

 AA CCoommppaarriissoonn ooff FFoouurr SSooffttwwaarree AArrcchhiitteeccttuurree RReeccoonnssttrruuccttiioonn TToooollkkiittss

MMeeeennaa JJhhaa11,, PPiiyyuusshh MMaahheesshhwwaarrii1,2,, aanndd TThhii KKhhooii AAnnhh PPhhaann33 1,2
11SScchhooooll ooff CCoommppuutteerr SScciieennccee aanndd EEnnggiinneeeerriinngg,, TThhee UUnniivveerrssiittyy ooff NNeeww SSoouutthh WWaalleess,,

SSyyddnneeyy,, AAuussttrraalliiaa;;
{{mmeeeennaajj,, ppiiyyuusshh}}@@ccssee..uunnssww..eedduu..aauu

22NNaattiioonnaall IICCTT AAuussttrraalliiaa LLttdd;;
33FFaaccuullttyy ooff EEnnggiinneeeerriinngg,, UUnniivveerrssiittyy ooff TTeecchhnnoollooggyy SSyyddnneeyy,, AAuussttrraalliiaa;;

TThhii..KK..PPhhaann@@uuttss..eedduu..aauu

UUNNSSWW--CCSSEE--TTRR-- 00443355

OOccttoobbeerr 22000044

TTHHEE UUNNIIVVEERRSSIITTYY OOFF
NNEEWW SSOOUUTTHH WWAALLEESS

SSYYDDNNEEYY,, AAUUSSTTRRAALLIIAA

 Abstract

 This report discusses the evaluation of four software architecture reconstruction tools.

This evaluation is needed because many legacy system needs to be reconstructed as the
requirements change for the purpose of modernization. Software reconstruction is a tool-
based iterative and interpretive process. Software architecture reconstruction tools
support software engineers in the process of recovering the “as-built” architecture of an
implemented system. The tools extract information about the system and aid in building
and aggregating successive levels of abstraction. If the tools are successful, the end result
is an architectural representation aids in reasoning about the system. There are several
commercial reconstruction tools on the market providing different capabilities and
supporting specific source code languages. In this report, we evaluate four software
architecture reconstruction tools on the criteria of extraction ability, abstraction ability,
navigation ability, ease-of-use, views, completeness and extensibility. The tools
presented for evaluation are Dali workbench, PBS, SWAG Kit and Bauhaus. Capabilities
of these tools are evaluated by applying them to medium size software ‘concepts’.

1. Introduction
If architectural reasoning is performed at the initial stage of a system’s lifecycle, it will facilitate
the detection of any non-conformance with respect to design requirements. Studies show that
between 50% and 90% of software maintenance involves the understanding of the software being
maintained [27]. During maintenance, modifications may occur and therefore may have an impact
on the software system architecture. Software architects have to understand, analyze, and reason
about the as-built software architecture of a system to modernize it [28]. There will be a need for
architecture reconstruction if the existing architecture is not yet well understood. Modernization
may occur when there is a business need to upgrade software. Most of the time the software
documentation of legacy systems do not represent existing system or they are out of sync with
actual systems due to poor documentation during maintenance process [9]. Therefore, recovering
or reconstructing system structural information is an essential process for software maintenance
and evolutionary development.
Software architecture reconstruction is infeasible manually when working with medium or large
size software systems because of their complexity. As a result, tools are necessary for the
automation of architectural reconstruction process. However, no tool is fully automatic since it
requires human interaction at some stage to obtain application-specific knowledge about the
system [3]. In this report, four software architecture reconstruction tools which are commonly
used and well known in the architecture reconstruction research area are thoroughly examined to
assess and compare their capabilities. The case study has adapted a three-step process in software
architecture reconstruction: extraction of architectural information, abstraction of extracted data
and visualization of abstracted modules. The tools’ capabilities are evaluated in terms of
extraction ability, abstraction ability, navigation, ease-of-use, views, language support,
extensibility and completeness.
The report is structured as follows. Section 2 presents an overview of the four selected toolkits.
Section 3 describes the case study. Section 4 describes the functionalities of the toolkits. Section
5 analyses and compares the toolkits. Finally the conclusions and future work, in section 6,
summarize the strengths and weaknesses of each of the tool sets.

2. Toolkit Overview
There are a number of tools available that support the parsing, extracting source code and
analyzing software system’s architecture. Four tools are selected in this study. These are:

1. Dali workbench [13]
2. PBS toolkit [6]
3. SWAG toolkit [17], and
4. Bauhaus [10]

 The criteria for a selection of a tool is not only being able to extract information from source
code but also being able to abstract and visualize system components to a higher level. Other
tools such as Sniff+, Understand and Imagix 4D are not categorized as software architecture
reconstruction tools since they do not support the abstraction and/or visualization of the software
architecture [8, 15, 19]. Nevertheless, they can be used as external extractors to produce
formatted outputs which then can be inputted into one of the examined software architecture
reconstruction tools. Studies have been performed to evaluate reverse engineering tools for
program understanding [3].
2.1Configuration of Tools
Table 1 gives descriptions of the languages, platform supported by the tools, their fundamental
components and some of their development history

Table 1: Configurations of tools

PBS and SWAG
Features DALI PBS SWAG Bauhaus

Supported
platforms

Linux Windows and
Linux

Linux Linux and
Windows

Installation
platform

Linux Redhat 9 Windows XP Linux Redhat 9 Linux Redhat 9

Developed by

SEI

University of Waterloo, Canada

University of
Stuttgart,
Germany

Space occupied 7Mb 15Mb 98Mb 48Mb
Supported
language

C, C++, Java and
Fortran

C C and C++ C and C++

Components

- Postgres SQL
7.0+

- Rigi
- Tcl/tk scripts
- csh shell
- Perl scripts

- Web server
- csh shell
- C language

parser cfx
- Manipulation

tool Grok
- Java-based user

interface lsedit

- cppx
- Grok
- lsedit

- C frontend cafe
- Preprocessor

cafeCPP
- Frontend cafeCC
- Linker imllink
- Script iml2rfg

Required
external software

 Java Virtual
Machine (JVM)

JVM - emacs

First release 1998 Sep 2002 2000
Latest update 2001 1997 Feb 2003 Dec 2003
Taken over by ARMIN1 SWAG N/A N/A

Input format

Rigi Standard Form
.rsf files

- Source code
- contain.rsf which specifies the

architecture of the system
(optional)

- Source code
- RSF
- GXL

Output

- Hierarchical
graphical
representation of
the highest level
architecture.

- Graphical
representation of
the conformance
to designed
architecture.

Graphical layouts of the main
software system and its subsystems.

- Hierarchical
graphical layouts
of the main
software system
and its
subsystems.

- Various types of
views including
call graph, file
view, logical
view, type view
and user defined
view

Previous big case
study

- Nokia [14]

Linux operating
system [6]

Linux and VIM
editor [17]

- Web Browser
Mosaic and
Chimera [11]

2.2 Dali Workbench
Dali is an open lightweight workbench which utilizes Postgres SQL database, Perl scripts and
Rigi Interface. It accepts well-formatted data as input, populates the input to tables in a database.
By manipulating the database, the architectural information can be grouped to show different
abstract levels of the system’s architecture, which are presented in a graphical interface [13].

2.3 The PBS
PBS was developed as a Software Bookshelf which is a web-based model for the presentation and
navigation of software systems’ architectural information [7]. However, a new reverse
engineering tool named SWAG Kit has been developed to enhance the capabilities of PBS.
SWAG is used to generate software landscapes from source code through three phases namely
extraction by cppx tool; manipulation by prep, linkplus and layoutplus tools and presentation by
lsedit tool [7].

2.4 Bauhaus tool
 Bauhaus toolkit is used for architecture recovery as well as for program understanding and code
auditing during maintenance process [2]. This toolkit has a set of tools to extract, analyze, query
and visualize information about existing software.

3. Overview of ‘concepts’ Program
‘Concepts’ calculates a lattice of concepts from a binary relation and produces output in a format
specified by the user. Concept lattices are also known as Galois lattices. Any set of objects can
share a (possibly empty) set of common attributes. The same for attribute sets which share
common objects. Therefore, every set of objects determines a set of common attributes and every
set of attributes determines a set of common objects, forming a pair of object and attribute set. A
pair (O, A) of such two sets is called a ‘concepts’, if the following holds: the set of attributes
common to the objects in O is A and the set of objects commonly shared by attributes in A is O
[10]. A metrics summary of ‘concepts’ which was obtained from “Understand for C” is:

 Files: 31
 Functions: 125
 Lines: 9381
 Lines code: 3861
 Lines comments: 2603
The only documentation about ‘concepts’ program available is an installation guide and a brief
description about the software. No design or architectural documents exist. Understand for C and
Imagix 4D have been used in this case study for the extraction of ‘concepts’ source code.

4. Toolkits Functionalities

4.1 Dali Workbench
View extraction: View extraction is the process of gathering and analysing existing design and
implementation of artifacts such as source code, architectural or design documentation. The Dali
workbench does not have any extraction tool; thus, it is the users’ responsibility to extract
structural information from the source code. There are a number of tools available on the market
to choose from such as Imagix 4D, Understand and Sniff+. In this case study, Understand for C is
used for source code extraction. Perl scripts were written to transfer data from reports generated
by Understand for C to RSF which is the only format that Dali accepts. The schema for the C-
written ‘concepts’ program:

function calls function
file defines_fn function
file defines_global global_variable
file defines_macro macro
file defines_ADT ADT2
file uses_macro macro
function uses_global global_variable
function uses_ADT ADT
function defines_var local_variable

The Understand software can only extract static information, dynamic state of the ‘concepts’
program can be captured by using other tools or facilities like profiling or from makefile..
Database Construction: After obtaining the view(s) of a system, the views can be stored in a
relational database. PostgresSQL 7.0 is used in the case study.
 View Fusion: If more than one view can be obtained from the view extraction stage, those views
can be combined to create a fused view [13]. Fusions are defined by using SQL. An SQL file
name fuse-types.sql was written to specify entity types for the views extracted in ‘concepts’.
The quality of static view can be improved by combining with dynamic view.
Architecture Reconstruction:
Dali uses Rigi as its interface. Figures 1 and 2 are screenshots presented when rigiedit is started
and is loading a new database to the main Rigi interface window.

Figure 1: Dali interface Figure 2: Raw concrete module of ‘concepts’

Dali allows user to construct more abstract views of a software system from more detailed ones
by developing aggregations of elements. This capability is achieved by applying patterns which
are defined as a combination of SQL queries and Perl scripts. The SQL query identifies nodes in
the repository which are grouped to form a new aggregation; the Perl command is used to
transform names and perform some manipulations of the query’s results. There were three
patterns applied in the ‘concepts’ case study.

1. The first one was function aggregation which aggregates functions and their local
variables

2. The second pattern was file aggregation which accumulates all elements that were
defined in files such as aggregated functions, global variables, macros and ADTs.

3. The third one was concepts-architecture aggregation which groups a number of related
files into a module.

The first two patterns were application-independent patterns since they leverage architectural
information common to many applications. The last one would be dependent on domain
knowledge of the system; this is where human interaction is required during the reconstruction
process. Based on the decomposition of sub-systems specified in the conceptual architecture, the
concepts-architecture pattern was developed. Figures 3, 4, and 5 display the graphical layouts of
‘concepts’ architecture after each pattern was applied sequentially.

Figure 3: The ‘concepts’ architecture,

Figure 4: The ‘concepts’ architecture, after function
file patterns were applied pattern was applied

F

igure 5: The ‘concepts’ architecture after Figure 6: domain-specific-components

function, file and ‘concept’-arch patterns

were applied.

Figure 7: The content of y.tab.c+ node in the domain-specific-components sub-system

Architecture Analysis:. Using Rigiedit interface tool, the as-designed architecture of ‘concepts’ is
drawn. When both as-implemented and as-designed architectures of a program are available, a
conformance analysis can be performed by using RMTool [25].

4.2 PBS and SWAG Tool

The Portable Bookshelf (PBS) is a toolkit used for generating a ‘software bookshelf’ [7].A
software bookshelf for a large system can provide an easily accessible Web-based structure for
storing information about a system. The information provided in bookshelf includes source code,
as well as other documentation about the system.

Reconstruction using PBS: Similar to Dali, PBS uses RSF format to describe facts. PBS has a C
extractor to extract input source code directly. The results retrieved from the extractor then can be
manipulated by using a fact manipulator. The fact manipulator provided by PBS is Grok which is
a software tool operates on facts written in RSF [7]. Also, PBS has a Layouter tool which reads
facts representing a graph and adds layout attributes to it. Finally, the graphs are viewed by a
Landscape Viewer which is a Java applet. To obtain architecture of a software system, a file in
RSF format needs to be written to specify the containment structure of the system. PBS can
automatically generate such a file. When PBS was evaluated its functionalities were not fully
supported and this tool has been taken over by SWAGKIT.

Reconstruction using SWAGKIT: SWAGKIT interface is similar to that of PBS; however
diagrams do not get displayed on web pages. The following steps were involved in the
reconstruction process of ‘concepts’ [17]:

• Extract facts from source code by using cppx tool which produced *.ta file from the
original source files

• Prepare the facts by using prep, which produced *.o.ta from the extracted facts.
• Link the facts by using linkplus which produced out.ln.ta from *.o.ta.
• Layout the facts by using layoutplus which produced out.ls.ta from out.ln.ta
• Finally, the graphs can be visualised by lsedit.

Figure 8: Highest level Architecture of concepts retrieved from SWAGKIT

Figure 9: One of the main sub-systems of ‘concepts’ Architecture

4.3 Bauhaus Toolkit
Bauhaus provides a variety of tools to assist the maintenance of software and recovery of
software’s architecture [2]. Bauhaus uses three special tools to analyse source code:

• A C analyser front end cafe which generates intermediate language IML from the source
code.

• A linker imllink which performs global name resolution on IML files and generates a
globally linked IML that describes the whole system.

• A script cafeCC which acts as a front end to cafe and imllink
The ‘concepts’ program needs to be compiled with cafeCC.

Tools support maintenance:

1. Measure code attribute: The Bauhaus toolkit can measure a number of source code
attributes including lines of code per function, cyclomatic complexity and maximal
nesting [2].

2. Detect code duplication: The Bauhaus toolkit allows user to discover clone codes
automatically, it even can distinguish three different kinds of code clones: copies that are
identical (red colour), copies that are structurally identical (blue colour), and copies
where statements were added or removed (green colour).

3. Detect dead code: The Bauhaus toolkit offers a tool called iml_dead_functions to detect
dead function and the results retrieved from this tool can be browsed by emacs

 Reconstruction using Bauhaus:

1. Extraction
 Bauhaus extracts following types of global declarations:

• routines: C functions defined in source code and included from the environment.
• user-defined types: such as structs, unions, enums and typedefs.
• objects: global variables and constants.
• members: record components of structs and unions.
• indirect calls: calls through function pointers

Bauhaus also captures the aggregation of global declarations in modules and the containment of
modules in directories. The relations between global elements can be lifted to the modules in
which these global elements are grouped and finally to directories or sub-systems. This feature is
supported by setting the option _total_lift in the iml2rfg tool which reads the IML file and creates
a graph called resource flow graph with all global declarations. Bauhaus isolates global
declarations.

 Figure 10: Code duplication of type 3.

2. Visualisation of dependencies
Bauhaus interface has two main windows: the workbench which contains the main menu and
displays status information and the view box which helps users manipulate various views of
the graph. Components can be browsed from top to bottom of the hierarchical architecture in
a view mode of user’s choice. There are three kinds of views:

• Flat: All nodes and edges are shown in a view.
• Hierarchical: only the top-level nodes are shown.
• Shrimp: the level arcs (arcs that are connecting two nodes on different hierarchical

levels) can be displayed.

Figure 11 shows the nodes and edges of two main ‘concepts’ sub-systems in Shrimp view.

Figure 11: Nodes within two subsystems lib and src and dependencies between them.

The nodes’ information can be analysed choosing Imports, Exports, Clients and Details view.
• Imports are those entities C uses from other components.
• Exports are those entities of C that are used by other components.
• Clients are those components that use entities of C.
• Details are those entities of C that are not used by other components.

Figure 12: Node Information

Different layout algorithms can be applied to the graphs. Some common ones are:
• Circular layout: nodes are displayed circularly.
• Grid: nodes are displayed in a grid.
• Stretch: nodes can be moved apart in X and/or Y axis.
• Spring layout
• Tree overviews
• Sugiyama
• Tighten: Close ranks nodes in X and/or Y axis.

 Transitive dependencies among components
Bauhaus also allows users to analyse one specific component and its dependencies to other
components. All routines can be specified that are needed to be executed until function
ListInit is executed. Figure 13 depicts the result of the process:

Figure 13: Hierarchical call for ListInit routine

3. Architecture conformance analysis
Bauhaus allows users to check the conformance of a system’s implementation if there is a
specification of that system’s intended architecture. Bauhaus lets users specify the high-level
architecture and map the concrete components onto the architecture, then compares the high-
level architecture to the concrete components and their dependencies. [2].

The output of the comparison is a reflexion model highlighting:
• Convergences: are references in the hypothesized model also present in the concrete

model.
• Divergences: are references in the concrete model for which no reference in the

hypothesized model exists.
• Absences: are references in the hypothesized model not present in the concrete model.

5. Analysis of Tools
5.1 Extraction capabilities

Integrated extraction tools: PBS, SWAGKIT and Bauhaus have an extractor included in their
toolkits. Extractor is not part of Dali workbench, and as such source code has to be extracted by
external tools such as Sniff+, Imagix 4D and Understand. PBS is only able to parse C code, while
SWAGKIT can parse both C and C++ programming languages by the use of cppx front end
analyser. Since the extraction process can be done outside the Dali workbench, Dali can be
applied to programs written in more variety of languages as far as the input file is in RSF format.
Bauhaus parsing capability is more extended since it has analysers for ANSI-conformant C, C++,
Java and COBOL as well as accepts inputs in RSF and GXL format. Also, most of not strict
ANSI-C programs can be processed by the Bauhaus analysers through providing appropriate
macros [2].
Hiding system library calls: For SWAG toolkit, the isolation of standard library files is not done
automatically. The users can group those files into a sub-module by modifying the arch-

contain.rsf file. The arch-contain.rsf file identifies how the system should be decomposed of in a
tree hierarchy. Similar process has to be done in PBS to achieve this goal; otherwise a Grok script
has to be written to remove those library files from the results. Bauhaus toolkit has an option to
identify which library calls can be removed from the analysis.
Parsing capability: In Bauhaus a set of types extracted is flexible as it allows users to define
their own schema for the data; while in Dali the extraction is dependent on which external
extraction tool was chosen and the architect who performs the task. Local variables were not
extracted in Bauhaus. Dali might provide more flexibility for users because the users can decide
how deep the architectural level they want to obtain from the analysis. A correct compilation of
the source code is required for PBS extractor to work.
Ease of Use: All of the integrated extraction tools are easy to use since each provides
straightforward scripts which require little human interaction.

5.2 Abstraction Capabilities
All four toolkits can abstract low-level information to high-level representation through the
composition of models. The abstraction of data can be done automatically according to files-
modules-directories hierarchy in Bauhaus while it is not automatic in Dali and PBS. Abstraction
in PBS and SWAGKIT is achieved by the Grok tool. There are many scripts provided with PBS
that automate the execution of abstraction. However, a pre-defined sub-system structure has to be
written manually before the scripts can be performed.
The abstraction in PBS is fast and is done before the visualisation therefore it is more time
efficient. It is also possible for users to write their own Grok scripts to manipulate the data on a
specific purpose such as analysing only a portion of a system or using an external extraction tool.
Dali populates low-level data extracted from an external tool into a Postgres SQL data repository
by using Perl scripts. Dali uses Rigi tool to provide interface and abstraction ability. Manual
inspection of the nodes displayed in the resulted graph reveals that all system library calls are not
included; they have been deleted during the abstraction process. The users have to write a pattern
query file which is a combination of a SQL query and a Perl script command for each abstraction.
A number of sequential queries can be grouped together to from a query set which can be
executed in one time and save time for users. The first abstraction process is quite simple, but
higher-level sub-system decomposition normally requires domain knowledge. In Bauhaus, the
abstraction is done automatically. During the extraction, a resource flow graph was created to
represent all global declarations (nodes) and their dependencies (edges). When this graph is
visualised by the Bauhaus graph editor, the components of the system can be browsed from top
(directories) to bottom (source code). In addition, logical abstraction can be performed via a
component mining process.
The base view of the component mining contains the global declarations and their relationships.
The base view is automatically derived from source code. The user view records the information
contributed by the user are components that have been detected and confirmed. Among these
steps, the user monitors the detection process by selecting analyses and adjusting their parameters
and by validating the candidates proposed by the automatic techniques. The Bauhaus software is
responsible for automatic analyses, computation of the metrics for the proposed candidates,
presentation of the results and keeping records of the user decisions. The user selects an analysis
to be applied. “The analysis takes into consideration the components that were confirmed by the
user (in the first iteration there are none). Thus, the analyses are applied incrementally; that is,
they may cluster only those global declarations that have not been clustered before to new or
existing components. Then, the candidates are presented to the user for acceptance. The user
validates the candidates and the accepted components enter the component memory—that is, the
user view. In each iteration, the user selects and combines different analyses to find components
that could not be found by previous analyses. The process ends when the found components are
sufficient for the task at hand or no further component can be found anymore. Several analyses

can be selected and applied in parallel. Then, the intersection, union, and differences of these
analyses can automatically be ascertained and the user can investigate and validate them.” [2]
Figure 14 shows the result view for component mining process where components are identified
based on abstract data type heuristic or internal access heuristic.

 Figure 14: Result view for component mining

5.3 Visualization Capabilities
The features table 2 describes are the capabilities of the visualisation tools. A check mark ! in a
specific column indicates the presence of the corresponding feature on that row.

 Dali PBS SWAG Bauhaus
Node type in shape - - ! !
Node type in color ! ! ! !
Node type in text - - - !
Edge type in color ! ! ! !
Edge type in text - - - !
Move nodes and arcs ! ! ! !
Node hierarchies ! - ! !
Resize nodes - ! ! -
Bi-directional edges - ! ! -
Scroll ! - - !
Zoom ! - - !
Annotation ! ! ! !
Different Layouts ! - ! !
Saving graph ! - ! !
Opening graph ! - ! !
Create user’s own
graphs

! - - !

Table 2: Feature table lists visualisation capabilities of the tools.

All tools use graphs that contain only nodes and edges to present architectural information. Each
node represents a component in the system while each arrow represents the relationship between
components. The Dali workbench and the PBS bookshelf use only colour code to distinguish
different types of nodes and edges. Bauhaus and SWAGKIT utilise both colours and shape to
differentiate node types and only colour for edges types. These two tools also have a panel
describing information of all node and edge types. Moreover, SWAG has a map which is a
miniature of the content structure at each hierarchical level of the target node.
PBS and SWAG graph viewers do not support scrolling while Dali and Bauhaus do. In addition,
Bauhaus provides zoom features and Dali offers scale feature which is quite similar to zooming
but less flexible. Also, only Bauhaus offers multiple views of graphs
Dali uses uni-directional arcs. To represent the relations between any two components Dali uses
two uni-directional arcs. Dali allows users to create their own diagrams which represent the
architecture of a system according to design documentation and then use conformance analysis
tool to compare between the as-designed architecture and as-implemented architecture. Similar
feature is implemented in Bauhaus. In addition, both tools have specific colour code to
distinguish between the divergence, convergence and absence.
Navigation features: All the tools except PBS support hierarchical browsing which reinforces
the abstraction of components into modules. Multiple nodes can be collapsed together into one
parent node. The children nodes can also be viewed. While Dali and Bauhaus open a new window
to display children nodes, SWAG and PBS display a new graph in the same main window (the
current one is cleared). Bauhaus can either display a nested graph in the same window or display
children nodes in a new window. Bauhaus has a manager to control these windows.
Views and Layouts: The readability of a graph can be examined by analysing the issues of node
shape, node size, and graph layout, number of arcs crossing and placements of nodes. In Dali
nodes are represented as a square box whereas in PBS it is a rectangle box. SWAG and Bauhaus
supply a number of different shapes for nodes such as circle, square, hexagon and triangle. Dali
and Bauhaus allows full editing of the graphs including adding, deleting, modifying and moving
nodes.
PBS provide only one option of layout which is automatically invoked upon when the user
interface is started while Dali, SWAG and Bauhaus have more options of layout techniques.
However, Dali and SWAG does not have as many layout methods as Bauhaus does. In Dali, an
appropriate graph layout is not automatically invoked. Horizontal and Vertical layouts gives tight
structure of nodes and their names. Bauhaus toolkit has a number of layout options to choose
from depending on type of graph needed to be presented. All the tools allow arcs crossing and
arcs can even pass through nodes to which they are not attached. This can make graphs look
complex.

5.4 Other attributes
Language support: All tools support the parsing of C language. However, many existing legacy
system were written in other languages. Dali supports C, C++, Java and Fortran.

Completeness: Functionalities that a software architecture reconstruction should have are
extraction ability, abstraction ability, views, and navigation and conformance analysis. Bauhaus
has tools that support all these functionalities. Dali also possesses all these features except the
extraction ability. PBS and SWAG have extraction ability but are not capable of hiding
environment calls automatically and they do not have an easy implementation of architecture
conformance analysis.
Both PBS and Bauhaus’s structures and utilities are useful for maintenance and re-engineering of
software systems; while Dali ane SWAG are mainly designed for reverse-engineering purposes.

Assessment
Criteria

Dali PBS SWAG Bauhaus

Extraction
capability

Integrated extractor - ++ ++ ++
Hiding system
library calls + 0 0 ++

Parsing ability 0 ++ + +
Ease-of-use + + + ++
Combined views + - - +
Abstraction
capability

Files-directory
decomposition

++ 0 ++ ++

Logical sub-module
decomposition

++ + ++ ++

Ease-of-use + 0 + +
Visualization
Node types + 0 ++ ++
Edge types + 0 + ++
Combined views + - - ++
Annotations ++ 0 ++ ++
Layouts + 0 + ++
Navigation ++ 0 ++ ++
Node attributes
editable

+ 0 + +

View editable ++ ++ - ++
User Interface + 0 ++ ++
Views storable ++ - ++ ++
History of browsed
locations

- - 0 0

Language support ++ 0 + ++
Completeness + 0 + +

Table 3: Assessment of the software architecture reconstruction toolkits

++: excellent, +: good, 0: minimal and -: not at all.

6. Conclusions and Future Work
The reconstruction tools evaluated are all quite different with varying strengths and weaknesses.
The capability of each software architecture reconstruction tool is evaluated by applying to a C-
written ‘concepts’ program. However, no tool is fully automatic since it requires human
interaction at some stage to obtain application-specific knowledge about the system.
Dali provides high flexibility in supported language, abstraction ability and integration of new
tools into the workbench. It is also good at visualizing architectural information into various
layouts. Dali does not have any history mechanism. It supports multi language information.
PBS is the model of building software bookshelves which store system documents on a web
server to be shared by many users at the same time. It has its own extractor and the abstraction of
data requires a special file specifying the containment of the system’s components. It does not
support views and navigation efficiently. PBS does not support multi language information.

SWAG has a nice interface and provides good visualisation capabilities. It also has its own
extractor and abstraction ability similar to PBS. However, both PBS and SWAG do not offer
functionality to perform the architecture conformance analysis.
Bauhaus toolkit features a lot of new technologies such as layered views, Shrimp views and
various layout algorithms. It provides a number of other functionalities for software maintenance
purpose apart from full functionalities in software architecture recovery. Moreover, Bauhaus can
parse a variety of languages through its analyzers for C, C++, Java and COBOL. Bauhaus is
better at visualization while Dali is more extensible.
We assume that the application of architecture reconstruction will be used in a much broader
technical sense. This could be used by an organization that is looking to modernize their system
with high business value. From source code to architectural views depicts all the unfolded
information. This is very useful for white box modernization approach. This could help in
constructing architectural view and identify problematic components which need modification.
Although Dali, PBS, SWAG and Bauhaus are prototype tools, they all provide concrete
approaches for extraction, abstraction and visualization. However, none of them is complete.
Their development should be continued to extend their scope, improve their extraction
capabilities and user interaction. Especially, history mechanism should be supported well in all
tools to provide users more flexibility in navigating different abstract levels of architecture. An
option of playback or ‘undo’ should be developed to provide the user more ease in browsing the
hierarchical presentation of architecture. In addition, analyzing each other’s strengths and
shortcomings thoroughly as well as integrating new methodologies and approaches towards the
architecture reconstruction problem would be helpful.

7. REFERENCES
[1] Amstrong, M. N., and Trudeau, C., “Evaluating Architectural Extractors”, Working
Conference on Reverse Engineering, Honolulu, Hawaii, pp 30-39, October12-14, 1998.

[2] Bauhaus group, “Tour de Bauhaus”, http://www.Bauhaus-stuttgart.de/demo/index.html,
version 4.7.2, December 2003.

[3] Bellay, B., and Gall, H “A Comparison of Four Reverse Engineering Tools”, Proceedings of
the 4th Working Conference on Reverse Engineering, pp 2-11, October 1997.

[4.] Biggerstaff, T.J., Mitbander, B.G., and Webster, D.E., “Program understanding and the
concept assignment problem”, Communications of the ACM, pp72-82 Vol 37, Issue 5, May 1994.

[5] Clements, P., Kazman, R., and Klein, M., Evaluating Software Architecture – Methods and
Case Studies. Software Engineering Institute, Carnegie Mellon University, 2002.

[6] Holt, R., “PBS: The portable Bookshelf- Introduction”, http://SWAG.uwaterloo.ca/PBS/.

[7] Holt, R., “Software Bookshelf: Overview and Construction”, http://SWAG.uwaterloo.ca/PBS/.

[8] Imagix Corporation, Imagix 4D, http://www.imagix.com.

[9] Kazman, R., and, Carriere, J., “Playing Detective: Reconstructing Software Architecture from
Available Evidence”, Journal of Automated Software Engineering, pp107-138, April 1999.

[10] Koschke, R., “Readme.txt”, Bauhaus toolkit distribution, December 2003.

http://www.bauhaus-stuttgart.de/demo/index.html
http://swag.uwaterloo.ca/pbs/
http://swag.uwaterloo.ca/pbs/
http://www.imagix.com/

[11]Koschke, R., Eisenbarth, T., and Simon, D., “Locating Features in Source Code”, IEEE
Transactions on Software Engineering, pages 210-224, Vol. 29, No. 3, March 2003.

[12] Murphy, G., Notkin, D., Griswold, W.G. and Lan, E.S., “An Empirical Study of Static Call
Graph Extractors”, ACM transaction on Software Engineering and Methodology, Vol 7, Issue 2,
pp 158-191, April 1998.

[13] O’Brien, L., “Dali: A Software Architecture Reconstruction Workbench”, Software
Engineering Institute, Carnegie Mellon University, May 2001.

[14] O’Brien, L., “Experiences in Architecture Reconstruction at Nokia”, Software Engineering
Institute, CMU/SEI-2002-TN-004, August 2003.

[15] Rigi, http://www.rigi.csc.uvic.ca/index.html, 2000.

[16] Scientific Toolworks Inc., http://www.scitools.com.

[17] SWAG group, “Introduction to SWAGKit”,
http://www.SWAG.uwaterloo.ca/SWAGKIT/#introduction

[18] Taylor R.N., Medvidovic, N., Anderson, K.M., Whitehead Jr., E. J., Robbins, J. E., Nies,
K.A., Oreizy, P., and Dubrow, D.L., “A component-and Message-Based Architectural Style for
GUI Software”, IEEE Transaction on Software Engineering, pp390-406, Vol: 22, Issue: 6, June
1996.

 [19] Trevors, A., “The Software Architecture Toolkit”, University of Waterloo,
http://SWAG.uwaterloo.ca/SWAGKIT/, February 2003.

[20] Wind River, Sniff+, http://www.windriver.com/products/sniff_plus/index.html

[21] Bass, L., Clement, P., and Kazman, R., Software Architecture in Practice, Addison Wesley,
2003.

[22] Holt, R., Schurr, A.,Sim, S.E., and Winter, A., “Graphical eXchange Language”,
http://www.gupro.de/GXL

[23] Koschke R., and Simon D., “Hierarchical Reflexion Models,” 10th Working Conference on
Reverse Engineering, pp36-46, Victoria, B.C., Canada, November13-17, 2003.

[24] Knodel J., “Process Models for the Reconstruction of Software Architecture Views”,
University of Stuttgart, http://elib.uni-stuttgart.de/opus/volltexte/2002/1176/pdf/DIP-1987.pdf.
July 2002.

[25] Murphy G., and Notkin D., “Reengineering with Reflexion Models: A case study”, IEEE
Computer Society Press, pp 29-36, Vol 30, Issue 8 , August 1997.

[26] Kazman R., O’Brien L., and Verhoef C., “Architecture Reconstruction Guidelines”, 3rd
Edition, CMU/SEI-2002-TR-034, the Software Engineering Institute,
http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr034.pdf, November 2003.

http://www.rigi.csc.uvic.ca/index.html
http://www.scitools.com/
http://www.swag.uwaterloo.ca/swagkit/
http://swag.uwaterloo.ca/swagkit/
http://www.windriver.com/products/sniff_plus/index.html
http://www.gupro.de/GXL
http://elib.uni-stuttgart.de/opus/volltexte/2002/1176/pdf/DIP-1987.pdf. July 2002
http://elib.uni-stuttgart.de/opus/volltexte/2002/1176/pdf/DIP-1987.pdf. July 2002
http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr034.pdf

[27] Tilley S., and Smith D.B , Perspective on Legacy System Reengineering, Software
Engineering Institute, Carnegie Mellon University, 1995, available at
http://www.sei.cmu.edu/reengineering/lsyree.pdf

[28] Seacord, R. C., Plakosh, D., and Lewis G. A., Modernizing Legacy Systems, SEI Series in
Software Engineering, Addison Wesley, 2003.

http://www.sei.cmu.edu/reengineering/lsyree.pdf

	5.4 Other attributes

