf, the following command is to be given at the ML interaction window: 
 
 > CHECK Conf Auth9; (14) 
 
 If the check (14) passes then it authenticates that wM2 is the term M2 which truly 
originated from host B. 
 
 The offer that host C provides is denoted as w1 and is sent through the output action 
c2!. The offer w1 encloses the data M3 that host C provided to the agent. Host I receives 
the offer through the input action i2? as w1'. The authentication of the data M3 is 
expressed in STA as in (15). 

 
val Auth10 = (c2!(w1, w2, w3, w4, w5, w6, w7) <-- i2?(w1', w2, w3, w4, w5, w6', w7));  (15) 

 
   The Auth10 property means that the input action i2?wM3 is really preceded by the 
corresponding output action of c2!M3. To verify Auth10 property for the declared 
configuration conf, the following command is to be given at the ML interaction window: 
 
 > CHECK Conf Auth10; (16) 
 
 If the check (16) passes then it authenticates that wM3 is the term M3 which truly 
originated from host C. 
 
If any of the authenticity verifications fails: (12), (14), (16), then the authenticity is 
unjust. 
 
- The Data secrecy is such that an intruder can not reveal any communicated secret 
term. In our model the terms: M0, M1, M2, and M3 are secret terms that should not be 
revealed except to the initiator I. Secrecy of the terms M0, M1, M2, and M3 is expressed 
in STA as in (17), (18), (19), and (20) respectively. 
 
 val Secrecy1 = (Absurd ← guard?M0);  (17) 
 val Secrecy2 = (Absurd ← guard?M1);  (18) 
 val Secrecy3 = (Absurd ← guard?M2);   (19) 
 val Secrecy4 = (Absurd ← guard?M3);  (20) 

 
For example, the Secrecy1 property is verified by assuming a guardian that can at any 

time pick a message and tries to synthesize the secret M1. The input action guard?M1 is 
such that the secret M1 is learnt through the input action ‘guard’, and the property: 
Absurd ← guard?M1 is such that the input action guard?M1 never takes place. To verify 
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the secrecy properties: (17) , … , (20) for the declared configuration Conf, the following 
commands should be given at the ML interaction window: 

 
> CHECK Conf   Secrecy1; (21) 
> CHECK Conf   Secrecy2; (22) 
> CHECK Conf   Secrecy3; (23) 
> CHECK Conf   Secrecy4; (24) 
 

 A check passes if the guardian never learns the secret M1. If any of the secrecy 
verifications (21), … , (24) fails, then the secrecy property is breached. 

- The Strong Data integrity property would be verified by carrying out the following 
four types verifications: 

1. Verifying that the data term (M1, M2, M3) gathered at the respective hosts A, B, 
and C are received intact at host I. The data gathered are received at host I as 
variables (wM1, wM2, wM3). Each variable is contained within an offer that the 
host provided. Hence verifying that the offers that are received at host I 
correspond to those acquired at the hosts A, B, and C, implies that the data terms 
are received intact at host I. The verification would detect any of the following 
malicious acts of non-trusted hosts or intruders: 

a. Deletion of the data acquired at intermediate host/s, or alteration of the data 
the non-trusted host provided to the agent at an earlier time 

b. Truncation of the data acquired at the visited hosts 
 

 Each offer is signed with the private key of the corresponding host. Then no 
one would be able to alter the data contained within the offer. Hence, verifying 
the authenticity of each offer ensures the integrity of the offers.  

 
  The offer that host A transmitted through the output action a2! is denoted as 
w3, and is received through the input action i2? as w3′. The identity of the 
initiator for whom the offer was generated at host A is transmitted as w6 through 
the output action a2!, and is received as w6′ through the input action i2?. Also, 
the identity of the initiator of the agent is contained within w3 and w3′. The 
verification is expressed in STA as given in (12). 
 
 The offer that host B transmitted through the output action b2! is denoted as 
w2, and the offer is received through the input action i2? as w2′. The identity of 
the initiator for whom an offer was generated at host B is transmitted as w6 
through the output action b2!, and is received as w6′ through the input action i2?. 
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Also, the identity of the initiator of the agent is contained within w2 and w2′. The 
verification is expressed in STA as given in (14). 

 
 The offer which host C transmitted through the output action c2! is denoted as 
w1, and the offer is received through the input action i2? as w1′. The identity of 
the initiator for whom an offer was generated at host C is transmitted as w6 
through the output action c2!, and is received as w6’ through the input action i2? 
. Also, the identity of the initiator of the agent is contained within w1 and w1′. 
The verification is expressed in STA as given in (16). 

2. Verifying that the term R, which uniquely identifies the protocol run of the agent 
that host I initiated is maintained intact during the agent’s lifetime. The 
verification would detect if an adversary is able to replace the agent’s dynamic 
data with the data of a similar protocol run without being detected. The 
verification requires two sorts of verifications, as follows: 

a. Verifying that the chained hash of the term R is maintained intact during its 
transmission from one host to the succeeding host in the agent’s itinerary. The 
verifications are among the following input and output actions through which the 
chained hash of the term R is transmitted/ received:  

 
  i1! and a1? 
  a2! and b1? 
  b2! and c1? 
  c2! and i2? 

 
 The chained hash of the term R is transmitted through the output actions i1!, 
a2!, b2!, and c2! as w7, and then it is received through the input actions a1?, b1?, 
c1?, and i2?, respectively as w7′. To express that every w7 is preceded by the 
corresponding w7′ during the lifecycle of the agent, the following properties are 
declared in STA: 

 
val Auth4 = (i1!(w4, w5, w6, w7) <-- a1?(w4, w5, w6', w7'));                        (25) 
val Auth5 = (a2!(w3, w4, w5, w6, w7) <-- b1?(w3, w4, w5, w6', w7')); (26) 
val Auth6 = (b2!(w2, w3, w4 ,w5, w6, w7) <-- c1?(w2, w3, w4, w5, w6', w7')); (27) 
val Auth7 = (c2!(w1, w2, w3, w4, w5 ,w6 ,w7) <-- i2?(w1, w2, w3, w4, w5, w6', w7'));  (28) 
 
To verify the properties: (25), … , (28) for the declared configuration Conf, the 
following commands should be given at the ML interaction window: 
 

> CHECK Conf   Auth4; (29) 
> CHECK Conf   Auth5; (30) 
> CHECK Conf   Auth6; (31) 
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> CHECK Conf   Auth7; (32) 
 

b. Verifying that a participating host transmits a hash of the chained hash of R 
that the host received. For example, host B receives hsh(R) as yR, then it should 
transmit it as hsh(yR). The verifications are among the following  input and 
output actions through which the chained hash of R is transmitted/ received:  

 
 a1? and a2! 
  b1? and b2! 
  c1? and c2! 

 
 At initialization, host I transmits the term R to host A. The term R is received at 
host A through the input action a1? as xR. We need to verify that the host 
transmits a hash of the term xR through the output action a2!. The 
correspondence assertion is expressed in STA as given in the Auth1 property 
(33). Next, the hashed term hsh(xR) is received at host B through the input 
action b1? as yR. We need to verify that the host transmits a hash of the term yR 
through the output action b2!. The correspondence assertion is expressed in STA 
as given in the Auth2 property (34). Then, the hashed term hsh(yR) is received at 
host C through the input action c1? as zR. We need to verify that the host 
transmits a hash of the term zR through the output action c2!. The 
correspondence assertion is expressed in STA as given in (35). 

 
 val Auth1 = (a1?xR <-- a2!hsh(xR)); (33) 
 val Auth2 = (b1?yR <-- b2!hsh(yR)); (34) 
 val Auth3 = (c1?zR <-- c2!hsh(zR)); (35) 
 
To verify the properties in (33), … , (35) for the declared configuration Conf, the 
following commands should be given at the ML interaction window: 
 

> CHECK Conf   Auth1; (36) 
> CHECK Conf   Auth2; (37) 
> CHECK Conf   Auth3; (38) 

3. Verifying that the term ((H(I)^+SigI) that identifies the genuine initiator is 
maintained intact during the agent’s lifetime. The verification would detect if an 
adversary was able to impersonate the genuine initiator without being detected 
during the agent’s lifetime. The malicious act is usually intended for a breach of 
privacy of the collected data. The verification requires two sorts of verifications, 
as follows: 
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a. Verifying that the term (H(I)^+SigI)) is maintained intact during its 
transmission from one host to the succeeding host in the agent’s itinerary. The 
verifications are among the following input and output actions: 
  

 i1! and a1? 
 a2! and b1? 
 b2! and c1? 
 c2! and i2? 

 
 The term (H(I)^+SigI) is transmitted through the output actions i1!, a2!, b2!, 
and c2! as w6, and then is received through the input actions a1?, b1?, c1?, and 
i2?, respectively as w6′. The verifications are expressed in STA as given in (29), 
(30), (31), and (32).  

b. Verifying that an executing host transmits the term (H(I)^+SigI) the same as 
it is received without any tampering. The verifications are among the following 
input and output actions through which the signed term is transmitted/ received:  
 

 a1? and a2! 
  b1? and b2! 
  c1? and c2! 

 
 The term (H(I)^+SigI) is received through the input actions a1?, b1?, and c1? 
as w6 and is transmitted through the output actions a2!, b2!, and c2!, 
respectively as w6′. The correspondence assertion is expressed in STA as given 
below. 

 
val Auth12 = (a1?(w4, w5, w6, w7) <-- a2!(w3, w4, w5, w6', w7)); (39) 
val Auth13 = (b1?(w3, w4, w5, w6, w7) <-- b2!(w2, w3, w4, w5, w6', w7)); (40) 
val Auth14 = (c1?(w2, w3, w4, w5, w6, w7) <-- c2!(w1, w2, w3, w4, w5, w6', w7)); (41) 
 
To verify the properties: (39), … , (41) for the declared configuration Conf, the 
following commands should be given at the ML interaction window: 
 

> CHECK Conf   Auth12; (42) 
> CHECK Conf   Auth13; (43) 
> CHECK Conf   Auth14; (44) 

4. Verifying that the dummy offer M0 which host I generated at the initiation of the 
agent is returned intact. The offer is encrypted with the public key of the host I 
and transmitted through the output action i1! as w4 and is returned to the host 
through the input action i2? as w4'. The correspondence assertion is expressed in 
STA as given in (45).  
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val Auth11 = (i1!(w4, w5, w6, w7) <-- i2?(w1, w2, w3, w4', w5, w6, w7)); (45) 
 

To verify the property for the declared configuration conf, the following command 
should be given at the ML interaction window: 
 

> CHECK Conf   Auth11; (46) 

If any of the four integrity verifications given in (12), (14), (16), (29) , … , (32), (36) , 
… , (38), (42) ,  … , (44), (46)  fails, then the strong data integrity property is violated. 
Hence, the gathered data should be discarded. 

9 Formal Verification of the Protocol 

 We analyzed the protocol for the following key configurations:  
 
1. Configuration 1: A single run of the protocol with an initiator I and three executing 

hosts A, B, and C. The agent’s itinerary is I, A, B, C, I. The protocol run is identified 
by a fresh nonce R that has been randomly chosen by the initiator, and a dummy 
data generated by the initiator: M0. The I/O actions of the protocol run are 
referenced as: i1!, i2?, i3?, a1?, a2!, b1?, b2!, c1?, and c2!. The configuration is 
depicted in Figure 10. 

 
2. Two parallel runs of the protocol for three different configurations, as described 

below. 
 

a. Configuration 2: Two parallel runs. The first run with the initiator I and three 
executing hosts A, B, and C. The second run with initiator I and three executing 
hosts E, B, and C. The agent’s itinerary in the first run is I, A, B, C, I, whereas 
the itinerary in the second run is I, E, B, C, I. The host E is a malicious host that 
has registered it-self as a participating host. The first and the second protocol 
runs are identified by a distinct nonce: R, and R′, respectively, and have been 
randomly chosen by the initiator I. The first protocol run is identified by a 
distinct nonce R that has been randomly chosen by the initiator, and a dummy 
data generated by the initiator: M0. The second protocol run is identified by a 
distinct nonce R′ that has been randomly chosen by the initiator, and a dummy 
data generated by the initiator: M′0. The I/O actions of the first protocol run are 
referenced as: i1!, i2?, i3?, a1?, a2!, b1?, b2!, c1?, and c2! . The I/O actions for 
the second protocol run are referenced as: i′1!, i′2?, b′1?, b′2!, c′1?, and 
c′2!.The configuration is depicted in Figure 11. 

 
b. Configuration 3: Two parallel runs. The first run with the initiator I and three 

executing hosts A, B, and C. Hosts A and C are malicious hosts that have 
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registered themselves as participating hosts. The second run with initiator I and 
three executing hosts E, B, and C. The host E is a malicious host that has 
registered it-self as a participating host. The agent’s itinerary in the first run is I, 
A, B, C, I, whereas the itinerary in the second run is I, E, B, C, I. The first 
protocol run is identified by a distinct nonce R that has been randomly chosen 
by the initiator, and a dummy data generated by the initiator: M0. The second 
protocol run is identified by a distinct nonce R′ that has been randomly chosen 
by the initiator, and a dummy data generated by the initiator: M′0. The I/O 
actions of the first protocol run are referenced as: i1!, i2?, i3?, b1?, and b2! . 
The I/O actions for the second protocol run are referenced as: i′1!, i′2?, b′1?, 
and b′2!. The configuration is depicted in Figure 12.  

 
c. Configuration 4: Two parallel runs. The first run with the initiator I1 and three 

executing hosts A, B, and C. The second run with initiator I2 and three 
executing hosts E, B, and C. The agent’s itinerary in the first run is I1, A, B, C, 
I1, whereas the itinerary in the second run is I2, E, B, C, I2. The first protocol 
run is identified by a distinct nonce R that has been randomly chosen by the 
initiator I1, and a dummy data generated by the initiator: M0. The second 
protocol run is identified by a distinct nonce R′ that has been randomly chosen 
by the initiator I2, and a dummy data generated by the initiator: M′0. The I/O 
actions of the first protocol run are referenced as: i1!, i2?, i3?, a1?, a2!, b1?, 
b2!, c1?, and c2! . The I/O actions for the second protocol run are referenced 
as: i′1!, i′2?, a′1?, a′2!, b′1?, b′2!, c′1?, and c′2!. The configuration is depicted 
in Figure 13.  

 
The role of a malicious host is not explicitly modeled. It is implicitly modeled by the 

environment that is described in the configuration Conf. 
 
The STA scripts of the four protocol runs are shown in Appendices A, B, C, and D 

respectively, including the declaration of identifiers, system processes, configuration, and 
properties due to limitation in space. In the configuration we set the environment initial 
knowledge to: (a) old nonce Rold, (b) participating hosts’ identities and the associated 
public keys and signature verification keys, and (c) an intercepted message.  
 
 The verification of data authenticity, strong data integrity and data confidentiality 
properties using STA reported no attacks. The results of verifications of the proposed 
protocol with the reached symbolic configurations are shown in Figures 14, 15, 16 and 17 
respectively. The results of the analysis of the small instance of the protocol in the four 
key configurations implies that the proposed protocol is free of security flaws and would 
provide a motivation for a proof of security of the protocol of an arbitrary size. 
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> val it = "No attack was found  327 symbolic configurations reached." : string 

Fig. 14  Result of analyzing the configuration 1 with a single run of the proposed protocol 

 
> val it = "No attack was found   109603 symbolic configurations reached." : string 

Fig. 15  Result of analyzing the configuration 2 of two parallel runs of the proposed protocol. 
The 2nd run with a malicious host  

 
> val it = "No attack was found  328 symbolic configurations reached." : string 

Fig. 16    Result of analyzing the configuration 3 of two parallel runs of the proposed protocol:  
(a) the 1st run with a malicious, and (b) the 2nd with two co-operating malicious hosts 

 

> val it = "No attack was found  1959 symbolic configurations reached." : string 

Fig. 17  Result of analyzing the configuration 4 of two parallel runs of the proposed protocol with 
different initiators: I1, and I2 

The results of analyzing the proposed protocol with the reachable states are 
summarized in Table 6. 

Table 6.   The verification results of the proposed protocol with the reachable states 

Configurations of the protocol runs Verification results 
a single run of the proposed protocol No attack, 327 states 
Two parallel runs of the proposed protocol. The 2nd 
run with a malicious host  

No attack, 109603 states 

Two parallel runs of the proposed protocol:  
(a) the 1st run with a malicious 
(b) the 2nd with two co-operating malicious hosts 

No attack, 328 states 

Two parallel runs of the proposed protocol with 
different initiators: I1, and I2 

No attack, 1959 states 

10 Conclusion and Motivation 

 Several protocols were presented in the literature aim to assert the security properties 
of mobile agent’s execution results such as integrity, confidentiality, and authenticity in 
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the presence of malicious hosts and intruders. However, they were not able to 
completely achieve the aimed for security properties. They did not achieve particular 
security properties, such as strong data integrity [14, 20, 22, 23, 28, 29]. It is attributed to 
incomplete designs, where a proper design of a security protocol should consist of: (a) 
precise security requirements, (b) clear assumptions, (c) various capabilities of 
adversaries, especially the conspiracy of non-trusted hosts, (d) formal specifications and 
properties, (e) and formal verification of the security properties a protocol aims to 
accomplish.  
 

In this paper we present a security protocol which is intended for the protection of the 
execution results of mobile agents and targets strong data integrity, authenticity, and 
confidentiality. The protocol is derived from the Multi-hops protocol [14], where the 
security relies on a chain of signed offers, a message authentication code and a chained 
hashing of a random nonce. The Multi-hops protocol does not accomplish strong data 
integrity. It is not able to detect the data truncation or replacement attacks, which can take 
place when a host conspires with a preceding host in agent’s itinerary and sends the agent 
back to it, so the preceding host would be able to truncate the data acquired at the 
intermediary hosts and alter the data it formerly provided without being detected by 
replacing the recent agent’s dynamic data with the former data that was current when the 
agent firstly visited it, as long as it is still storing the former data. Also, it can not detect the 
attack, where an adversary might sign others data with its own private key, since the 
collected data are transmitted in plain text in Mn. We enhanced the protocol so that it 
hinders or at least detects the attacks which the Multi-hops protocol and the protocols 
presented in the literature [20, 22, 23, 28, 29] were not able to detect. The proposed 
protocol refines the Multi-hops protocol by: (a) employing two co-operating agents, a 
migrating agent and a stationary agent, (b) requesting any executing host to clear its 
memory from the data acquired as a result of executing the agent before it dispatches the 
agent to the succeeding host, (c) jumbling of collected offers to mislead an adversary 
trying to truncate offers collected at preceding hosts, and (d) carrying out intermediate 
verifications at visited hosts on the identity of the genuine initiator, based on storing 
securely the identity of the genuine initiator within the migrating agent. 

 
 The two co-operating agents are a major agent and a secondary agent. The major 
agent traverses the Internet searching for particular data, and the secondary agent resides 
at the initiating host and securely stores the terms needed for accurate verifications on: 
(a) the nonce r which uniquely identifies a particular protocol run, (b) the dummy data 
generated by the initiator m0 , and (c) the identity of the first host in agent’s itinerary i1. 
Upon agent’s return, the secondary agent communicates the terms to the initiator to carry 
out the followings: (i) Verify that the computed γ′n with r as an initial value matches the 
returned γn . (ii) Deduce the actual agent’s itinerary from hosts’ identities which are 
enclosed within the chain λ, and then verify that first host in the assembled agent’s 
itinerary is i1. (iii) Verify the γj enclosed in each encapsulated offer λj matches the 
computed γ′j based on the order of the host in the assembled agent’s itinerary for all 

 74



        

offers in the chain λ. (iv) Verify that the last decrypted term in the chain λ matches m0. 
Commonly, verifications are based on initial data that are stored within the migrating 
agent. However, an adversary might tamper with the initial data as the agent transfers 
through public communication channels, and thus the verifications are not truly accurate. 
Hence, the storing of the initial verification data within the secondary agent ensures that 
the data are intact and verifications are truly accurate. The intention to store the initial 
verification data within the secondary agent and not within the initiator’s memory is to 
enable the initiator to trace any tampering with the initial verification data. Adversaries 
might attempt to tamper with the initiator’s memory. The execution traces, which Vigna 
recommends in [51], might be implemented. The technique requests an agent executor to 
create and store a trace of the execution of the secondary agent.  Upon the agent’s return, 
the initiator verifies the initial verification data stored within the secondary agent 
through the stored execution trace. If the verification passes, then the subsequent 
verifications would be accurate.   

 
The protocol implements certain security techniques which would ensure the 

integrity of the acquired data such as jumbling of the acquired offers, and computing 
data integrity code and a counter of the actually visited hosts. The jumbling of offers is 
intended to deceive an adversary trying to delete the offers acquired at preceding host/s. 
The offers are jumbled so having the dummy offer, which is generated by the initiator, as 
the last offer within the chain of offers. Hence, the malicious act of deletion of the last 
offer in the chain of offers would be detected upon the agent’s return to the initiator. The 
initiator checks if the dummy offer is within the chain of offers. If the verification fails, 
then it implies that tampering with the chain of offers took place. The data integrity code 
and the counter of visited hosts are used to detect any tampering with the acquired offers 
such as deletion, insertion or modification of data. Each acquired offer includes the data 
provided by the executing host, the data integrity code as computed at the host, the 
identity of the succeeding host, and the term which identifies the genuine initiator for 
whom the offer is generated. Intermediate verifications are carried out during the 
execution of the agent at executing hosts to verify the identity of the genuine initiator. 
Each executing host, at the early execution of the agent should verify that the signed 
term matches the hash of the identity of the genuine initiator, otherwise the execution 
terminates.  Also, the transmitted data is encrypted with the public key of the succeeding 
host in agent’s itinerary to reduce the chances of intruders to learn any of the terms 
enclosed within the transmitted message in case the intruder intercepts the message. The 
enclosed terms include the identity of the genuine initiator, the nonce which identifies 
the protocol run, the terms needed to append or insert a new offer e.g. data integrity 
code. In order to accomplish strong data integrity, and prevent or at least detect two 
malicious hosts co-operating with each other with the intension of truncating the data 
acquired at intermediate hosts, and replacing the data which they already provided with a 
new data trying to have agent’s decision in their favors, the protocol requests each 
executing host to clear its memory from the terms acquired during the execution of the 
agent such as the data integrity code before the host transmits the agent to the 
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succeeding host. An executing host may not respond to the request. The denial of 
clearing request can be traced by implementing the execution traces technique 
recommended by Vigna in [51]. Also, the initiator can assemble the actual agent’s 
itinerary from the chain λ which binds the identity of an executing host to the identity of 
the succeeding host as acknowledged in the acquired offers. Moreover, the initiator can 
deduce the actual the number of visited hosts by counting the number of times the nonce 
is hashed. Hence, the initiator can detect the malicious act of deletion, truncation or 
insertion of offers.  

 
The proposed protocol accomplishes the proper design stages of security protocols. 

We used formal methods to model the system and to analyze its security properties. A 
small instance of the protocol is verified for the security properties: strong data integrity, 
data authenticity, and confidentiality. The results of the formal verification showed that he 
protocol is free of security flaws in a four key configurations.  Moreover, we reasoned 
about the security of the protocol of a general model in section 5.8 and showed that the 
protocol is capable of preventing or at least detecting the attacks revealed in the existing 
protocols. Hence, we can say that the proposed protocol is free of the flaws revealed in 
the existing protocols and would overcome the attacks of adversaries which were revealed 
in [14, 20, 22, 23, 28, 29]: (a) truncation of collected data, (b) alteration of the data which 
a host formerly provided in case the host co-operates with a succeeding malicious host, 
(c) impersonating the genuine initiator and hence breach the privacy of collected data, (d) 
sending others data under the private key of a malicious host, and   (e) replacing the 
collected data with data of similar agents. 

 
This paper demonstrates the usefulness of employing formal methods in analyzing 

the proposed security protocol. We verified the security protocol using the STA tool for 
data authenticity, data confidentiality, and strong data integrity properties. The STA tool 
is as an automatic verification tool that is used to analyze the properties of security 
protocols. It performs a complete exploration of the state space and analyzes execution 
traces based on symbolic transitions, which would lead to a compact model, whereas the 
analysis of execution traces in model checking or the checking of the may-testing 
equivalence of Spi-calculus suffer from state-explosion problem. The STA tool is 
practically efficient compared to other formal methods, such as theorem proving. It takes 
less than half an hour to write the STA script of a protocol run. According to the authors 
in [8, 9, 16] the symbolic analysis is sound and complete. Detecting an attack on the 
symbolic model would imply that an attack exists in the infinite standard model and vice 
versa. The execution is automatic, though, it slows down as the number of data 
values increases.  

 
In conclusion, the proposed mobile agent security protocol is analyzed and formally 

verified for various kinds of attacks and the verification of the different runs of the 
protocol showed no flaws in the protocol. We found that the protocol is secure for the 
modeled configuration and would satisfy the intended security properties. Hence, the 
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proposed protocol would inspire the deployment of mobile agents in e-commerce 
applications having assurance in the searched and gathered data. 

11 Future Works  

A protocol designer should specify and verify a new protocol formally before 
presenting it for implementation and claiming the assertion of particular security 
properties. Many of the existing protocols are not yet formally described and verified. It 
is very beneficial to apply formal methods to existing protocols, which would help in 
fixing such protocols or getting a formal proof of their correctness and safety, as 
applicable. This would be the issue of future work. Care should be taken in selecting a 
formal method for the verification of a security protocol. In section 6 various formal 
methods were briefly discussed. The modal logic methods lack automated tools, model 
particular security properties such as authentication, and are error-prone. The theorem 
proving methods require special skills. The modal algebra methods require checking 
equivalence of processes and the checking that two processes are indistinguishable for 
any tester process is difficult, especially the proofs are not automated. The model 
checking methods relies on finite approximation of the actual model, which requires a 
bound on the number of protocol runs and the number of possible messages the attacker 
can generate and send to honest participating hosts at any moment. Hence, a prior 
knowledge of the protocol to analyze is required. Also, the adversary has to be modeled 
explicitly. The symbolic methods make no assumption with respect to the infinite model. 
The adversary is represented by the environment’s initial knowledge and no explicit 
modeling of the adversary is required. Thus, it does not require prior knowledge of the 
protocol to analyze. It requires familiarity with process algebra. The state space of a 
system might increase exponentially as the size of the system grows linearly, and 
accordingly the execution slows down. Thus, a variety of factors should be considered 
when selecting a formal method [7]: (i) Usability, such as a high level user interface 
[25]. The user interface of STA is rudimentary. However, specifying the protocol in STA 
requires about half an hour if being familiar with process algebras. (ii) Required 
knowledge and skills to model the system. (iii) System specifications of interest, e.g. the 
security properties of interest. (iv) Memory occupation. According to Boreale and 
Buscemi, STA implements a depth-first search approach, which controls the memory 
occupation appropriately [7]. (v) Availability of automatic proofs and the expected 
execution time. For example, the execution time is greatly shorter in STA as compared 
to Murϕ [7, 35], which depends on the number of possible transitions branching from 
states. (vi) The model size, as the model is expected to increase dramatically as the 
number of participants and consequently the possible data values increase. (vii) Explicit 
modeling of the adversary. For example, in Murϕ it takes more than half of the 
time required to model the protocol [35]. The appropriate selection of a method 
would result in an efficient verification and would certainly detect flaws in a 
protocol, if any exists. 

 77



 

 
It is worthy to verify the security properties of the proposed protocol using other 

formal methods, such as model checking and theorem proving, so as to compare the 
results of verification in terms of simplicity, usability, accuracy and efficiency. 
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Appendix A 
 
STA script for a single run of the protocol with R as a fresh nonce generated by the 
initiator i0. 
 
(* A single run of the proposed protocol 
I: initiator; A: 1st executing host, B: 2nd executing host,  
C: 3rd executing host, Adv: adversary, R: fresh none, Rold: old nonce, 
M0: dummy data generated by host I, M1: execution result at host A, 
M2: execution result at host B, M3: execution result at host C 
 
Host I sends the mobile agent to gather information from hosts A, B, and C. At the end 
of the protocol, host I needs to analyze the integrity, confidentiality, and authenticity of 
the returned execution results M1, M2, and M3 acquired at hosts A, B, and C 
respectively. 
 
Notations used in declaring identifiers are as given below. 
i1!: output action at host I, i2?: input action at host I,  
i3?: input action at host I that follows the output action of the secondary agent As  which 
communicates the initial verification data to major agent A, 
a1?: input action at host A, a2!: output action at host A, 
b1?: input action at host B, b2!: output action at host B, 
c1?: input action at host C, c2!: output action at host C, 
disclose!: an output action that leaks information to the environment, 
guard?: an input action ‘guard’ such that a guardian learns some secret data, 
accept!: an output action that outputs the execution results which satisfy the intended 
security properties to host I upon agent’s return, 
KA, KB, KC, KI: public keys of hosts A, B, C, and I respectively, 
SigA, SigB, sigC, SigI: private signing keys of hosts A, B, C, I respectively) 
 
DeclLabel $ a1, a2, b1, b2, c1, c2, i1, i2, i3, disclose, guard, Accept $; 
DeclName $ Rold, R, SigI, SigA, SigB, SigC, I, A, B, C, M0, M1, M2, M3, KI, KA,  
         KB, KC $ ; 
DeclVar $    xM0, yM0, yM1, zM2, zM1, zM0, wM3, wM2, wM1, wM0, 

        y, w1, w2, w3, w4, w5, w6, w7, w1', w2', w3', w4', w6', w7', 
                     xIC, yIC, zIC, wIC, yDIC, zDIC, wDIC, 

        xR, yR, zR, wR0, wR1, wR2, wR3,  
                     xIS, xID, yIS, yID, zIS, zID, wID, wIS $; 
 
(*The process at the initiator is declared as iI) 
val iI = M0 new_in R new_in 
            i1!((M0)^+KI, hsh (I), (hsh (I))^+SigI, R)^+KA >> 
            i2?(((wM3, wID, I, wR3)^+SigC)^+KI, 
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                 ((wM2, wID, C, wR2)^+SigB)^+KI, 
                 ((wM1, wID, B, wR1)^+SigA)^+KI, 
                 (wM0)^+KI, wDIC, wIS, wR3)^+KI >> (wID pkdecr (-SigI, wIS)) >> 

    (wID is hsh(I)) >>  
            i3?(M0, A, R) >> 
                 (wDIC is hsh(wM3, hsh(wM2, hsh(wM1, hsh(I))))) >> 
                 (wR3 is hsh(hsh(hsh(R)))) >> 
                 (wR2 is hsh(hsh(R))) >> 
                 (wR1 is hsh(R)) >> 
                 (wID is hsh(I)) >> 
                 (wM0 is M0) >> 
                 Accept!((A,M1), (B,M2), (C,M3)) >>   stop; 
 
(*The process at the 1st executing host is declared as rA) 
val rA = M1 new_in 
               a1?(xM0, xIC, xIS, xR)^+KA >> (xID pkdecr (-SigI, xIS)) >> 

       (xID is hsh(I)) >>  
               a2!(((M1, xID, B, hsh(xR))^+SigA)^+KI,  

           xM0, hsh(M1, xIC), xIS, hsh(xR))^+KB >> stop; 
 
 
(*The process at the 2nd executing host is declared as rB) 
val rB = M2 new_in 
               b1?(yM1, yM0, yDIC, yIS, yR)^+KB >> (yID pkdecr (-SigI, yIS)) >> 
                    (yID is hsh(I)) >>  
               b2!(((M2, yID, C, hsh(yR))^+SigB)^+KI, 
                        yM1, yM0, hsh(M2, yDIC), yIS, hsh(yR))^+KC >> stop; 
 
(*The process at the 3rd executing host is declared as rC) 
val rC = M3 new_in 
              c1?(zM2, zM1, zM0, zDIC, zIS, zR)^+KC >> (zID pkdecr (-SigI, zIS))  
                    >>(zID is hsh(I)) >>  
              c2!(((M3, zID, I, hsh(zR))^+SigC)^+KI, 
                       zM2, zM1, zM0, hsh(M3, zDIC), zIS, hsh(zR))^+KI >> stop; 
 
(*The whole system is declared as: (1) the parallel composition of the role of hosts 
participating in the protocol and their respective public keys; (2) a ‘guardian’ that can 
detect if the environment learns some piece of sensible information, like y) 
val Sys = KI new_in KA new_in KB new_in KC new_in iI || rA || rB || rC || 
                guard?y >> stop; 
 
(*The initial configuration consists of: (1) the environment’s initial knowledge where the 
disclose channel leaks information to the environment, such as the public encryption 
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keys and signature verification keys of hosts participating in the protocol; (2) the role of 
the system Sys) 
val Conf = ( [disclose!(Rold, I, A, B, C, +KI, +KA, +KB, +KC, -SigI, -SigA, 
                      -SigB, -SigC) ]@Sys); 
 
(*Checks integrity of the nonce that uniquely identifies the protocol run) 
val Auth1 = (a1?xR <-- a2!hsh(xR)); 
val Auth2 = (b1?yR <-- b2!hsh(yR)); 
val Auth3 = (c1?zR <-- c2!hsh(zR)); 
 
(*Checks the integrity of the two identifiers: (1) identifier of the genuine initiator; (2) 
identifier of the protocol run of concern, as the agent migrates through the output action 
of a preceding host and is received at the input action of a host, i.e. an intruder did not 
tamper with the two identifiers as the agent migrates through communication channels) 
val Auth4 = (i1!(w4, w5, w6, w7) <-- a1?(w4, w5, w6', w7')); 
val Auth5 = (a2!(w3, w4, w5, w6, w7) <-- b1?(w3, w4, w5, w6', w7')); 
val Auth6 = (b2!(w2, w3, w4 ,w5, w6, w7) <-- c1?(w2, w3, w4, w5, w6', w7')); 
val Auth7 = (c2!(w1, w2, w3, w4, w5 ,w6 ,w7)  <--  i2?(w1, w2, w3, w4, w5, w6', w7')); 
 
(*Checks the integrity of the execution result M1 provided by host A) 
val Auth8 = (a2!(w3, w4, w5, w6, w6, w7) <-- i2?(w1, w2, w3', w4, w5, w6, w7)); 
 
(*Checks the integrity of the execution result M2 provided by host B) 
val Auth9 = (b2!(w2, w3, w4, w5, w6, w7) <-- i2?(w1, w2', w3, w4, w5, w6, w7)); 
 
(*Checks the integrity of the execution result M3 provided by host C) 
val Auth10 = (c2!(w1, w2, w3, w4, w5, w6, w7) <-- i2?(w1', w2, w3, w4, w5, w6, w7)); 
 
(*Checks the integrity of the dummy data M0 generated at host I) 
val Auth11 = (i1!(w4, w5, w6, w7) <-- i2?(w1, w2, w3, w4', w5, w6, w7)); 
 
(*Checks the integrity of the identifier of genuine host as the agent is executed at a host 
participating in the protocol, i.e a host does not tamper with the identifier) 
val Auth12 = (a1?(w4, w5, w6, w7) <-- a2!(w3, w4, w5, w6', w7)); 
val Auth13 = (b1?(w3, w4, w5, w6, w7) <-- b2!(w2, w3, w4, w5, w6', w7)); 
val Auth14 = (c1?(w2, w3, w4, w5, w6, w7) <-- c2!(w1, w2, w3, w4, w5, w6', w7)); 
 
(*Checks the secrecy of the execution results M1, M2, M3, and the dummy data 
provided by hosts A, B, C, and I respectively) 
val Secrecy1 = (Absurd <-- guard?M0); 
val Secrecy2 = (Absurd <-- guard?M1); 
val Secrecy3 = (Absurd <-- guard?M2); 
val Secrecy4 = (Absurd <-- guard?M3); 
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Appendix B 
 
The STA script of two parallel runs of the protocol with R, and R’ as identifiers of the 
first and the second protocol runs respectively. The agent’s itinerary in the first run is I, 
A, B, C, I, whereas the itinerary in the second run is I, E, B, C, I. Host E is a malicious 
host. The role of the host is not explicitly modeled.  
 
(* A single run of the proposed protocol 
I: initiator; A: 1st executing host, B: 2nd executing host 
C: 3rd executing host, Adv: adversary, R: fresh none, Rold: old nonce 
M0: dummy data generated by host I, M1: execution result at host A 
M2: execution result at host B, M3: execution result at host C 
 
Host I sends the mobile agent to gather information from hosts A, B, and C. At the end 
of the protocol, host I needs to analyze the integrity, confidentiality, and authenticity of 
the returned execution results M1, M2, and M3 acquired at hosts A, B, and C 
respectively. 
 
Notations used in declaring identifiers are as given below. 
 
i1!: output action at host I, i2?: input action at host I 
i3?: input action at host I that follows the output action of the secondary agent As which 
communicates the initial verification data to major agent A 
i’1!: output action at host I, i’2?: input action at host I  
a1?: input action at host A, a2!: output action at host A 
b1?: input action at host B, b2!: output action at host B 
b’1?: input action at host B, b’2!: output action at host B 
c1?: input action at host C, c2!: output action at host C 
c’1?: input action at host C, c’2!: output action at host C 
disclose!: an output action that leaks information to the environment 
guard?: an input action ‘guard’ such that a guardian learns some secret data 
accept1!: an output action that outputs the execution results which satisfy the intended 
security properties to host I upon agent’s return 
KA, KB, KC, KI: public keys of hosts A, B, C, and I respectively 
SigA, SigB, sigC, SigI: private signing keys of hosts A, B, C, I respectively) 
 
DeclLabel $ a1, a2, b1, b2, c1, c2, i1, i2, i3, i'3, 
                     i'1, i'2, b'1, b'2, c'1, c'2, disclose, guard, Accept1, Accept2 $; 
DeclName $ Rold, R, SigI, SigA, SigB, SigC, SigE, I, A, B, C, E, 
                     M0, M1, M2, M3, KI, KA, KB, KC, KE, M'0, M'1, M'2, M'3, R' $ ; 
DeclVar  $ xM0, yM0, yM1, zM2,zM1, zM0, wM3, wM2, wM1, wM0, wM'0, wM'1,   
      wM'2, wM'3, y, w1, w2, w3, w4, w5, w6, w7, w7', 
                  w1', w2', w3', w4', w6', xIC, yIC, zIC, wIC, yDIC, zDIC, wDIC, 
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                  xR, yR, zR, wR0, wR1, wR2, wR3, wM'3 , w'R3, wM'2, w'R2, wM'1, 
     w'R1, w'DIC, yM'1, yM'0, y'DIC, y'R, zM'2, zM'1, zM'0, z'DIC, z'R, xIS,  
     xID, yIS, yID, zIS, zID, wID, wIS $; 

 
(*The process at the initiator is declared as iI) 
val iI = M0 new_in R new_in 
             i1!((M0)^+KI, hsh (I), (hsh (I))^+SigI, R)^+KA >> 
             i2?(((wM3, wID, I, wR3)^+SigC)^+KI, 
                  ((wM2, wID, C, wR2)^+SigB)^+KI, 
                  ((wM1, wID, B, wR1)^+SigA)^+KI, 

     (wM0)^+KI, wDIC, wIS, wR3)^+KI >> (wID pkdecr (-SigI, wIS))    
     >>(wID is hsh(I)) >>  

             i3?(M0, A, R) >> 
                  (wDIC is hsh(wM3, hsh(wM2, hsh(wM1, hsh(I))))) >> 
                  (wR3 is hsh(hsh(hsh(R)))) >> 
                  (wR2 is hsh(hsh(R))) >> 
                  (wR1 is hsh(R)) >> 
                  (wID is hsh(I)) >> 
                  (wM0 is M0) >> 
             Accept1!((A,M1), (B,M2), (C,M3)) >> stop  

|| 
             M'0 new_in R' new_in 
             i'1!((M'0)^+KI, hsh(I), (hsh(I))^+SigI, R')^+KE >>  
             i'2?(((wM'3, wID, I, w'R3)^+SigC)^+KI, 
                   ((wM'2, wID, C, w'R2)^+SigB)^+KI, 
                   ((wM'1, wID, B, w'R1)^+SigE)^+KI, 
                   (wM'0)^+KI, w'DIC, wIS, w'R3)^+KI >> stop ; 
 
(*The process at the 1st executing host is declared as rA) 
val rA = M1 new_in 
               a1?(xM0, xIC, xIS, xR)^+KA >> (xID pkdecr (-SigI, xIS)) >> 

        (xID is hsh(I)) >>  
               a2!(((M1, xIC, B, hsh(xR))^+SigA)^+KI, xM0, 
                     hsh(M1, xIC), xIS, hsh(xR))^+KB >> stop; 
 
(*The process at the 2nd executing host is declared as rB) 
val rB = M2 new_in 
              b1?(yM1, yM0, yDIC, yIS, yR)^+KB >> (yID pkdecr (-SigI, yIS)) >> 
                    (yID is hsh(I)) >>  
              b2!(((M2, yID, C, hsh(yR))^+SigB)^+KI, 
                       yM1, yM0, hsh(M2, yDIC), yIS, hsh(yR))^+KC >> stop 

 || 
              M'2 new_in 
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              b'1?(yM'1, yM'0, y'DIC, yIS, y'R)^+KB >> (yID pkdecr (-SigI, yIS)) >> 
        (yID is hsh(I)) >>  

              b'2!(((M'2, yID, C, hsh(y'R))^+SigB)^+KI, 
                        yM'1, yM'0, hsh(M'2, y'DIC), yIS, hsh(y'R))^+KC >> stop; 
 
(*The process at the 3rd executing host is declared as rC) 
val rC = M3 new_in 
               c1?(zM2, zM1, zM0, zDIC, zIS, zR)^+KC >> (zID pkdecr (-SigI, zIS)) 

   >>(zID is hsh(I)) >>  
               c2!(((M3, zID, I, hsh(zR))^+SigC)^+KI, 
                        zM2, zM1, zM0, hsh(M3, zDIC), zIS, hsh(zR))^+KI >> stop  

  || 
               M'3 new_in 
                c'1?(zM'2, zM'1, zM'0, z'DIC, zIS, z'R)^+KC >> (zID pkdecr (-SigI, zIS))  
     >>(zID is hsh(I)) >>  
                c'2!(((M'3, zID, I, hsh(z'R))^+SigC)^+KI, 
                          zM'2, zM'1, zM'0, hsh(M'3, z'DIC), zIS, hsh(z'R))^+KI >> stop; 
 
(*The whole system is declared as: (1) the parallel composition of the role of hosts 
participating in the protocol and their respective public keys; (2) a ‘guardian’ that can 
detect if the environment learns some piece of sensible information, like y) 
val Sys = KI new_in KA new_in KB new_in KC new_in iI || rA || rB || rC || 
                guard?y >> stop; 
 
(*The initial configuration consists of: (1) the environment’s initial knowledge where the 
disclose channel leaks information to the environment, such as the public encryption 
keys and signature verification keys of hosts participating in the protocol; (2) the role of 
the system Sys) 
val Conf = ( [disclose!(Rold, I, A, B, C, +KI, +KA, +KB, +KC, KE, -SigE, -SigI,  
                      -SigA,  -SigB, -SigC) ]@Sys); 
 
(*Checks integrity of the nonce that uniquely identifies the protocol run) 
val Auth1 = (a1?xR <-- a2!hsh(xR)); 
val Auth2 = (b1?yR <-- b2!hsh(yR)); 
val Auth3 = (c1?zR <-- c2!hsh(zR)); 
 
(*Checks the integrity of the two identifiers: (1) identifier of the genuine initiator; (2) 
identifier of the protocol run of concern, as the agent migrates through the output action 
of a preceding host and is received at the input action of a host, i.e. an intruder did not 
tamper with the two identifiers as the agent migrates through communication channels) 
val Auth4 = (i1!(w4, w5, w6, w7) <-- a1?(w4, w5, w6', w7')); 
val Auth5 = (a2!(w3, w4, w5, w6, w7) <-- b1?(w3, w4, w5, w6', w7')); 
val Auth6 = (b2!(w2, w3, w4 ,w5, w6, w7) <-- c1?(w2, w3, w4, w5, w6', w7')); 
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val Auth7 = (c2!(w1, w2, w3, w4, w5 ,w6 ,w7) <-- i2?(w1, w2, w3, w4, w5, w6', w7')); 
 
(*Checks the integrity of the execution result M1 provided by host A) 
val Auth8 = (a2!(w3, w4, w5, w6, w6, w7) <-- i2?(w1, w2, w3', w4, w5, w6, w7)); 
 
(*Checks the integrity of the execution result M2 provided by host B) 
val Auth9 = (b2!(w2, w3, w4, w5, w6, w7) <-- i2?(w1, w2', w3, w4, w5, w6, w7)); 
 
(*Checks the integrity of the execution result M3 provided by host C) 
val Auth10 = (c2!(w1, w2, w3, w4, w5, w6, w7) <-- i2?(w1', w2, w3, w4, w5, w6, w7)); 
 
(*Checks the integrity of the dummy data M0 generated at host I) 
val Auth11 = (i1!(w4, w5, w6, w7) <-- i2?(w1, w2, w3, w4', w5, w6, w7)); 
 
(*Checks the integrity of the identifier of genuine host as the agent is executed at a host 
participating in the protocol, i.e a host does not tamper with the identifier) 
val Auth12 = (a1?(w4, w5, w6, w7) <-- a2!(w3, w4, w5, w6', w7)); 
val Auth13 = (b1?(w3, w4, w5, w6, w7) <-- b2!(w2, w3, w4, w5, w6', w7)); 
val Auth14 = (c1?(w2, w3, w4, w5, w6, w7) <-- c2!(w1, w2, w3, w4, w5, w6', w7)); 
 
(*Checks the secrecy of the execution results M1, M2, M3, and the dummy data 
provided by hosts A, B, C, and I respectively) 
val Secrecy1 = (Absurd <-- guard?M0); 
val Secrecy2 = (Absurd <-- guard?M1); 
val Secrecy3 = (Absurd <-- guard?M2); 
val Secrecy4 = (Absurd <-- guard?M3); 
 
 

 89



 

Appendix C 
 
(*The STA script of two parallel runs of the protocol with R, and R’ as identifiers of the 
first and the second protocol runs respectively. The agent’s itinerary in the first run is I, 
A, B, C, I, whereas the itinerary in the second run is I, E, B, C, I. Hosts A and C are two 
malicious hosts, which co-operate with each other, in the first run and host E is a 
malicious host in the second run. The roles of the malicious hosts A, C, and E are not 
explicitly modeled.  
 
Notations used in declaring identifiers are as given below. 
 
i1!: output action at host I, i2?: input action at host I 
i3?: input action at host I that follows the output action of the secondary agent As which 
communicates the initial verification data to major agent A 
b1?: input action at host B, b2!: output action at host B 
disclose!: an output action that leaks information to the environment 
guard?: an input action ‘guard’ such that a guardian learns some secret data 
accept1!: an output action that outputs the execution results which satisfy the intended 
security properties to host I upon agent’s return 
KA, KB, KC, KI: public keys of hosts A, B, C, and I respectively 
SigA, SigB, sigC, SigI: private signing keys of hosts A, B, C, I respectively) 
 
DeclLabel $    b1, b2, i1, i2, i3, i'1, i'2, b'1, b'2, disclose, guard, Accept1 $; 
DeclName  $  Rold, R, SigI, SigA, SigB, SigC, SigE, I, A, B, C, E, 
                       M0, M1, M2, M3, KI, KA, KB, KC, KE, M'0, M'1, M'2, M'3, R', IC $ ; 
DeclVar   $    xM0, yM0, yM1, zM2,zM1, zM0, wM3, wM2, wM1, wM0, wM'0,    
                       wM'1, wM'2, wM'3, y, w1, w2, w3, w4, w5, w6, w7, w7', 
                       w1', w2', w3', w4', w6', xIC, yIC, zIC, wIC, yDIC, zDIC, wDIC, 
                      xR, yR, zR, wR0, wR1, wR2, wR3, y, wM'3 , w'R3, w'R2,  
                      w'R1, w'DIC, yM'1, yM'0, y'DIC, y'R, zM'2, zM'1, zM'0, z'DIC,  
                      z'R, xIS, xID, yIS, yID, zIS, zID, wID, wIS $; 
 
(*The process at the initiator is declared as iI) 
val iI =  M0 new_in R new_in 
          i1! ((M0)^+KI, hsh (I), (hsh (I))^+SigI, R)^+KA >> 
          i2? (((wM3, wID, I, wR3)^+SigC)^+KI, 
              ((wM2, wID, C, wR2)^+SigB)^+KI, 
              ((wM1, wID, B, wR1)^+SigA)^+KI, 
              (wM0)^+KI, wDIC, wIS, wR3)^+KI >> (wID pkdecr (-SigI, wIS)) >> 
 (wID is hsh(I)) >>  
          i3? (M0, A, R) >> 
          (wDIC is hsh(wM3, hsh(wM2, hsh(wM1, hsh(I))))) >> 
          (wR3 is hsh(hsh(hsh(R)))) >> 
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          (wR2 is hsh(hsh(R))) >> 
          (wR1 is hsh(R)) >> 
          (wID is hsh(I)) >> 
          (wM0 is M0) >> 
         Accept1!((A,M1), (B,M2), (C,M3)) >> stop  
 || 
 M'0 new_in R' new_in 
          i'1! ((M'0)^+KI, hsh(I), (hsh(I))^+SigI, R')^+KE >>  
          i'2?(((wM'3, wID, I, w'R3)^+SigC)^+KI, 
              ((wM'2, wID, C, w'R2)^+SigB)^+KI, 
              ((wM'1, wID, B, w'R1)^+SigE)^+KI, 
              (wM'0)^+KI, w'DIC, wIS, w'R3)^+KI >> stop ; 
 
(*The process at the 2nd executing host is declared as rB) 
val rB =  M2 new_in 
          b1?(yM1, yM0, yDIC, yIS, yR)^+KB >> (yID pkdecr (-SigI, yIS)) >> 
  (yID is hsh(I)) >>  
          b2! (((M2, yID, C, hsh(yR))^+SigB)^+KI, 
               yM1, yM0, hsh(M2, yDIC), yIS, hsh(yR))^+KC >> stop 
 || 
          M'2 new_in 
         b'1?(yM'1, yM'0, y'DIC, yIS, y'R)^+KB >> (yID pkdecr (-SigI, yIS)) >> 
   (yID is hsh(I)) >>  
         b'2! (((M'2, yID, C, hsh(y'R))^+SigB)^+KI, 
              yM'1, yM'0, hsh(M'2, y'DIC), yIS, hsh(y'R))^+KC >> stop; 
 
(*The whole system is declared as: (1) the parallel composition of the role of hosts 
participating in the protocol and their respective public keys; (2) a ‘guardian’ that can 
detect if the environment learns some piece of sensible information, like y) 
val Sys = KI new_in KA new_in KB new_in KC new_in iI || rB || guard?y >> stop; 
 
(*The initial configuration consists of: (1) the environment’s initial knowledge where the 
disclose channel leaks information to the environment, such as the public encryption 
keys and signature verification keys of hosts participating in the protocol; (2) the role of 
the system Sys) 
val Conf = ([disclose!(Rold, I, A, B, C, E, +KI, +KA, +KB, +KC, KE, -SigE, 
   -SigI, -SigA, -SigB, -SigC) ]@Sys); 
 
(*Checks the integrity of the nonce that uniquely identifies the protocol run) 
val Auth1 = (b1?yR <-- b2!hsh(yR)); 
 
(*Checks the integrity of the execution result M2 provided by host B) 
val Auth2 = (b2!(w2, w3, w4, w5, w6, w7) <-- i2?(w1, w2', w3, w4, w5, w6, w7)); 
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(*Checks the integrity of the dummy data M0 generated at host I) 
val Auth3 = (i1!(w4, w5, w6, w7) <-- i2?(w1, w2, w3, w4', w5, w6', w7)); 
 
(*Checks the integrity of the identifier of genuine host as the agent is executed at a host 
participating in the protocol, i.e a host does not tamper with the identifier) 
val Auth4 = (b1?(w3, w4, w5, w6, w7) <-- b2!(w2, w3, w4, w5, w6', w7)); 
 
(*Checks the secrecy of the execution result M0 and the dummy data provided by hosts 
B, and I respectively) 
val Secrecy1 = (Absurd <-- guard?M0); 
val Secrecy2 = (Absurd <-- guard?M2); 
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Appendix D 
(*The STA script of two parallel runs of the protocol. The first run is initiated by host I1, 
and the second run is initiated by host I2. The first run is identified by R and the second 
is identified by R’. The agent’s itinerary in the first run is I1, A, B, C, I1, whereas the 
itinerary in the second run is I2, E, B, C, I2.  
 
Notations used in declaring identifiers are as given below. 
 
i1!: output action at host I1, i2?: input action at host I1 
i3?: input action at host I1 that follows the output action of the secondary agent As which 
communicates the initial verification data to major agent A 
i’1!: output action at host I2, i’2?: input action at host I2 
a1?: input action at host A, a2!: output action at host A 
a’1?: input action at host A, a’2!: output action at host A 
b1?: input action at host B, b2!: output action at host B 
b’1?: input action at host B, b’2!: output action at host B 
c1?: input action at host C, c2!: output action at host C 
c’1?: input action at host C, c’2!: output action at host C 
disclose!: an output action that leaks information to the environment 
guard?: an input action ‘guard’ such that a guardian learns some secret data 
accept1!: an output action that outputs the execution results which satisfy the intended 
security properties to host I1 upon agent’s return 
KA, KB, KC, KI1, KI2: public keys of hosts A, B, C, and I1, and I2, respectively 
SigA, SigB, sigC, SigI, SigI: private signing keys of hosts A, B, C, I1, and I2 
respectively) 
 
DeclLabel $  a1, a2, a'1, a'2, b1, b2, c1, c2, i1, i2, i3, 
             i'1, i'2, b'1, b'2, c'1, c'2, disclose, guard, Accept1 $; 
DeclName  $  Rold, R, SigI1, SigI2, SigA, SigB, SigC, I1, I2, A, B, C,  
             M0, M1, M2, M3, KI1, KI2, KA, KB, KC, KE, M'0, M'1, M'2, M'3, R',  
 IC $ ; 
DeclVar   $  xM0, yM0, yM1, zM2,zM1, zM0, wM3, wM2, wM1, wM0, wM'0,  
 wM'1, wM'2, wM'3, y, w1, w2, w3, w4, w5, w6, w7, w7', 
 w1', w2', w3', w4', w6', xIC, yIC, zIC, wIC, yDIC, zDIC, wDIC, 
 xR, yR, zR, wR0, wR1, wR2, wR3,  
 wM'3 , w'R3, wM'2, w'R2, wM'1, w'R1, w'DIC, yM'1, yM'0, y'DIC, 
 y'R, zM'2, zM'1, zM'0, z'DIC, z'R, x'IC, x'IS, x'R, xM'0, x'ID, 
 x'IS, M'1, y'IS, y'ID, y'IS, y'R, M'2, z'IS, z'ID, M'3, w'ID, 
 wM'0, w'IS, xIS, xID, yIS, yID, zIS, zID, wID, wIS $; 
 
(*The process at the initiator is declared as iI1) 
val iI1=  M0 new_in R new_in 
          i1!((M0)^+KI1, hsh (I1), (hsh (I1))^+SigI1, R)^+KA >> 
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          i2?(((wM3, wID, I1, wR3)^+SigC)^+KI1, 
                   ((wM2, wID, C, wR2)^+SigB)^+KI1, 
      ((wM1, wID, B, wR1)^+SigA)^+KI1, 

      (wM0)^+KI1, wDIC, wIS, wR3)^+KI1 >> (wID pkdecr (-SigI1, wIS))  
       >>(wID is hsh(I1)) >>  

 i3?(M0, A, R) >> 
      (wDIC is hsh(wM3, hsh(wM2, hsh(wM1, hsh(I1))))) >> 
      (wR3 is hsh(hsh(hsh(R)))) >> 
      (wR2 is hsh(hsh(R))) >> 
      (wR1 is hsh(R)) >> 
      (wID is hsh(I1)) >> 
      (wM0 is M0) >> 
 Accept1!((A,M1), (B,M2), (C,M3)) >> stop; 
 
(*The process at the initiator is declared as iI2) 
val iI2=  M'0 new_in R' new_in 
          i'1!((M'0)^+KI2, hsh(I2), (hsh(I2))^+SigI2, R')^+KA >>  
          i'2?(((wM'3, w'ID, I2, w'R3)^+SigC)^+KI2, 
                   ((wM'2, w'ID, C, w'R2)^+SigB)^+KI2, 
                   ((wM'1, w'ID, B, w'R1)^+SigA)^+KI2, 
                  (wM'0)^+KI2, w'DIC, w'IS, w'R3)^+KI2 >> stop ; 
 
(*The process at the 1st executing host is declared as rA) 
val rA =   M1 new_in 
          a1?(xM0, xIC, xIS, xR)^+KA >> (xID pkdecr (-SigI1, xIS)) >> 
       (xID is hsh(I1)) >>  
          a2!(((M1, xIC, B, hsh(xR))^+SigA)^+KI1, xM0, 
                   hsh(M1, xIC), xIS, hsh(xR))^+KB >> stop 
 || 
          M'1 new_in 
          a'1?(xM'0, x'IC, x'IS, x'R)^+KA >> (x'ID pkdecr (-SigI2, x'IS)) >> 
       (x'ID is hsh(I2)) >> 
          a'2!(((M'1, x'IC, B, hsh(x'R))^+SigA)^+KI2, xM'0, 
       hsh(M'1, x'IC), x'IS, hsh(x'R))^+KB >> stop; 
  
(*The process at the 2nd executing host is declared as rB) 
val rB =  M2 new_in 
          b1?(yM1, yM0, yDIC, yIS, yR)^+KB >> (yID pkdecr (-SigI1, yIS)) >> 
       (yID is hsh(I1)) >>  
 b2!(((M2, yID, C, hsh(yR))^+SigB)^+KI, 
       yM1, yM0, hsh(M2, yDIC), yIS, hsh(yR))^+KC >> stop 
 || 
 M'2 new_in 
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 b'1?(yM'1, yM'0, y'DIC, y'IS, y'R)^+KB >> (y'ID pkdecr (-SigI2, y'IS))  
        >>(y'ID is hsh(I2)) >>  

 b'2!(((M'2, y'ID, C, hsh(y'R))^+SigB)^+KI2, 
           yM'1, yM'0, hsh(M'2, y'DIC), y'IS, hsh(y'R))^+KC >> stop; 
 
(*The process at the 3rd executing host is declared as rC) 
val rC =  M3 new_in 
          c1?(zM2, zM1, zM0, zDIC, zIS, zR)^+KC >> (zID pkdecr (-SigI1, zIS))  
       >>(zID is hsh(I1)) >>  
 c2!(((M3, zID, I1, hsh(zR))^+SigC)^+KI1, 
       zM2, zM1, zM0, hsh(M3, zDIC), zIS, hsh(zR))^+KI1 >> stop  
 || 
          M'3 new_in 
          c'1?(zM'2, zM'1, zM'0, z'DIC, z'IS, z'R)^+KC >>  
       (z'ID pkdecr (-SigI2, z'IS)) >>(z'ID is hsh(I2)) >>  
        c'2!(((M'3, z'ID, I2, hsh(z'R))^+SigC)^+KI2, 
        zM'2, zM'1, zM'0, hsh(M'3, z'DIC), z'IS, hsh(z'R))^+KI2 >> stop; 
 
 
(*The whole system is declared as: (1) the parallel composition of the role of hosts 
participating in the protocol and their respective public keys; (2) a ‘guardian’ that can 
detect if the environment learns some piece of sensible information, like y) 
val Sys = KI new_in KA new_in KB new_in KC new_in iI1 || iI2 || rA || rB || rC || 
  guard?y >> stop; 
 
(*The initial configuration consists of: (1) the environment’s initial knowledge where the 
disclose channel leaks information to the environment, such as the public encryption 
keys and signature verification keys of hosts participating in the protocol; (2) the role of 
the system Sys) 
val Conf = ([disclose!(Rold, I1, I2, A, B, C, +KI1, KI2, +KA, +KB, +KC, KE, -SigI1,  
    -SigI2, -SigA, -SigB, -SigC) ]@Sys); 
 
(*Checks integrity of the nonce that uniquely identifies the protocol run) 
val Auth1 = (a1?xR <-- a2!hsh(xR)); 
val Auth2 = (b1?yR <-- b2!hsh(yR)); 
val Auth3 = (c1?zR <-- c2!hsh(zR)); 
 
(*Checks the integrity of the two identifiers: (1) identifier of the genuine initiator; (2) 
identifier of the protocol run of concern, as the agent migrates through the output action 
of a preceding host and is received at the input action of a host, i.e. an intruder did not 
tamper with the two identifiers as the agent migrates through communication channels) 
val Auth4 = (i1!(w4, w5, w6, w7) <-- a1?(w4, w5, w6', w7')); 
val Auth5 = (a2!(w3, w4, w5, w6, w7) <-- b1?(w3, w4, w5, w6', w7')); 
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val Auth6 = (b2!(w2, w3, w4 ,w5, w6, w7) <-- c1?(w2, w3, w4, w5, w6', w7')); 
val Auth7 = (c2!(w1, w2, w3, w4, w5 ,w6 ,w7)  <--  i2?(w1, w2, w3, w4, w5, w6', w7')); 
 
(*Checks the integrity of the execution result M1 provided by host A) 
val Auth8 = (a2!(w3, w4, w5, w6, w6, w7) <-- i2?(w1, w2, w3', w4, w5, w6, w7)); 
 
(*Checks the integrity of the execution result M2 provided by host B) 
val Auth9 = (b2!(w2, w3, w4, w5, w6, w7) <-- i2?(w1, w2', w3, w4, w5, w6, w7)); 
 
(*Checks the integrity of the execution result M3 provided by host C) 
val Auth10 = (c2!(w1, w2, w3, w4, w5, w6, w7) <-- i2?(w1', w2, w3, w4, w5, w6, w7)); 
 
(*Checks the integrity of the dummy data M0 generated at host I) 
val Auth11 = (i1!(w4, w5, w6, w7) <-- i2?(w1, w2, w3, w4', w5, w6, w7)); 
 
(*Checks the integrity of the identifier of genuine host as the agent is executed at a host 
participating in the protocol, i.e a host does not tamper with the identifier) 
val Auth12 = (a1?(w4, w5, w6, w7) <-- a2!(w3, w4, w5, w6', w7)); 
val Auth13 = (b1?(w3, w4, w5, w6, w7) <-- b2!(w2, w3, w4, w5, w6', w7)); 
val Auth14 = (c1?(w2, w3, w4, w5, w6, w7) <-- c2!(w1, w2, w3, w4, w5, w6', w7)); 
 
(*Checks the secrecy of the execution results M1, M2, M3, and the dummy data 
provided by hosts A, B, C, and I respectively) 
val Secrecy1 = (Absurd <-- guard?M0); 
val Secrecy2 = (Absurd <-- guard?M1); 
val Secrecy3 = (Absurd <-- guard?M2); 
val Secrecy4 = (Absurd <-- guard?M3); 
 
- 
(*Checks integrity of the nonce that uniquely identifies the protocol run) 
val Auth1 = (a1?xR <-- a2!hsh(xR)); 
val Auth2 = (b1?yR <-- b2!hsh(yR)); 
val Auth3 = (c1?zR <-- c2!hsh(zR)); 
 
(*Checks the integrity of the two identifiers: (1) identifier of the genuine initiator; (2) 
identifier of the protocol run of concern, as the agent migrates through the output action 
of a preceding host and is received at the input action of a host, i.e. an intruder did not 
tamper with the two identifiers as the agent migrates through communication channels) 
val Auth5 = (i1!(w4, w5, w6, w7) <-- a1?(w4, w5, w6', w7')); 
val Auth6 = (a2!(w3, w4, w5, w6, w7) <-- b1?(w3, w4, w5, w6', w7')); 
val Auth7 = (b2!(w2, w3, w4 ,w5, w6, w7) <-- c1?(w2, w3, w4, w5, w6', w7')); 
 
(*Checks the integrity of the execution result M1 provided by host A) 
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val Auth8 = (c2!(w1, w2, w3, w4, w5 ,w6 ,w7) <-- i2?(w1, w2, w3, w4, w5, w6', w7')); 
 
(*Checks the integrity of the execution result M2 provided by host B) 
val Auth9 = (a2!(w3, w4, w5, w6, w6, w7) <-- i2?(w1, w2, w3', w4, w5, w6, w7)); 
 
(*Checks the integrity of the execution result M3 provided by host C) 
val Auth10 = (b2!(w2, w3, w4, w5, w6, w7) <-- i2?(w1, w2', w3, w4, w5, w6, w7)); 
 
(*Checks the integrity of the dummy data M0 generated at host I) 
val Auth11 = (c2!(w1, w2, w3, w4, w5, w6, w7) <-- i2?(w1', w2, w3, w4, w5, w6, w7)); 
 
(*Checks the integrity of the identifier of genuine host as the agent is executed at a host 
participating in the protocol, i.e a host does not tamper with the identifier) 
val Auth12 = (i1!(w4, w5, w6, w7) <-- i2?(w1, w2, w3, w4', w5, w6', w7)); 
val Auth14 = (a1?(w4, w5, w6, w7) <-- a2!(w3, w4, w5, w6', w7)); 
val Auth15 = (b1?(w3, w4, w5, w6, w7) <-- b2!(w2, w3, w4, w5, w6', w7)); 
val Auth16 = (c1?(w2, w3, w4, w5, w6, w7) <-- c2!(w1, w2, w3, w4, w5, w6', w7)); 
 
val Secrecy1 = (Absurd <-- guard?M0); 
val Secrecy2 = (Absurd <-- guard?M1); 
val Secrecy3 = (Absurd <-- guard?M2); 
val Secrecy4 = (Absurd <-- guard?M3); 
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