
A Configuration Memory Architecture for Fast FPGA

Reconfiguration

UNSW-CSE-TR 0509
(Draft)

Usama Malik† and Oliver Diessel†,‡
†
Architecture Group

School of Computer Science and Engineering
University of New South Wales

Sydney, Australia
‡Embedded, Real-time, and Operating Systems (ERTOS) Program,

National ICT Australia
{umalik, odiessel}@cse.unsw.edu.au

April 2005

TR059 Draft 1

Abstract

This report presents a configuration memory architecture that of-
fers fast FPGA reconfiguration. The underlying principle behind the
design is the use of fine-grained partial reconfiguration that allows
significant configuration re-use while switching from one circuit to an-
other. The proposed configuration memory works by reading on-chip
configuration data into a buffer, modifying them based on the exter-
nally supplied data and writing them back to their original registers.
A prototype implementation of the proposed design in a 90nm cell
library indicates that the new memory adds less than 1% area to a
commercially available FPGA implemented using the same library.
The proposed design reduces the reconfiguration time for a wide set of
benchmark circuits by 63%. However, power consumption during re-
configuration increases by a factor of 2.5 because the read-modify-write
strategy results in more switching in the memory array.

TR059 Draft 2

1 Introduction

SRAM-based Field Programmable Gate Arrays (FPGA) are now entering
the billion gates era. State-of-the-art commercial FPGAs offer several hun-
dred thousand logic cells along with specialised function units connected
via a configurable network. In order to configure a circuit the user needs
to load configuration data into the SRAM of the device. This data is gen-
erated by CAD tools and is most often externally loaded onto the device
via a configuration port. The FPGA’s reconfiguration involves updating
the entire, or a part of, the configuration SRAM. As reconfiguration time is
roughly proportional to the amount of configuration data to be loaded onto
an FPGA, reconfiguration delay can become critical for applications that
demand circuit modification at run-time. Rapid partial reconfiguration is
therefore desirable as devices continue to scale up in size.

The amount of configuration data of an FPGA grows in proportion to
the device size. For example, the configuration bit-stream size for a Virtex
XCV1000 device is approximately 738KB. The latest Virtex-4 XCV4FX140,
which is almost 6 times larger than an XCV1000 in terms of logic resources,
has a configuration bit-stream size of 5.7MB [8]. The configuration port for
this device is 8-bits wide and can be clocked at 100MHz [9]. Assuming that
the data can be delivered at this rate, it will take 57 ms to load the entire
configuration bit-stream.

In embedded systems the FPGA is usually programmed from a relatively
slow flash memory. The System Ace device [5] from Xilinx offers data rates of
up to 152MBits/sec. In this case, the time needed to completely reconfigure
an XCV4FX140 will be about 3 seconds. When a circuit switches between
several configurations then this time can significantly degrade the system
performance. Moreover, large configuration sizes are also not desirable from
an on-board storage perspective.

A solution to this problem is partial reconfiguration, whereby the user
loads a subset of configuration data. The configuration memory of a partially
reconfigurable FPGA is internally organised into words just like a conven-
tional RAM and all read/write transactions occur in multiples of these units.
In Virtex devices the smallest unit of configuration is called a frame which
spans the entire height of the device and configures a portion of a column
of user resources. The (re)configuration time is proportional to the number
of frames to be loaded.

The configuration re-use problem, studied previously [16], is to minimise
the amount of configuration data for a sequence of configurations. The
method adopted to solve this problem was to remove common configuration

TR059 Draft 3

1 2 32 3

1 2 31 2 3

1 2 32 3

Configuration
Input

Coarse grained

Fine grained

Configuration re−use

Configuration re−use

2 frames

3 frames

7
sub−frames

Figure 1: Coarse vs. fine-grained configuration re-use.

frames and to only load the difference from one configuration to the next
(Figure 1). For a set of benchmark circuits on an XCV1000 device, it was
found that the amount of configuration data could thus be reduced by only
1%. However, if one assumed byte-level rather than frame-level access to
the configuration memory, a 75% reduction in the amount of frame data was
possible when the circuit placements were decided by the CAD tool. A fur-
ther 10% reduction was possible when circuits were placed so as to maximise
the overlap between successive configurations. Much faster circuit swapping
is thus possible if the device supports fine-grained partial reconfiguration.

The design of a large fine-grained configuration SRAM poses several chal-
lenges. First the configuration port size cannot be made arbitrarily large as
the device is already IO limited. The configuration port for Virtex devices
is fixed at 8 bits. Hence, memory address and memory data must share a
single port. Reducing the configuration unit size from a frame to a few bytes
substantially increases the amount of address data that needs to be loaded

TR059 Draft 4

and the addressing overhead therefore limits the benefits of fine-grained par-
tial reconfiguration. The previous work assumed a RAM style memory in
which each sub-frame had its own address. Taking the addressing overhead
into account, it was found that the potential 75% reduction in configura-
tion data was diminished to a maximum possible 34% overall reduction in
bitstream size. Due to increased addressing overhead as sub-frames size is
reduced, this improvement over vanilla Virtex was achieved at a sub-frame
spanning one quarter of the column-high frame rather than at the byte-level
granularity, when maximum reduction in frame data was possible.

This report presents the design of a new configuration memory that
offers fine-grained access to its data at a considerably lowered addressing
cost than conventional memories. The configuration addressing problem can
be described as follows: Let there be n configuration registers in the device
numbered 1 to n. Let us select k arbitrary registers to access such that
k <= n. Thus we are given an address set {a1, a2, ...ak} of k addresses,
where each address is a number between 1 and n inclusive. Our problem is
to derive an efficient encoding of the address set. The criterion for efficiency
is that the encoded address string must be small (so that it takes less time
to load onto the device) and its decoding is simple so that it is possible to
implement a fast hardware decoder.

The XC6200 family supported partial reconfiguration at the byte level
in a RAM-style manner [1]. The RAM model requires O(log2(n)) address
bits per configuration register. Thus the address data requires O(klog2(n))
time to load onto the device where k is the number of registers to be up-
dated. As n and k increase, the amount of address data in this model grows
substantially.

The Virtex devices, much larger than XC6200s, offer a two-fold solu-
tion to this problem [3]. First, the configuration granularity was increased
several times compared to XC6200 thereby keeping the total number of ad-
dressable units small. This solution, however, limits configuration re-use as
discussed above. Secondly, Virtex introduced a DMA-style address compres-
sion whereby the user can write a sequence of consecutive frames without
loading individual addresses. This model improves upon the RAM model
by a factor of k if all k frames are consecutive. In terms of address data
usage, the model approaches the RAM model for isolated frames.

Let our ideal device support fine-grained partial reconfiguration. If the
total amount of register data is s bytes, then an ideal scheme requires Θ(s)
time to load the data into the memory. The XC6200 model offers this
performance but only for small device sizes. Virtex, on the other hand,
limits fine-grained partial reconfiguration and thus deviates from the ideal

TR059 Draft 5

model for typical circuits. Virtex only approaches the ideal model if all or
most of the registers need an update (e.g. at the time of FPGA boot-up).

The performance of the DMA method depends on the number of consec-
utive configuration registers that are to be loaded in succession. This paper
presents an empirical evaluation of RAM vs. DMA addressing methods for
a set of benchmark circuits (Section 2). This analysis shows that DMA
does reduce the amount of address data compared to the RAM method at
coarse configuration granularities. However, at fine granularities it produces
similar amounts of address data to the RAM method because small sized
sub-frames tend to be isolated. This analysis motivates the need for better
addressing schemes for fine-grained access to the configuration memory.

A new addressing method termed vector addressing (VA) is presented in
this paper (Section 3). A vector address is a one-hot encoding of the address
set. This paper shows that the VA technique requires significantly less ad-
dress data than the DMA method for core style reconfiguration (by which
we mean swapping an entire FPGA circuit with another one). For a set
of benchmark circuits taken from the signal processing domain, up to 60%
overall reduction in the amount of configuration data was observed com-
pared to the DMA technique, which offered 42% improvement with reduced
configuration unit size.

The VA is limited in the sense that it poses a fixed amount of address
data and is not well suited for small circuit updates (such as constant fold-
ing type applications). A hybrid strategy, which combines DMA with VA
is introduced. The design of the new DMA-VA addressed memory is pre-
sented in Section 4. Finally we conclude and give pointers to future research
directions.

2 Evaluating Existing Addressing Techniques

The objective of the experiments reported in this section is to empirically
evaluate the performance of existing configuration addressing methods. Two
methods are considered: RAM-style and DMA-style addressing. The DMA
method is essentially run-length encoding of RAM addresses, whereby the
user loads the starting address and the number of consecutive addresses that
follow (e.g. as in Virtex frame addressing). It is shown that these methods
result in significant addressing overhead at fine configuration granularities.
We first describe our experimental method and then present the results and
analysis.

TR059 Draft 6

Circuit Function Source

ammod Universal modulator using CORDIC [4]

bfproc A butterfly processor [17]

ccmul Twiddle factor multiplier [17]

cic3r32 Three stage CIC decimator [17]

cosine LUT A LUT based Cosine function [4]

dct Discrete Cosine Transform [4]

ddsynthesiser Direct digital synthesiser [17]

dfir Distributed Arithmetic FIR [4]

fir srg Four tap direct FIR [17]

iir A lossy integrator IIR [17]

Table 1: The circuits used in the analysis.

2.1 Experimental Method

Ten common circuits from the DSP domain were considered (Table 1). These
circuits were mapped onto an XCV100 FPGA using ISE5.2 [3, 4]. This de-
vice contains 20 rows of CLBs organised into 30 columns. 1610 frames, each
comprising 56 bytes of configuration data, are needed to completely config-
ure the logic and routing of this device. This device was chosen because it
was the smallest Virtex that fits each circuit. The circuits were synthesised
for minimum area and the configuration files corresponding to these circuits
were generated. Using a JBits [2] program, these bit files were converted
into ASCII for further processing. In this analysis the BRAM content con-
figurations were ignored as most of the circuits did not use BRAM blocks.
We considered the sequence of circuits in the order listed in Table-1. Pre-
vious analysis had suggested that the standard deviation in the amount of
sub-frame data that needs to be written for alternate permutations of a
sequence of typical FPGA circuits is small (less than 3% [16]).

In the next step the difference configurations corresponding to the above
sequence were generated. Let the first configuration be known as the current

configuration (assumed to be on-chip). The second configuration in the
sequence was then considered. The frames were partitioned into sub-frames
of the size under consideration and those sub-frames were counted that were
different from their counter-parts in the current configuration. The current
on-chip configuration was then updated with the difference and the next
circuit was in turn analysed with respect to the previous circuit in the list.
In this manner, nine difference configurations were generated. The amount

TR059 Draft 7

of RAM and DMA address data corresponding to these configurations was
then calculated. We also calculated the total amount of configuration data
under the current Virtex model for comparative purposes.

2.2 Results

Table-2 lists the total amount of configuration and address data that had
to be loaded given various sub-frame sizes and addressing methods. The
first column lists the granularity of the sub-frame at which difference con-
figurations were generated. The second column lists the total amount of
sub-frame data that had to be loaded onto the device assuming the first
configuration was already on–chip. This is the sum of the number of bytes
in the nine difference configurations generated above.

The next column lists the amount of address data needed for the nine
circuits assuming RAM-style addressing. At byte-sized sub-frames, there
are 90,160 sub-frames in an XCV100 excluding the BRAM content frames.
Thus the RAM address requires 17 bits per sub-frame (Table-3). Since it was
determined that 164,121 byte-sized sub-frames were needed for the sequence,
it was calculated that RAM addressing would need at least 348,758 bytes of
address data.

The fourth column lists the amount of address data needed for the differ-
ence configurations assuming DMA-style addressing. It can be seen that at
coarse configuration granularities, the DMA method compresses the RAM
address data by more than 50%. However, the DMA method approaches
the RAM method at byte-sized granularities. In terms of the overall re-
duction in configuration data, the DMA method improves little over the
RAM method. This motivates the need for a better addressing scheme for
fine-grained configurations. The next section evaluates the performance of
vector addressing in this context.

3 The Vector Addressing Technique

The concept of vector addressing (VA) can be introduced as follows. If we
assume that a device contains a total of n configuration sub-frames num-
bered from 1 to n, then we define a bit vector of size n to identify the set of
sub-frames that is to be loaded onto the device. The ith bit in this vector
represents the address of the ith sub-frame register where 1 ≤ i ≤ n. In
this address vector, a bit is set to 1 if the corresponding sub-frame is to be
included in this configuration bit-stream otherwise it is left cleared at 0.

TR059 Draft 8

Table-3 compares the RAM address size with the corresponding vector
address size at various granularities for an XCV100. It can be seen that
the VA size for a complete configuration is less than 6% the RAM address
size at single byte granularity. While the VA overhead is fixed irrespective
of the number k of sub-frames to be reconfigured, the RAM overhead is
directly proportional to k. When klog2(n) < n, the RAM overhead is less
than the VA overhead. For the small XCV100, at byte-sized reconfiguration
granularity, the RAM overhead is less than the VA overhead when less than
1/17 of the device is reconfigured. As the device size increases, this fraction
diminishes for a fixed configuration unit size.

Table-2 compares the VA overhead with that of the RAM and DMA
methods for the nine configurations under test. The last column in this
table lists the size of the VA overhead in bytes. For example, at single byte
granularity the total VA size is 9 × 90, 160/8 = 101, 430 bytes. It can be
seen that at this granularity, VA reduces the amount of address data by 71%
compared to DMA.

The above results are now compared with the current Virtex model, i.e.
frame-level partial reconfiguration with DMA-style loading. It should also
be noted that Virtex uses 32 bits for frame addresses and the same number
of bits for the frame count. The difference configurations for the given input
sequence were determined. It was found that a total of 679,672 bytes of
frame data was needed. The overhead of DMA-style addressing added an
additional 5,272 bytes. Thus in order to configure the nine circuits under
the current Virtex model, 684,944 bytes had to be loaded.

Table-4 compares our results for sub-frame configuration with the above
baseline figure. For example, DMA at an eight byte granularity requires
35,382 bytes of data. This is added to 380,752 bytes of frame data giving
a total of 416,134 bytes. This figure is 416,134

684,944
× 100 = 61% of the base

line. Thus DMA compresses the configuration data by 39%. Other columns
are derived in a similar fashion. Table-4 shows that VA resulted in a 60%
reduction in the amount of configuration data needed for the benchmark
circuits.

Vector Addressing is limited in the sense that it introduces a fixed over-
head without respect for the actual number of sub-frames that need to be
updated. Our experiments suggest that for typical core style reconfigura-
tion, the inequality n < klog2(n) is true and hence VA is better than RAM
(even DMA). However, dynamic reconfiguration is also used in situations
where a small update is made to the on-chip circuits. The above inequality
is not likely to be true in these cases. In order to overcome this limitation,
we developed a hybrid strategy that combines the best features of DMA

TR059 Draft 9

Sub-Frame size (B) Sub.Frame Data RAM Addr. DMA Addr. Vector Addr.

8 380,728 83,285 35,382 12,679

4 322,164 151,014 76,819 25,358

2 248,620 248,620 144,104 50,715

1 164,121 348,758 365,211 101,430

Table 2: Total data count over all 9 reconfigurations. All counts in bytes.

Sub-frame #Sub-frames #Bits in RAM Address size per Vector Address size
size in XCV100 RAM complete configuration per configuration

(bytes) Address (bits) (bits)

8 11,270 14 157,780 11,270

4 22,540 15 338,100 22,540

2 45,080 16 721,280 45,080

1 90,160 17 1,532,720 90,160

Table 3: Comparing the growth rates of RAM and VA address data.

Sub-Frame size RAM DMA Vector

(Bytes) %reduction %reduction %reduction

8 32 39 41

4 31 41 48

2 27 42 54

1 25 22 60

Table 4: Comparing the performance of RAM, DMA and Vector addressing
schemes. The figures shown are % reduction in configuration data compared
to the current Virtex model using partial bit-streams of full frame data.

TR059 Draft 10

with VA. We describe our new Virtex configuration architecture in the next
section.

4 Introducing Vector Addressing in Virtex

In order to cater for the needs of reconfiguration at the opposing ends of
granularity (i.e. core style vs. a small update), a hybrid strategy is proposed
that combines DMA with VA. The idea is to enhance the existing Virtex
architecture by implementing VA at the frame level. The goal of our design
is to support byte-level reconfiguration. The new configuration memory
architecture is presented in Section 4.1 and it is analysed in Section 4.2.

4.1 The new configuration memory architecture

This section presents the architecture of a DMA-VA addressed memory that
supports byte-level reconfiguration. The proposed technique is based on the
current Virtex model which already offers DMA addressing at the frame
level. Under the new model, the user supplies a DMA address and a sequence
of frame blocks. The frames in a block need not to be completely filled. For
each input frame its VA is also supplied which specifies the address of the
bytes that are present in the input configuration. In other words, the DMA
method is applied horizontally across the device and the VA technique is
used vertically within the frames with the goal of making minimal changes
to the base Virtex architecture.

In the current Virtex, the frames are loaded into the frame-registers via a
buffer called the frame data register (FDR). As the internal details of Virtex
are not known to us, we assume that each frame-register is implemented as
a simple shift register. After a frame is loaded into the FDR it is serially
shifted into the selected frame-register while a new frame is shifted into the
device. This also explains the need for a pad frame to flush the pipeline after
the last frame has been loaded.

Let us first consider a RAM style implementation of vector addressing.
In a basic RAM, control wires run across the memory horizontally and ver-
tically. A column decoder selects a column of registers while a row decoder
selects a row. The register at the intersection is therefore activated. The
Virtex model already supports the selection of individual frame registers.
We could enhance this model by providing control wires that span the de-
vice horizontally in order to select byte sized registers. The frame registers
are implemented as columns of registers which are selected by decoding the
DMA address. After a frame has been selected the user supplies its VA.

TR059 Draft 11

A vector address decoder (VAD) decodes the input VA by activating the
to-be-updated sub-frame registers one-by-one. The input frame data is se-
quentially latched into the selected registers. After an entire frame has been
updated the DMA mechanism internally selects the next frame while the
user supplies its VA and the cycle repeats for the successive frames.

A RAM-style implementation of DMA-VA demands too many wires from
the VAD to the memory array and therefore can be impractical for high
density FPGAs. A solution to this problem is a read-modify-write strategy
where a frame is read into the FDR, modified based on the input VA and
then written back to its register. This strategy keeps the shift register im-
plementation of the memory intact and instead of wires spanning the entire
array only local connections between the VAD and the FDR are needed.

We would ideally like the configuration load process to be synchronous
with a constant throughput at the input-port so that a 60% reduction in
data can be translated to a 60% reduction in reconfiguration time. The read-
modify-write strategy, however, creates a bandwidth mismatch between the
configuration port and the frame registers. This is noticeable for a sequence
of small updates, 1 byte per frame say, where the reconfiguration bit-stream
will comprise the VA for each frame and the byte of data to update while
the movement of frames from memory to FDR for update and back again
involves almost 8 times as much data. The RAM-model essentially provides
the required bandwidth via the large number of parallel wires.

We resolve the bandwidth mismatch problem by providing horizontal
wires at the top and at the bottom of the memory and loading data from
successive frame registers in parallel. Let the configuration port be of size
b bits. We note that the VA data must be loaded onto the device in chunks
of b bits and therefore only b bytes of the frame data can be updated at any
stage. We partition the configuration memory into blocks of b consecutive
frames. The top most b bytes of each frame block are read into the FDR
in parallel via the top set of buses. We therefore require b 8-bit wide buses
along with switches to select and read data from a frame block. The FDR
is reduced in size to just b bytes wide and the updated data is written back
to the bottom of a frame block via another set of b 8-bit wide buses.

The architecture of the new configuration memory is shown in Figure
2. The configuration port width in the new architecture remains at 8-bit.
There are two reasons for this decision. First, we wanted to compare our
results with the existing Virtex model. Second, we believe that the pin
limitation on contemporary devices will not allow the configuration port
size to increase substantially. The proposed architecture, however, is not
limited to an 8-bit wide port and can easily be scaled.

TR059 Draft 12

Under the new model, the configuration data is loaded in terms of frame
blocks (eight frames per block) that are addressed in a DMA fashion. To
start the configuration load process, the user supplies the address of the first
block to be updated followed by the number of consecutive blocks that are to
be loaded. The main controller stores the starting block address in the block

address register (BAR) and the number of blocks to be read in a register
called block counter. For each block that is read, the BAR is incremented
and the block counter is decremented. The BAR supplies the address of the
current block to the block address decoder (BAD) which activates all frames
in the desired frame block. The main controller stops when all blocks have
been loaded (Figure 3).

The frame blocks are loaded as follows: The top eight bytes of the se-
lected block are loaded from the array into the FDR, which consists of eight
byte-sized registers. Simultaneously, the 8-bit VA corresponding to these
bytes is loaded from the configuration port into the vector address decoder.
For each block of frames, its VA is packed such that the first bit specifies
the first byte of the first frame in that block, the second bit specifies the
first byte of the second frame and so on. There can be additional VA over-
head when the user configuration does not span b consecutive frames. This
overhead will be estimated for the benchmark circuits in Section 4.2.

After a byte of VA is loaded, the VAD selects the first register in the
FDR whose corresponding VA bit is set (starting from the most significant
bit in the input VA) while the user supplies the data with which to update
the byte. In successive cycles, the VA sequentially selects the byte registers
to be updated while their data is supplied by the user. When all set bits in
the input VA have been processed the VAD generates a done signal in order
to signal the main controller to read in the next VA-byte.

Upon receiving the done signal from the VAD, the main controller in-
structs the FDR to write its data to the bottom of the selected block and read
new data from the top of that block. Simultaneously, the main controller
reads in the VA-byte corresponding to this set of frame bytes and instructs
the BAD to shift-up all frames in the selected block for the next modify
cycle. The read-modify-write procedure repeats until the entire block is up-
dated (Figure 4). The main controller detects this situation by counting
the number of VA bytes that have been processed. It maintains a counter
called V A counter initialised to f where f is the number of bytes per frame.
This counter is decremented by 1 every time a byte of VA data is processed.
When the V A counter hits zero it means that the entire frame block has
been processed.

The VAD consists of a vector address register (VAR), a network controller

TR059 Draft 13

1 FDR vs. VADc2

c1

c2

c3 f1 f9f2

Name (bits)
Width Description

address

Signal

c1

Configuration
Port

Main
Controller

Vector
Address
Decoder

Frame
Data

Register

Block Address Decoder

Block of
Frame

Registers

1+log(f/8)

c4 1 done

fi
1<=i<=n

2 enable, shift

Control signal legend

c4

shift,

2 Array vs/ mux,
writec3

Figure 2: The architecture of the VA-DMA configuration memory.

Stop;

BAR++;

block address
into BAR;

command;

Read

Read
into

Read starting

#Blocks
Update Block;
block counter–;

block counter;

write config

block counter==0

Figure 3: The behaviour of the main controller.

TR059 Draft 14

signal MUX to select
Read data bytes;

FDR;
Done signal
sent by VAD

Done signal
sent by VAD

signal BAD to enable
frame registers;

signal FDR to read
from the Array;

signal MUX to select VAD;

selected frame registers;
signal BAD to disable

signal FDR to write;

VA_counter==0

VA_counter−−;

signal BAD to send shift signal
to selected frame registers;

VA_counter=f;set

Figure 4: The write block behaviour of the main controller.

and a switching network (Figure 5). The input to the network controller
is a byte of the VA encoding which of the topmost bytes of the selected
frame block are to be updated. This byte is stored in the VAR. Let the
input VA-byte be represented by V . Let the number of set bits in V be
i, 1 ≤ i ≤ 8. The controller outputs i 8-bit vectors V1, V2...Vi in sequence
such that V = V1⊕V2⊕ ...Vi and each Vi in turn has just one bit set, namely
the ith most significant bit in V . It takes one cycle to output each vector.
Each output vector selects exactly one register in the FDR and deselects the
rest. The sub-frame data is transferred to the selected register via the main
controller. A done signal is sent to the main controller after all vectors have
been produced. Note that no vector is produced if V contains all zeros. The
done signal in this case is generated immediately.

The network controller produces the output vectors as follows: It con-
tains an 8-bit mask register (MR). Let MR[j] and V AR[j] denote the jth

bit of the MR and of the VAR respectively. We set the MR as follows:

MR[7] = V AR[7] + V AR[6] + ...V AR[0] (1)

MR[j] = V AR[j + 1].MAR[j + 1], 6 ≥ j ≥ 0 (2)

The above equations set the leading bits in the MR down to the most
significant set bit encountered in the VAR. The output vector corresponding
to the most significant set bit, Vi, is now produced by performing an XOR

TR059 Draft 15

Main Controller

Network Controller

VAR

Done
Signal

Frame Data Register

8Configuration
Port VAD

Figure 5: The vector address decoder.

operation on the successive bits of the MR. In other words, Vi = v7v6...v0 is
set according to the following equations:

vj+1 = MR[j] ⊕ MR[j + 1], 0 ≤ j ≤ 6 (3)

v0 = MR[0].V AR[0] (4)

The VAR is updated by clearing the set bit that has been processed.
The network controller generates a done signal for the main controller when
the VAR contains all zeros, meaning that it is ready for the next VA. This
operation is performed as follows:

done = V AR[7] + V AR[6]... + V AR[0] (5)

As the MR is updated in parallel along with the VAR, the worst case
delay is eleven 2-input gate delays. The eight gate delays are for propagating
the bits in the MR. The remaining gate delays are for generating the done

signal. The entire operation can be accomplished in a single cycle. Figure
6 shows a schematic of the network controller. Please note that the logic to
initiate the MR and to generate the done signal is not shown for simplicity.

4.2 Design analysis

We first present an analysis of the amount of address data that needs to be
written under the new model and then present the results of implementing
the design in the TSMC 90nm cell library.

TR059 Draft 16

VAR[0]

To Frame Data Register

VAR[7]

MR[7] MR[0]

R R R R R R R R

QQQ QQ QQ

Q

D D D D D D D D

v0v7

Q Q Q Q Q Q Q Q

Q

Figure 6: The structure of the network controller.

The amount of address data in the DMA-VA model depends upon the
number of consecutive frame blocks that need to be written and on the
amount of additional VA data that needs to be supplied for the unfilled
frame blocks. We assume that the block address requires four bytes (two for
the address and two for the run length). Let us first consider an extreme
case when all frames in the device need to be updated. The DMA model
performs best as it only requires 32 bits of address. In addition, n × b bits
of VA data is needed by the DMA-VA model where b is the number of bytes
per frame and n >> b is the total number of frames in the device. The
RAM model will require nb×dlog2(nb)e bits. Thus, the new design is better
than the RAM model by a factor of dlog2(nb)e.

In practice, not all frames will be updated for typical circuit reconfigu-
rations. Let us consider a single block. The amount of VA data for a block
is given by 8b bits irrespective of the number of bytes that need an update.
Let us suppose that k bytes in a block need an update where 0 ≤ k ≤ 8b.
The amount of RAM data needed will be equal to kdlog2(nb)e bits. The VA
method will offer less addressing overhead as long as the fraction of bytes
to be updated k/8b > 1/dlog2(nb)e. This is very likely for reasonable n
and b and most core updates. It may not be true for the smallest of circuit
updates.

In order to empirically evaluate the addressing overheads under the new
model we again considered our benchmark circuits. For the nine circuits
under test, we found that a total of 255,097 bytes of configuration data was
to be loaded for the DMA-VA addressed memory. This, when compared to
the base line case gives us about 63% overall reduction in the amount of

TR059 Draft 17

configuration data. These results suggest that DMA-VA is a better address-
ing model than the RAM, DMA and even VA for our benchmark circuits.
The reason for it being better than the device-level VA is that we do not
include the VA for frames that are not present in a configuration whereas
in the device level VA we always include addresses for every frame. This
reduction in the VA data compensated for the additional VA needed for the
unfilled frame blocks.

In order to accurately estimate the area, time and power requirements of
the new design, the current Virtex memory model and the new design were
implemented in VHDL, and Synopsys Design Compiler [7] was used to syn-
thesise it to a 90nm cell library [6]. Preliminary results suggest that the area
increased by less than 1% for our new design compared to the implemented
XCV100 model. We estimated that the memory could be internally clocked
at 125MHz which easily matches with the external configuration clock (a
Virtex can be externally clocked at 66MHz). In the new design, the power
usage during reconfiguration increased by approximately 2.5× because of the
increased switching activity incurred due to the read-modify-write strategy.

5 Related Work

Techniques to reduce reconfiguration time of an FPGA is an active research
topic. In this section we discuss various contributions that are relevant to
our work.

Dandalis et al. [10] describe a dictionary based compression for Vir-
tex devices and have shown compression ratios of upto 41% for a set of
benchmark circuits. They main limitation of their work is that it demands
significant amount of configuration memory. Hence, their technique is less
scalable for high-density FPGAs. A similar issue arises for multi-context
FPGAs proposed by several researchers (e.g. [21] and [11]).

Configuration compression for XC6200 was described by Hauck et. al.

[12] using the wild-carding facility of these devices. Li et. al has studied
configuration compression for Virtex FPGAs [15] . They showed that for a
set of benchmark circuits 60–95% reduction in the configuration data is pos-
sible using LZ77 compression with frame re-ordering. The main limitation
of the LZ77 based techniques is that they demands parallel wires across the
device for the distribution of the uncompressed data. Again, this requires
significant hardware resources.

The technique reported by Pan et. al applied a combination of run-length
and Huffman encoding on the configuration resulting from an exclusive OR

TR059 Draft 18

of the current and the next configurations [18]. They reported 26–76% com-
pression for a set of circuits. They have not yet described a decompressor
for their scheme.

Huebner et al. [13] describe a hardware decompressor for LZSS com-
pression. Their main focus is on decompressing the data before it is passed
through the configuration port. As it is obvious that this will not reduce re-
configuration time. However, it does reduce on-board storage requirements
for the configuration data.

Achitectural techniques such as pipelined reconfiguration [20] and worm-
hole reconfiguration [19] also attempt to reduce reconfiguration overhead but
are only applicable to specialised architectures.

Hyper-reconfigurable architectures allow the user to partion the config-
uration memory into a hyper-context and a normal-context [14]. The hyper-
context limits the number of bits that can be reconfigured in the normal
context thus reducing the amount of configuration data during normal re-
configuration. A subsequent hyper-reconfiguration step can redefine a new
hyper-context. Implementing a hyper-reconfigurable involves an architec-
ture where user can selectively write configuration bits. Under this light,
our architecture can be classified as fine-grained hyper-reconfigurable.

6 Conclusion and Future Work

This paper has presented a scalable configuration memory architecture that
allows faster FPGA reconfiguration than the existing designs. With modest
hardware additions to an available FPGA, the proposed model reduces the
reconfiguration time by 63% for a set of benchmark circuits. The benefit
comes from the use of fine-grained partial reconfiguration that allows signif-
icant configuration re-use while swapping a typical circuit with another one.
The main innovation in the proposed memory design is a new configuration
addressing scheme that presents significantly less addressing overheads than
conventional techniques.

In future, we plan to address the increased switching that results from
the read, modify, write frame-block strategy. Moreover, as the FPGAs be-
come larger the single cycle read and write assumption might not be valid.
A solution under investigation is to partition the configuration memory into
pages where each configuration page is addressed in a RAM style fashion.
The impact of long-wire delays can be reduced by pipelining the configura-
tion load process among the pages.

TR059 Draft 19

Acknowledgements:

This research was funded in part by the Australian Research Council. Thanks
to Marco Della Torre who implemented the configuration memories in VHDL
and provided useful feedback on their design.

References

[1] XC6200 Field Programmable Gate Arrays Data Sheet, Version 1.3. Xil-

inx Inc., 1997.

[2] JBits SDK. Xilinx, Inc., 2000.

[3] Virtex 2.5V Field Programmable Gate Arrays Data Sheet, Version 1.3.
Xilinx, Inc., 2000.

[4] ISE Version 5.2. Xilinx Inc., 2002.

[5] System Ace: Configuration Solution for Xilinx FPGAs, Version 1.0.
Xilinx Inc., 2002.

[6] TSMC 90nm core library. Taiwan Semiconductor Manufacturing Com-

pany Ltd., 2003.

[7] Synopsys Design Compiler, v2004.06. Synopsys Inc., 2004.

[8] Virtex-4 Configuration Guide, Version 1.1. Xilinx Inc., 2004.

[9] Virtex-4 Data Sheet: DC and Switching Characteristics, Version 1.3.
Xilinx Inc., 2004.

[10] A. Dandalis and V. Prasanna. Configuration compression for FPGA-
based embedded systems. ACM International Symposium on Field-

Programmable Gate Arrays, pages 187–195, 2001.

[11] A. DeHon. Dynamically Programmable Gate Arrays: A step toward
increased computational density. In Fourth Canadian Workshop on

Field-Programmable Devices, pages 47–54, 1996.

[12] S. Hauck, Z. Li, and E. Schwabe. Configuration compression for the
Xilinx XC6200 FPGA. IEEE Transactions on Computer Aided Design

on Integrated, Circuits and Systems, Volume 18 Number 8, pages 1237–
1248, 1999.

TR059 Draft 20

[13] M. Huebner, M. Ullmann, F. Weissel, and J. Becker. Real-time config-
uration code decompression for dynamic FPGA self-reconfiguration. In

Parallel and Distributed Processing Symposium, pages 138–144, 2004.

[14] S. Lange and M. Middendorf. Hyperreconfigurable architectures for fast
run time reconfiguration. In Field Programmable Custom Computing

Machines, pages 304–305, 2004.

[15] Z. Li and S. Hauck. Configuration compression for Virtex FPGAs.
IEEE Symposium on FPGAs for Custom Computing Machines, pages
2–36, 2001.

[16] U. Malik and O. Diessel. On the placement and granularity of FPGA
configurations. International Conference on Field Programmable Tech-

nology, pages 161–168, 2004.

[17] U. Meyer-Baese. Digital signal processing with Field Programmable
Gate Arrays. Springer, 2001.

[18] J. Pan, T. Mitra, and W. Wong. Configuration bitstream compression
for dynamically reconfigurable FPGAs. International Conference on

Computer Aided Design, pages 766–773, 2004.

[19] A. Ray and P. Athanas. Wormhole run-time reconfiguration. Inter-

national Symposium on Field-Programmable Gate Arrays, pages 79–85,
1997.

[20] H. Schmit. Incremental reconfiguration for pipelined applications. IEEE

Symposium on FPGAs for Custom Computing Machines, pages 47–55,
1997.

[21] S. Trimberger. A Time-Multiplexed FPGA. IEEE Symposium on

FPGA-Based Custom Computing Machines, pages 22–28, 1997.

