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Abstract

This report describes the design and implementation of a scheduling algorithm called
CBCS on network processors. The CBCS algorithm is a fair and efficient resource
scheduling algorithm that can fairly allocate multiple resources among contending
flows. We have implemented this algorithm on Intel’s IXP2400 network processor.
The main objectives of implementing our scheduling algorithms on a real world At-
tached Network Processor (ANP) such as Intel IXP2400 Network processor were
(1) to validate that CBCS can be implemented on a highly scalable real world pro-
grammable node or ANP for managing the CPU and bandwidth resources, (2) to
provide scheduling solutions that could be opted or used by the ANP vendors like
Intel to build and deliver efficient building block(s) (as a part of their Software
Development Kit (SDK) or development framework) for resource scheduling pur-
poses. The experimental results from IXP2400 implementation demonstrate the
effectiveness and high performance of this algorithm in real world system.
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1 Introduction

Parallel and Distributed Computing (PDC) enables sharing distributed network re-
sources for solving large-scale resource intensive problems in multiple domains such
as science, engineering, and commerce. In this paradigm, parallelism scales from a
single machine to massive systems distributed across the whole Internet. Moreover,
to provide flexibility in deploying new protocols and services, in today’s internet,
packet processing may be accomplished in the routers within the data path. To
effectively schedule resources in programmable router, there must be an effective
resource scheduling algorithm. Network processors are an attractive media for im-
plementing smart network interfaces for cluster computing applications. Several
companies have introduced powerful network processors (NPs) that can be placed
in programmable routers to execute application level tasks in the network. An NP
consists of a number of on-chip processors to carry out packet level parallel process-
ing operations. The extensive multithreading on the IXP2400 and other network
processors offers new design opportunities and challenges as well [5], [6], [7]. In-
tel’s IXP2400 PCI card is a programmable network processor that implements a
parallel processing architecture on a single chip and is designed for processing com-
plex algorithms, deep packet inspection, traffic management, and packet forwarding
tasks at high speed. It can be used for a wide range of access and edge applications
including multi-service switches, routers, broadband access devices, and wireless
infrastructure systems [9], [10], [11], [12].

Previously we proposed a fair resource scheduling algorithm for programmable
networks called CBCS (Composite Bandwidth and CPU Scheduling Algorithm).
The analysis and simulation work for CBCS could be found in [2], [1] and [3]. Later
we implemented this algorithm on Intel’s IXP2400 Network processor. This report
provides an overview of the implementation hardware and software and presents the
details of the implementation and experimental works that we have carried out. We
also discuss the challenges faced during implementations and present the schedulers
implementation architecture and experimental results.

We have developed a data plane application for IXP2400 network processor and
have implemented the CBCS scheduler on the fast path processing i.e. on the micro-
engines. We used microengine C for developing the code. We have also implemented
separate CPU and bandwidth schedulers (based on DRR) on the microengines in
order to compare experimental results of CBCS with the separate schedulers respec-
tively.

We have performed extensive experiments and have collected results by running
the compiled microengine codes against the Workbench Transactor. The work-
bench’s port logging facilities were used to log the packets received and transmitted
through the incoming and out going ports and the log files generated by the port log-
ger were used by another tool (a custom Win32 application which we have developed
for this purpose) to generate delay results.

The rest of the document is organized as follows: Section 2 briefly describes
the implementation hardware and software. Section 3 presents the implementation
challenges. Section 4 presents the details of the implementation work. Section 5
presents the experimental results and Section 6 concludes.

1



2 Implementation Hardware and Software

The implementation platform consists of a dual boot workstation, an IXP2400 PCI
card, and Intel IXA (Internet Exchange Architecture) 3.1 SDK and framework.
IXA 3.1 framework also includes a developer workbench or Integrated Development
Environment (IDE). The development workstation is a Linux workstation configured
to allow the use of Windows 2000 hosted tools. This functionality is enabled by the
use of VMware (a software that allows PCs to support multiple operating systems
simultaneously) to provide a virtual machine environment. The VMware allows
running the IXA SDK developers Workbench under Microsoft Windows 2000 while
running Linux 7.3 as the host operating system. The workstation has Pentium 4,
1.5 GHZ CPU and 512 MB of RAM. IXA 3.1 SDK and framework provide the IXP
API libraries and some application building blocks that can be used for developing
applications for IXP 2400 network processor.

3 Implementation Challenges

Our objective was to implement the schedulers on the fast-path i.e., on the mi-
croengines. We discovered problems and limitations with some of the application
building blocks as provided in the SDK and had to overcome the problems. This
section describes the challenges we faced and also describes the sequence of tasks
we carried out in order to implementing the CBCS scheduler on the IXP 2400 mi-
croengines.

3.1 IXA SDK Applications and Incompatibility with IXA Educa-
tion Platform

The IXA SDK 3.1 includes some example application codes that demonstrate net-
work processor features and data flows. However, all the applications provided in
the SDK are designed for IXP Advanced Development platform (which contains 2
separate IXP boards for handling packets in ingress and egress sides) and cannot be
directly used to jump-start customer application development on an IXA Education
platform which contains a single IXP2400 processor attached to Linux 7.3 host on
a dual boot machine.

For example, figure 1 shows the software components in an Ethernet IPv4 for-
warding application as given in the SDK example code for IXP2400 Advanced De-
velopment Platform. In this example, two half-duplex IXP2400 processors are used
to implement an Ethernet line card that interfaces to a CSIX switch fabric. Figure 1
depicts the high-level design overview and shows the different software components
used to build this application. The figure focuses only on the fast path or micro-
engine components of the design the application. The description of the XScale
Core Components for this application can be found in IXA Portability Framework
Developer’s Manual.

As shown in figure 1, the ingress IXP2400 receives Ethernet frames that carry
IPv4 datagrams. The frames are assembled into IPv4 packets and the Layer-2
(Ethernet) headers are removed. Based on the IPv4 header, a Longest Prefix Match
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Figure 1: Ethernet IPV4 forwarding application in IXA SDK 3.1.

(LPM) lookup is performed and the packets are segmented into CSIX C-Frames
and transmitted to the CSIX fabric. The result of the LPM lookup determines
which IXP2400 connected to the fabric receives the packet, and which port on that
IXP2400 the packet is transmitted on.

The egress IXP2400 receives CSIX C-Frames from the fabric and reassembles
these into IPv4 datagrams. The Layer-2 (Ethernet) headers are added and the
packets are transmitted over the appropriate port. The driver microblocks (Re-
ceive, Transmit, Scheduler and QM) run on different microengines from the packet
processing code. In this design, each driver block occupies an entire microengine.
The packet processing blocks on the ingress IXP2400 include the IPv4 Forwarder
and the Ethernet decapsulation/classify microblock. There are four microengines
that run in parallel and execute the packet processing code. On the egress side,
the only packet processing code is the Ethernet Encapsulation/ARP block, which
runs on a single microengine. The microengines communicates with each other via
messages sent through scratch ring (SR) and next neighbor ring (NNR). The queue
managers and schedulers implemented in the ingress and egress sides uses different
queue manager and scheduler building blocks. Cell based queue manager uses c-
frames for enqueuing and de-queuing whereas the packet based queue manager uses
an entire packet for these purposes.

3.2 Building an IPv4 Application for IXA Education Platform

As mentioned earlier, the applications (such as the IPv4 forwarding application de-
scribed above) designed for IXP Advanced development platform cannot be directly
used for our development platform as it has only one IXP board. Instead of separate
ingress and egress applications for the IPV4 forwarding application, our application
is a single application consisting of modules for Packet Rx, Processing, Packet Tx,
Queue Manager, and the Scheduler. Also the Ethernet layer 2 encapsulation is
included in the packet-processing block. We used all the 8 microengines for the
application as depicted in the figure. The reconfigurations were performed through
some new compiler switches so that the updated building blocks do not affect the
other SDK applications. Also we had to create few new scratchpad rings for the
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Figure 2: Developed ethernet IPV4 forwarding application.

communications. We used this application as a starter application for our further
development and implementation tasks.

3.3 Problems Encountered with SDK 3.1 Building Blocks

Problems with Scheduler and Queue Manager:
Schedulers and Queue Manger are designed to run on separate microengines
and the scheduler implements a DRR algorithm. During a DRR round, the
scheduler schedules a packet every beat (88 cycles). This means that for large
packets, the scheduler may be running faster than the transmit block can han-
dle. After dequeuing a packet, the queue manager is expected to send the
packet size to the scheduler so that the scheduler can use this delayed infor-
mation to adjust the available credit. This design of the queue manager and
schedulers has the following limitations:
1. The scheduler does not have any information regarding the queues and
their depth and packet size during issuing a dequeue command to the queue
manager and therefore it will be limited to implementing any efficient schedul-
ing algorithm (e.g., even a simple DRR can not be implemented in real sense).
2. Even if the scheduler is extended to read the queue information, the syn-
chronisation to protect the data may make the design inefficient compared to
implementing scheduler and queue manager within a single microengine.
The implemented code of the packet-based queue manager and the scheduler
building blocks in the IXA SDK 3.1 does not reflect or follow the design of
the packet based queue manager and scheduler as specified in IXA SDK 3.1
Building Block design document. We noticed the following problems:

• The scheduler does not use the packet size at all that is supposed to come
from the queue manager. Which means it is not doing any round robin
based on packet size.

• Queue manager does not send the packet size to the scheduler for every
valid packet it dequeued, rather it sends the information to the scheduler
only if it was a transition i.e., when a queue becomes empty during a
dequeue operation.

Problem with Packet Tx Block:
The packet transmission driver block has problem with transmitting packets
with size over 127 bytes. We have experimented with larger packet size within
the Developer Workbench and found that the logged packets (using the port
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logging option on the transmit port) contain some invalid trailing data (show-
ing a stream of 0x5a5a5a5a) after each packet and transmission gets slower
over a longer period of time.

3.4 CPU scheduling issues

Following are the limitations of the CPU scheduler:

• No building blocks are provided for CPU scheduling purposes.

• We found through experiments that measured CPU time consumed for pro-
cessing a packet of the same size and for same processing task (e.g. IPv4
forwarding) varies in different executions. In our experiments the CPU re-
quirement for IPv4 forwarding varied from 130 ns to 223 ns microengine cy-
cles (where microengine clock frequency is 600 MHZ). The results support the
case for applying a prediction algorithm for estimating CPU requirements for
a packet within a CPU scheduler.

4 Implementations of CBCS on IXP2400

This section presents implementation details of CBCS on IXP2400. We have devel-
oped a data plane application for IXP2400 network processor and have implemented
both the CBCS and also two sets of separate CPU and bandwidth schedulers (based
on DRR) on the fast path processing i.e. on the microengines.

4.1 CBCS Implementation Architecture

We have implemented the CBCS scheduler on a single microengine, because it will
not be efficient to run the enqueue and dequeue method of the same scheduler
in different microengines. The implementation architecture of the schedulers is
shown in Figure 3. The scheduler is implemented before the packet-processing block.
The packet Rx microengine receives the packets and sends an enqueue message to
the scheduler via scratchpad ring 1(SR-1). The scheduler microengine continually
reads the enqueue request from SR-1, estimates the CPU requirements of the packet
using the SES estimations technique, and enqueues the packet info in the SRAM
queue. After dequeuing a packet, the scheduler sends a message to the processor
microengines via a scratchpad ring (SR-2). Packet processing code runs on four
microengines and all the microengines read the processing requests from SR-2 and
process the packets. After processing the packet, the packet-processing microengines
send a message specifying the CPU consumed and the flow id to the scheduler
via another scratchpad ring (SR-3). After processing the packet, packet processor
microengines send a transmission message to the transmitter microengine via a
scratchpad ring (SR-4).

4.2 Separate CPU and Bandwidth schedulers

As mentioned earlier, we have also implemented a set of separate DRR schedulers
for scheduling CPU and bandwidth separately on the IXP2400 processor in order to
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Figure 3: CBCS implementation architecture.
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Figure 4: Separate CPU and Bandwidth scheduler implementation architecture.

evaluate the performance of the CBCS scheduler compared to using separate CPU
and bandwidth schedulers. Figure 4 shows the implementation architecture of the
separate schedulers.

The messages that pass through the SR-1, SR-2, and SR-3 are same as that of
Figure 7.12. Here, after processing the packet, the processor microengines send an
enqueue request to the bandwidth scheduler via SR-4. After dequeuing a packet, the
bandwidth scheduler sends a transmission message to the Packet TX microengine
via SR-5.

4.3 Data Structures and Inter-microengines Messages

The main data structures for CBCS implementations and the format of the inter-
microengine messages are briefly described in this section. As mentioned in the
earlier section, for each packet received, packet data are kept in DRAM and packet
metadata (i.e., information about the packet) is kept in the SRAM. The packet
metadata structure has 8 long word members. IXP library provides macros and
functions called dispatch loop functions to read packet metadata from SRAM and
to write back the metadata into the SRAM. A dispatch loop combines microblocks
on a microengine and implements the data flow between them. The dispatch loop
also caches commonly used variables in registers or local memory. These variables
can be accessed by microblocks using the dispatch loop macros and functions. We
have used dispatch loop functions to write some data like total resource requirement
for a packet (for CBCS scheduler) into a member of the packet meta data in the
SRAM during packet enqueue operation and to retrieve the data back from the
SRAM during packet dequeue operation.

Dispatch Loop / Packet Buffer Metadata Structure
This data structure defines the metadata for the packet buffers. The data
fields contained in its 8 long words (LW) are shown in table 1.

6



Table 1: Packet buffer meta data structure.
LW Bits Size Data Field Description
0 31:0 32 bufferNext Buffer handle for the next buffer in the chain.

Refer to table 2 for the buffer handle data
structure.

1 31:16 16 bufferSize The amount of data currently in the buffer.
1 15:0 16 offset The offset in DRAM where the data begins.
2 31:16 16 packetSize The amount of data in the buffer chain.
2 15:12 4 freeListId The free list to which this buffer belongs.
2 11:8 4 rxStat The receive status.
2 7:0 8 headerType The header type-IPv4, IPv6, and so on.
3 31:16 16 inputPort The input port on which this packet was

received.
3 15:0 16 outputPort The output port on which this packet is to be

transmitted.
4 31:16 16 nextHopId The next hop ID.
4 15:8 8 fabricPort The blade port.
4 7:4 4 reserved Reserved for future use.
4 3:0 4 nhidType The next hop ID type.
5 31:28 4 colorId -
5 27:24 4 reserved1 -
5 23:0 24 flowId The flow ID.
6 31:16 16 classId The class ID.
6 15:0 16 reserved2 Reserved for future use.
7 31:0 32 packetNext The next packet in the chain.

Table 2: Buffer handle data structure.
LW Bits Size Data Field Description
0 31:31 1 eop End of packet flag.
0 30:30 1 sop Start of packet flag.
0 29:24 6 seg count Segment count.
0 23:0 24 lw offset Long word offset of buffer address in the

SRAM.

In our implementations, we used the 7th long word (i.e., the class id and
reserved 2) field to store the scheduler data.

Packet Rx to CBCS Scheduler Message Structure
In our implementations, the enqueue message that the packet Rx microengine
sends to the CBCS scheduler microengine via SR-1 contains three long words
of data as shown in table 3.

It may be mentioned that Packet Rx to CPU scheduler message structure (in
figure 4) also uses this data structure.

CBCS Scheduler to Packet Processor Message Structure
The CBCS scheduler to the packet processor messages (via SR-2) contains 2
long words of data as shown in table 4. The packet processor microengines
cache (i.e., store) the first long word data in local memory and uses the same
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Table 3: CBCS enqueue message structure
LW Bits Size Data Field Description
0 31:0 32 sopHandle Start of packet buffer handle, which uses

the data structure defined in table 2.
1 31:0 32 eopHandle End of packet buffer handle, which uses

the data structure defined in table 2
2 31:0 32 flow id Flow number or flow id.

Table 4: CBCS scheduler to packet processor message structure.
LW Bits Size Data Field Description
0 31:31 1 valid Valid bit set to 1 for a valid message.
0 30:28 3 reserved Reserved for future usage.
0 27:24 4 portNumber Port Number (for transmitter).
0 23:0 24 sopBufferOffset Start of packet buffer offset in long words.
1 31:0 32 flow id Flow number or flow id.

data to generate transmit message to the packet transmitter microengine. Also
the sopBufferOffset field value is used to access the packet metadata from the
SRAM memory using the dispatch loop functions. The second long word value
is used later as a part of Packet Processor to Scheduler feedback message.

Note that CPU scheduler to packet processor message structure (in Figure 4)
also uses this data structure.

Packet Processor to CBCS Scheduler Feedback Message Structure
After processing of a packet is completed, the processor microengine sends a
feedback message to the scheduler (via SR-3) that contains two long words
of data as shown in table 5. Note that packet processor to CPU scheduler
message structure (in Figure 4) also uses this data structure.

Packet Processor to Packet Tx Message Structure
Also in our implementations (Figure 3), after processing of a packet is com-
pleted, the processor microengine sends a packet transmission message to the
Packet Tx microengine (via SR-4) that contain just one long word of data as
shown in table 6.

Also in the separate scheduler implementations (Figure 7.13), the bandwidth
scheduler uses this message structure to generate the transmission messages
that are sent to the packet Tx microengine via SR-5.

Table 5: Packet processor to scheduler feedback message structure
LW Bits Size Data Field Description
0 31:0 32 usedCpuCycles Number of CPU cycles used

for processing the packet.
1 31:0 32 flow id Flow number or flow id
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Table 6: Packet processor to packet Tx message structure.
LW Bits Size Data Field Description
0 31:31 1 valid Valid bit set to 1 for the transmitter to consider

the message as a valid transmission message.
0 30:28 3 reserved Reserved for future usage.
0 27:24 4 portNumber Port Number (for transmitter).
0 23:0 24 sopBufferOffset Start of packet buffer offset in long words.

It may be noted that in separate scheduler implementations (Figure 4), the
processor block sends another enqueue message to the bandwidth scheduler
block where the message contains two long words. The first long word is the
start of packet buffer handle and the second long word is the flow id.

4.4 CBCS Implementation Details

We have used microengine local memory for keeping CBCS scheduler variable such
as Quantum (or credit increment), packet counts for the flows or queues, credit
counter per flow, estimated CPU requirements (per packet per flow) etc. We used
the local memory as it’s the fastest to access and it was enough to accommodate
our variables for our experiments (with 16 flows). However, SRAM can be used for
allocating the variables when number of flows is extremely high.

The CBCS scheduler is implemented using 4 threads e.g., initialization thread,
enqueue thread, dequeue thread, and CPU prediction thread. After initialization is
completed, the initialization thread sends signals to the enqueue, dequeue, and CPU
prediction threads to begin their tasks as they wait on the initialization thread’s
completion signal.

Initialization Thread
Initialization thread sets the SRAM channel CSR to indicate that packet based
enqueue and dequeue would be done, i.e., we enqueue and dequeue a full packet
every time. The thread also initializes SRAM queue descriptors (and queue
array) and the scheduler variables (e.g., it initialises the value of quantum,
credit counter for the flows, estimated CPU requirements per flow etc). After
initializing the scheduler variables, the thread terminates itself so that the
microengine thread arbiter excludes this thread from its list.

Enqueue Thread
Figure 5 shows a simplified flow diagram of works performed within the CBCS
enqueue thread. The enqueue thread waits for the signal from the initialization
thread before starting its infinite loop. In each turn, the thread calls an SRAM
API (e.g. scratch get ring) to read an enqueue message from SR-1 and specifies
a signal number (as a parameter to the API call). The thread then swaps out
to allow other threads to run as the SRAM read operation would take some
time. After receiving the control back, the thread checks the presence of the
signal (i.e., checks whether the enqueue message read operation is completed
or not. Once the enqueue message is read, it checks the validity of the enqueue
message as there may not be any message in the ring.
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Figure 5: Flow diagram of the CBCS enqueue thread.

If the thread receives an invalid message, it does context swap and then goes
for the next turn. As shown earlier in table 1, the third LW of packet metadata
contains the packet size field. So, if the enqueue message is a valid message,
the thread reads the third LW of the packet metadata from the SRAM using
another API (e.g. sram read) and extracts the packet size for calculating the
total resource requirement (i.e. both the CPU and bandwidth) for the packet.
The CPU requirement data is taken from the global variable (per flow), which
is constantly updated by the CPU prediction thread. The calculated total
resource requirement is used by the dequeue thread for scheduling purposes,
and therefore it needs to be stored. We decided to use 7th LW of the packet
metadata to store this scheduler data.

The enqueue thread calls an SRAM API (e.g., sram write) to write back the
resource requirement data to the SRAM and specifies a signal number. While
the write operation is in progress, the thread calls another API to enqueue
the packet info in the SRAM queue corresponding to the flow-id. It may be
mentioned that the enqueue is done using the packetNext pointer (calculated
using the sopBufHandle member of the enqueue message). The thread incre-
ments the packet count for the queue and waits for the SRAM write operation
to be completed. The thread then does a context swap and goes for the next
round.

RR Calculations
We calculate the total resource requirement (RR) for the incoming packets in
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Figure 6: Flow diagram of the CBCS dequeue thread.

nano seconds (ns) using the following equation.

RR= CPU Cost of the packet (ns) + Transmission cost of the packet (ns)
= CPU cost (ns) per CPU Cycle ∗ Estimated CPU Cycles Requirement +
Transmission cost per byte (ns) ∗ Packet size in Bytes
It should be mentioned that, each microengine has clock frequency of 600 MHZ
i.e., 600 millions cycles per sec. Therefore, CPU cost (ns) per CPUCycle =
5
3ns. For a 100 Mbits network interface, the transmission cost per byte would
be = 80 ns.
Since the microengines do not support the floating-point calculations, the CPU
cost calculation for a packet is approximated, where the calculation error is
less than or equal to 2

3 ns. This calculation error or approximation is quite
acceptable as it is tiny compare to the value of RR and it happens for some
of the packets for all flows.

Dequeue Thread
Figure 6 shows the simplified flow diagram of the activities performed within
the CBCS dequeue thread. As shown in the figure, dequeue thread waits for
signal from initialization thread before starting its infinite loop. In each CBCS
round, the algorithm serves all the active or backlogged flows (i.e., the flows
having one or more packets in the queue). So for each flow i, the algorithm
checks whether the Queue Count i.e., QC[i] (stored in global variables) is
positive or not. If QC[i] is positive, it adds quantum to the value of the
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Credit Counter of the flow i (i.e. CC[i]), otherwise it resets the CC[i] to 0
and tries to serve the next active flow.

While serving flow I within each CBCS round, the algorithm checks whether
both the CC[i] and the QC[i] are positive or not. If either of them is 0 or
negative, the algorithm does a context swap (so that other threads get a chance
to run) and then tries to serve the next active flow. Otherwise, the algorithm
calls an SRAM API (e.g., sram dequeue) to dequeue a packet info from the
SRAM queue corresponding to flow i and it waits for the dequeue completion
signal. After the dequeue, it decrements the queue count for flow i and then
it checks the validity of the dequeued buffer handle (i.e., the packetNext ptr
as enqueued in the enqueue operation). If the buffer handle is invalid, it does
a context swap and then tries to serve the next packet from the same flow i.

For a valid dequeue of a packet, the code calls another SRAM API to read
the resource requirement (RR, which is the CPU requirement plus bandwidth
requirement in nano seconds) from the 7th LW of the packet metadata in
SRAM (as it was stored there during enqueue operation) and waits for the
read operation to complete. On completion of the SRAM read, the system
signals the thread and the code then decrements the CC[i] by the value of
RR. The thread then generates a scheduler-to-processor message using the
data structure defined in table 4 and enqueues the message to the scratchpad
ring 2 (SR-2). However, before enqueuing the message in SR-2, it checks the
fullness of the ring using IXP library API and waits if the ring is full. After
sending the message to the processor, the thread swaps out and tries to serve
the next packet from the same flow i.

CPU Prediction Thread
This thread waits for the signal from the initialization thread before it starts
its infinite loop. In each turn, the thread calls an SRAM API to read the
processor-to-scheduler message (as defined in table 5) from scratchpad ring 3
(SR-3) and specifies a signal number to wait on and then swaps out so that
other threads can work while it is waiting for the read to complete.

After reading the message, the thread validates the message and if it’s a valid
message, then it updates the estimated CPU requirement of the specified
flow using SES estimation technique. The estimated CPU requirements (per
packet) per flow are kept in global variables. Again, due to unavailability of
the floating-point calculations, the estimations are approximated and the ap-
proximations or error of calculation is less than or equal to cycles while using
alpha value of 0.5 for SES equation.

5 Experiments and Results

we have tested the performance of the CBCS scheduler against the performance of
the implemented separate schedulers. The experiments were performed by running
the code on IXA workbench’s ”Cycle Accurate” transactor. The port logging options
were turned on to log the packets received and transmitted at the media interfaces.
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Table 7: CPU requirements and packet sizes for the experimental traffic flows.
Flow CPU Req. Bandwidth CPU Req. Packet

Number Category Req. Category (Cycles) Size (Bytes)
1, 5, 9, 13 High Low 2400 - 3600 42 - 48
2, 6, 10, 14 Low High 78 - 134 120 - 127

7, 16 Medium Medium 1200 - 1800 80 - 88
3, 8, 12 Low Low 78 - 134 42 - 48
4, 11, 15 High High 2400 - 3600 120 - 127

The logs files produced were used by a custom software tool (that we have also
developed under this project) to analyze the packet logs and produce the delay
results for the individual flows.

5.1 Design of experiments

We used 16 flows with varying packet sizes and different CPU requirements. Four
of the flows (e.g., flow 2, 6, 10, and, 14) required IPv4 forwarding and other flows
required some other processing code. Table 7 shows the CPU requirements and
packet sizes for each individual flows.

For all the experiments, receive and transmission rates on the media interfaces
were set to 50 Mbps. For system settings, workbench simulator’s default settings
(as shown in Figure 7) were used.

Figure 7: Experimental system configurations.

Each microengine has a clock frequency of 600 MHz. The SRAM clock frequency
was set to 200 MHz and DRAM frequency was set to 150 MHz. The PLL output
frequency used was 1200MHZ. The receive and transmission rates on the media
interfaces were set to 50 Mbps. We created 16 data stream files containing Ethernet
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frames and used the Workbench Simulator’s Network traffic assignment functionality
(as shown in Figure 8) to inject the data frames during experiments.

Figure 8: Assigning experimental data streams using workbench simulator.

5.2 Experimental Results: CBCS vs Separate DRR schedulers

Experiments were performed and packet logs were collected while using both the
CBCS scheduler and the separate DRR schedulers for 16 flows. Then we used our
tool to analyze the logs and produce the delay results. The delay graphs and the
delay summaries for each type of packet flow are shown below. The results show
that the CBCS provided superior delay performance. We could not provide any
other kind of performance comparison because of the limitations of the workbench
simulator (which only provides the input and output port logging options).

Table 8: Delay statistics for flow with high CPU and high BW requirements.
Scheduler Max. Avg. Std. Dev.

CBCS 1.057624 0.664084 0.149557
Sep. DRR 1.498264 0.915469 0.194695

Table 9: Delay statistics for flow with high CPU and how BW requirements.
Scheduler Max. Avg. Std. Dev.

CBCS 1.109144 0.708829 0.144204
Sep. DRR 1.315864 0.888282 0.187556

Figures 9– 13 show the delays measured for data flows using CBCS and DRR.
The maximum and average delays (measured in ms) for these flows are shown in
table 8 – 12. Delay results show that CBCS achieved superior delay guarantees
compared to DRR (when used individually for CPU and bandwidth scheduling) for
all the flows.

We run our experiments for five scenarios (as shown in 7). For all the cases
the maximum is worse for separate DRR than CBCS. The results show that using
CBCS, the worst case delay is reduced by 29% for flows with high CPU and high BW,
15% for high CPU and low BW scenario, 26% for low CPU and high BW scenario,
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Table 10: Delay statistics for flow with low CPU and high BW requirements.
Scheduler Max. Avg. Std. Dev.

CBCS 0.956184 0.598476 0.13783
Sep. DRR 1.283544 0.823126 0.205549

Table 11: Delay statistics for flow with low CPU and low BW requirements.
Scheduler Max. Avg. Std. Dev.

CBCS 0.996664 0.58697 0.142346
Sep. DRR 1.098904 0.771186 0.19177

9% for low CPU and low BW scenario, and 15% for data flow with medium CPU
and medium BW requirement compared to the delays achieved using separate DRR.
Also the average delay was reduced by 28% for flows with high CPU and high BW,
21% for high CPU and low BW scenario, 28% for low CPU and high BW scenario,
25% for low CPU and low BW scenario, and 19% for data flow with medium CPU
and medium BW requirement compared to the delays achieved using DRR.

Table 8 – 12 show the standard deviation of the delays measured. It shows
that using CBCS, standard deviation is reduced by 25% for flows with high CPU
and high BW, 22% for high CPU and low BW scenario, 35% for low CPU and high
BW scenario, 26% for low CPU and low BW scenario, and 35% for data flow with
medium CPU and medium BW requirement compared to the delays achieved using
DRR.

The delay graphs (Figure 9 - 13) show that CBCS provides much more consistent
delay guarantees compared to that achieved using separate DRR for CPU and BW
scheduling.

6 Conclusion

In addition to measuring the performance of the developed CBCS scheduling algo-
rithms through extensive simulations on Berkley NS2 network simulator, we have
also implemented the scheduling algorithms on a real world Attached Network Pro-
cessor (ANP) such as Intel IXP2400 Network processor. This report presented our
implementation work.
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