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Abstract

This paper investigates how to improve the worst case runtime of INSERTION SORT while
keeping it in-place, incremental and adaptive. To sort an array of n elements with w bits for
each element, classic INSERTION SORT runs in O(n2) operations with wn bits space. GAPPED

INSERTION SORT has a runtime of O(n lg n) with a high probability of only using (1 + ε)wn
bits space. This paper shows that ROTATED INSERTION SORT guarantees O(

√
n lg n) operations

per insertion and has a worst case sorting time of O(n1.5 lg n) operations by using optimal O(w)
auxiliary bits. By using extra Θ(

√
n lg n) bits and recursively applying the same structure l times,

it can be done with O(2ln1+
1

l ) operations. Apart from the space usage and time guarantees, it also
has the advantage of efficiently retrieving the i-th element in constant time. This paper presents
ROTATED LIBRARY SORT that combines the advantages of the above two improved approaches.
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1 Introduction

In this paper, given the universe U = {1, . . . , u}, we use the transdichotomous machine model [7]. The
word size w of this machine model is w = O(lg u) bits and each word operation of this model takes
O(1) time (this paper defines lg as log2). This paper assumes all the n elements stored in the array A
are within the universe U , meaning each element takes exactly w bits and the array A takes wn bits in
total. The traditional INSERTION SORT algorithm belongs to the family of exchange sorting algorithms
[8] which is based on element comparisons. It is similar to how human sort data and its advantage over
other exchange sorting algorithms is that it can be done incrementally. The total order of all elements
are maintained at all times, traversal and query operations can be performed on A as INSERTION SORT

never violates the invariants of a sorted array. It is also adaptive, as its runtime is proportional to the
order of the insertion sequence. During insertion of a new element x to an existing sorted array A,
INSERTION SORT finds the location of x for insertion and create a single gap by right-shifting all the
elements larger than x by one position. Obviously, its worst case lg n!+n comparisons combined with
its worst case Ω(n2) element moves, with a total of O(n2) operations, makes it impractical except for
sorting with a small n or when the insertion sequence is mostly sorted. This paper investigates how to
improve INSERTION SORT while keeping its nice incremental and adaptive properties.

Incremental Sorting Problem

First we define the incremental sorting problem as maintaining a sequence S (not necessarily an array
A) of n elements in universe U subject to the following functions:

• insert(x, S): insert x into S.

• member(x, S): return whether element x ∈ S.

• select(j, S): return the j-th element x where select(1, S) is the smallest element in S and
select(j, S) < select(k, S) if j < k. select(j, S) is not necessarily equal to S[j − 1].

• predecessor(j, S): special case of select(j − 1, S), but select(j, S) is already known.

• successor(j, S): special case of select(j + 1, S), but select(j, S) is already known.

This model defines incremental sorting as a series of insert(x, S) from the input sequence
X = 〈x1, . . . , xn〉, such that we can query the array S using select and member between inser-
tions; or we can traverse S using predecessor and successor between insertions. It seems that
the traversal functions are redundant, but in fact they are only redundant when select can be done
in O(1) operations, which Corollary 1 shows that we have to relax this requirement. For most cases,
when select cannot be done in constant time, predecessor and successor can still be done in O(1)
operations. It is possible that some incremental sorting algorithms can be done in-place if they reuse
the same space of the input sequence X .

Adaptive Sorting Problem

The adaptive sorting problem is defined as any sorting algorithm with its runtime proportional to the
disorder of the input sequence X . Estivill-Castro et al [5] define an operation inv(X) to measure the
disorder of X , where inv(X) denotes the exact number of inversions in X . (i, j) is an inversion if
i < j and xi > xj . The number of inversions is at most

(

n
2

)

for any sequence, therefore any exchange
sorting algorithm must terminate after O(n2) element swaps. Clearly INSERTION SORT belongs to the
adaptive sorting family as it performs exactly inv(X)+n− 1 comparisons and inv(X)+2n− 1 data
moves.
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Corollary 1 Any comparison based, in-place, incremental and adaptive sorting algorithm that uses
only O(w) temporary space and achieves O(1) operations for select requires at least O(inv(X))
swaps.

It is trivial that with the above scenario, INSERTION SORT is the only optimal sorting algorithm
as there are no other possible alternative approaches that can satisfy all the above constraints, thus we
have to relax some of the requirements — this paper assumes select does not need to run in O(1)
time, meaning partial order is tolerable until all elements in X are inserted. It is essential that select
should still run reasonably fast, otherwise it has lost the purpose of being incremental.

1.1 Variants of Insertion Sort

1.1.1 Fun Sort

Biedl et al [3] showed an in-place variant of INSERTION SORT called FUN SORT that achieves worst
case Θ(n2 lg n) operations. They achieve the bound by applying binary search to an unsorted array to
find an inversion and reduce the total number of inversions by swapping them. By picking two random
elements (A[i] and A[j], i < j) and swapping them if it is an inversion, the total number of inversions
is reduced by at least one; because for i < k < j, either (i, k) or (k, j) is an inversion, or both. As
stated before, any algorithm will terminate after O(n2) element swaps. By observation, its performance
is rather poor in the worst case, as

(n
2

)

swaps are required, but its average case runtime seems rather
fast. Strictly speaking, FUN SORT does not belong to a variant of INSERTION SORT as it is not strictly
incremental, but it is an interesting adaptive approach.

Library Sort

Bender et al [2] show that by having a εwn bits space overhead to leave room for gaps, and keeping gaps
evenly distributed by redistributing the gaps when the 2i-th element is inserted, GAPPED INSERTION

SORT, or LIBRARY SORT for short, has a high probability of achieving O(n lg n) operations. As most
sorting algorithms can be done in-place, we can make a fair assumption that the sorted result must use
the same memory location. The auxiliary space cost of LIBRARY SORT is (1 + ε)wn bits as it needs
to create a temporary continuous array A′. Alternatively, their approach can be improved by tagging
a temporary auxiliary εwn space to A, thus creating a virtual (1 + ε)wn size array A ′, making the
algorithm less elegant but not affecting the time bound or space bound.

Unfortunately, ε needs to be chosen beforehand, and large ε does not guarantee O(n lg n) operations
as they have made a big assumption that A is a randomly permuted sequence within U . With adversary
insertion, such as reverse sorted order (which happens fairly often in real life scenarios), this algorithm
degrades to amortized Ω(

√
n) operations per insertion, regardless of the ε, making the worst case

O(n1.5) operations, although it might be possible to improve the runtime cost to worst case amortized
O(lg2 n) per insertion [1]. Even within their assumption, the time bound is amortized, regardless of
the disorder of the input sequence, as their algorithm needs to rebalance the gaps on the 2i-th insertion.

Finally, Bender et al did not address that their approach takes O(n) operations to perform
select(j, A) that finds the j-th element in an array A, because the j-th element does not locate at
A[j − 1] but locate at somewhere between A[j − 1] to A[j − 1 + εj/n]. A linear scan is required
to determine the rank of the j-th element. It is possible to improve select by using more space to
maintain the locations of gaps, however that improvement is not the focus of this paper.

Rotated Sort

ROTATED INSERTION SORT, or just ROTATED SORT for short, is based on the idea of the implicit data
structure called rotated list [9]. Implicit data structures is where the relative ordering of the elements
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(a) before easy ex-
change

7 8 2 3 4 6

9

(b) after easy
exchange

7 8 9 3 4 6

5

(c) before hard ex-
change

6 7 8 3 4 5

9

(d) after hard
exchange

Figure 1: An example of O(1) easy change and O(n) hard exchange on a rotated list

are stored implicitly in the pattern of the data structure, rather than explicitly storing the relative order-
ing using offsets or pointers. Rotated List achieves O(n1.5 lg n) operations using constant O(w) bits
temporary space, or O(n1.5) operations with extra Θ(

√
n lg n) bits temporary space, regardless of w. It

is adaptive as its runtime depends on inv(X) and it is incremental as select can be done in constant
time.

This paper is organized as follows. First we present the idea of the algorithm in Section 2 that
achieves the O(n1.5 lg n) operations, then we show some time and space complexity and their tradeoffs
in Section 3. Section 5 shows how to achieve O(2ln1+ 1

l ) operations by applying the idea recursively
and Section 6 combines the idea of both LIBRARY SORT and ROTATED SORT. Section 7 concludes
this paper.

2 Rotated Sort

In essence, the rotated sort is done by controlling the number of element shifts from O(n) shifts per
insertion to a smaller term, such as O(

√
n) shifts or even O(lg n) shifts, by virtually dividing A into

an alternating singleton elements and rotated lists that satisfies a partial order. By having an increasing
function that controls the size of all the rotated lists, we only need to push the smallest elements and
pop the largest element between a small sequence of rotated lists per insertion.

2.1 Rotated List

A rotated list or sorted circular array, is an array L = [0, . . . , n−1] with a largest element L[m] > L[i],
0 ≤ i < n and L[i (mod n)] < L[i + 1 (mod n)], i 6= m. We need dlg ne comparisons to find the
position of the minimum and maximum element in the array, or constant time if we have maintained a
dlg ne bits pointer to store m explicitly for L.

This paper uses the same terminologies from Frederickson [6], where the rotated list L has two
functions — easyExchange, where the new smallest element x < L[i], 0 ≤ i < n replaces the
largest element L[m] and returns L[m]; hardExchange is identical to easy exchange, but x can be
any number. This paper defines an extra function normalize that transform the rotated list to a sorted
array.

As described in [6], easy exchange can be done in O(1) operations once L[m] is found, as the
operation only needs to replace L[m] with the new smallest element x. Array L still satisfies as a rotated
list, but the position m′ of the new largest element L[m′] is left-circular-shifted by one (m′ = m − 1,
or m′ = n−1 if m = 0). Hard exchange is O(n) since it needs to shift all the elements larger than x in
the worst case. Figure 1 shows an example of both easy exchange and hard exchange on a rotated list.

Normalization can be done in O(n) time, an obvious way is by having a temporary duplicate but the
exact bound can also be achieved in-place recursively by using Algorithm 1, which has exactly optimal

5



2n words read and 2n words write for the array L. The same algorithm can also be done iteratively.

Algorithm 1 Transform a rotated list L to a sorted list L′ with 2n words read and 2n words write. L[m]

is the largest element and n = |L|.
normalize(m, L)

1: if m < n
2 − 1 then

2: swap(L[0, . . . ,m], L[m + 1, . . . , 2m + 1])

3: normalize(2m + 1, L[m + 1, . . . , n − 1])

4: elif m > n
2 − 1 then

5: swap(L[0, . . . , n − m − 2], L[m + 1, . . . , n − 1])

6: normalize(m, L[n − m − 1, . . . ,m])

7: else

8: swap(L[0, . . . ,m], L[m + 1, . . . , n − 1])

2.2 Implicit Dynamic Dictionary

The dynamic dictionary problem is defined as given a set D ⊆ U , |D| = n and supports member(x,D)
to determine whether x ∈ D and insert(x,D) that insert x into D. It is a subset of the incremental
sorting problem. Given a monotonic increasing integer function f : Z

+ → Z
+, dynamic dictionary can

be implemented implicitly by using an array A, and visualize it as a 2-level rotated lists. We divide A
into a list of r pairs D = 〈P0, . . . , Pr〉, each pair Pi consists of a singleton element ei and a sub-array
Li of size f(i) that is used as a rotated list. For an array of size n, we have n ≤ ∑r

i=1(f(i) + 1).
The purpose of having a monotonic increasing integer function is that the number of blocks will always
be proportional to the array size, regardless of the number of insertions. This also avoids amortized
runtime cost as it requires no redividing when the array grows. This invariant needs to be guaranteed
in order to guarantee the runtime as it controls the number of soft exchanges performed per insertion.

3 Analysis

Lemma 2 The total number of rotated lists, or the total number of singleton elements in the implicit
dictionary structure of size n is at most d

√
2ne, regardless of the increasing function f .

Proof: To make it simpler, we can increase n to n′ =
∑r

i=1(f(i) + 1) ≥ 2r, and if we use the slowest
increasing function on Z

+ where f(i) = i, then:

n′ =
r

∑

i=1

(i + 1)

2n′ = r2 + 3r

2n′ +
9

4
= (r +

3

2
)2

r =

√

2n′ +
9

4
− 3

2

r ≤
√

2n′

�
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We can now analyze the total runtime of functions by maintaining the offset m for the largest
element Lk[m] on all rotated lists Lk.

Lemma 3 The total space cost of maintaining M = 〈m1, . . . ,mr〉, where mk is the position of the
largest element for the rotated lists Lk, is

∑r
i=1dlg f(i)e bits, or it can be done in Θ(

√
n lg n) bits.

Proof: Using f(i) = i and Lemma 2, we have the list of rotated lists 〈L1, . . . , Lr〉 of size 〈1, . . . ,
√

2n〉.
The sum of the bits required is

∑

√
2n

i=1 lg i = lg(
√

2n!). By Stirling’s approximation, it is reduced to
approximately

√
2n lg

√
2n −

√
2n + 1 = Θ(

√
n lg n).

�

Lemma 4 select takes O(1) operations using extra Θ(r lg n) bits space, or it can be done in extra
Θ(

√
n lg n) bits space. On optimal space, select takes O(lg f(r)) operations.

Proof: To calculate select(j, S), we need to find which rotated list Lk that it is located, meaning
we need to find the smallest k such that

∑k+1
i=1 (f(i) + 1) > j. When Lk is found, we can get mk

in O(1) operations with Θ(
√

n lg n) bits space using Lemma 3. From Lemma 2, we need at most
r ≤

√
2n rotated lists and storing the beginning offset of any rotated list takes at most dlg ne bits.

Therefore, we can hold the whole offset table in Θ(r lg n) = Θ(
√

n lg n) bits. If there exists a function
g(x) =

∫ k
1 f(x), then O(1) operation can be done without the offset table. For example, using f(i) = i,

g(x) = x2+x
2 , Lk can be found by doing k =

√

2j + 9/4 − 3/2.
Without maintaining m, it takes O(1) time to find Lk, along with an extra dlg f(k)e comparisons

to find mk, in worst case where k = r, the time complexity becomes O(lg f(r)).
�

Lemma 5 member can be done in O(lg r + lg f(r)) operations. On optimal space, we need no more
than 3

2dlg ne+O(1) comparisons, or no more than dlg ne+O(1) comparisons using Θ(
√

n lg n) bits.

Proof: We perform member(x,D) by doing a binary search on all the r singleton elements 〈e0, . . . , er〉
to determine which rotated list Lk does x belong to (or it returns the position of singleton element
ek = x itself if we are lucky), then followed by a binary search on the rotated list Lk[0, . . . , f(k) − 1]
to find the largest element mk and finally perform another binary search on Lk to find x. The total
number of comparisons is dlg re + 2dlg f(k)e. In the worst case where k = r, the search is within
the last (and largest) rotated list Lr. Let f(i) = i then the worst case cost is dlg re + 2dlg f(r)e =
3dlg

√
2ne = 3

2dlg ne+O(1). Using Lemma 3, we eliminate one binary search and the cost is reduced
to dlg re + dlg f(r)e = dlg ne + O(1).

�

The probability of finding a singleton element is P (x ∈ 〈e0, . . . , er〉) = r
n and the probability of

finding an element in the rotated list Li is P (x ∈ Li) = f(i)
n . If we assume each element in the implicit

dictionary D are equally likely to get selected in the search, with maintaining M , the average number
of comparisons of the search is r

ndlg re +
∑r

i=1

(f(i)
n (dlg re + dlg f(i)e)

)

, which is equal to:

dlg re +
lg H(f(r))

n

where H(n) represents the hyperfactorial of n.

Lemma 6 With optimal space, insert is O(lg r +
∑r−1

i=1 lg f(i)+ f(r)) operations, or it can be done
in no more than O(

√
n lg n) operations. Using Θ(

√
n lg n) bits, the time complexity is O(r + f(r)),

or it can be done in O(
√

n) operations.
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Proof: To perform insertion, first we need to locate the rotated list Lk for insertion by performing a
dlg re search on the singleton elements, then a hard exchange is performed on Lk, which is followed
by a sequence of soft exchanges will be done from Lk+1 to Lr−1 and terminated with either a hard
exchange or append to Lr. The total cost is dlg re + f(k) +

∑r−1
i=k+1dlg f(i)e + f(r) + O(1), or just

O(lg r +
∑r−1

i=1 lg f(i) + f(r)) as f(k) � f(r). In worst case, where k = 1, using f(i) = i, the cost
is O(lg

√
2n + (

√
2n lg

√
2n −

√
2n + 1 − (2 lg 2 − lg 2 + 1)) +

√
2n) = O(

√
n lg n) operations.

From Section 2.1, with space specified in Lemma 3, soft exchange takes O(1) time. In worst case,
where k = 1, we need to perform soft exchange on all rotated lists, except Lk and Lr−1, thus r − 2
rotated lists in total. Therefore, the total time complexity of dlg re binary search, initial hard exchange
on L1, sequence of r − 2 soft exchanges and the final hard exchange on Lr−1 is dlg re + f(k) + r +
f(r) + O(1) = O(r + f(r)). Using f(i) = i, we have O(

√
2n +

√
2n) = O(

√
n) operations. �

Theorem 7 ROTATED SORT can be done in worst case O(n1.5 lg n) operations with only O(w) bits
space, or in worst case O(n1.5) operations with Θ(

√
n lg n) bits space.

Proof: First, visualize an array A as a concatenation of an implicit dictionary D with size 0 with the
input sequence X with n remaining elements. We increase D by inserting A[i] into D at every step i.
Using f(i) = i, from Lemma 6 where each insertion takes worst case O(

√
i lg i), the total can be done

in
∑n

i=1(
√

i lg i) ≈
∫ n
1 (

√
i lg i) = O(n1.5 lg n). With Θ(

√
n lg n) bits space, from Lemma 6, it takes

∑n
i=1

√
i ≈

∫ n
1

√
i = O(n1.5) operations.

�

Theorem 8 select(j, A) can be done adaptively in constant time with extra Θ(
√

n lg n) bits space
and it can be done in O(1) operations after n insertions for ROTATED SORT without using extra space.

Proof: Using the O(1) time function g(k) = k2+3k
2 for f(i) = i, from the proof at Lemma 4, Lk can be

found in O(1), select(j, A) can be implemented simply using A[(mk+j−g(k)) (mod f(k))+g(k)].
Once after n insertions, we only need to perform normalize, which the runtime O(n) takes the lower
term of the sort. Now we simplify the function select(j, A) = A[j − 1]. The above proves directly
to the following:

�

Corollary 9 predecessor and successor can be done in O(1) operations adaptively with
O(

√
n lg n) space if g(i) exists and it can be done in O(1) operations after n insertions for ROTATED

SORT without using extra space.

Proof: Trivial. They are both special cases of select. Alternatively, successor can be performed
even faster by checking mi and mi+1, where Li is the rotated list that select(j, S) belongs to.

�

4 Choosing the Increasing Function

The increasing function f affects the time complexity for the insertion and thus the sorting time. We
have shown in Theorem 7 that using the slowest increasing integer function, ROTATED SORT takes
worst case O(n1.5) operations.

Note that the dominant time belongs to performing easy exchange on O(
√

n) rotated lists for every
insertion. One idea to improve it is to reduce r from O(

√
n) to O(lg n) by using an exponential

growing function. However, the larger the ratio of f(i + 1)/f(i), the more expensive it is to perform
a hard exchange on the rotated list. In the case where f(i) = 2i, hard exchange takes worst case n/2
right-shifts on the last rotated list Lr−1. We need to minimize the insertion cost O(lg r + f(r)) from
Lemma 6 by choosing the appropriate increasing function.
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Theorem 10 The function f(i) = i is optimal, up to a constant factor, to control the increasing size
for the 2-levels rotated lists in ROTATED SORT.

Proof: If we make r as the x-axis and f(r) as the y-axis and we limit the maximum range of both axes
to n, and from Lemma 2, we know the area

∫ r
1 (f(x) + 1) = n. Even if we assume n does not grow,

thus we allow the change of rate of f to be 1, the optimal function is where r = f(r) =
√

n, as the
problem is equivalent to minimizing the circumference of a fixed rectangular area. With those values,
insertion takes O(lg r + f(r)) = O(

√
n) operations. Therefore, from Lemma 6, the slowest increasing

integer function f(i) = i is already close to the optimal up to a constant factor.
�

5 Multi-Level Rotated List

To reduce the number of hard and soft exchanges, we can apply the idea of rotated list divisions re-
cursively on each rotated list itself. Each sub-array L within A are further divided up recursively for l
number of times; we can see that even for the fast growing function f(i) = 2i, an array of size n will
consist of at most l = dlg ne rotated lists with exponential growing size and the maximum number of
levels l is at most lg n.

Lemma 11 insert(x, S) can be done in O(2ln
1
l ) operations by using an l-levels rotated list, showed

by Raman et al [10].

With Lemma 11, ROTATED SORT can be done in
∑n

i=1(2
li1+

1
l ) operations; we know that to min-

imize the sorting cost, l should be chosen to minimize 2ln
1
l . We can always choose the perfect l but

make the cost amortized, by performing normalization that takes O(n) operations whenever the array
grows until l is not optimal. A perfectly sorted array can be visualized as an l-levels rotated list, regard-
less of l. We can maintain the optimal value of l by normalization, with the amortized constant cost.
Therefore, the overall sorting cost can remain the same.

Corollary 12 The optimal number of levels on the multi-levels rotated list is l =
√

lg n. As 2l =

n
1
l =⇒ l = lg n

1
l =⇒ l =

√
lg n.

Theorem 13 ROTATED SORT can be done in O(2
√

lg nn
1+ 1

√

lg n ) operations.

Proof: From Lemma 11 and Corollary 12, we know that the above time bound can be achieved, amor-
tized, by doing normalzation on every 22i-th insertion. The same bound can be done deamortized
easily, simply by having (i + 1)-level rotated list for rotated lists 〈L22(i−1) , . . . , L22i〉.

�

The runtime on Theorem 13 is smaller than O(n1.5) but larger than O(n lg n) and they are all
growing in a decreasing rate with respect to n.

The advantage of INSERTION SORT is that not only it is incremental, but also adaptive, where
traditional INSERTION SORT performs exactly inv(X) + 2n − 1 data moves [5]. Knuth [8] and Cook
et al [4] showed that INSERTION SORT is best for nearly sorted sequences. The same adaptive property
can also apply for ROTATED SORT.

Lemma 14 ROTATED SORT can be done in best case O(n) operations.
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Proof: During insert, changing the worst case cost by only a constant, we perform the binary search
by searching from the last singleton element er instead of er/2. This only increases the number of com-
parison by 1 but reduces the dlg re comparisons of singleton elements to only 1. In the best situation,
no hard exchange or soft exchange is performed, making the time complexity O(n).

�

Theorem 15 ROTATED SORT can be adaptive according to the inversion of X .

Proof: Instead of optimizing for just the best case, we want to generalize it for any nearly sorted
sequence S, where the total cost is proportional to inv(X). We need to perform a sequence of expo-
nential searches of x from the tail of 〈er−1, er−2, . . . er−2k〉 until er−2k < x and er−2k+1 > x, then we
begin a binary search of x between er−2k and er−2k+1 .

�

6 The Best of Both Worlds — Rotated Library Sort

Instead of using multi-level rotated list, an alternative way to minimize the total number of soft ex-
changes and hard exchanges is to combine the concept of gaps from LIBRARY SORT with ROTATED

SORT. For every rotated list Li, we maintain an extra array Ki with the size εf(i). We now treat
Ji = 〈Ki, Li〉 as one single array that acts as a rotated list. We maintain the total number of gaps (its
total value) and the position offset of the largest element mi for Ji instead of Li. In this setting, the
gaps of Ji are always located between the smallest element and the largest element.

During insertion, if the initial rotated list Jk contains gaps, only the initial hard exchange on Jk is
performed. No soft exchanges nor hard exchange on the final rotated list Jr−1 is required. If Jk is full
before the insertion, we still need to perform soft exchanges from the rotated list Jk+1 up to the rotated
list Jr−2. However, these soft exchanges will stop at the first rotated list that contains at least one gap.
This can also be seen as an improved version of LIBRARY SORT — by clustering the gaps into r blocks
in order to find them quickly without right-shifting all the elements in between gaps.

Lemma 16 For a given input sequence of size n, the cost of all rebalances is O(n) and the amortized
rebalance cost is O(1) per insertion [2].

Similar to the LIBRARY SORT, after the 2i-th element insertion, the array A need to be rebalanced
with the cost specified in Lemma 16; but we can save the cost of normalization. i.e., If we do apply
the rotated list divisions recursively, from Theorem 13, the optimal level (i.e., l) grows after the 22i-th
element insertion. As a result, rebalancing that includes the effect of normalization will automatically
adjust the optimal recursion level. Since array rebalancing is needed regularly during element insertions
and rebalancing does have the normalization effect, the frequency of normalization is less than the
frequency of rebalancing. Note that it is possible to improve the cost of all rebalances from O(n) to
O(εr). However, this improvement will not affect the O(1) amortized rebalance cost and it will not
include the effect of normalization, we will omit its discussions here.

Lemma 17 It is possible to query the sum of all previous gaps before the rotated list Lk in constant
worst case time and updates in O(rε) worst case time, with only extra O(r lg(εf(r))) bits space.

Proof: For simplicity, we do not consider gaps after the last element. Each rotated list Li has at most
εf(i) gaps, the largest rotated list Lr has at most εf(r) gaps. The problem is identical to the problem of
partial sum with r elements with the universe {1, . . . , f(r)} that Raman et al [10] solved in the above
bounds.

�
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Lemma 18 select can be done in O(1) with extra O(
√

n lg n) space in ROTATED LIBRARY SORT.

Proof: Trivial. We perform select(j, S) similar to ROTATED SORT, but we need to add the sum of
all previous gaps to j using Lemma 17, which also takes O(1) time.

�

It is possible to avoid rebalancing on the 2i-th element insertion. Instead of performing a sequence
of soft exchanges with each soft exchange inserting a single smallest element and returning a single
largest element, we can perform the soft exchange with εf(k) elements. When Jk is full after a hard
exchange, we pop the largest δ = εf(k) elements after the hard exchange and perform the soft exchange
of δ elements on the rotated lists 〈Jk+1, . . . , Jr−2〉. δ will get smaller and eventually becomes zero. If
we assume the elements of the input sequence are randomly distributed, δ will decrease in an increasing
rate as the size of the extra arrays K increases monotonically according to the function f . Soft exchange
will then cost O(δ) operations, while the worst case cost for hard exchange remains unchanged.

Theorem 19 insert in ROTATED LIBRARY SORT can be done in amortized O(lg r + f(r)) opera-
tions.

Proof: For insert in ROTATED LIBRARY SORT, hard exchanges on Jk are unavoidable initially.
However, the larger the ε is, fewer hard exchanges on Jr−1 will be required at the end. Therefore, the
worst case sceanrio happens when insertion occurs at Jk where k = r/2. Each insertion consists of a
binary search with O(lg r) operations. The first (εf(k) − 1) insertions include a hard exchange, that
costs worst case O(f(k)) operations, because of the empty gaps. The (εf(k))-th insertion will incur
the initial hard exchange plus a soft exchange on Jk+1 that costs O(εf(k)) operations. It terminates
because the number of gaps in Jk+1 > that in Jk. Since Jk contains εf(k) gaps, the (εf(k) + 1)-th
insertion till the (2εf(k)−1)-th insertion require only O(lg r+f(k)) operations. Then the (2εf(k))-th
insertion needs to perform more soft exchanges. The difference between the numbers of soft exchanges
of the (iεf(k))-th and ((i+1)εf(k))-th insertions will increase by at most one (i.e., the difference will
be either zero or one). The difference decreases until the number of soft exchanges hit its bound
r − k. When the bound of r − k soft exchanges is reached, we need the final hard exchange with
worst case cost O(f(r)) operations. We can clearly see the pattern here, i.e., every εf(k) insertions
require O(lg r + f(k)) operations, then followed by a single insertion that requires O((r − k) + f(r))
operations. From this observation, we can approximate that the amortized cost is O(lg r + f(k) +
(r − k + f(r))/ε). So with a large enough ε, the insertion cost in the worst case sceanrio is close to
amortized O(lg r + f(k)) ≤ O(lg r + f(r)) operations, instead of O(r + f(r)) from Lemma 6, which
is clearly an improvement. �

7 Conclusions

This paper shows an alternative approach called ROTATED INSERTION SORT to solve the high time
complexity of INSERTION SORT. The approach is incremental yet adaptive, it uses less space than
GAPPED INSERTION SORT [2] and does not rely on the distribution of the input. It shows that the
ROTATED INSERTION SORT can be done in O(n1.5 lg n) time with O(w) temporary space, which is
tightly space bound; or it can be run in O(2ln1+ 1

l ) operations, using only a lower order Θ(
√

n lg n)
bits space. This paper further shows a possible combined approach called ROTATED LIBRARY SORT.

There are several problems remain open — first, which function is the best function for the RO-
TATED LIBRARY SORT to virtually divide the array? Are there any other in-place, incremental and
adaptive approaches that outperform ROTATED LIBRARY SORT? What are the time bound, space
bound and their tradeoffs between the extra space use, member, insert and select?
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