
Synthesis of Distributed Systems from
Knowledge-Based Specifications1

UNSW-CSE-TR-0504

Ron van der Meyden
School of Computer Science and Engineering,

University of New South Wales &
National ICT Australia
meyden@nicta.com.au

Thomas Wilke
Institut für Informatik und Praktische Mathematik

Christian-Albrechts-Universität zu Kiel
wilke@ti.informatik.uni-kiel.de

February 9, 2005

1Work supported by a grant from the Australian Research Council. National
ICT Australia is funded through the Australian Government’s Backing Australia’s
Ability initiative, in part through the Australian Research Council.



Abstract

We consider the problem of synthesizing protocols in a distributed setting
satisfying specifications phrased in the logic of linear time and knowledge.
In general, synthesis in distributed settings is undecidable already for linear-
time temporal logic specifications, but there exist special cases in which syn-
thesis from linear-time temporal logic specifications is known to be decidable.
On the basis of these results and a result on the decidability of synthesis of
temporal and knowledge specifications in systems with a single agent, van der
Meyden and Vardi [CONCUR 96] conjectured that synthesis of temporal and
knowledge specifications would be decidable in two classes of environments:
hierarchical environments, in which each agent in a linear sequence observes
at least as much as the preceding agents, and broadcast environments, in
which all communication is constrained to be by synchronous broadcast. We
show that this conjecture is true in the case of broadcast environments, but
false in the case of even a very simple type of hierarchical environment, where
only two agents are involved, one of which observes every aspect of the sys-
tem state and one of which observes nothing of it. Nevertheless, synthesis
from linear-time logic specifications is decidable in hierarchical environments.
Moreover, for specifications that are positive in the knowledge modalities, the
synthesis problem can be reduced to the same problem for the logic of linear
time. We use these facts to conclude the decidability in hierarchical systems
of a property closely related to nondeducibility on strategies, a notion that
has been studied in computer security.



Contents

1 Introduction 1

2 Basic definitions and main result 4
2.1 The logic of linear time and knowledge . . . . . . . . . . . . . 4
2.2 Systems with perfect recall in finite-state environments . . . . 5
2.3 Hierarchical and broadcast environments . . . . . . . . . . . . 6
2.4 Protocols and realizability . . . . . . . . . . . . . . . . . . . . 7
2.5 A security example . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Broadcast environments 10

4 Hierarchical environments 14
4.1 Temporal formulas . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Temporal and knowledge formulas . . . . . . . . . . . . . . . . 18

4.2.1 Lossy counter machines . . . . . . . . . . . . . . . . . . 18
4.2.2 The reduction . . . . . . . . . . . . . . . . . . . . . . . 20

5 A reduction for positive formulas 25
5.1 The reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 The correctness proof . . . . . . . . . . . . . . . . . . . . . . . 26

5.2.1 From E to E ′ . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.2 From E ′ to E . . . . . . . . . . . . . . . . . . . . . . . 27

6 Conclusion 27

1 Introduction

In program synthesis, one starts with a specification of a system and at-
tempts to derive a program that implements this specification. This problem
is particularly challenging in the context of open systems, which are required
to respond appropriately to a sequence of inputs provided by an environ-
ment that is not under the full control of the program to be synthesized.
A specification of an open system is said to be realizable if there exists a
protocol with the property that the specification is satisfied, whatever the
behaviour of the environment. A problem that has received significant at-
tention is the synthesis of open systems from temporal logic specifications
[Ant95, AE98, AE01, AAE04, AVW03, EC82, FF90, MW84, KV97, PR89a,

1



PR89b, Var95, WTD91, Wal04]. It has been shown that, under certain cir-
cumstances, automata-theoretic ideas can be applied to automate this syn-
thesis process.

Often, designers of concurrent systems reason informally but explicitly
not just about time, but also about the uncertainty that systems components
have about the global state of the system. One finds statements such as “if
process X knows that the transaction will be aborted, it should rollback
its local contribution and terminate immediately.” Such assertions can be
made formal in the logic of knowledge [FHMV95]. A variety of distributed
protocols have been studied using the logic of knowledge, and it has been
argued that such an approach leads to a more perspicuous presentation of
the design, and to implementations in which components are optimal in their
use of information—see [FHMV95] for many citations.

The logic of knowledge also provides expressive capabilities useful for the
specification of information flow in security protocols [HO03, MS04]. For
example, the Dining Cryptographers protocol [Cha88] provides a mechanism
for a sender to communicate a message anonymously. This can be specified
in the logic of knowledge by the requirement that all parties come to know a
fact p, but all agents except the sender should not come to know the identity
of the sender [MS04].

A common assumption in both types of applications of the logic of knowl-
edge is that agents have perfect recall of their observations, i.e., that they keep
a complete record of all events they have observed, and determine what they
know using this complete record. This assumption is of particular relevance
both when optimal use of information acquired is a design concern, and when
we wish to determine the capabilities of the most powerful possible adversary
in a security analysis.

Realizability of specifications in the logic of knowledge and linear time
under the assumption of perfect recall has been studied by van der Meyden
and Vardi [MV98]. They showed that the realizability problem is decidable
for such specifications in the context of an open system involving a single
agent.

In general, realizability for specifications in the logic of knowledge and
time is undecidable when there is more than one agent, because the problem
is already undecidable even for two-agent systems and specifications involving
only linear-time temporal operators, by results of Pnueli and Rosner [PR90].
However, a number of cases have been identified for temporal specifications
where multi-agent temporal specifications are decidable. Pnueli and Ros-
ner identify a class of architectures for process communication as yielding
a decidable case for synthesis from linear-time temporal logic specification.
One particular example in this class is pipelines, in which communication is

2



constrained to occur only along a chain of processes. The characterization of
the decidable cases has recently been refined [Mad01].

These positive results for realizability from temporal specifications led
van der Meyden and Vardi to conjecture that similar results could be found
for specifications in the logic of knowledge and time. In particular, they
proposed that hierarchical systems and broadcast systems might be cases
where realizability of specifications in the logic of knowledge and linear time
could be found to be decidable. Hierarchical systems are systems in which
agents can be linearly ordered in such a way that each agent in the sequence
observes (hence knows) at least as much as the preceding agents. An example
of an hierarchical system is a system of three agents with security clearances
to read unclassified, secret and top-secret documents, respectively (where a
security clearance implies a capability to read documents at or below the
security level.)1

Broadcast systems are systems in which agents maintain a private state,
information about which they can communicate to other agents, but only
by a broadcast to all other agents, which is synchronous in the sense that
all agents receive a broadcast at the same time. It has been shown in other
contexts that these assumptions lead to lowered complexity of a variety of
problems in the logic of knowledge [EvdMS03, Mey96], so the conjecture that
they might make realizability decidable is reasonable.

We provide in this paper a complete resolution of van der Meyden and
Vardi’s conjectures. In the case of broadcast systems, we show that the con-
jecture is true. However, the conjecture concerning hierarchical systems is
false: realizability for specifications in the logic of knowledge and linear time
is undecidable in hierarchical systems with two or more agents. On the pos-
itive side, however, we identify a special class of formulas: those in which
the knowledge operators have only positive occurrences, and show that for
such formulas the realizability problem can be reduced to a problem of re-
alizability of specifications in linear-time temporal logic. This result enables
known cases of decidable realizability problems for linear-time temporal logic
to be transferred to give decidable cases of realizability for the logic of knowl-
edge and linear time. In particular, we show that realizability of linear-time
temporal logic formulas is decidable in hierarchical systems, so the reduction
yields the decidability of realizability of positive specifications in the logic
of linear time and knowledge in hierarchical systems. As an application of
this result, we establish the decidability of a property closely related to the

1This definition differs from the definition of hierarchical system shown by Pnueli and
Rosner to yield a decidable class of architectures. It resembles their pipelines, but has a
faster flow of information since visibility is transitive.

3



notion of “nondeducibility on strategies” [Wit90] from the computer security
literature.

2 Basic definitions and main result

In this section we lay out the definition of the synthesis problem we study,
provide an example that illustrates how it may express the type of informa-
tion flow property that has been studied in the computer security literature,
and state the main results of the paper.

2.1 The logic of linear time and knowledge

We fix a finite set Prop of propositional variables and a finite number n of
agents, which are simply numbered 1 through n.

The syntax of the logic of linear time and knowledge is defined as follows.
It is built from the elements of Prop using boolean connectives, the usual
temporal operators such as X, G, U, . . . , and the unary operators Ki for
i ∈ [n]. For each i ∈ [n], the operator Li is also allowed; it is the dual of Ki,
that is, it is an abbreviation for ¬Ki¬. For later use, we also mention that
we use R to denote the dual of U, that is, ϕ R ψ stands for ¬(¬ϕ U ¬ψ).

An interpreted system is a tuple

I = (R, π, {∼i}i∈[n]) (1)

where

• R is a set of so-called runs,

• π : R×N → 2Prop is a function which assigns to each point (r,m) of a
run the propositions that hold true in it, and

• {∼i}i∈[n] is a family of indistinguishability relations on the points of all
runs.

Each indistinguishability relation ∼i is required to be an equivalence relation;
the relation ∼i relates the points that are indistinguishable by agent i.

Given a point (r,m) of an interpreted system I, we define what it means
for a formula ϕ in the logic of linear time and knowledge to hold at this point,
denoted I, (r,m) |= ϕ:

• I, (r,m) |= p if p ∈ π((r,m)),

• I, (r,m) |= Xψ if I, (r,m+ 1) |= ψ,

4



• I, (r,m) |= ψ U χ if there exists m′ ≥ m such that I, (r, l) |= ψ for all l
with m ≤ l < m′ and I, (r,m′) |= χ,

• I, (r,m) |= Kiψ if I, (r′,m′) |= ψ for all (r′,m′) with (r,m) ∼i (r′,m′).

The boolean connectives are dealt with as usual.
We write I, r |= ϕ if I, (r, 0) |= ϕ and I |= ϕ if I, r |= ϕ for all runs r of

I.

2.2 Systems with perfect recall in finite-state environ-
ments

A signature of size n is a family {ACTi}i∈{e,1,...,n} where each set ACTi is a
finite, non-empty set of actions for the environment e or agent i ∈ [n]. The
set of joint actions of such a signature is defined by ACT = ACTe×ACT1×
· · · × ACTn. When a denotes a joint action, we write ai for the action of
agent i in a.

An environment over a signature as just described is a tuple

E = (S, I, Pe, τ, {Oi}i∈[n],Prop, π) (2)

where

• S is a finite set of states,

• I ⊆ S is the set of initial states,

• Pe : S → 2ACTe is the protocol of the environment, which says which
actions can be performed by the environment in a given state,

• τ : ACT → (S → S) is the transition function, which, for every joint
action a specifies a transition function τ(a),

• {Oi}i∈[n] is a family of observation functions Oi : S → O for some set
O of observations,

• P is a finite set of propositions, and

• πe : S → 2Prop is an interpretation function which assigns to each state
the propositions that hold in it.

We require Pe(s) 6= ∅ for each s ∈ S. We also note that τ(a)(s) needs only
be defined if ae ∈ Pe(s).

A run of such an environment is an infinite sequence s0, s1, s2, . . . such
that s0 ∈ I and such that for all m there exists a ∈ ACT with ae ∈ Pe(sm)

5



and τ(a)(sm) = sm+1. When r denotes such a run and (r,m) is a point, we
set r(m) = sm.

To obtain an interpreted system, we set π(r,m) = πe(r(m)) for every
point (r,m). Further, we let Oi(r,m) = Oi(r(0))Oi(r(1)) . . . Oi(r(m)) for
every agent i and call Oi(r,m) the local state of agent i at point (r,m). Using
this notation, we define ∼i by (r,m) ∼i (r′,m′) iff Oi(r,m) = Oi(r

′,m′).
(Note that this implies m = m′.) This indistinguishability relation is called
synchronous perfect recall. The resulting interpreted system is denoted I(E).

2.3 Hierarchical and broadcast environments

Our results focus on two classes of environments, hierarchical environments
and broadcast environments, which were conjectured by van der Meyden and
Vardi to yield decidable cases of synthesis from knowledge-based specifica-
tions in a multi-agent setting.

Hierarchical environments [EvdMS03] are those in which for all states s
and agents i ∈ [n− 1], we have that Oi(s) = Oi(t) implies Oi+1(s) = Oi+1(t).
Intuitively, this means that each agent in the sequence observes not more
than the preceding agent: if agent i is not able to distinguish states s and t
by observation, then neither is agent i+ 1. Clearly the same property holds
for the indistinguishability relations on points derived using the assumption
of perfect recall. The name derives from the fact that the equivalence classes
of these relations form a hierarchically nested collection of sets.

Broadcast environments [Mey96] model situations in which agents may
maintain private information, but where the only means by which this in-
formation can be communicated is by synchronous simultaneous broadcast
to all agents. This sort of situation arises in systems in which components
communicate by means of a shared bus, and protocols that operate in a se-
quence of synchronised rounds with broadcasts between rounds may also be
modelled in this way. Broadcast environments are able to represent a variety
of games of incomplete information, including Battleships and Bridge.

Our definition of broadcast environment in this paper will be slightly
more general than that in [Mey96], where the definition was tailored so as
to allow derivation of a result concerning non-deterministic knowledge based
programs. This motivated the restriction that all actions having an effect on
the shared state of the system be immediately visible to all agents. In the
present context, we deal only with deterministic protocols, and we can relax
this restriction so as to allow unobserved effects on the shared state. We still
require that all agents always make the same observation of the shared state.

Formally, we define a broadcast environment to be an environment E =
(S, I, Pe, τ, {Oi}i∈[n],Prop, π) of a specific structure we now describe. The

6



states of the environment consist of a private state for each of the agents
plus a state for the remainder of the system. For each agent i ∈ [n], we
assume that there exists a set Si of instantaneous private states, intuitively
representing the state of the private objects maintained by the agent. The
private states Si will be observable and modifiable by agent i only. We also
assume a set of shared, or common states S0, representing the remainder of
the system, which is under the shared control of the agents. The set of all
states is taken to be the cartesian product S = S0×S1× . . .×Sn. We define
agent i’s private state at a state s = (s0, s1, . . . , sn), denoted pi(s), to be
the private state si. We allow the set I of initial states to be any nonempty
subset of S.

In a broadcast environment, agents are able to observe their own private
state, as well as some aspects of the shared state. However, we assume that all
agents make the same observation of the shared state. Formally, we suppose
that there exists a “common” observation function Oc mapping each shared
state in S0 to some observation. It is convenient to extend this mapping to
states in S by Oc((s0, s1, . . . , sn)) = Oc(s0). Using this, agent i’s observation
function is defined by Oi(s) = (Oc(s),pi(s)) for s ∈ S.

Actions are assumed to affect the private and shared states independently,
with an agent’s private state being affected only by its own action. For each
agent i ∈ [n], we assume that there exists an action interpretation function τi
such that for each action ai ∈ ACTi, the function τi(ai) : Si → Si is a private
state transition function, representing the effect of the internal action on the
agent’s private states. For the shared state, we assume that there exists
a function τ0 : ACT → (S0 → S0) that captures the dependency of the
environment’s state transitions on the joint action performed by the agents.
The state transition function for the environment is then defined by

τ(a)((s0, s1, . . . , sn)) = (τ0(a)(s0), τ1(a1)(s1), . . . , τn(an)(sn)).

The protocol Pe of the environment may depend only upon the shared state.
Formally, we assume that there exists a function f : S0 → 2ACTe such that
Pe((s0, s1, . . . , sn)) = f(s0). We allow the finite set of propositions Prop to
describe any property of the states S, captured semantically by the valuation
π : S → 2Prop.

2.4 Protocols and realizability

Assume we are given an environment E as above. A protocol for agent i is a
function Pi : O+ → ACTi. A joint protocol is a family P = {Pi}i∈[n] where
each Pi is a protocol for agent i. Given such a protocol and a run r in the en-
vironment, we say r is consistent with the protocol if for every m there exists

7



a ∈ ACTe such that r(m+ 1) = τ(a, P1(O1(r,m)), . . . , Pn(On(r,m)))(r(m)).
The interpreted system which is obtained from I(E) by restricting its runs
to runs consistent with P is denoted I(E,P ).

We say a formula ϕ is realizable in an environment E if there exists a
joint protocol P such that I(E,P ) |= ϕ.

2.5 A security example

Realizability of specifications in the logic of linear time and knowledge may
be used to express a type of information flow property similar to those studied
in the computer security literature. Consider a system with two agents High
and Low, subject to a security policy that permits High to observe any
information belonging to Low, but does not permit any information known
only to High to flow to Low. If the system has been designed in an insecure
fashion, and contains a “covert channel” that enables unintended information
flow, High and Low may be able to collude to ensure that Low comes to know
some secret belonging to High. (Concretely, such collusion may come about
if Low has managed to place a Trojan Horse program at High.) We show
how to formulate a version of this question as a realizability problem.

Let E be an environment (with agents H (High) and L (Low)) describing
the possible states of the system we wish to analyse for unintended informa-
tion flows. We may capture the assumption that information is permitted
to flow from Low to High by defining states the observation functions by
OH(s) = (OL(s), PH(s)), where OL(s) is Low’s observation in s and PH(s)
is additional private information observable to High but not to Low. Note
that this makes the environment hierarchical with respect to the ordering
H, L on the agents. Suppose that p is a proposition whose value depends
only on PH(s), and is moreover unaffected by the agents’ actions. Then we
may phrase the question “Can High and Low collude to reliably pass the
information p from High to Low?” as the problem of whether the formula
F(KL(p) ∨ KL(¬p)) is realizable.

This question is closely related to, but somewhat stronger than, the no-
tion of “(non)deducibility on strategies” of Wittbold and Johnson [Wit90].
It can be shown that deducibility on strategies corresponds to the formula
F(KL(p) ∨ KL(¬p)) being true on some run, rather than all runs, as re-
quired by our definition of realizability, with Low acting passively rather
than having a choice of protocol. Realizability of the branching time formula
EF(KL(p)∨KL(¬p)), (where the path quantifier Eϕ means that ϕ is true on
some computation path) would correspond more directly to deducibility on
strategies. Nevertheless, realizability of F(KL(p)∨KL(¬p)) does seem to cor-
respond to an interesting and intuitive security notion, which we call strong

8



deducibility on strategies in the sequel.

2.6 Main results

We now state the main results of the paper. As discussed above, van der
Meyden and Vardi [MV98] showed that realizability of specifications in the
logic of linear time and knowledge is decidable in the case of a single agent,
but noted that a direct generalization of this result to multi-agent systems
does not hold because of the undecidability [PR90] of realizability for linear-
time logic specifications (without knowledge operators). They conjectured
that the restriction to hierarchical and broadcast systems might provide de-
cidable cases of realizability for specifications in the logic of linear time and
knowledge.

The definition of hierarchical systems resembles, but differs from in some
key respects, the class of pipelines shown by Pnueli and Rosner to yield a
decidable case of realizability for linear-time logic specifications in multi-
agent systems. It is therefore reasonable to first ask if realizability of linear-
time logic specifications is decidable in hierarchical systems. We first show
that this is indeed the case.

Theorem 1. The synthesis problem for distributed systems with respect to
specifications in the logic of linear time is decidable in hierarchical systems.

The proof, which closely follows arguments of Pnueli and Rosner [PR90]
for a similar result on pipeline architectures, is given in Section 4.1. How-
ever, this result does not generalize to the richer language of linear time and
knowledge, even with respect to a quite specific class of hierarchical systems.
Say that agent i is omniscient if for all states s, we have Oi(s) = s, i.e., the
complete state is observable to the agent. Say that agent i is blind if for all
states s, we have Oi(s) = ⊥, for some fixed value ⊥. Clearly, a system with
only omniscient and blind agents is hierarchical. The proof of the following
result is given in Section 4.2.

Theorem 2. The synthesis problem for distributed systems with respect to
specifications in the logic of linear time and knowledge is undecidable in a
system with two agents, the first being omniscient, the second being blind. It
remains undecidable for the case where the protocol of the blind agent is fixed
(so only the protocol for the omniscient agent needs to be synthesized) and
the specification does not contain the omniscient agent’s knowledge operator
(but does contain the blind agent’s knowledge operator).

For broadcast systems, however, it turns out that van der Meyden and
Vardi’s conjecture is true. The following result, proved in Section 3, is by a
reduction to the case of a single agent.

9



Theorem 3. The synthesis problem for specifications in the logic of linear
time and knowledge is decidable in broadcast environments.

Moreover, we can obtain some additional decidable cases in multi-agent
systems by restricting the syntax of specifications. We say a formula ϕ in
the language of linear time and knowledge is positive if every occurrence of
any knowledge modality Ki is positive, that is, under an even number of
negations. More precisely, a formula is positive if it can be built from p and
¬p for p ∈ P , using ∨, ∧, U, R, X, and Ki for i ∈ [n].

Theorem 4. For positive specifications ϕ in the logic of linear time and
knowledge, and environments E, there exists an effective construction of a
formula ϕ′ and an environment E ′ such that ϕ is realizable in E iff ϕ′ is
realizable in E ′. If E is hierarchical then so is E ′.

This reduction enables results concerning decidable cases of realizability
for linear-time logic specifications to be lifted to a certain class of specifica-
tions involving knowledge operators. We provide the proof in Section 5.

Putting together Theorem 1 and Theorem 4, and noting that F(KL(p) ∨
KL(¬p)) is a positive formula, we obtain the following result concerning the
notion from computer security of Section 2.5.

Theorem 5. Strong deducibility on strategies is decidable in hierarchical
environments.

3 Broadcast environments

In this section we prove Theorem 3, by means of a reduction to the synthesis
problem for specifications in the logic of linear time and knowledge in single
agent environments, which is decidable by the results of [MV98].

The following notion is useful for the proof that the reduction works.
Define an isomorphism of interpreted systems I = (R, {∼i}i∈[n], π) and I ′ =
(R′, {∼′

i}i∈[n], π
′) to be a bijection f between the runs of I and the runs of

I ′, such that

1. π(r, k) = π′(f(r), k) for all r ∈ R, and k ∈ N and

2. (r, n) ∼i (r′, n′) iff (f(r), n) ∼′
i (f(r′), n′), for all runs r, r ∈ R, k, k′ ∈

N and agents i.

The following can be shown by a straightforward induction on the construc-
tion of the formula.

10



Lemma 1. If f is an isomorphism of interpreted systems I and I ′ then for
all formulas ϕ of the logic of linear time and knowledge, runs r of I and
times k, we have I, (r, k) |= ϕ iff I, (f(r), k) |= ϕ.

For the proof of Theorem 3, we break the reduction into two stages.
Intuitively, since we synthesize a deterministic protocol for each agent and
transitions of agents’ private state depend only on their choices of action,
we can always derive an agent’s private state from its initial private state
and the sequence of observations it has made of the shared state. This is
formalised in the following construction.

Given a broadcast environment E = (S, I, Pe, τ, {Oi}i∈[n],Prop, π), define
the environment E ′ = (S ′, I ′, P ′

e, τ
′, {O′

i}i∈[n],Prop, π′) over the same signa-
ture and with the same set of propositions, as follows. The set of states of
E ′ is given by adding to the states of E a bit that records whether the state
is initial: S ′ = {0, 1} × S, and the initial states of E ′ are exactly the initial
states of E, but with the bit set to 0 to indicate that the state is initial,
i.e., I ′ = {0} × I. The transition function is accordingly defined so that
τ ′(a)((x, s)) = (1, τ(a)(s)) for all states (x, s) of E ′, encoding that a state
obtained immediately after a transition cannot be initial. The interpretation
of propositions ignores the new bit: π′((x, s)) = π(s) for all states s ∈ S and
x ∈ {0, 1}. Similarly, for the protocol of the environment, P ′

e((x, s)) = Pe(s),
ignoring the new bit.

The crux of the construction is that we treat observations in initial
and subsequent states differently. In E, observations are given by Oi(s) =
(Oc(s),pi(s)), where Oc is the observation function on shared states. In E ′,
we take O′

i((0, s)) = (Oc(s),pi(s)) as in E, but take Oi((1, s)) = Oc(s). That
is, we suppress all but the initial observation of the private state.

The fact that we have defined protocols to be deterministic (and that the
semantics for knowledge assumes implicitly that the protocol being executed
is common knowledge) plays a critical role in the following result.

Lemma 2. Let ϕ be a formula of the logic of linear time and knowledge.
Then ϕ is realizable in E iff ϕ is realizable in E ′.

Proof. Let Oc and Oi be the ranges of Oc and Oi, respectively. If σ =
(oc0, s0)(o

c
1, s1) . . . (o

c
k, sk) is a sequence in O∗

i , define σ↓ to be the sequence
(oc0, s0)o

c
1 . . . o

c
k in OiO∗

c .
Conversely, suppose P is a joint protocol for environment E. Given

a sequence σ = (oc0, s0)o
c
1 . . . o

c
k in OiO∗

c , define the sequence σ ↑ P i =
(oc0, s0)(o

c
1, s1) . . . (o

c
k, sk) inductively by

sj+1 = τi[P i((o
c
0, s0) . . . (o

c
j, sj))](sj).

11



Note that if r is a run of P in E then for all k ∈ N we have (Oi(r, k)↓)↑P i =
Oi(r, k).

Suppose that the joint protocol P realizes ϕ in E. Define the joint pro-
tocol P ′ for E ′ by P ′

i(σ) = P i(σ↑P i) for each agent i and σ ∈ OiO∗
c . We

claim that P ′ realizes ϕ in E ′. For, given a run r = s0, s1, s2, . . . of P in E
define f(r) = (0, s0), (1, s1), (1, s2), . . .. This can be seen to be a run of P ′ in
E ′. In fact, using the conclusion of the previous paragraph we can easily see
that the function f is an isomorphism of I(E,P ) and I(E ′,P ′). The claim
then follows using Lemma 1.

Conversely, suppose that the joint protocol P ′ realizes ϕ in E ′. Define
the joint protocol P for E by P i(σ) = P ′

i(σ↓). The function f from the
previous paragraph can again be shown to be an isomorphism, and it follows
that P realizes ϕ in E.

The transformation from E to E ′ shows that (with respect to each deter-
ministic joint protocol) an agent’s knowledge is completely determined by a
sequence of the form Oi(s0)Oc(s1) . . . Oc(sk), where s0, . . . , sk is a sequence
of states of E. This suggests that it may be possible to treat Oc as the ob-
servation function of a single agent, and reduce the synthesis problem to a
problem of synthesis for this agent.

One obstacle to this is that the remaining initial observations Oi(s), which
contain a private state for agent i, mean that the choice of action of distinct
agents still depends on more than the sequence of common observations.
This can be handled by means of a further transformation of E ′ into an
environment with a modified signature.

Let Ii = {si | (s0, s1, . . . , sn) ∈ I} be the set of possible initial private
states of agent i in E. We define an environment

Ec = (Sc, Ic, P c
e , τ

c, Oc
c,Propc, πc)

with a single agent (that we call c) and signature such that the environment
has the same set of actions ACTe as in E, and agent c has actions (I1 →
ACT1)× . . .× (In → ACTn).

We take the states of Ec to be the set Sc = I × S ′. The set of initial
states is given by Ic = {(s, (0, s)) | s ∈ I}. Intuitively, the first component in
these states keeps a memory of the initial state of E at the start of the run,
the second component is the “current state” of E ′. This is reflected in the
definition of the transition functions. A joint action ac of Ec is comprised
of an action ae of the environment and an action (α1, . . . , αn) of agent c,
where each αi is a function from Ii to ACTi. This function may be applied
to the private state pi(s) of agent i in a state s of E, so that ac(s) =

12



(ae, α1(p1(s)), . . . , αn(pn(s))) is a joint action of E, hence of E ′. Thus, we
may define

τ c(ac)((s, t)) = (s, τ ′(ac(s))(t)).

The protocol of the environment in Ec we take to be P c
e ((s, t)) = P ′

e(t).
We enrich the set of propositions, defining

Propc = Prop ∪ {pi,x | i ∈ [n], x ∈ Ii}.

Propositions p ∈ Prop are interpreted according to the “current state”, i.e.,
p ∈ πc((s, t)) iff p ∈ π′(t). The new propositions refer to the initial private
states: pi,x ∈ πc((s, t)) iff x = pi(s), i.e., x is the private state of agent i in s.
Finally, the observations of the single agent c are given by Oc

c((s, (x, t))) =
Oc(t).

Given a formula ϕ of the logic of linear time and knowledge, define ϕc

to be the formula obtained, recursively, by replacing each subformula of the
form Kiψ by ∧

x∈Ii

(pi,x → Kc(pi,x → ψc)).

Then we can prove the following.

Lemma 3. If ϕ is a formula of the logic of linear time and knowledge, then
ϕ is realizable in E ′ iff ϕc is realizable in Ec.

Proof. First note that we can convert a system I(Ec, P c) to a system In(Ec, P c)
for n agents by defining the equivalence relations ∼c

i on points in the usual
way, using the functions Oc

i on points, defined by Oc
i (r, k) = pci(r(0))·Oc

c(r, k),
where pci((s, t)) = pi(s). Let the function f from sequences of states of Ec to
sequences of states of E be defined by f((s0, t0)(s1, t1) . . .) = t0, t1, . . .. Given
a protocol P c for c in Ec, we can define a joint protocol P ′ for E ′, by

P ′
i((o

c
0, s

i
0)o

c
1 . . . o

c
k) = (P c(oc0o

c
1 . . . o

c
k))i(s

i
0).

It can then be shown that f is an isomorphism between In(Ec, P c) and
I(E ′,P ′). Conversely, given a joint protocol P ′ for E ′, define the pro-
tocol P c for Ec by P c(oc0 . . . o

c
k) = (α1, . . . , αn) where αi : Ii → ACTi is

given by αi(s
i) = P ′

i((o
c
0, s

i)oc1 . . . o
c
k). Again, f is an isomorphism between

In(Ec, P c) and I(E ′,P ′). In either case, it follows using Lemma 1 that
In(Ec, P c), (r, k) |= ϕ iff I(E ′,P ′), (f(r), k) |= ϕ. By an induction on the
construction of the formula ψ, we can show that In(Ec, P c), (r, k) |= Kiψ iff
I(Ec, P c), (r, k) |=

∧
x∈Ii(pi,x → Kc(pi,x → ψc)), which yields the result.

13



Combining these two lemmas, the transformation from E to E ′ to Ec re-
duces the realizability problem for the multi-agent broadcast environment E
to a problem of realizability in a single agent environment Ec, that is decid-
able by results of van der Meyden and Vardi [Mey96]. We note that this result
plays essentially on the determinism of the evolution of the private states.
If we were to add a source of non-determinism, e.g., independent inputs to
the agents, then the realizability problem would be undecidable already for
linear-time temporal logic formulas. This can be seen by noting that includ-
ing in the formula a constraint that all broadcasts are trivial reduces this
to the case of completely independent agents shown to be undecidable by
Pnueli and Rosner [PR90].

4 Hierarchical environments

In this section we first show that for our knowledge-based definition of hierar-
chical environments, the synthesis problem for linear-time temporal formulas
is decidable. Then we show that the synthesis problem is undecidable for the
logic of linear time and knowledge in hierarchical environments.

4.1 Temporal formulas

In this section we establish the decidability of realizability of linear-time
logic formulas in hierarchical environments. We recall that our definition of
hierarchical environment differs from the Pnueli–Rosner [PR90] definitions of
“hierarchical architecture” and their special case of “pipeline architecture”,
though it somewhat resembles the latter. However, our proof uses ideas
similar to those they use to show decidability of realizability of temporal
formulas in pipeline architectures.

We prove two lemmas from which the claim follows by induction on the
number of agents. Recall that a protocol for agent i with observation space Oi

is a function in O∗
i → ACTi, which can be viewed as an infinite tree. We say

it is a (Oi, ACTi)-tree. In general, a (M,N)-tree is a tree with M -branching
and N -node labels, that is, it is a function in M∗ → N .

Since the environment is hierarchical, for each pair of agents i < j, there
exists a mapping hi,j : Oi → Oj such that for all states s of the environment
we have Oj(s) = hi,j(Oj(s)). These mappings have the property that hj,k ◦
hi,j = hi,k.

The induction base can be proved using the following lemma.

Lemma 4. Given an environment E and a temporal specification ϕ, we can
construct a finite tree automaton A for (O1, ACT1 × · · · × ACTn)-trees that

14



accepts a tree t iff t realizes ϕ in the modified environment E ′ where agent 1
takes over the rôles of agents 2 through n (and plays his own part).

The induction step can be proved using the following lemma.

Lemma 5. Given an environment E with just two agents and a tree automa-
ton A for (O1, ACT1×ACT2)-trees, we can construct a finite tree automaton
A′ for (O2, ACT2)-trees such that A′ accepts a tree t2 iff there exists a protocol
t1 for agent 1 such that the joint protocol (t1, t2 ◦ h1,2) (viewed as a protocol
for agent 1) is accepted by A.

Let’s see that these two lemmas let us prove the general claim. To this
end, let us assume we are given a hierarchical environment E with n agents.
Let A be the automaton promised by Lemma 4. For i = 1, . . . , n we show that
there exists a finite tree automaton Ai for (Oi, ACTi×· · ·×ACTn)-trees that
accepts a tree t iff there exist protocols tj : O

∗
j → ACTj for j = 1, . . . , i − 1

such that A accepts the tree (t1, . . . , ti−1 ◦ h1,i−1, t ◦ h1,i). The proof is by an
induction on i. Considering i = n, and applying Lemma 4, we have that An is
empty iff there exists protocols t1, . . . , tn such that A accepts (t1, . . . , tn◦h1,n),
which is the case iff ϕ is realizable in E.

The induction base is trivial, for it follows immediately from Lemma 4.
For the induction step, assume the claim holds for i < n and let Ai be the
automaton which we already know exists. This automaton can be viewed as a
finite tree automaton for (Oi, ACTi×(ACTi+1×· · ·×ACTn))-trees. Applying
Lemma 5 yields a finite tree automaton for (Oi+1, ACTi+1×· · ·×ACTn)-trees
which has the desired properties.

So let’s turn to the proofs of the two lemmas, where we use some facts
from automata and game theory. In particular, we will use the forgetful
determinacy theorem, which we explain in what follows. For further back-
ground on these tools, the reader is referred to [Tho90, Tho97, GTW02].

A game is a triple (P, P0, P1, E, c,W, pI) where P is a set of positions,
{P0, P1} is a partition of P into the positions of the two players, Zero and One,
E ⊆ P ×P is the set of moves, c : P → A is a function into a finite alphabet,
which is extended to a function c : P ω → Aω in the canonical way, W ⊆ Aω

is an ω-regular set, the winning set for Player 0, and pI is the initial position.
A play is a maximal path π in (P,E) starting in pI . It is winning for Player 0
if c(π) belongs to W or it is finite and ends in a position from P1 (early loss,
Player 1 can’t move any more). A strategy for Player 0 is a partial function
σ : P ∗P0 → P such that whenever σ(πp) is defined, then (p, σ(πp)) ∈ E. A
play π conforms with a strategy σ if for all i < |π| with π(i) ∈ P0, then π(i+
1) = σ(π[0, i]). A strategy σ is winning for Player 0 (is a winning strategy
for Player 0) if every play that conforms with σ is winning for Player 0. A

15



memory-based strategy is determined by a set M , an initial memory m0,
an update-function f : M × P → M , and a function σ0 : P0 × M → P .
The induced strategy σ is determined as follows. First, for every finite path
through (P,E), the corresponding memory m(π) is defined inductively by
m(ε) = m0 and m(πp) = f(m(π), p). Then, σ(π) = σ0(p,m(π)). Now, the
forgetful determinacy theorem states that if there exists a winning strategy
for Player 0, then there exists a memory-based strategy where |M | is smaller
than a natural number N(W ) only depending on W (rather than on P or
E). Moreover, if W is given by a Muller-automaton or a monadic second-
order formula or something similar, then an upper bound B(W ) for N(W )
can be computed effectively. That is, one can assume that M = [B(W )] and
m0 = 1.

Proof of Lemma 4. We use the fact that monadic second-order logic is
equivalent to tree automata and observe that the following can be phrased
in that logic:

For every path of a (O1, ACT1×· · ·×ACTn)-tree, for each labeling
of the path with actions of the environment, and for each labeling
of the path with states from S, if these two labelings are consistent
(the joint actions yield the states), then the given specification ϕ
holds true on the path.

This yields the desired result.

Proof of Lemma 5. We use the idea sketched in [Ros92]. Without loss of
generality we assume that A is a non-deterministic tree automaton with set of
transitions ∆ and states Q. A transition of A is a triple (q, (a1,a2), s) where
q ∈ Q, (a1,a2) ∈ ACT1 × ACT2 and s : O1 → Q determines the successor
states. We write simply h for the function h1,2 : O1 → O2.

Let t2 be a (O2, ACT2)-tree. We construct an infinite game between two
players, called Challenger (Player 1) and Responder (Player 0) which we
claim has the property that Responder wins iff there exists a protocol for
agent 1 as described in the lemma. This game will then be used to describe
how A′ can be constructed.

We first describe the positions and the moves of the game. There are three
different types of positions. First, there are positions that are strings over O2.
The other positions connect these as follows. Suppose we are given a position
u ∈ O∗

2. Then it is Responder’s move. He gets to choose a transition δ =
(q, (a1,a2), s) such that t2(u) = a2. After that, it is Challenger’s move. She
gets to choose a direction o1 ∈ O1. Then the game deterministically moves

16



to uh(o1). Thus, intermediate nodes of the game are of the form (u, δ) and
(u, δ, o1). More formally, the set of positions of Responder is PR = O∗

2, the set
of positions of Challenger is PC = O∗

2 ×∆, and the set PD = O∗
2 ×∆×O1 is

the set of deterministic positions. For simplicity, we assume that all positions
from PD belong to Challenger.

The rest of the game is as follows. The initial position is ε. The coloring
function c is given by c(u) = $, where $ is a dummy symbol, c((u, δ)) = δ and
c((u, δ, o1)) = o1. The winning condition W consists of all infinite sequences
over the alphabet {$,∆, O1} of the form $δ0o

0
1$δ1o

1
1$δ2o

2
1$δ3 . . . such that the

following conditions are satisfied.

1. For every i, if δi = (q, (a1,a2), s) and δi+1 = (q′, (a′
1,a

′
2), s

′), then
s(oi1) = q′.

2. Suppose δi = (qi, . . . ) for every i, then q0q1q2 . . . is accepting for A.

Let’s first check that the above claim is true. A strategy for Responder
is a function that maps every element of (PRPCPD)∗PR, which is of the form

ε(ε, δ0)(ε, δ0, o
0
1)o

0
2(o

0
2, δ1)(o

0
2, δ1, o

1
1)o

0
2o

1
2(o

0
2o

1
2, δ2)(o

0
2o

1
2, δ2, o

2
1)o

0
2o

1
2o

2
2 . . . o

0
2o

1
2 . . . o

r
2 ,

to a position of the form

(o0
2o

1
2 . . . o

r
2, δ) . (3)

Such a strategy can immediately be translated into a protocol tree t1 for
agent 1 and an accepting run of A on the tree obtained from joining t1 and
t2. Conversely, a winning strategy for Responder can be constructed from a
protocol for agent 1 and a suitable accepting run of A.

By the forgetful determinacy theorem, if there exists a winning strategy
for Responder, then with k = B(W ), a winning strategy is induced by the set
[k], an initial memory 1, an update-function f : [k]× (PR ∪ PC ∪ PD) → [k],
and a function σ0 : PR × [k] → PC .

Now, observe that f and σ0 can be viewed as functions with domain O∗
2

and a finite range:

• σ0 can be viewed as a function σ′0 : O∗
2 → ∆[k];

• f can be viewed as a function f ′ : O∗
2 → [k][k]×([1]∪∆∪(∆×O1)).

Now, observe that the following property of an (O2, ACT2)-tree can be ex-
pressed in monadic second-order logic:

17



There exists two labelings with functions [k] → ∆ and [k]× ([1]∪
∆∪(∆×O1)) → [k] such that the following holds true. The strat-
egy σ, which is determined by the two labelings when interpreted
as σ′0 and f ′ as explained above is winning for Responder.

We can now use the same argument as above to conclude that the desired
automaton exists.2

This completes the proof of Theorem 1.

4.2 Temporal and knowledge formulas

For the proof of Theorem 2, we need background on lossy counter machines,
which is provided in the first subsection. The second subsection contains the
actual undecidability proof.

4.2.1 Lossy counter machines

A counter machine is a tuple

L = (Q, k, qI ,∆) (4)

where

• Q is a finite set of states,

• k is a natural number, the number of registers of the machine,

• qI ∈ Q is the initial state of L, and

• ∆ ⊆ (Q×{0, . . . , k− 1}×Q)∪ (Q×{0, . . . , k− 1}×Q×Q) is the set
of commands.

A configuration of such a counter machine is a tuple (q, r0, . . . , rk−1) where
q is a state and rj ∈ N for all j < k, representing the values of the registers.

The lossy semantics of such a machine is determined by two binary rela-
tions on configurations. First, the machine relation, denoted →m, is defined
as follows. We have (q, r0, . . . , rk−1) →m (q′, r′0, . . . , r

′
k−1) if

• (q, j, q′) ∈ ∆, r′j = rj + 1 and r′j′ = rj′ for all j′ 6= j, or

• (q, j, q1, q2) ∈ ∆, rj > 0, q′ = q1, r
′
j = rj − 1, and r′j′ = rj′ for all j′ 6= j,

or

• (q, j, q1, q2) ∈ ∆, rj = 0, q′ = q2 and r′j′ = rj′ for all j′.

18



Second, the lossiness relation is the relation denoted →l and defined by
(q, r0, . . . , rk−1) →l (q′, r′0, . . . , r

′
k−1) if q = q′ and r′j ≤ rj for all j.

The single-step relation of the machine is defined by ⇒ = →l ◦ →m ◦ →l.
A lossy run of counter machine is a sequence s0 ⇒ s1 ⇒ s2 ⇒ . . . of

configurations. It is called an infinite run if the sequence is infinite.
We will use the following theorem.

Theorem 6 ([May03]). The following problem is undecidable. Given a
counter-machine L, is there a number n such that there exists an infinite
lossy run of L starting with the configuration (qI , 0, . . . , 0, n).

We modify this slightly for technical reasons. A complete counter machine
with forbidden state is a tuple

L = (Q, k, qI , qf ,∆) (5)

where

• (Q, k, qI ,∆) is a counter machine as above,

• qf ∈ Q is the forbidden state, and

• ∆ has the additional property that (q, 0, qf ) ∈ ∆ for every q.

With this definition, we have the following as an immediate consequence
of the above theorem.

Corollary 1. The following problem is undecidable. Given a counter-machine
L, is there a number n such that there exists an infinite lossy run of L starting
with the configuration (qI , 0, . . . , 0, n) and never going through state qf .

For later use, we will give an alternative definition of ⇒. To this end, we
need three other relations, denoted→al,→am,→aal. First, we let (q, r0, . . . , rk−1) →al

(γ, r′0, . . . , r
′
k−1) if γ is a command starting with q and r′j ≤ rj for all j < k.

Second, we let (γ, r0, . . . , rk−1) →am (q′, r′0, . . . , r
′
k−1) if

• γ = (q, j, q′), 0 < r′j ≤ rj + 1 and r′j′ ≤ rj′ for all j′ 6= j,

• γ = (q, j, q1, q2), rj > 0, q′ = q1, r
′
j ≤ rj − 1, and r′j′ ≤ rj′ for all j′ 6= j,

or

• γ = (q, j, q1, q2), rj = 0, q′ = q2, and r′j′ ≤ rj′ for all j′.

19



Here, q for a state q ∈ Q denotes a new copy of q. The set of all these copies
is denoted Q.

And, third, we let (q, r0, . . . , rk−1) →aal (q′, r′0, . . . , r
′
k−1) if (q, r0, . . . , rk−1) →l

(q′, r′0, . . . , r
′
k−1).

Now we can state the following.

Remark 1. For every counter machine, we have

⇒ = →al ◦ →am ◦ →aal . (6)

There is another relation we will also need in the proof to follow. This
relation is denoted →am′

. It is different from →am in that the second and
the third clause above are simply replaced by

• γ = (q, j, q1, q2), q
′ ∈ {q1, q2} and r′j′ ≤ rj′ for all j′ < k.

In particular, we have →am ⊆ →am′
.

We say s0, s1, s2, . . . is a refined computation of the given machine if
s0 →al s1 →am s2 →aal s3 →al s4 →am s5 →aal s6 →al . . . . We say it is a
refined weak computation if s0 →al s1 →am′

s2 →aal s3 →al s4 →am′
s5 →aal

s6 →al . . .
The important observations here are the following.

Remark 2. A refined weak computation s0, s1, s2, . . . is a refined compu-
tation iff for every m with s3m+1 = ((q, j, q1, q2), r0, . . . , rk−1) and s3m+2 =
(q′, r′0, . . . , r

′
k−1) we have q′ = q2 if rj = 0 and else q′ = q1 and r′j < rj.

Remark 3. There is an infinite computation starting with (qI , 0, . . . , 0, n) for
some n iff there is an infinite refined weak computation s0, s1, s2, . . . starting
with (qI , 0, . . . , 0, n) and satisfying the above requirement.

4.2.2 The reduction

In this section, we prove Theorem 2 by reducing the problem from Corollary 1
to the realizability problem. This will yield the desired result.

Let L be a complete k-counter machine with forbidden state as above.
We construct an environment E with two agents and a formula ϕ in the
language of linear time and knowledge such that there exists a joint protocol
P realizing ϕ in E iff there exists a natural number n such that there exists
an infinite run of L starting with (qI , 0, . . . , 0, n) and avoiding qf .

We call the two agents by the names A and B. (Formally, A may just
stand for 1 and B for 0.) Agent A will observe “all” that happens, whereas
B will be “blind:” it observes nothing. More precisely, for all states s of
E, the observation functions for the agents are defined by OA(s) = s and
OB(s) = ⊥ for some fixed element ⊥.

20



Basic idea of reduction. We construct the environment E in such a way
that for each joint protocol P we can view I(E,P ) as a refined weak compu-
tation of L. In addition, we will construct ϕ in such a way that I(E,P ) |= ϕ
iff this sequence is a refined computation and never goes through qf .

To be able to view I(E,P ) as a refined computation of L, we simply
consider, for each m, the set of all states a run of I(E,P ) can be in. This
gives us a multi-set of states of E in a natural way, and with each such
multiset we will associate an element of a refined computation.

Our environment operates in two phases. In the first phase, the envi-
ronment uses nondeterminism to generate the initial configuration of the
machine, that is, the number n register k− 1 gets assigned in the initial con-
figuration. In the second phase, the refined computation of L is simulated.

The important point is the following. There needs to be some “coor-
dination” between the individual runs of I(E,P ) so as to ensure that, for
instance, the decision to switch from the first to the second phase is made
at the same time for all runs. This is where agent B comes into the pic-
ture. Since B is blind, if B decides to perform an action corresponding to
switch from the first to the second phase, it will take this decision at the
same point in time of all runs. Similarly, if we want to check that the value
of a register is 0, this can be checked by the knowledge operator for agent
B, which can quantify over all runs, because B is blind. Agent A is used
for “individual” actions, in particular, to model lossiness. (There is an al-
ternate way to satisfy the requirement that the switch to the second phase
is made simultaneously in all runs, which is to let A guess the switch point
and add to the specification a formula that uses B’s knowledge operator to
check that the switch is made at the same time in all runs. This yields the
refined version of the theorem stating that the problem remains undecidable
for the case where, given a fixed protocol for B, we synthesize a protocol for
the single agent A, and the specification talks only about the knowledge of
B. We leave the details of this variant to the reader.)

The actual number of runs, hence distinguishable points, may in general
be infinite, but since choice of action is based only on the prefixes, at each
moment of time, there will be a finite number of equivalence classes of points
for agent A. We use the number of these distinct equivalence classes to
represent the values of the registers. To distinguish different counters we
use different states, that is, depending on the current state of a point of an
equivalence class, this class will be counted for a certain register or not.

21



The state set and the formula. The environment has the following state
set:

S = {spawn, stable, trash, c0, . . . , ck−1, d0, . . . , dk−1} ∪Q ∪Q ∪∆ (7)

where Q is a disjoint copy of Q. The state spawn is the initial state. The
states spawn and stable are the states of the first phase whereas the other
states are the states of the second phase.

We also set πe(s) = s for every s ∈ S, that is, we have a proposition for
each state expressing that the system is in that state.

Let P be any joint protocol and let I(E,P ) = (R, π, {∼i}i∈[n]). For each
m, let Rm be the set of prefixes of elements from R of length m and let Mm

be the multi-set of all end states of the elements from Rm.
Now, assume a sequence s0, s1, s2, . . . is a refined weak computation start-

ing with s0 = (qI , 0, . . . , 0, n). Then there will be a joint protocol P such
that the following holds.

First, for every m ≤ n, we will have:

Mm(spawn) = 1 , (8)

Mm(stable) = m , (9)

Mm(s) = 0 for any other state. (10)

And for all m ≥ 0 with sm = (α, r0, . . . , rk−1), we will have:

Mn+m(spawn) = 0 , (11)

Mn+m(stable) = 0 , (12)

Mn+m(α) = 1 , (13)

Mn+m(α) = 0 for any other α ∈ Q ∪∆ ∪Q, (14)

Mn+m(cj) = ri . (15)

That means, in particular, that the number of occurrences of state cj cor-
responds exactly to the value of register j. In the above, we haven’t said
anything about the states dj and the state trash. The latter is simply used
as a dummy state if we want to discontinue a run. The former are used as in-
dicator variables to have some control over the lossiness. In our construction,
if we want to decrement a counter we could simply switch from ci to trash.
What we do is to transition from ci to di and then to trash; as a consequence
we can specify in a formula that a decrement for register i has occurred.

For the above claim, the converse will also hold true. That is, for every
system induced by a joint protocol, there will be a sequence as above satisfy-
ing the specified conditions, with one exception. There will also be a system

22



where, for every m,

Mm(spawn) = 1 , (16)

Mm(stable) = m , (17)

Mm(s) = 0 for any other state. (18)

That is, the second phase will never be started in that system.
Since, by (12) and (13) the environment is constructed so that at each

moment of time at most one element α of Q∪∆∪Q can occur, and the agent
B has synchronous perfect recall but is blind, the formula LBα says that α is
the unique such element occurring at the current time. Similarly, LBci says
that there is at least one prefix of length equal to the current time ending in
state ci.

Taking all this into account, in order to make the reduction work, we will
only have to choose our formula ϕ to be the conjunction of the following
formulas:

FLBqI , (19)

which rules out the last system, which never gets to the second phase;∧
(q,j,q1,q2)∈∆

G((q, j, q1, q2) → ((KB¬ci → XLBq2) ∧ (LBcj → X(LBq1 ∧ LBdj))) ,

(20)

which takes care of the condition from Remark 2, and∧
GKB¬qf , (21)

which makes sure we get a run avoiding qf . Note that this formula refers
only to agent B’s knowledge: we do not need the knowledge modality for
agent A.

What remains to be specified are the actions and the transitions. This
can be dealt with easily.

Actions and transitions. We have

ACTA = {Keep,Zero} ∪ {〈γ〉 | γ ∈ ∆} , (22)

ACTB = {Skip,Start} . (23)

For the environment, we have an action 〈s〉 for every state s except for spawn
and states of the form (q, i, q′). For these states, the environment has two
actions each, 〈spawn〉b with b < 2 and Incb with b < 2, respectively. All
actions of the environment are enabled in the respective states.

Let a be a joint action. We describe how it operates on the states.

23



State spawn. First case, ae = 〈spawn〉0. If aB = Skip, then τ(a)(spawn) =
spawn, and if aB = Start, then τ(a)(spawn) = qI .

Second case, ae = 〈spawn〉1. If aB = Skip, then τ(a)(spawn) = spawn,
and if aB = Start, then τ(a)(spawn) = trash.

This makes sure that spawn splits in spawn and stable unless agent B
performs Start. And B performing Start results in spawn transitioning
to qI , the initial state.

State stable. If aB = Skip, then τ(a)(stable) = stable, else τ(a)(stable) =
ck−1.

This makes sure all states stable are transformed into the initial counter
value for register k − 1.

State ci. If aA = Keep, then τ(a)(ci) = ci, else τ(a)(ci) = di.
If agent A performs anything other than Keep then the counter is decre-

mented.

State di. τ(a)(di) = trash.

State trash. τ(a)(trash) = trash.

State q. If aA is of the form 〈γ〉 for some γ ∈ ∆ and γ starts with q,
then τ(a)(q) = γ and else τ(a)(q) = (q, 0, qf ).

Agent A can choose which transition he wants to take; actions that don’t
correspond to an enabled transition result in choosing the dummy transition
(q, 0, qf ).

State (q, j, q′). If ae = Inc0, then τ(a)((q, j, q′)) = q′ and else τ(a)((q, j, q′)) =
cj.

The non-determinism for the environment makes sure we actually increase
the counter (while there can also be lossy transitions).

State (q, j, q′, q′′). If aA = Zero, then τ(a)((q, j, q1, q2)) = q2 and else
τ(a)((q, j, q1, q2)) = q1.

Agent A gets to guess whether the counter is zero or not; his guess will
be verified by the formula ϕ (see above).

24



5 A reduction for positive formulas

We now define the reduction promised in Theorem 4, and prove its correct-
ness.

5.1 The reduction

Let

E = (S, I, Pe, τ, {Oi}i∈[n], P, πe) (24)

be an environment for n agents and ϕ a positive formula. We construct an
environment E ′ and a formula ϕ′ in the language of linear time (without
knowledge operators) such that the following statements are equivalent:

(A) ϕ is realizable in E.

(B) ϕ′ is realizable in E ′.

Moreover, we will be able to derive a protocol realizing ϕ in E from a protocol
realizing ϕ′ in E ′ in a straightforward way (just by forgetting).

The idea is that in the new system in each state each agent has to say
which of his knowledge subformulas he thinks are true by choosing a corre-
sponding action. That the agent’s choices are indeed correct will then be
verified by modifying ϕ appropriately.

To describe E ′ we need some more notation. For every i ∈ [n] we let Φi

be the set of subformulas of ϕ of the form Kiψ and Φ∗ the union of all these
sets.

We first describe the sets of actions for E ′, which are denoted by ACT ′
e,

ACT ′
1, . . . , ACT ′

n. We set ACT ′
e = ACTe and ACT ′

i = ACTi × 2Φi for every
i ∈ [n].

The system E ′ is given by

E ′ = (S × 2Φ∗
, I ′, P ′

e, τ
′, {O′

i}i∈[n], P
′, π′e) (25)

where the individual components are defined by

I ′ = {(sI , ∅) | sI ∈ I} , (26)

P ′ = P ∪ {pψ | ψ ∈ Φ∗} , (27)

O′
i((s,Ψ)) = Oi(s) , (28)

π′e((s,Ψ)) = πe(s) ∪ {pψ | ψ ∈ Ψ , (29)

25



and

τ ′(ae, (a1,Ψ1), . . . , (an,Ψn)) = (τ(a, a1, . . . , an),Ψ1 ∪ · · · ∪Ψn) . (30)

To obtain the new specification ϕ′, we proceed as follows. First, we de-
fine the flattened variant of a formula ψ, denoted ψ. The formula ψ is the
temporal formula obtained from ψ by substituting every maximal knowl-
edge subformula ψ′ by Xpψ′ . For example, if ψ is K1K2p → GK1q then ψ is
(XpK1K2p) → GXpK1q.

Now, the new specification simply says that whenever agent i claims Kiψ
is true it is, in fact, true and uses flattened variants of the knowledge formulas:

ϕ′ = ϕ ∧
∧

i∈[n],Kiψ∈Φi

G(XpKiψ → ψ) . (31)

We will also write χ for the big conjunction on the right-hand side.
The use of the X-operator is due to the fact that the claims about valid

subformulas an agent makes by carrying out an action are only available in
the environment in the next state.

5.2 The correctness proof

The correctness of the above construction is proved in two steps.

5.2.1 From E to E ′

We first show that (A) from above implies (B). To this end, assume we are
given a joint protocol P that realizes ϕ in E. If u is a sequence then we write
|u| for the length of u minus 1, so that |Oi((r, n))| = n.

Let u ∈ O+ and i ∈ [n]. If there is no run r in I(E,P ) such that
Oi((r, |u|)) = u, then we set P ′

i (u) to an arbitrary action (because it won’t
matter). If there is a run r in I(E,P ) such that Oi((r, |u|)) = u, let r be such
a run. We set P ′

i (u) = (Pi(u),Σi) where Σi = {ψ ∈ Φi | I(E,P ), (r, |u|) |=
ψ}. Observe that this is independent of the particular r chosen (since for all
runs satisfying this condition the corresponding points are indistinguishable
by agent i).

Now note the following. For every run r = s0s1 . . . of I(E,P ), the
sequence r′ = (s0,Ψ0)(s1,Ψ1) . . . with Ψ0 = ∅ and Ψm+1 = {ψ ∈ Φ |
I(E,P ), (r,m) |= ψ} for every m is a run in I(E ′,P ′). And every run
of I(E ′,P ′) is obtained in this way. Moreover, from the definition of the
observation functions O′

i, we have Oi(r,m) = O′
i(r

′,m). It follows that
that for every formula ψ over P only, each run r, and each m, we have

26



I(E,P ), (r,m) |= ψ iff I(E ′,P ′), (r′,m) |= ψ. This, in turn, implies that
for each ψ ∈ Φ∗, each run r, and each m, we have I(E,P ), (r,m) |= ψ iff
ψ ∈ Ψm+1 iff I(E ′,P ′), (r′,m) |= Xpψ. By a straightforward induction it fol-
lows that I(E,P ), (r,m) |= ψ iff I(E ′,P ′), (r′,m) |= ψ, for all subformulas ψ
of ϕ. In particular, we obtain I(E ′,P ′), (r′, 0) |= ϕ, since I(E,P ), (r, 0) |= ϕ.
Moreover, if I(E ′,P ′), (r′,m) |= XpKiψ then I(E,P ), (r,m) |= Kiψ hence
I(E,P ), (r,m) |= ψ and I(E ′,P ′), (r′,m) |= ψ. This shows that I(E ′,P ′) |=
χ. This shows that P ′ realizes ϕ′ in E ′.

5.2.2 From E ′ to E

For the converse, we assume we are given a joint protocol P ′ that realizes
ϕ′ in E ′. We turn this into a joint protocol P in a straightforward way,
namely, for each u, if P ′

i (u) = (a,Ψ), we set Pi(u) = a. We observe that if
r = (s0,Ψ0), (s1,Ψ1), . . . is a run of I(E ′,P ′), then r↓= s0s1 . . . is a run of
I(E,P ). Moreover, there are no other runs in I(E,P ), and O′

i((r,m)) =
Oi((r↓,m)). We claim that if I(E ′,P ′), (r,m) |= ψ, then I(E ′,P ′), (r,m) |=
ψ and I(E,P ), (r↓,m) |= ψ.

The proof goes by induction on the size of ψ. The claim is trivially true
for atomic formulas and negated atomic formula, and, clearly, the induction
step goes through for disjunction and conjunction and temporal operators.
(Note that this would not go through for negation!)

So let’s look at a knowledge operator, say ψ = Kiρ, and let’s assume
I(E ′,P ′), (r,m) |= ψ. By definition of the flattened variant, we have ψ =
Xpψ. Thus, I(E ′,P ′), (r,m) |= Xpψ, and hence ψ ∈ Ψ(r,m + 1). By con-
struction, we then get P ′

i (Oi((r,m))) = (a,Ψ) for some action a and some
set Ψ where ψ ∈ Ψ. This, in turn, means ψ ∈ Ψ(r′,m + 1) for every point
(r′,m) of I(E ′,P ′) with (r′,m) ∼i (r,m). Fix such a point. From the se-
mantics of X, we can conclude I(E ′,P ′), (r′,m) |= Xpψ. Since I(E ′,P ) |= χ,
we get that I(E ′,P ′), (r′,m) |= ρ, which, by induction hypothesis, yields
I(E ′,P ′), (r′,m) |= ρ and I(E,P ), (r′↓,m) |= ρ. Since (r′,m) was chosen ar-
bitrarily, we finally get I(E ′,P ′), (r′,m) |= Kiρ and I(E,P ), (r↓,m) |= Kiρ.
This proves the claim.

6 Conclusion

We have shown that there exist classes of environments and formulas (broad-
cast, or hierarchical environments and positive formulas) for which synthesis
from specifications in the logic of linear time and knowledge is decidable.
These results suggest several directions for further research. One is to obtain

27



a more general characterization of the decidable cases, as has been done for
temporal specifications [Mad01]. There are also good reasons to explore ver-
sions of these problems where the temporal logic used is for branching time
rather than linear time. In particular, results on branching-time versions
would be directly applicable to classical security notions such as deducibility
on strategies, which we have closely appromixated but not precisely captured
with our notion of strong deducibility on strategies. Where such notions are
found to be decidable, it is moreover of interest to find precise complexities
and develop specially tailored decision procedures for the automation of se-
curity analysis. Another potential area of application is the compilation of
knowledge-based programs [FHMV95]. Finally, our assumption that the pro-
tocols synthesized are deterministic should also be relaxed, particularly as it
is often the case that security is attained by creative use of non-determinism.

References

[AAE04] P. C. Attie, A. Arora, and E. A. Emerson. Synthesis of fault-
tolerant concurrent programs. ACM Transactions on Program-
ming Languages and Systems, 26(1):125–1851, 2004.

[AE98] P. C. Attie and E. A. Emerson. Synthesis of concurrent systems
with many similar processes. ACM Transactions on Program-
ming Languages and Systems, 20(1):51–115, 1998.

[AE01] P. C. Attie and E. A. Emerson. Synthesis of concurrent programs
for an atomic read/write model of computation. ACM Transac-
tions on Programming Languages and Systems, 23(2):187–242,
2001.

[Ant95] M. Antoniotti. Synthesis and verification of discrete controllers
for robotics and manufacturing devices with temporal logic and
the Control-D system. PhD thesis, New York University, New
York, 1995.

[AVW03] A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthe-
sis of controlers with partial observation. Theoretical Computer
Science, 303(1):7–34, 2003.

[Cha88] D. Chaum. The dining cryptographers problem: unconditional
sender and recipient untraceability. J., Cryptology, (1):65–75,
1988.

28



[EC82] E.A. Emerson and E.M. Clarke. Using branching time logic to
synthesize synchronization skeletons. Science of Computer Pro-
gramming, 2:241–266, 1982.

[EvdMS03] K. Engelhardt, R. van der Meyden, and K. Su. Modal logics
with a hierarchy of local propositional quantifiers. In P. Balbiani,
N. Suzuki, F. Wolter, and M. Zakharyaschev, editors, Advances
in Modal Logic, volume 4, pages 9–30. World Scientific, 2003.

[FF90] M. Fujita and H. Fujisawa. Specification, verification, and sys-
nthesis of control circuits with propositional temporal logic. In
J.A. Darringer and F.J. Rammig, editors, Computer Hardware
Description Languages and Their Applications, pages 265–279.
North-Holland, 1990.

[FHMV95] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning
about Knowledge. MIT Press, 1995.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors.
Automata, Logics, and Infinite Games: A Guide to Current Re-
search [outcome of a Dagstuhl seminar, February 2001], volume
2500 of LNCS. Springer, New York, 2002.

[HO03] J. Y. Halpern and K. O’Neill. Anonymity and information hiding
in multiagent systems. In Proceedings of the 16th IEEE Com-
puter Security Foundations Workshop, pages 75–88, 2003.

[KV97] O. Kupferman and M.Y. Vardi. Synthesis with incomplete in-
formatio. In 2nd International Conference on Temporal Logic,
pages 91–106, Manchester, July 1997.

[Mad01] P. Madhusudan. Control and Synthesis of Open Reactive Sys-
tems. PhD thesis, University of Madras, Nov 2001.

[May03] Richard Mayr. Undecidable problems in unreliable computa-
tions. Theoretical Computer Science, 297(1–3):337–354, March
2003.

[Mey96] R. van der Meyden. Finite state implementations of knowledge-
based programs. In Proceedings of the Conference on Founda-
tions of Software Technology and Theoretical Computer Science,
Springer LNCS No. 1180, pages 262–273, Hyderabad, India, De-
cember 1996.

29



[MS04] R. van der Meyden and K. Su. Symbolic model checking the
knowledge of the dining cryptographers. In Proc. 17th IEEE
Computer Security Foundations Workshop, pages 280–291, June
2004.

[MV98] R. van der Meyden and M. Y. Vardi. Synthesis from knowledge-
based specifications. In CONCUR’98, 9th International Conf.
on Concurrency Theory, Springer LNCS No. 1466, pages 34–49,
Sept 1998.

[MW84] Z. Manna and P. Wolper. Synthesis of communicating processes
from temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems, 6(1):68–93, January 1984.

[PR89a] A. Pnueli and R. Rosner. On the synthesis of a reactive module.
In Proc. 16th ACM Symposium on Principles of Programming
Languages, Austin, January 1989.

[PR89b] A. Pnueli and R. Rosner. On the synthesis of an asynchronous
reactive module. In Proc. 16th Int. Colloquium on Automata,
Languages and Programming, volume 372, pages 652–671. Lec-
ture Notes in Computer Science, Springer-Verlag, July 1989.

[PR90] A. Pnueli and R. Rosner. Distributed reactive systems are hard
to synthesize. In Proc. 31st IEEE Symposium on Foundation of
Computer Science, pages 746–757, 1990.

[Ros92] R. Rosner. Modular Synthesis of Reactive Systems. PhD thesis,
Weizmann Institute of Science, Rehovot, Israel, 1992.

[Tho90] Wolfgang Thomas. Automata on infinite objects. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science, vol-
ume B: Formal Methods and Semantics, pages 134–191. Elsevier,
Amsterdam, 1990.

[Tho97] Wolfgang Thomas. Languages, automata and logic. In A. Salo-
maa and G. Rozenberg, editors, Handbook of Formal Languages,
Volume 3: Beyond Words, pages 389–455. Springer, Berlin, 1997.

[Var95] M.Y. Vardi. An automata-theoretic approach to fair realizability
and synthesis. In P. Wolper, editor, Computer Aided Verification,
Proc. 7th Int’l Conf., volume 939 of Lecture Notes in Computer
Science, pages 267–292. Springer-Verlag, Berlin, 1995.

30



[Wal04] I. Walukiewicz. A landscape with games in the background.
In Proc. IEEE Symposium on Logic In computer Science, pages
356–366, 2004.

[Wit90] D.M. Wittbold, J.T.and Johnson. Information flow in nonde-
terministic systems. In Proc. IEEE Symposium on Research in
Security and Privacy, pages 144–161, 1990.

[WTD91] H. Wong-Toi and D.L. Dill. Synthesizing processes and sched-
ulers from temporal specifications. In E.M. Clarke and R.P.
Kurshan, editors, Computer-Aided Verification’90, volume 3 of
DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science, pages 177–186. AMS, 1991.

31


