
IC2: An Interval based Characteristic
Concept Learner

Pramod K. Singh
Artificial Intelligence Group

School of Computer Science and Engineering
University of New South Wales, Sydney, NSW - 2052, Australia

Email: pksingh@cse.unsw.edu.au

UNSW-CSE-TR-0442
January 2005

University of
New South Wales

School of Computer Science and Engineering
University of New South Wales
Sydney, NSW - 2052, Australia



ABSTRACT

In many real-world problems it can be argued that classification based on characteristic de-
scriptions delivers a more correct and comprehensive concept than the existing discriminative
descriptions. Most classification algorithms suffer from an inability to detect instances of
classes which are not present in the training set. A novel approach for characteristic concept
rule learning called IC2 is proposed in this paper. It uses the descriptions of one class objects
for learning concept rules for the classification and descrimination of unseen instances. In
this approach interval-based class characteristic rules are induced from the descriptions of
the labeled objects of a class. The paper illustrates the approach and presents the empirical
results obtained on some data sets of continuous feature variables. The IC2 classifier is
evaluated and its classification accuracy is compared with a state-of-the-art characteristic
concept classification algorithm ID3-SD as proposed by Davidsson [2].



1 Introduction

Concept learning from the examples is a process of inducing descriptions of a set of objects,
which are classified by a human expert or a system as instances of a meaningful class.
The learned concept is supposed to help in determining the class of other unseen instances.
There are two types of distinguished description methods in the literature (1) characteristic
descriptions and (2) discriminative descriptions. A characteristic description of a class of
objects describes the sufficient conditions for class membership and enables a system to
identify all instances of the class and reject all instances of the other (disjoint) classes. On
the other hand, a discriminative description discriminates between instances of one class and
the instances of a pre-defined set of other classes. A discriminative description needs only
to specify the properties relevant in the context of a fixed set of the other classes.

Most learning systems, which learn from examples, deliver discriminant description and
ignore the problem of the classification of an instance of an unknown category. Unfortunately,
in many application domains it cannot be assumed that the collected examples in the training
set represent all relevant categories because the number of these categories can be quite
large. Also sometimes it is practically impossible to collect data of all classes at the time of
description learning. There is likely to be misclassification of instances of novel or unknown
classes by a discriminative classifier unless the training data is fully comprehensive. In some
problem domain e.g. medical diagnosis, the misclassification of any instance may cost a
lot. What we need under such situations is the ability to reject instances of the categories
that the system has not been trained on. For example, consider the decision mechanism of
disease diagnosis, where the cost of misclassification of a disease D1 (e.g. a lung disease) is
too high. If we use discriminative description concept, then we need to collect examples of
disease D1 and present them as positive examples and descriptions of all other diseases Di

(i 6= 1), which might occur in the application domain as negative examples (e.g. all lung
diseases and all other diseases sharing the symptoms with the lung disease D1). Otherwise,
it could happen that the induced disease description may misclassify a non-disease instance
as an instance of the disease. In such a situation, it is better to remain silent rather provide
an incorrect diagnosis.

2 Related Work

Several fields have contributed to the task of characteristic concept learning. Primarily
characteristic concept learning can be seen as a problem of one class classification. There
are several algorithms for one class classification based on SVMs (Support Vector Machines)
proposed in the literature [5]-[7]. In these approaches one has to select specific methods
of data representation and a kernel for a class. Surprisingly the classifiers induced by such
SVMs are also quite sensitive to the tuning of the parameters and this is not transparent.
Some algorithms using an ILP (Inductive Logic Programming) approach have also been
proposed [9],[10]. The hypothesis induced by these algorithms are dependent on specific
heuristics developed for a class. Besides, the ILP based algorithms lead to the complexity



2

problems.
Considering it as a descriptive generalization problem, Han and Fu [3] introduced an

attribute-oriented induction algorithm for data generalization in data mining applications,
but in their framework, background knowledge such as taxonomies is needed for generalizing
data and objects. Smyth and Mellstrom [4] presented an algorithm for the novel class
detection using an instance-based method, but the main limitation of the algorithm is its
inability to produce the explicit rules, desired in many applications. Holte et al. [1] have
shown that the CN2 algorithm can be modified to learn characteristic descriptions in the form
of rule-based maximum specific descriptions. Constructing maximum specific descriptions
is the simplest way of learning characteristic concepts; for each category one needs only
to calculate the minimum and maximum value of each feature from the training instances
belonging to the category. Hence it learns the most specific descriptions possible. On the
other end, some learners of the AQ family e.g. AQ11 [8] and AQ15c [14] are able to learn the
most general descriptions which in some cases degenerate into discriminative concepts. In
most applications these extreme approaches are inadequate due to being static and having
no scope of controlling the degree of generalization. To overcome the problem of static
generalization an algorithm called ID3-SD, an extension of ID3 algorithm of Quinlan [13],
was proposed by Davidsson [2].

Davidsson has shown some competitive classification results using ID3-SD on coin sorting
and some other data sets. However, it has some constraints: firstly, it makes an assumption
that the distribution of feature values in a class follows a normal distribution. Secondly, it
needs examples of other classes as negative data to select the features and their class cut
points. The feature selection in ID3-SD algorithm, using information gain or gain ratio, is
quite dependent on the negative examples in the training data set. In this paper we propose
an interval based algorithm for learning characteristic concepts using positive only examples
and synthetically generated uniform data as negative examples for each class. The algorithm
uses a wrapper method for feature selection.

The rest of the paper is organized in the following manner. The Interval rule concept is
introduced in Section IV. The algorithm for characteristic concept classifier IC2 is described
in Section V. Experimental results is presented in Section VI and the paper is concluded in
Section VII.

3 Problem Statement

The characteristic concept learner we are interested in can be defined as follows. Suppose
there is a set of objects O = {o1, o2, ..., on} of a class, say C. Each object oi of the class is
described by a set of features F = {f 1, f2, ..., fm}, where f 1..fm are the features representing
the nature of an object. A set of characteristic concept rules RC = {R1, R2, .., Rp} is learned
for the class C in order to classify the unknown instances. The rules in RC are mutually
exclusive. Note that the rule set is defined on the same feature set F . A rule may use a
single or multiple features from the feature set.

Let a new unknown instance I be described by the feature set F (with the values of



3

features f 1..fm) which is classified as a member of the class C using the rules of RC on F .
In case the feature values of F are not able to satisfy the conditions of any rule of the rule
set RC , the instance I is regarded as a member of a novel class by the system.

4 Interval Rule Concept

Interval concept we are proposing here is defined as a set of rules, where each rule has a
conjunct of conditions for a feature set. A condition is a numeric value range also called an
interval limit with a lower bound and an upper bound for a numerical feature or a single
value for a categorical feature. The interval limits for a numerical feature of a class is created
by decomposing the range of values of that feature in a given dataset into k intervals. The
value of k is determined separately for each feature of the class using statistical method.
Out of k intervals, if any two adjacent intervals are having non zero allocation of instances
would be merged to produce a larger size interval.

4.1 Simple Interval Rules

Simple interval rules are defined on single feature of the data set.

Definition 4.1 Let feature f of the class C with values f1...fn, where n is the number of
objects in class C. The minimum and maximum values of the feature f in the data set are:

fmin = Min(fi) (1)

fmax = Max(fi) (2)

Further, the mean value fmean and the standard deviation fSD of the feature f are calculated.

fmean =

∑
i fi

n
(3)

fSD =

√∑
(fi − fmean)2

n− 1
(4)

where i = 1..n. The number of intervals k is calculated as follows:

k =
(fmax + fSD

2
)− (fmin − fSD

2
)

σ ∗ fSD

(5)

In (5) fSD determines the number of k and width of range in each interval. The motive
of using fSD in interval determination is that if a feature is having larger variation, should
have finely divided range otherwise larger range width is produced. Here σ is specificity fac-
tor for increasing the effect of fSD and generated algorithmically. The specificity of the rules
increases monotonically with the increment of σ. σ is initialized by one in the algorithm.



4

Definition 4.2 Let the values of feature f be divided into k intervals and number of the
objects in class C be n. The objects are allocated to the k intervals based on the respective
values of the feature f for each object. Suppose Oj indicate the number of objects allocated
to the jth interval, where j = 1..k. The operators of interval merger Merg for obtaining the
disjunct interval rules are defined as:

kmerg = Merg(kj, kj+1), if Oj and Oj+1 are non zero

where kmerg is an interval produced after merger of the intervals kj and kj+1. Note that
kj and kj+1 are adjacent intervals and Oj and Oj+1 are the numbers of allocated objects in
these intervals, respectively. Intervals with zero allocation are ignored.

Corollary 4.3 Let k be the number of intervals generated initially from the training data
set and krules be the number of disjunct interval rules on the feature f. Then the inequality
condition krules <= k

2
+ 1 holds as in the worst case scenario every second interval is empty.

Example 1 Suppose I1, I2, I3, I4, and I5 are the intervals generated in a feature by (5),
Fig. 1(a). These intervals are in order and values of limits are also in increasing order
from first interval to the last. It implies that the lower limit of one interval will always be
less than the lower limit of its successor interval. Let LI1, LI2, LI3, LI4 and LI5 be lower
limits of intervals I1, I2, I3, I4, and I5, respectively, and UI1, UI2, UI3, UI4, UI5 be their
upper limits. Except for the first interval the lower limit of an interval is the upper limit of
its predecessor. Thus the lower limit LI2 of I2 and upper limit UI1 of I1 has same value.
Further, assume training examples allocated to the intervals I1, I2, I3, I4, and I5 are 4, 2, 0,
0, and 1 respectively. The final disjunct interval rules produced from Definition 4.2 would
be two only, first after joining I1 and I2 as single interval be I12 and I5 as an independent
second interval, shown in Fig. 1(b). The lower limit of interval I12 is LI1 and upper limit is
UI2 due to the merger of intervals I1 and I2. Clearly intervals I3 and I4 are ignored in rule
production.

4.2 Composite Interval Rules

The composite interval rules are the rules defined using more than one feature by applying
cartesian products among the simple interval rules derived for each feature of the feature set
used in the composite interval rules definition.

Definition 4.4 Let features f1 and f2 be involved in the definition of the classifier and
assume that the set of disjunct interval rules produced using the simple interval rules method
defined above for f1 and f2 to be S(f1) and S(f2), respectively. Then the composite interval
rules are the rules produced by the cartesian product operator Cart on S(f1) and S(f2).



5

(a)

(b)

Figure 1: Single Feature Interval Representation (a) Initial intervals created (b) Final dis-
junct interval rules (see example 1)

Furthermore, the created cartesian rule set Crules is used for the allocation of training objects.
Finally the reduced cartesian rule set Cr

rules is defined as follows:

Crules = Cart(S(f1), S(f2)) (6)

Cr
rules = {∀rule|rule ∈ Crules ∧ cover(rule) 6= 0} (7)

where cover(rule) is the number of objects covered by the rule.

Example 2 Suppose the features a and b of a data set are used for the classification. Assume
that the feature a has two disjunct interval rules Ia1 and Ia2, and feature b also has two
disjunct interval rules, say Ib1 and Ib2, as shown in Fig. 2. The cartesian product of the
rules of feature a and b produces four sets of disjunct composite interval rules. Let us say the
rules produced by cartesian operator are Ia1Ib1, Ia1Ib2, Ia2Ib1 and Ia2Ib2. As shown in Fig.
2 the rule Ia2Ib2 does not cover any instance of the data set. Thus the reduced composite
interval rules for the data set are three only. For simplicity, we presented here an example
of two feature based composite interval rules. However, the method can be applied to any
number of features. But the complexity of rule conditions and the number of rules increases
exponentially with the number of features in composite interval rules creation.

5 IC2 Generation Algorithm

The IC2 generation algorithm consists two main steps - rule generation and feature selection.
In the first step a function called Interval Rules creates concept rules based on the defini-
tions explained in the section III. It works on single features for simple rules and generates



6

Figure 2: Cartesian Product Rules of Multiple Feature Intervals (see example 2)

composite rules using multiple features. The IC2 classifier generated using all of the features
of the data set, produces a very specified characteristic concept and defies the objective of
concept generalization. Therefore, for generalization of concept learning the feature selection
step is quite important. A feature selection method based on a wrapper model [11] is used
in this algorithm. The function Feature Select uses a goodness measure for selection of
promising features.

For measuring the goodness of the interval rules generated from a feature or a set of
features we use two measures called precision and recall of the rules. Precision is the ratio
of the number of target class examples correctly covered by the rules to the total number
of examples (including target class and negative examples) covered. Recall of the rules is
ratio of the number of target class examples covered by rules to the total number of target
class examples. An accuracy factor f accuracy measure is also used in our feature selection
algorithm, which combines recall and precision statistics. A feature or feature set producing
interval rules with a larger f accuracy is preferred. f accuracy is used to rank the features
and to guide the specificity factor σ in the characteristic interval rules generation process.
f accuracy for the rules generated on a feature or feature set is calculated using following
formula:

f accuracy =
β + 1

β
recall

+ 1
precision

(8)

where β is a generalization parameter. f accuracy, with a value of β greater than 1,
favors recall and more generalization of concepts, whereas with a value smaller than 1, it
favors precision and more specific rules.

The goodness measure of interval rules needs negative examples for computation of the
precision of rules. As pointed out by Mitchell [12] that the intended machine learner needs



7

Figure 3: IC2 Generation Algorithm

some prior information on possible non-uniform probability distribution functions, that we
are looking for in the target class data, can be derived from a uniform distribution of the
class population. Moreover, a key intuition in machine learning is that similarly valued data
points have similar classes. Hence we can say that the data is more uniform if it is less likely
to come from any other smooth, simple probability distribution function. Based on Mitchell’s
concept we generated uniformally distributed negative examples for each target class to be
learned. Unlike Mitchell’s PolarC4.5 and Polar algorithms, where a uniform distribution
for negative data is used for getting split points, Interval learner uses the generated negative
examples for testing the rules coverage only. Thus the dependency of learner is not as much
on negative data as in decision tree based algorithms.

For selecting the set of features we use the popular forward sequential selection (FSS)
method in our algorithm. For rule definition the algorithm starts with the most general rules,
which cover the entire instance space. It conducts a depth first general-to-specific search.
A rule is specialized by increasing the interval specificity factor σ which is initialized by
one. The specialization using the specificity factor increases the lower bound and decreases
the upper bound of the rule conditions. The effect of specificity factor is evaluated using
f accuracy. Fig.3 summarizes the IC2 generation algorithm; for ease of exposition we have
omitted various details from the presentation. However, the details of two main functions
used in the algorithm are presented below in Table I and II.



8

TABLE I: INTERVAL RULES FUNCTION FOR INTERVAL RULES GENERATION

Simple Interval Rules

Input: Training Dataset D, feature f .
Output: Disjunct Interval Set.
S Interval Algorithm:

Get min and max values of f in D.
Compute mean, SD and no. of intervals k.
Compute lower and upper bounds for each interval k.
Allocate instance i ∈ D in one of the intervals k

based on value of f .
Merge adjacent intervals of non-zero coverage

and define new bounds.
Delete intervals of zero coverage.
Return Disjunct intervals.

Composite Interval Rules

Input: Training Dataset D, feature set F .
Output: Cartesian Interval Set.
Initialization: Cart-intervals = φ.
C Interval Algorithm:

For each feature f ∈ F do
{
//operator X is cartesian product

Cart-interval = Cart-intervals X S interval(f).
}
Allocate instance i ∈ D to one of the rule ∈ Cart-intrvals.
Remove rules ∈ Cart-intervals have zero instance coverage.
Return Cart-intervals.



9

TABLE II: FEATURE SELECT FOR FEATURE SELECTION

Feature Select Function

Input: Dataset D, feature set F .
Output: Feature Subset S.
Initialization: S = φ.
Feature Select Algorithm:

// use forward sequential selection method
While(Recall and Precision both not 100% or
f accuracy increasing)
{

For each f ∈ F do
{

S = S ∪ f .
Calculate Goodness(S).
S = S − f .

}
Select best feature f .
S = S ∪ f .
F = F - f .

}
Return S.

Goodness of a feature

Input: Dataset D, feature set F .
Output: goodness measures.
Goodness Algorithm:

Generate uniformally distributed negative dataset U for D.
Divide D evenly into n groups, S1, S2, ..., Sn.
For i from 1 to n Sn and U as testing data and rest of

data as training data
{

if F has only one element{
// generate simple interval rules

Take feature f from F.
Generate rules by S Interval(f) using training data.

}
else{
// generate composite interval rules

Generate rules by C Interval(F) using training data.
}
Test the rules on the testing data.
Count the total number of test examples correct and

incorrect.
}
Calculate goodness measures: recall, precision and f accuracy.
Return goodness measures.



10

Initially, simple interval rules using specificity factor σ = 1 for each feature of the data
set are generated and tested using 10 fold cross validation. For testing we use synthetically
generated negative examples for each target class. The data generated in the above operation
is used for calculation of precision, recall and f accuracy measures.

First we select all the features of the maximum recall (often 100%). Further we improve
the precision of rules by creating the composite rules with more than one features or by
increasing the specificity factor σ. If a feature produces 100% recall and precision both, or
the f accuracy of the subsequent iteration is decreasing, the process is terminated and the
feature set is selected for the characteristic rules generation.

Composite interval rules are generated using cartesian product which increases the com-
plexity in the conditions of the rules as the number of features increases. Therefore, in
order to reduce the complexity of rules we introduce a hybrid interval rule concept which
uses simple interval rules along with composite rules. One can select the number of features
from the selected feature set to be used for creating composite rules and rest of the features
are used for simple rules. These hybrid rules are evaluated using the values of all features
involved in both composite and simple disjunct rules.

6 Experimental Results

We would like to test the characteristic concept classifier developed using the interval method
on some real data and compare the performance with other methods. Since there were no
characteristic concept rule learner using only positive instances at our disposal, we use the
extended version of ID3-SD [2] for our comparison. Similar to PolarC4.5 [12], to use ID3-
SD algorithm we add uniformally distributed negative data to produce the characteristic
concept rules on positive only data. We term the extended algorithm as PolarID3 − SD.
The generalization factor α used in ID3-SD algorithm in our experiment is for 100% at the
value of α = 0.0001 in the following eq.(9) of ID3-SD.

P (m− λα
2
σ < x < m + λα

2
σ) = 1− α (9)

where, x is a normally distributed stochastic variable, m is mean, σ is the standard
deviation (SD), and λ is a critical value depending on degree of generalization factor α.

The idea for IC2 emerged while working on a real world application concerning the
problem of disease classification from High Resolution Computed Tomography (HRCT) lung
images. In order to evaluate the interval based learner approach it has to be applied to other
data sets also. In this section we report the results of experiments conducted on three
different domains containing numerical features: the classic IRIS classification problem, a
Wine recognition problem, and a HRCT lung image regions classification problem.

In this experiment we simulated one class characteristic learning by taking the data of one
category during training and then testing on the instances of all categories available in the
dataset. We used 10 trial 10 fold cross validation method. We divided the training class data
into 10 random sets, S 1, S 2, S 3, S 4, S 5, S 6, S 7, S 8, S 9 and S 10. In each iteration, we



11

pick up one set for testing along with the instances of other categories and remaining nine
sets containing only the positive sample and synthetic uniformally distributed negative data
are used for training. At best, the algorithm should classify the instances of the category
correctly for which the concept was generated and reject all those instances belonging to the
other categories.

6.1 IRIS Plant Data

IRIS dataset is one of the most popular datasets from the UCI repository for testing the
machine learning algorithms. This dataset contains 3 types of IRIS plants (Setosa, Versicolor
and Virginica) of 50 instances of each. The data set has 4 numerical features, sepal length,
sepal width, petal length, and petal width. Table III shows the classification results when
the algorithm was trained on the instances of one category and tested on the instances of
the training category as well as other two categories.

TABLE III: % ACCURACY OF CLASSIFICATION OF IRIS CLASSES

Iris Setosa Iris Versicolor Iris Virginica
PolarID3-SD 93.5±2.7 90.4±1.9 79.3±2.9

IC2 98.7±1.2 89.3±2.8 86.6±3.7

6.2 Wine Data

Wine data set is provided by Institute of Pharmaceutical and Food Analysis and Techni-
cologies in Genoa and available at the UCI repository. This dataset contains instances of
three categories. The categories of wine depends on the fermentation yeast and technique
used for preparation. The datset contains the chemical analysis of these wines in the form
of 13 numerical attributes. The dataset consists of 59 instances of wine of type 1, 71 of type
2, and 48 of type 3. Table IV shows the results of classification on this dataset.

TABLE IV: % ACCURACY OF CLASSIFICATION OF WINE CLASSES

Wine 1 Wine 2 Wine3
PolarID3-SD 89.5±3.1 92.9±2.7 88.2±1.9

IC2 95.2±1.1 97.3±0.7 97.5±2.1



12

6.3 HRCT Image Data

This dataset is generated from the HRCT lung images by applying the statistical operator
to Discrete Cosine Transform (DCT) of the labelled regions. The regions of the images are
labelled by the radiologist as the region of interest (ROI) for the diagnosis of lung diseases.
The feature generation technique is reported elsewhere. In our experiment we selected ROIs
of 4 lung disease types; Emphysema, Honey Combing (HC), Ground Glass Opacities (GGO),
and Consolidation. We collected 63 ROIs of Emphysema, 48 of Honey Combing, 59 of GGO,
and 27 of Consolidation. Each ROIs are converted into a vector of 20 numerical features.
Thus we have total 197 instances of these four categories. Table V shows the results of the
classification of disease ROIs.

TABLE V: % ACCURACY OF CLASSIFICATION OF HRCT LUNG ROIs CLASSES

Emphysema HC GGO Consolidation
PolarID3-SD 93.2±1.3 87.4±2.4 83.7±1.8 95.9±1.2

IC2 99.8±0.8 94.71±1.9 90.5±2.2 100±0

The PolarID3 − SD is a version of ID3-SD algorithm implemented in our lab. Both
PolarID3−SD and IC2 used uniformally distributed data as proposed by Mitchell [12] for
Polar. However, IC2 only uses the data for testing not for generation of rules. In general
the IC2 performed much better than the PolarID3− SD learner.

7 Conclusion

We proposed a characteristic concept classifier based on an interval rule concept using in-
stances of only one class. The algorithm uses a ”‘wrapper model”’ for deciding which feature
should be selected for creating simple or composite interval rules. We used a greedy forward
sequential search method for selecting the features; however, like hill climbing algorithms
it can have a problem with local extrema. Unlike the decision tree based algorithm the
proposed algorithm uses uniformaly distributed negative data for the evaluation of the inter-
val rules coverage and selection of most appropriate feature subset for the generalization of
the target class concept. This algorithm also follows the popular general-to-specific search
framework of interval rule generation and uses recall and precision measures to determine
if a rule set is interesting.

Preliminary empirical comparison with PolarID3 − SD, an extended version of ID3-
SD, indicates that IC2 classifier compares quite favorably in classification accuracy. It
should also noted that our emphasis is not only on accuracy and correctness but also on the
generalization methods. The concept descriptions produced by IC2 are more specific than
descriptions produced by systems using discriminant generalization algorithms, because such
systems deliver concept descriptions using only descriptors necessary to discriminate between



13

the instances of the target concepts. Therefore, the descriptions produced by a system based
on IC2 approach may be more comprehensible.

The current version of IC2 handles numerical features only in the rule induction. In
future we will continue to improve this algorithm in order to allow categorical and missing
data features. More exeriments will also be conducted on real and simulated data of various
application areas.

Acknowledgment

This research work was partially supported by the Australian Research Council through a
Linkage grant (No LP0212081), with Medical Imaging Australasia as clinical and Philips
Medical Systems as Industrial partners.

References

[1] R.C. Holte, L.E. Acker, and B.W. Porter, Concept of Learning and the Problem of Small
Disjoints, Proc. Int. Joint Conf. Artificial Intelligence (IJCAI), 1989, pp.813-818.

[2] P. Davidsson, ID3-SD: An Algorithm for Learning Characteristic Decision Trees by Con-
trolling the Degree of Generalization, Technical Report No.LU-CS-TR, Department of
Computer Science, Lund University, Sweden, 1995.

[3] J. Han, and Y. Fu, Attribute-oriented induction in data mining,Advances in Knowledge
Discovery and Data Mining, U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy (eds.), 1996, pp.399-421.

[4] P. Smyth, and J. Mellstrom, Detecting Novel Classes with Applications to Fault Diagno-
sis, Proc. Ninth Int. Workshop on Machine Learning, 1992, pp.416-425.

[5] M. Manevitz, and M. Yousef, One-Class SVMs for Document Classification, Journal of
Machine Learning Research, 2001, pp.139-154.

[6] B. Scholkopf, J.C. Platt, J. Shawe-Taylor, A.J Smola, and R.C. Williamson, Estimating
the Support of a High-Dimensional Distribution, Technical Report, MicroSoft Research,
1999, MSR-TR-99-87.

[7] N.A. Murshed, F. Borrtolozzi, and R. Sabourin, Classification of Cancerous Cells based
on the One-Class Problem Approach, SPIE Conference on Applications and Science of
Artificial Neural Networks II, Orlando (USA), 1996, vol.2760, pp.487-494.

[8] R.S. Michalski, and, J.B. Larson, Selection of Most Representative Training Examples
and Incremental Generation of VL Hypotheses: The Underlying Methodology and the
Description of Programs ESEL and AQ11, Tecnical Report 877, Computer Science De-
partment, University of Illinois, Urbana, 1978.



14

[9] W. Emde, Inductive Learning of Characteristic Concept Descriptions, Proc. Int. Worshop
on Inductive Logic Programming, 1994, vol.237, pp.51-70.

[10] E. McCreath, and A. Sharama, ILP with Noise and Fixed Example Size: A Bayesian
Approach, Proc. Int. Joint Conference on Artificial Intelligence, 1997, vol.2, pp.1310-1315.

[11] G. John, R. Kohavi and K. Pfleger, Irrelevent Features and the Subset Selection Problem,
Proc. Int. Conf. on Machine Learning, 1994.

[12] A.R. Mitchell, ”Boosting” a Positive-Data-Only Learner, Int. Conf. on Machine Learn-
ing, 2000, pp.607-714.

[13] J.R. Quinlan, Induction of Decision Trees, Machine Learning, 1986, vol.1, no.1, pp.607-
714.

[14] J. Wnek, K. Kaufman, E. Bloedorn, and R.S. Michalski, Selective Induction Learning
System AQ15c: The Method and User’s Guide, Tecnical Report MLI 95-4, Centre for
Machine Learning and Inference, George Mason University, 1995.


