
On Reachability and Acyclicity

Yi Lu and John Potter
Programming Language and Compiler Group
School of Computer Science and Engineering

The University of New South Wales
Sydney, Australia

{ylu,potter}@cse.unsw.edu.au

UNSW-CSE-TR-0434
15 Oct 2004

1

Abstract

This paper presents a type system that enforces constraints on
reachability via pointers or references, and restricts reference cycles
to be within definable regions. Every data object lives in a fixed re-
gion, determined from its type.

The motivation for our work is the desire to enforce static con-
straints on reference structures. Such constraints can be useful for pro-
gram reasoning, for deadlock avoidance in concurrent contexts, and for
runtime optimizations and memory management. For example, data
invariants are easily broken by re-entrant code. By restricting cycles to
statically enforceable regions, program proof rules can make stronger
assumptions about reference structures.

The contributions of this paper are a novel class-based region-
parametric type system, with subtyping, that enforces one-way reach-
ability between regions, and a dynamic semantics that allows us to
formalize the key structural invariant: object references respect region
reachability, so that object cycles occur only within regions.

2

1 Introduction

1.1 Motivation

References are used in programming to allow sharing of data structures. In
most software, references are unavoidable for pragmatic efficiency reasons,
even though they complicate program reasoning and their use is error-prone.
When the data structures are mutable, problems are inevitable. Reference
cycles (direct or indirect) can cause serious programming errors; a sequence
of method calls following a reference cycle, may unexpectedly break invari-
ants of local states or cause infinite loops. References also complicate the
task of memory management; for instance, safety of explicit memory deal-
location may be difficult in the presence of arbitrary cycles and automatic
garbage collection cannot rely on reference counting alone in the presence
of cycles.

Reference problems are difficult to reason about because in most cases
call-backs and infinite loops may be caused by indirect references which a
programmer may be unaware of. These problems are especially difficult to
address statically because the reference structure is evolving dynamically.
As a result, existing type systems are weak in their ability to express where
cycles are allowed and where forbidden.

Reference structures are particularly interesting in object-oriented sys-
tems, because most object-oriented languages use reference semantics for
objects which, together with subtyping and a generic coding style, increase
the likelihood of unintended object reference cycles.

Moreover, cycles also cause trouble in common object-oriented design
patterns, like the decorator or wrapper. Wrapping an object with self-cycles
yields a design problem: should the self-cycles be re-routed via the wrapper
or not? When is it safe to wrap an object?

1.2 Acyclic Types

Problems with references and aliasing have been well documented especially
in object-oriented programming [22], and various principles espoused for
providing alias protection [27]. Object level encapsulation has been a pop-
ular approach for alleviating the approach. For example, ownership types
[28, 11, 10, 7] clearly define a notion of inside and outside for objects and
maintain a containment invariant. Objects may only access inside via the
owner, whereas they may directly access anything outside which is owned
by one of its ancestors in the ownership tree. This containment invariant
restricts direct inward access, but places no constraints at all on the indirect

3

reachability of objects: any object may potentially reach any other object.
In particular reference cycles may occur anywhere.

This affects our ability to use class invariants to reason about the state
of an object before and after method calls. If a method indirectly calls back
on an object, via an indirect reference cycle, say, then the call-back may be
entering the object in an invalid state, so the call-back code may be working
outside of its assumed precondition, and furthermore the original call on the
object may not be aware of the indirect effect of the call-back, so its desired
postcondition may not be met. With reference cycles we cannot presume
that an invariant will hold for all calls on an object. This problem manifests
itself in a language like Eiffel which allows runtime assertion checking for
class invariants—when should the invariant hold? The problem has been
highlighted in recent work on verification of OO programs [3] which sug-
gests enriching the program state to track when object invariants hold; they
incorporate a notion of dynamic ownership.

Our approach is to capture the potential of an object to reach other
objects, directly or indirectly, in their types. In typed languages, the occur-
rence of a cycle in the runtime object graph implies there must be a cycle in
the type dependency graph; conversely, if there are no cycles in the type de-
pendency graph, then there will be none in the runtime object graph. In any
object-oriented programming language, cyclic type dependencies are permit-
ted for user-defined types, because the data values modeled by these types
are object references. If there are type-level cycles, the type system is pow-
erless to prevent cyclic references, even if they are undesirable. For example,
in the Java Collections library there is a bulk method addAll(Collection) that
adds all the elements of the argument to those of the target collection. In
one of the implementing classes ArrayList the documentation advises that
the behavior is undefined if the list is added to itself, and leaves it up to the
programmer to avoid the situation. With our proposal we can insist that
such calls do not type-check correctly.

Our goal is to provide an expressive type system that will allow pro-
grammers to record their assumptions about acyclicity through constraints
on reachability between objects. One-way reachability means that there is
a path from one object to another that is not part of a cycle in the object
graph. This acyclic reachability is the key concept in our model: it is a strict
partial order which we denote by ..

The motivation for the design of acyclic types is the well-known factor-
ization of a directed graph into a partially ordered partition of strongly con-
nected components. All cycles within the original graph must occur within
these components. We have designed our type system so that regions and

4

their reachability relation provide a static abstraction of the strongly con-
nected components of the dynamic object graph and their partial order.

The key idea is to formulate static constraints on the object graph by
specifying regions within which all reference cycles are trapped. Every object
lives in the same region for its lifetime. We impose constraints on region
reachability, and guarantee that inter-object references respect these inter-
regional reachability constraints.

To use such a model, programmers must be able to decide when they
want to ban the possibility of cycles or aliases emanating from particular
object fields. This will be clearer when we look at a small language and
examples in the next sections. For now we just give an example illustrating
a simple use of acyclic types.

class A<p>
r from p;
B<r> f;
...

// assert a property about this object’s fields
f.m();
// assert the same property

This code shows the simplest case of acyclic types. Class A is parame-
terized with a region parameter. A region r is defined with the class with
the constraint r from p, which means p may reach r, or p . r. The type of
the field f is B<r> which means f references an object living in the region
r. In this case, the object referenced by f can never hold a reference to the
this object because of the order we force on their types. So any method
call made on f can not re-enter this object. Such knowledge allows us to
assert properties that are necessarily invariant during the call (for exam-
ple, the reference stored in the field f). More examples to illustrate the
expressiveness of the acyclic types will follow.

Acyclic types can significantly improve program understanding. Pro-
grammers are able to specify via types that cycles are allowed between two
objects by placing them into the same region, or disallowed by placing them
in distinct regions. Programmers know that two references are not direct
aliases if their objects live in different regions.

1.3 Outline of the Paper

This paper is organized as follows: ATL, a small programming language with
acyclic types is presented in the next section. Section 3 gives some program

5

c ∈ ClassName; p ∈ RegionParameter; r ∈ RegionName;
x ∈ VarName; f ∈ FieldName; m ∈ MethodName

P ∈ Program ::= cls e

cls ∈ Class ::= class c〈ρ〉 dextends tc {ς fd mth}
ρ ∈ ClassConstr ::= κ . p . κ
ς ∈ RegionDefn ::= α . r . α

fd ∈ Field ::= t f
mth ∈ Method ::= t m(t x){e}

e ∈ Expression ::= x | new t | null | e.f | e.f = e | e.m(e) |
e; e | if e then e else e

α ∈ Region ::= p | r | base
κ ∈ RegionExpr ::= p | t.r | base
t ∈ Type ::= c〈κ〉

Table 1: Abstract Syntax of ATL

examples and Section 4 gives an overview of its static semantics. Section 5
presents a dynamic semantics of ATL and gives proofs for some important
properties of the type system. Related work and discussion are given in
Section 6 and Section 7 along with some thoughts on future directions.
Section 8 concludes the paper.

2 A Programming Language with Acyclic Types:
ATL

In this section, we present an informal overview of a class-based program-
ming language featuring acyclic types with subtyping, calling it the Acyclic
Types Language, or ATL for short. The syntax of the language is given
in Table 1; program examples and formal semantics will be given in the
following sections.

To simplify the abstract syntax, we use a few abbreviations. The overbar
is used for a sequence of constructs; for example, cls is used for a possibly
empty sequence cls1 ... clsn, as are ρ, ς, fd, mth, κ and e. Similarly, t x
stands for a possibly empty sequence of pairs t1 x1 ... tn xn. In the class
production, dextends tc is an optional part of the class. Just as in Java,
this is a variable name used to reference the target object for the current

6

call.
In the concrete syntax we use for our examples, the region definition

α . r . α′ is written as:

r from α1, ..., αm to α′1, ..., α
′
n

where |α| = m and |α′| = n. The same applies to the class constraint
κ . r . κ′. The relational symbol . denotes the acyclic reachability relation
between regions in the abstract syntax.

Classes and Class Constraints. Our syntax is close to Java except
that classes are parameterized with region parameters and regions are de-
fined within classes like fields. Formal region parameters can be used within
a class to identify regions for objects used by the class. The first formal
parameter of a class is bound to the actual region where this object lives.

Class constraints restrict the object reference structure. The region para-
meters of a class are required to satisfy the reachability constraints specified
in the from and to clause of each parameter.

To ensure the acyclic property for the region reachability relation, the
order of introduction of new region parameters is important. A class con-
straint ρ introduces a fresh name for its region parameter, together with
constraints that specify the required reachability properties of any actual
region bound to this parameter. These constraints are expressed in terms of
previously defined regions κ, including region expressions formed from ear-
lier parameters, from the special global region base and from type-qualified
regions. Furthermore these constraints must not impose any further require-
ments on the reachability relation for the previously defined regions; in this
way we are able to inhibit cycles in the region reachability relation. This is
checked and enforced by the type system as formalized in Section 4.

Types. Classes are type schemas. Types are formed by binding the
region parameters to actual regions in the environment where the type is
formed. A type consists of a class name and the region arguments required
by the class definition. The first region argument is the region where the
object of this type reside. Unsurprisingly, for a type to be valid, the actual
region arguments must satisfy the class constraints defined on the formal
parameters.

Regions and Region Definitions. In ATL programs, every object
belongs to a fixed region for its entire lifetime. All regions except the special
region base are defined within a class. Just as for class constraints, a region
definition ς introduces a fresh region name into the scope of the current class
with constraints to locate the new region strictly between existing regions.

7

Unlike the region parameters of a class constraint, these region names define
actual regions. Acyclicity is maintained by region definitions, in the same
way as by class constraints—the location bounds for the new region cannot
introduce any further restrictions on the existing regions.

Compared with class constraints, which just impose requirements on the
actual region arguments for a class, region definitions actually determine
the region reachability relation for the system. Every class defines a type
schema, with its own locally defined regions; we allow types to qualify region
names—every such qualified region t.r determines a particular region. If t
and t′ have a common ancestor whose class introduces r, then t.r denotes
the same region as t′.r; otherwise the two are distinct regions. Classes
inherit all the regions of their ancestors, and may not further constrain the
inherited reachability relations; however classes may extend their inherited
reachability relations with new region definitions. In order to guarantee that
newly defined regions can never form cycles, we exclude qualified regions t.r
from the bounds α of the region definition ς. The reason for this will be
illustrated by an example in the next section.

The primary goal of ATL is to allow programmers to define a static
preorder on the runtime object structure, thereby restricting where cycles
can occur. By making class-defined region names publicly accessible we keep
flexibility in that every ground region has a global name. Ground regions
are those with no free region parameters: either base, or a ground type
qualified region τ.r. A ground type is one with no free region parameters.
Objects of the same types (not just the same class) share the same region;
objects of different type may occupy the same region, but their types must
share the same first region argument (because this determines the region the
object lives in).

Interestingly, regions and types are recursively defined: regions are de-
fined within classes and named via type qualification; types are formed by
binding classes with actual regions. Because of this recursive structure there
are an unbounded number of ground regions, all globally accessible via region
path expressions. Fortunately the programmer does not need to deal with
global region names, because the region parameters of a class localize the
expression of the regions relevant for a class, so normally region expressions
do not need to be nested through more than one level of type qualification.

It may be noticed that the syntax of region expressions requires that all
regions including locally defined regions to be referred by a qualified type
(this certainly does not apply to the formal parameters and base). This
would help the type system reason about region identities in the presence
of subtypes. However for the convenience reason, in the actual language we

8

allow programmers to write local regions unqualified as they are named in
their definitions, because the type checker can easily annotate these local
regions with their qualifying type, which is the type of the object this.

The special region base is the only unqualified ground region. An im-
portant note here is that regions do not have to be reachable from base or
vice-versa; also any root objects do not have to be placed in base. base is
just the base region used to name any other regions. The ability to name
a region is different from the ability to access a region, which is determined
by the to and from clauses of the region definitions.

All region constraints are statically verified by the type system to ensure
global acyclicity. Any strongly connected components in the object heap
during the execution of an ATL program must occur entirely within a region.
Regions need not exist at runtime for ATL because the expression language
only uses types for object allocation, and regions can be erased from that
with no change in behaviour. Regions are only used in type checking to help
organize and reason about cyclic references and object reachability.

Fields and Methods. In our language, the structural invariant is
maintained by imposing a stronger restriction on object fields than on other
reference-valued entities, namely method arguments and results. Object
fields are singled out for special attention because they can form unwanted
hard-to-detect cycles in object graphs. ATL’s structural invariant states
that if an object contains a reference to another object then both objects
must be in the same region or the region of the former object must be able
to reach the region of the latter object with no return reference possible.

However, we do allow method parameters to access objects which are
not accessible to this object. So within the scope of a method, this is
not necessarily the root object. This implies that we still allow inter-region
callbacks, but that they occur within method scope, and the method’s type
signature indicates whether any such call-back is allowed or not.

Default Types for Legacy Code. Regions can be circumvented when
they are not needed. ATL is compatible with existing programming pat-
terns; it is easy to integrate existing library classes that do not use region
parameters. This can be achieved using default types. A compiler can auto-
matically annotate classes with a single region parameter and types declared
in them with that region parameter. In the main routine, base (or any other
ground region) can be used as the default region for types. Region-based
code that needs access to the library classes simply needs to declare that
the base region is reachable.

9

3 Examples

In this section, we first give some toy examples to illustrate the use of regions,
then a recursive linked list data structure with an iterator, and finally show
how regions can capture fixed application-specific ordering properties.

3.1 Toy Examples

We illustrate class constraints and region definitions.

class A<p1, p2 from p1, p3>
a1 from p1 to p2; // OK
a2 from p2 to p1; // BAD cycle p1 to p2 to p1
a3 from p1 to p3; // BAD require p1 to p3
a4 from base; // OK

class B<p from base>
b1 from p; b2 from b1; b3 to p;
A<p, b2, p> f1; // OK
A<b1, b2, p> f2; // OK
A<p, b3, b2> f3; // BAD require b3 from p
A<base, p, b1> f4; // BAD require p to base
A<p, B<p>.b1, B<b1>.b3> f5; // OK
A<p, B<p>.b3, p> f6; // BAD require B<p>.b3 from p

class C<
p1 from base, // OK
p2 from B<p1>.b1, // OK
p3 from B<p3>.b1, // BAD p3 undefined
p3 to B<base>.b3, // OK
p4 from p1 to B<base>.b3

> // BAD require p1 to B<base>.b3

Class A shows how regions are defined. The key point in region defin-
itions is that any newly introduced region can not change the relations of
any previous defined region. Class B shows that a valid type needs to sat-
isfy its class constraints. Class C shows various class constraints on region
parameters, some with qualified regions.

A qualified region has nested regions and types. The qualified name of
a region deep in the reachability relation may be long; fortunately, the long
name will only be required in those rare circumstances where direct access

10

to a deeply buried object is needed. To reduce complexity programmers can
choose to work with a flattened region structure and/or restrict access to
local regions.

class SubjectFactory<here, there>
Subject<here> s1; // OK
Subject<there> s2; // BAD
Subject<there> makeSubject() // OK

return new Subject<there>(); // OK

Dynamic references (method arguments and results) are treated differ-
ently to field references. There is no restriction on what regions can be used
for dynamic references. Dynamic references are safe because they can only
be used in a limited scope (within a method) and at runtime they emanate
from the calling stack rather than the heap, which is deallocated at the
exit of the method. Unrestricted dynamic references add flexibility. The
SubjectFactory class models a factory in region here for creating Subject
objects in region there. The type system prevents the SubjectFactory
class from holding field references to objects in there, but because dynamic
references are not bound by this restriction, new objects can be created in
there and returned through the makeSubject method for clients to use.

class M<p> class N<p>
m to N<p>.n; n to M<p>.m; // BAD syntax

class M’<p1, p2 to N<p1>.n>
m to p2; // OK

class K<p> class J<p1, p2 from p1> extends K<p1>
k; j to k;

class L<p>
l from p;
K<p> f1;
J<p, l> f2;
A<K<p>.k> f3;
A<J<p>.k> f4;
...

f1 = f2; // OK subtype
f3 = f4; // OK same type

11

Figure 1: List Example

Classes M and N show a potential problem with region definitions using
qualified regions. In the example, there is a cycle between M<p>.m and
N<p>.n whenever their parameters are bound to the same region.

To solve this problem we forbid qualified regions in region definitions.
This does not limit the expressiveness of ATL as class M’ shows. In M’ the
region m is defined to reach N<p1>.n through the formal parameter p2. So
now that M’<r, r’>.m acyclic reaches N<r>.n can be proved to be safe,
because for the type of M’<r, r’> to be valid r’ must be proved to acyclic
reach N<r>.n by the class constraints of M’, which implies that N<r>.n must
be a valid region defined before M’<r, r’>. In this way, the order between
m in the type M’<r, r’> and N<r>.n are kept.

Classes K, J, L show the issues with subtyping. In ATL, we allow regions
and region definitions to be inherited from ancestor classes. Also regions can
be named through types. This means the same region may have different
qualified names because of subtyping. Our type system copes with the same
region having different qualified names.

3.2 A Linked List Example

Linked lists provide a common example used to demonstrate expressiveness
of language features dealing with references. Our list example will show

12

how regions work and how acyclic properties are expressed in a program.
In particular, this example shows how the list data structure is handled in
such a way that a list object can never reach itself via its data objects. In
other words, the data objects contained by a list should not be able to reach
and thereby alter the list, which may cause iterators on the list to fail. The
data objects themselves may well be shared by other parts of the program.

class Link<here, dr from here>
Link<here, dr> next;
Data<dr> data;
Link(Link<here, dr> next, Data<dr> data)

this.next = next;
this.data = data;

class List<here, dr from here>
kr from here to dr;
Link<kr, dr> head;
Link<kr, dr> tail;
void addElement(Data<dr> data)

head = new Link<kr, dr>(head, data);
if (tail == null) tail = head;
tail.next = head;

Iterator<here, dr> getIterator()
return new Iterator<here, dr>(head);

class Iterator<here, dr from here>
Link<List<here, dr>.kr, dr> current;
Iterator(Link<List<here, dr>.kr, dr> link)

current = link;
void next()

current = current.next;
Data<dr> element()

return current.data;

The List object is implemented by a cyclic sequence of Link objects.
Iterators are created inside the List region, and are used to access the data
stored in Link objects. The relations between the regions in the example
are shown in Figure 1. All Link objects live in the same region defined in
the List class, and List, Link and Iterator objects have access to the
data objects in another region given by a parameter of their classes.

13

The type system enforces a lack of cycles between regions. Data objects
can never reference the List object and Iterator objects, which are shown
in the graph as ’bad references’. As expected, cyclic references are allowed
within a region. In the example, Link objects form a cycle within their
region.

3.3 An Application Specific Ordering

Programmers have control over how to use regions, they can use regions
in various situations. Besides using regions to prevent reference cycles, we
can encode some application specific ordering in the region structure of a
program. The type system then enforces the ordering.

Machine<m>
d from m;
Display<d> disp;
init()

disp = new Display<d>;
adjust() // modify the display

...

Operator<o, m from o>
Machine<m> mach;
Display<Machine<m>.d> disp;
set(Machine<m> ma)

mach = ma;
disp = ma.disp;

operate() // do the job, such as adjust the machine
...

Factory<f>
skill1 from f;
skill2 from f to skill1;
floor1 from skill1;
floor2 from skill2;
Machine<floor1> mach1;
Machine<floor2> mach2;
Operator<skill1, floor1> op1;
Operator<skill2, floor2> op2;
Operator<skill2, floor1> op3;

14

Operator<skill1, floor2> op4; // BAD

A factory has a number of operators and machines. Different machines
require different level of skills to operate. In this example, two machines are
placed in two regions (floors) and four operators occupy two other regions
(skill levels).

The region structure of Operator requires an operator to have enough
skill to work on a machine. The relation between different skills and floors
are defined in the Factory class—operators with skill2 can work on ma-
chine on any floor while operators with skill1 can only operate the ma-
chines on floor1.

4 The Type System

We present an overview of the static semantics of ATL, along with detailed
descriptions of some important typing rules. The complete type system can
be found in Table 2.

In addition to the type system, we formally define some auxiliary func-
tions to lookup and bind classes, types, region definitions, fields, methods
and relations in Table 3. We intentionally move all occurrences of substitu-
tion into the auxiliary functions to simplify the typing rules. Region, field
and method lookup need to recursively include all inherited constructs in
any ancestor classes. The region definition lookup function is left-recursive
because the order of region definitions is important for a well-formed en-
vironment. Regions introduced in a subclass can be defined in terms of
inherited regions; hence region definitions inherited from ancestor classes
must be included before the regions of a subclass.

Several other simple functions extract variable names (var), region names
(regvar) respectively from an environment, or extract the first region argu-
ment from a type (reg), which is the actual region objects of this type live
in. We also assume that, for a program to be valid, no identifier can be
declared more than once within the same scope. That is, no class name
can be declared more than once; no field and method name can be declared
more than once within the same class; no region name including the name
of region parameters can be declared more than once within the same class.

We use a number of syntactical abbreviations. P ; E `κ κ represents a
possibly empty sequence of judgements P ; E `κ κ1 ... P ; E `κ κn. The same
abbreviation is used for judgements involving cls, fd, mth and t. Similarly,
P `' κ ' κ′ stands for P `' κ1 ' κ′1 ... P `' κn ' κ′n while P ; E `e e : t

15

stands for P ; E `e e1 : t1 ... P ;E `e en : tn. In the auxiliary definitions we
use [κ/r] to abbreviate a sequence of substitutions [κ1/r1] ... [κn/rn].

In our model, each object may only contain references to objects in the
same region or regions that its region can reach. The type system guarantees
this by superimposing a static region structure on the object graph. It
ensures that the region reachability relation forms a partial order on regions,
that objects live in one region for their life-time, and that object references
respect the region reachability relation. It follows that any reference cycle
must occur within a region.

The environment may contain the types of variables, class constraints
and region definitions. The order of the elements in the environment is
significant.

E ::= ε | E, x : t | E, κ . α . κ

Because in our language, types and regions are defined recursively, the
number of regions and types are infinite. To achieve a strict partial order
among all possible regions, we identify two requirements that must be satis-
fied by the type system. Firstly any reachability defined between two regions
needs to be one-way only. Secondly, any extension to the reachability re-
lation should not introduce any more reachability between existing regions,
but rather introduce new regions together with their reachability relative to
existing ones.

Our type system satisfies these two requirements. To ensure one-way
reachability, the reachability relation between any two regions can be defined
once only. This can be achieved by ordering the region definitions so that the
later definitions are expressed in terms of earlier ones. Our region definition
syntax α.r.α requires that a region is defined in terms of previously defined
regions, formal parameters and base. The definition order is kept because
formal parameters have to be bound before the region can be defined in the
class, and the base region is pre-existing.

To satisfy the second requirement, the type system guarantees that if
a new region lies between existing regions, then those regions were already
related. For example, if r . r′ is already defined, then a new region r′′ can
be defined via r . r′′ . r′, but not r′ . r′′ . r because this would introduce
cycles into the region structure. Similarly, if there is no existing reachability
between r and r′, then r . r′′ . r′ is invalid too because it implies r . r′ which
is unspecified originally. This constraint is enforced by the environment rule
[ENV-REGION] which guarantees that the new region variable and the relations
on it do not violate the consistency of the environment.

Class well-formedness is checked in the [CLASS] rule. Each class defines its

16

Well-Formed Environment P `E E

[ENV−EMPTY]

P `E ε

[ENV−VAR]

x /∈ var(E)
P `E E
P ;E `t t

P `E E, x : t

[ENV−REGION]

α /∈ regvar(E) ∪ base P `E E

P ; E `κ κ P ; E `κ κ′

P ; E `κ κ . κ′ ∀κ ∈ κ ∀κ′ ∈ κ′

P `E E, κ . α . κ′

Well-Formed Program and Class `P P, P `c cls

[PROGRAM]

P ≡ cls e

P `c cls
P ; ε `e e : t

`P P

[CLASS]

P `E ρ, dD(P, t)c, ς dregvar(ρ1) = reg(t)c
E ≡ ρ, this : c〈regvar(ρ)〉 dP ;E `t tc

P ; E `f fd P ; E `m mth

P `c class c〈ρ〉 dextends tc {ς fd mth}

Well-Formed Type P ; E `t t

[TYPE]

C(P, t) = class c〈ρ〉 ...
P ;E `κ ρ

P ;E `t t

Subtype Relation P `<: t <: t′

[SUBTYPE−REFL]

P `' κ ' κ′

P `<: c〈κ〉 <: c〈κ′〉

[SUBTYPE−TRANS]

P `<: t <: t′′

P `<: t′′ <: t′

P `<: t <: t′

[SUBTYPE−EXTEND]

C(P, t) = ... extends t′′ ...
P `<: t′′ <: t′

P `<: t <: t′

Well-Formed Region P ; E `κ κ

[REGION−ENV]

κ ∈ regvar(E)
P ; E `κ κ

[REGION−BASE]

P ; E `κ base

[REGION−TYPE]

P ;E `t t
t.r ∈ regvar(R(P, t))

P ; E `κ t.r

17

Region Equivalence P `' κ ' κ′

[REGEQ−REFL]

P `' κ ' κ

[REGEQ−SUBTYPE]

P `<: t <: t′′

P `<: t′ <: t′′

r ∈ regvar(D(P, t′′))
P `' t.r ' t′.r

Region Relation P ; E `κ κ . κ′

[RELATION−ENV]

κ . κ′ ∈ E

P ; E `κ κ . κ′

[RELATION−TRANS]

(κ 6= κ′)
P ; E `κ κ . κ′′

P ; E `κ κ′′ . κ′

P ;E `κ κ . κ′

[RELATION−REGEQ]

(κ 6= κ′)
P ;E `κ κ′′ . κ′′′

P `' κ ' κ′′ P `' κ′′′ ' κ′

P ; E `κ κ . κ′
[RELATION−TYPE1]

P ; E `t t
t.r . κ ∈ R(P, t)
P ; E `κ t.r . κ

[RELATION−TYPE2]

P ; E `t t
κ . t.r ∈ R(P, t)
P ; E `κ κ . t.r

Well-Formed Field and Method P ; E `f fd, P ; E `m mth

[FIELD]

E(this) = c〈κ, ..〉
t ≡ c′〈κ, ..〉
P ; E `t t

P ; E `f t f

[FIELD−REACHABLE]

E(this) = c〈κ, ..〉
t ≡ c′〈κ′, ..〉 P ; E `t t

P ; E `κ κ . κ′

P ; E `f t f

[METHOD]

P ; E `t t′

P ; E, x : t′ `e e : t

P ; E `m t m(t′ x){e}

Well-Formed Expression P ; E `e e : t

[EXPR−SUBSUM]

P ;E `e e : t′

P `<: t′ <: t

P ; E `e e : t

[EXPR−VAR]

E(x) = t

P ;E `e x : t

[EXPR−NEW]

P ; E `t t

P ; E `e new t : t

[EXPR−NULL]

P ; E `t t

P ; E `e null : t
[EXPR−FIELD]

P ; E `e e : to
(t f) ∈ F(P, to)
P ;E `e e.f : t

[EXPR−ASSIGN]

P ;E `e e : to
(t f) ∈ F(P, to)
P ; E `e e′ : t

P ; E `e e.f = e′ : to

[EXPR−CALL]

P, E ` e : to
M(P, to, m) = (tp , tr,)

P, E ` e′ : tp
P ;E `e e.m(e′) : tr

18

[EXPR−SEQ]

P ; E `e e′ : t′

P ; E `e e : t

P ; E `e e′; e : t

[EXPR−IF]

P ;E `e e : t′

P ; E `e e′ : t P ; E `e e′′ : t

P ;E `e if e then e′ else e′′ : t

Table 2: Static Semantics

[LOOKUP−CLASS]

P (c) = class c〈ρ〉 ... {ς ...}
t ≡ c〈κ〉

r = regvar(ρ)
r′ = regvar(ς)

C(P, t) = P (c)[κ/r][t.r′/r′]

[LOOKUP−TYPE]

P (c) = class c〈ρ〉 ... {ς ...}
t ≡ c〈κ〉

r = regvar(ρ)
r′ = regvar(ς)

T (P, t, t′) = t′[κ/r][t.r′/r′]
[LOOKUP−RELATION]

r = regvar(D(P, t))
R(P, t) = D(P, t)[t.r/r]

[LOOKUP−DEFINITION]

P (c) = class c〈ρ〉 dextends t′c{ς ...}
t ≡ c〈κ〉

r = regvar(ρ)
D(P, t) = dD(P, t′)c, ς[κ/r]

[LOOKUP−FIELD]

C(P, t) = ... dextends t′c {... t f ...}
F(P, t) = dF(P, t′)c, t f

[LOOKUP−METHOD1]

C(P, t) = ... {... tr m(tp x){e} ...}
M(P, t,m) = (tp x, tr, e)

[LOOKUP−METHOD2]

C(P, t) = ... extends t′ {... mth ...}
m not defined in mth

M(P, t, m) = M(P, t′,m)

Table 3: Auxiliary Lookup Functions

19

own environment formed from its class constraints and the type of this ob-
ject. Note that we do not put region definitions into the class environment,
because we want local regions to be qualified when used as region expres-
sions. However, because programmers do make mistakes, some constraints
may violate others. We need to check the class constraints and region defin-
itions together to ensure that no later relations can violate relations defined
earlier, by applying the rule [ENV-REGION] on all class constraints and all
region definitions including those defined in ancestor classes if any (by using
the auxiliary function D). If the class is extended from a supertype then
the supertype needs to be valid in the environment formed from the class
constraints. Furthermore, all fields and methods need to be checked for
well-formedness.

Once a well-formed environment is established, it is used to infer region
reachability for all valid regions. Region definitions define the reachable
relation between regions. Reachability is defined to be transitive; irreflex-
ivity and antisymmetry are consequences of our system. The pair of rules
[RELATION-TYPE1/2] check the reachability relation between a region κ and a
region t.r in the relations defined in type t. The auxiliary function R(P, t)
is used to lookup region relations that are just region definitions qualified
by the type of this object. Both rules have an implicit condition that
we do not show - κ has to be base or one of the region arguments of t.
Recall that this condition is enforced by the syntax and guarantees the or-
der of region definitions within different types. In any other case, regions
are related through transitivity [RELATION-TRANS], or by region equivalence
[RELATION-REGEQ] discussed next.

The same region can have multiple names because it can be qualified by
many types, either based on the regions defining class or any of its subclasses.
To identify a region we need also to identify its qualifying type with [REGEQ]

rules. Moreover, because types are recursively defined with regions, we need
to identify all the regions to the types before we can decide the subtype
relations in rule [SUBTYPE-REFL].

The [TYPE] rule says that for a type to be valid, its region arguments
must satisfy its class constraints. We simply place the class constraints into
the test after substituting all the regions parameters with the arguments.
Because ρ is a syntactical short hand for a region with a set of region rela-
tions. We feel that defining a new judgement and typing rules for this kind
of syntactical short hand is trivial so that we assume the type checker will
break down these relations into pairs before they are checked against the
relation rules. If two region parameters are unrelated in a class constraint,
then they may be bound to any valid regions; they may even both be bound

20

[RED−PROGRAM]

H = ∅ S = ∅ P ≡ cls e
H; e ⇓P,S v; H ′

H;P ⇓P,S v;H ′

[RED−VAR]

H; x ⇓P,S S(x);H
[RED−NEW]

ι /∈ dom(H) F(P, t) = (f)
this /∈ S =⇒ H ′ ≡ H, ι 7→ {t, f 7→ null}

H(S(this)) = {τ, ...} =⇒ H ′ ≡ H, ι 7→ {T (P, τ, t), f 7→ null}
H; new t ⇓P,S ι; H ′

[RED−FIELD]

H; e ⇓P,S ι; H ′

H; e.f ⇓P,S H(ι)(f);H ′

[RED−ASSIGN]

H; e ⇓P,S ι; H ′ H ′; e′ ⇓P,S v; H ′′

H ′′′ ≡ H ′′[ι 7→ H ′′(ι)[f 7→ v]]
H; e.f = e′ ⇓P,S ι; H ′′′

[RED−NULL]

H; null ⇓P,S null; H

[RED−CALL]

H; e ⇓P,S ι; H ′ H ′; e′ ⇓P,S v; H ′′

H ′′(ι) = {τ, ...} M(P, τ, m) = (x, , em)
S′ ≡ this 7→ ι, x 7→ v H ′′; em ⇓P,S′ vm;H ′′′

H; e.m(e′) ⇓P,S vm; H ′′′
[RED−SEQ]

H; e ⇓P,S ; H ′

H ′; e′ ⇓P,S v; H ′′

H; e; e′ ⇓P,S v; H ′′

[RED−IF]

H; e ⇓P,S null; H ′ =⇒ H ′; e′′ ⇓P,S v;H ′′

H; e ⇓P,S ι; H ′ =⇒ H ′; e′ ⇓P,S v;H ′′

H; if e then e′ else e′′ ⇓P,S v;H ′′

Table 4: Dynamic Semantics

to the same region.
Another key rule of the type system is the [FIELD] rule where global

reachability properties are preserved by placing local restrictions on field
references. Fields are static (that is, heap-based) references, so that the
field rule needs to ensure that this can reference other objects if and only
if its region can reach the regions of the other objects. This is an important
invariant of our programs. The [CLASS] rule ensures that the first region
parameter of a class is not lost through subtyping.

We allow method arguments and return types to freely reference objects
in any regions. The [METHOD] rule merely checks if the types of arguments
and the method body are correct. Dynamic references are considered safe
in the sense that they will not form cycles in the object graph as they are
local to a method stack.

21

ι ∈ Location
ω ∈ GroundRegion ::= τ.r | base
τ ∈ GroundType ::= c〈ω〉
v ∈ Value ::= ι | null

obj ∈ Object = {τ, f 7→ v}
H ∈ Heap = Location −→ Object
S ∈ StackFrame = VarName −→ Value

Table 5: Dynamic Features of ATL

5 Dynamic Semantics and Invariants

First we formalize some static properties about regions for a well-formed pro-
gram: namely that the region reachability relation is acyclic. Then, after
briefly introducing a formal big-step semantics, we state a subject reduction
theorem, that, amongst other things, states that heap goodness is preserved
through reductions. Finally we characterize the invariants for object refer-
ences on good heaps for well-formed programs: inter-object references either
occur within regions or respect the region reachability relation.

Lemma 1 (Irreflexivity) If `P P , P `E E and P ; E `κ κ . κ′ then P 0'
κ ' κ′.

Proof Outline. Assume P ; E `κ κ . κ′. There is no type rule which
infers P ;E `κ κ . κ, so we κ 6= κ′. Assume also P `' κ ' κ′. We need to
show a contradiction.

By [REGEQ] rules, κ and κ′ must have the form t.r and t′.r respectively,
where t and t′ have a common supertype that defines r. Any reachability
derivation for t.r or t′.r can be replaced by one for t′′.r. Now later definitions
do not let us derive any further reachability properties involving just r or it’s
qualified variants. So we can prove the contradiction by arguing inductively
on the order of definition of the bounds for regions.

Lemma 2 (Asymmetry) If `P P , P `E E and P ; E `κ κ . κ′ then
P ; E 0κ κ′ . κ.

Proof. Assume P ; E `κ κ . κ′ and P ;E `κ κ′ . κ. By transitivity, we
see that P ; E `κ κ . κ which contradicts Lemma 1.

22

Theorem 1 (Acyclicity) If `P P , P `E E and P ; E `κ κ . κ′ then
P ; E 0κ κ′ . κ and P 0' κ ' κ′.

Proof. Immediate from Lemmas 1 and 2.
Let us now consider the dynamic semantics. Table 5 formulates some

dynamic features of ATL and the dynamic semantics is given in Table 4.
Table 6 shows the rules for well-formedness of heap, stack-frame and ex-
pressions in the dynamic model.

We incorporate full type information (with regions) in the heap, to make
the proof of soundness properties relatively straightforward. Note that none
of the reduction behavior depends on this type information; the new t re-
duction only uses the field names of the class; the region bindings are only
used to store the type.

Some of the reduction rules are written with a choice within the rule;
this simply avoids repeating rules with similar structure. Note that the
if-then-else test branches on null test value.

Now a well-formed heap ensures that any field of an object in the heap
stores the value whose actual type respects the declared type of the field in
the type of the object.

This leads directly to the following property for good heaps, whose proof
follows directly from the static properties of regions. This states that object
references respect region reachability.

Theorem 2 (Reachability) If `P P , P `H H, H(ι) = {c〈ω, ...〉, ... f 7→
ι′ ...} and H(ι′) = {c′〈ω′, ...〉, ...}, then P ; `κ ω . ω′ or P `' ω ' ω′.

Consequently, reference cycles must occur within regions.

Theorem 3 (Cycles) If `P P , P `H H, H(ι) = {c〈ω, ...〉, ... f 7→ ι′ ...}
and H(ι′) = {c′〈ω′, ...〉, ... f ′ 7→ ι ...}, then P `' ω ' ω′.

Proof. By using Theorem 2 twice, we get (P ; `κ ω.ω′ or P `' ω ' ω′)
and (P ; `κ ω′ . ω or P `' ω ' ω′). By Theorem 1, only P `' ω ' ω′ can
hold.

Finally we present a standard subject reduction result, together with
a statement that goodness of a heap is invariant through expression reduc-
tions. This implies that the heap invariants are maintained through program
execution.

Theorem 4 (Preservation) Given `P P , P `E E, P `H H and P ; E;H `S

S, if

23

[GOOD−HEAP]

H(ι) = {τ, f 7→ v} ∀ι ∈ dom(H)
C(P, τ) = class c ...{... τ f ...}

P ; `t τ P ; ; H; `τ v : τ

P `H H

[GRDTYPE−LOCATION]

H(ι) = {τ, ...}
P ; `t τ

P ; E;H;S `τ ι : τ
[GOOD−STACK]

this ∈ dom(S) H(S(this)) = {τ, ...} P ; `t τ
x ∈ dom(S) P ; E `e x : t

P ; ;H; `τ S(x) : T (P, τ, t)
P ; E;H `S S

[GRDTYPE−NULL]

P ; `t τ

P ;E; H; S `τ null : τ

[GRDTYPE−EXPR−SUBSUM]

P ;E; H; S `τ e : τ ′

P `<: τ ′ <: τ

P ; E; H; S `τ e : τ
[GRDTYPE−EXPR−MAIN]

this /∈ dom(S)
P ;E `e e : τ

P ; E;H; S `τ e : τ

[GRDTYPE−EXPR−METHOD]

this ∈ dom(S)
H(S(this)) = {τ, ...}

P ; E `e e : t

P ;E; H; S `τ e : T (P, τ, t)

Table 6: Auxiliary Rules for Dynamic Features

• P ;E; H; S `τ e : τ , and

• H; e ⇓P,S v; H ′

then

• P ;E; H ′; S `τ v : τ ′

where P `<: τ ′ <: τ , and

• P `H H ′

Proof Outline. By structural induction on the form of expressions. If
v is null, then τ ′ is arbitrary.

6 Related Work

To our knowledge, our object model is the first attempt to reason about
cycles and sharing in programs based on a type system imposing reachability

24

constraints on the object graph. Our type system does have some similarity
with others. Moreover, some of the work in pointer and shape analysis gave
us some insight relevant properties of reference structures.

Ownership Types and Alias Protection. Uniqueness type systems
[25] ensure no aliasing and allow programmers to declare references as un-
aliased. Linear types [32] guarantee uniqueness by tracking objects linearly.
Linear types have been used in a number of applications, such as tracking
resource usage [12, 18] and ensuring safety of explicit region-based memory
deallocation [14, 33].

Other type systems focus on alias management and attempt to restrict
references into a limited scope. Early work like Islands [21] and Balloons [2]
enforced full encapsulation on objects which prevented referencing across the
encapsulation. They are generally considered as too restrictive. Universes
[26] improved the expressiveness of full encapsulation by introducing read-
only references to cross the boundary of encapsulation. Confined types
[31, 19] used a different approach by restricting references within a specified
package scope.

Ownership types [11, 10, 7] improved the previous work on object level
encapsulation by allowing unrestricted outgoing references from an encap-
sulation while still preventing incoming referencing into an encapsulation.
Ownership types and their combination with uniqueness have been used
in many applications, such as program and effects reasoning, [9], external
uniqueness [8] and data race/deadlock elimination [5, 4]. Both the work
on confined types and the work on ownership types emanated from some
general principles for flexible alias protection [27].

Ownership types used parameterized type systems to pass the names of
objects via class parameters. In order to declare a type for a reference, one
must be able to name the ’owner’ that encapsulates this object. Encapsu-
lation is protected from incoming referencing because the owners of objects
inside an encapsulation can not be named from the outside. However, ob-
jects inside an encapsulation are able to name the objects living outside
through the owner names passed in as class parameters.

Our type system is close to ownership types that are parameterized
classes in a similar way, and the first parameter identifies the owner/region
of this object. However, the invariant of our system is about acyclicity
rather than encapsulation. The major difference between these two proper-
ties is that encapsulation is a local property of an object while acyclicity is
rather a global property and should not be restricted to local constraints.

Other Region-Based Systems. Our notion of region is shared with
that used in region-based memory management [29, 30] because they both

25

refer to a partition of data objects. Region-based memory management
focuses on the safety and efficiency of explicit memory allocation and deal-
location on the basis of regions. The ordering relation on regions are based
on lifetimes, that is, on which regions may outlive others. Early region lan-
guages were lexically scoped to ensure safe deallocation in a LIFO discipline
[29, 30]. There have been a number of extensions to the original region sys-
tem, such as an analysis to free some regions early [1], making use of linear
types or key sets to statically track living regions at each control flow point
[13, 34, 14, 18] and counting references for individual regions at runtime to
check if deallocation of regions is safe - no pointer should point a deallocated
region [15, 16].

Our concept of region is different. Our regions represent a static ab-
straction of sccs in object graphs. However, the structure of our model is
naturally compatible with the structure of object lifetimes, because objects
with cyclic references are more likely to share the same lifetime. We take
this idea as one of our future directions.

Lock Levels. One way to prevent deadlocks in multi-threaded programs
with locks is to place a partial order on the locks to ensure they will be
grabbed and released in the same order by all threads. SCJ [4] introduced
a concept of lock level to help order locks statically, extending the idea of
using ownership types to identify those objects which are not shared by
threads (so require no locks). In their language, lock levels are partially
ordered and all locks are partitioned into lock levels and therefore ordered
according to their lock levels. Similar to our regions, their lock levels and
ordering are defined within a class. However their lock levels are static to
classes which means the number of all lock levels is limited by the number
of classes. Moreover, their published type system does not appear to check
the partial ordering of lock levels; however they do claim to check this in an
interprocedural flow analysis.

In contrast, our regions and types are recursively defined, so the number
of regions is unlimited. This gives a richer model for our region structure,
and means that a programmer is able to be more discriminating in choosing
an appropriate region structure. We have proved that our type system
guarantees acyclicity amongst an unbounded number of regions.

Pointer Analysis. Pointer analysis has been an active research area
for the past few years. It attempts to acquire the knowledge of pointer
behavior at runtime via whole program analysis and uses this information
to help program understanding and optimization [20]. In particular, pointer
analysis can be used to compute sharing of data storage, read/write effects
[6, 24] and shape of the heap [17].

26

Compared to type systems, pointer analysis requires little or no language
annotation. Proponents of this approach often consider type systems are too
restrictive and may rule out some good programs unnecessarily. However,
exact pointer analysis is undecidable, so in practice it may be of relatively
low precision. It is hard to scale to large or incomplete programs. Most work
has been done for C-like languages, and less for object-oriented languages.

7 Discussion

7.1 Expressiveness and Limitations

Of course, as with any type system, there is a price to pay for the improved
safety offered by strong type checking. First, there is the extra syntactic
weight associated with more expressiveness; the syntax burden is not too
taxing, amounting to the cost of parameterized types. For our purposes, it
is essential to distinguish between type (schema) definition and the use of a
type (instance). Without this distinction, our proposal would provide little
more than the name-based access restrictions offered by module or package-
based approaches. Second and more importantly, what are the expressive
limitations of our approach? In some sense, none, because the type system
proposed in this paper allows programmers to code with no structural con-
straint whatsoever. In Section 2 we discussed the ability to integrate with
region-free code. Realistically though, in order to benefit from the ability
of our type system to inhibit cycles and/or sharing, it is necessary to make
inhibiting design decisions. Our type system will insist that programmers
decide which object fields may form part of a cycle, and which may not.
It is relatively simple then to record types which will cause the design de-
cision to be enforced. Again as with any type system, there is a trade-off
between extra safety offered by strong type checking, and the loss of flex-
ibility in the programming model, or at least annoyance at being made to
impose restrictions early on in a design. In practice our system will not be
too annoying, because when programmers don’t care about cycles, they can
effectively allow them to occur anywhere, and the appropriate types are the
least complex to express, corresponding exactly to the marked up legacy
code.

Acyclic types can significantly improve program understanding. Pro-
grammers are able to specify via types whether cycles are allowed between
two objects by placing them into same region, or disallowed by placing them
into acyclic reached or disjoint regions.

Acyclic types have direct application in multi-threaded programs. Multi-

27

threading will not affect the structure of the object graph, but knowledge
of the region structure allows, for example, ordered locking strategies to be
imposed (c.f. [4]). However, in this paper we only consider the fundamental
issues in reachability and acyclicity in object graph, and do not cover the
issues with multi-threading.

Acyclic types can express recursive data structures. However, such a
structure needs to have fields with the same type as the self type. Because
they have the same type, all the structural objects forming the recursive
data structure must all live in the same region. As a result, all the data
objects will also live in the same region as each other.

7.2 Future Work

Future work might follow several directions.
The Theoretical Model. The theoretical foundations for reachability

relations are interesting. Our formal model can be extended with more
possible relations other than acyclic reachability. The simplest is to allow
reachability from one region to another to be declared, without forbidding
backwards reachability, as acyclic reachability does. When declared between
region parameters of a class, it means that we can allow references in the
direction of the declared reachability, but we can allow both parameters to
be bound to the same actual region. This is a somewhat trivial but useful
extension.

More significantly, we hope to formalize disjointness constraints that
rely on reachability to ensure (deep) non-sharing between distinct regions,
thereby permitting stronger assertions about alias-free parts of a system.

There are strong dependencies between reachability and disjointness, so
the rules for environment extension with these constraints will be compli-
cated. In fact, for consistency, they appear to require an ability to express
other kinds of constraints, in particular, the possible sharing and unreacha-
bility relations. We leave a more detailed analysis for future work.

The Language and Type System. We briefly indicate some possible
type system extensions. First it would be nice to allow the entries in a
container to belong in different regions, rather than force them to belong
to the same region as our current system generally requires. One promising
approach is to use bounded existential regions, hiding the actual region
where an entry lives, but still allow from and to relations based on the
stated bounds.

Because of the similarities with ownership type systems, the idea of
combining the reachability constraints of acyclic types, with the containment

28

properties of ownership types is attractive. We have made some progress
along these lines already.

If we want to have an acyclic tree data structure, we will put all the
node objects into distinct regions. If a node lives in a deep branch in the
tree structure, we have to name all the regions and types along the branch
to be able to name the region where the object lives. This is not very
reasonable, so a method to escape the naming restriction may lead to a
more flexible, powerful and expressive language.

Knowledge of the acyclic structure should provide help with some com-
mon operations that suffered from unintended cycles, such as deep copy
and cloning, and object marshalling for distributed applications and object
persistence.

Access Control and Concurrency Control. It would be natural to
control access and formulate ordered locking disciplines based on the region
ordering given by acyclic types. This may provide a natural extension of
the lock levels of [4].

Assertion Languages. It would be interesting to see if dynamic reach-
ability relations could be reasoned about in some program logic. Separation
logic [23] uses assertions to reason about aliasing based on the different parts
of heap, so may provide a starting point for further work.

Formal Specification and Effects. Unexpected aliasing between com-
ponents may cause serious safety and security problems in systems. Compo-
nent and subsystem isolation has become an important safety issue in soft-
ware engineering. Good program understanding on sharing and effects may
be helpful in addressing these issues. Moreover, our model of reachability
may also help in the formal specification and refinement of component-based
systems and object-oriented programs [3].

Memory Management. Although our region structures are different
to those used in region-based memory management, it would be interesting
to see if objects that live in our regions with cyclic references share the same
lifetime. Moreover the outlive relationship between regions of memory needs
to be acyclic as well, where our concept of regions may just fit in.

For garbage collection [35], we might choose just to implement a counting
collector for inter-regional references, and a more sophisticated collector for
the intra-regional references.

Implementation. We have a prototype implementation of a type checker
for a Java-based variant of ATL. The type checking is modular. We plan to
use this as a basis for further implementation. In particular our next job is
to implement a region-erasing translator into standard Java; after that, we
will consider a run-time model with explicit regions, and explore language

29

extensions involving dynamic region manipulation. Eventually we hope to
blend this work with our parallel work on ownership types.

8 Conclusion

In this paper we have presented a type system that allows programmers
to specify where cycles are allowed, and where they are forbidden. Our
approach has been illustrated with a small object-oriented language having
class-based types parameterized over regions. Object types are formed by
binding the type parameters to actual regions; the first region parameter of
a type defines the region where objects live for their lifetime. As well as
having region parameters, each class defines its own region members. These
members denote the primitive regions in our system, and are unique to their
defining types.

Programmers can specify reachability constraints for regions, so that
an object’s type determines what other regions, and hence objects, it may
reach. Our type system guarantees that reachability forms a partial order
on regions. All object field references are restricted to being within the same
region, or to other regions reachable from the source object’s region. The
major result of this paper then is a type system that allows programmers
to specify regions which trap all object reference cycles, and to otherwise
control the acyclic reachability for all objects.

This provides a novel contribution to ongoing work investigating the use
of type systems, and other formalisms, for taming arbitrary object reference
structures. There are fruitful avenues opened up for ongoing research. For
us the most promising direction is to investigate incorporating more kinds of
constraints, such as possible sharing, non-sharing, and ownership-like con-
tainment properties. It is still unclear to us whether attempting to combine
a number of such kinds of constraints will be untractable, both in terms
of the syntactic load, and the semantic complexity brought about by the
interactions between various kinds of constraints. We remain hopeful that
by pursuing these ideas from a graph theoretic viewpoint, more fruitful and
expressive approaches will surface.

References

[1] A. Aiken, M. Fähndrich, and R. Levien. Better static memory manage-
ment: Improving region-based analysis of higher-order languages. In

30

SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 174–185, 1995.

[2] P. S. Almeida. Balloon types: Controlling sharing of state in data types.
Lecture Notes in Computer Science, 1241:32–59, 1997.

[3] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte.
Verification of object-oriented programs with invariants. In S. Eisen-
bach, G. T. Leavens, P. Müller, A. Poetzsch-Heffter, and E. Poll, ed-
itors, Formal Techniques for Java-like Programs (FTfJP), July 2003.
Published as Technical Report 408 from ETH Zurich.

[4] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe pro-
gramming: Preventing data races and deadlocks. In Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), No-
vember 2002.

[5] C. Boyapati and M. Rinard. A parameterized type system for race-free
Java programs. In 16th Annual Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), Tampa
Bay, FL, October 2001.

[6] J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interproce-
dural computation of pointer-induced aliases and side effects. In Pro-
ceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 232–245. ACM Press, 1993.

[7] D. Clarke. Object Ownership and Containment. PhD thesis, School
of Computer Science and Engineering, The University of New South
Wales, Sydney, Australia, 2001.

[8] D. Clarke and T. Wrigstad. External uniqueness is unique enough. In
In European Conference for Object-Oriented Programming (ECOOP),
July 2003.

[9] D. G. Clarke and S. Drossopoulou. Ownership, encapsulation and dis-
jointness of type and effect. In Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), November 2002.

[10] D. G. Clarke, J. Noble, and J. M. Potter. Simple ownership types for
object containment. Lecture Notes in Computer Science, 2072:53–76,
2001.

31

[11] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible
alias protection. In Proceedings of the 13th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications,
pages 48–64. ACM Press, 1998.

[12] K. Crary, D. Walker, and G. Morrisett. Typed memory management in
a calculus of capabilities. In Conference Record of POPL 99: The 26th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Antonio, Texas, pages 262–275, New York, NY, 1999.

[13] K. Crary, D. Walker, and G. Morrisett. Typed memory management in
a calculus of capabilities. In Conference Record of POPL 99: The 26th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Antonio, Texas, pages 262–275, New York, NY, 1999.

[14] R. DeLine and M. Fähndrich. Enforcing high-level protocols in low-
level software. In Proceedings of the ACM SIGPLAN’01 conference on
Programming language design and implementation, pages 59–69. ACM
Press, 2001.

[15] D. Gay and A. Aiken. Memory management with explicit regions. In
SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 313–323, 1998.

[16] D. Gay and A. Aiken. Language support for regions. In SIGPLAN Con-
ference on Programming Language Design and Implementation, pages
70–80, 2001.

[17] R. Ghiya and L. J. Hendren. Is it a tree, a dag, or a cyclic graph?
a shape analysis for heap-directed pointers in c. In Proceedings of the
23rd ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 1–15. ACM Press, 1996.

[18] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney.
Region-based memory management in cyclone. In Proceedings of the
ACM SIGPLAN 2002 Conference on Programming language design and
implementation, pages 282–293. ACM Press, 2002.

[19] C. Grothoff, J. Palsberg, and J. Vitek. Encapsulating objects with
confined types. In Proceedings of the 16th ACM SIGPLAN conference
on Object oriented programming, systems, languages, and applications,
pages 241–255. ACM Press, 2001.

32

[20] M. Hind. Pointer analysis: haven’t we solved this problem yet? In Pro-
ceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, pages 54–61. ACM Press,
2001.

[21] J. Hogg. Islands: aliasing protection in object-oriented languages. In
Conference proceedings on Object-oriented programming systems, lan-
guages, and applications, pages 271–285. ACM Press, 1991.

[22] J. Hogg, D. Lea, A. Wills, D. deChampeaux, and R. Holt. The Geneva
Convention on the treatment of object aliasing. OOPS Messenger,
3(2):11–16, 1992.

[23] S. Ishtiaq and P. W. O’Hearn. Bi as an assertion language for mutable
data structures. In Proceedings of the 28th Annual ACM SIGPLAN -
SIGACT Symposium on Principles of Programming Languages. ACM
Press, 2001.

[24] W. Landi, B. G. Ryder, and S. Zhang. Interprocedural modification
side effect analysis with pointer aliasing. In Proceedings of the ACM
SIGPLAN 1993 conference on Programming language design and im-
plementation, pages 56–67. ACM Press, 1993.

[25] N. H. Minsky. Towards alias-free pointers. In Proceedings of the 10th
European Conference on Object-Oriented Programming, pages 189–209.
Springer-Verlag, 1996.

[26] P. Müller and A. Poetzsch-Heffter. Universes: A type system for con-
trolling representation exposure. Programming Languages and Funda-
mentals of Programming, 1999.

[27] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. Lecture
Notes in Computer Science, 1445:158–185, 1998.

[28] J. Potter, J. Noble, and D. Clarke. The ins and outs of objects. In In
Australian Software Engineering Conference. IEEE Press, 1998.

[29] M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value
lambda-calculus using a stack of regions. In Symposium on Principles
of Programming Languages, pages 188–201, 1994.

[30] M. Tofte and J.-P. Talpin. Region-based memory management. Infor-
mation and Computation, 1997.

33

[31] J. Vitek and B. Bokowski. Confined types. In Proceedings of the 14th
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 82–96. ACM Press, 1999.

[32] P. Wadler. Linear types can change the world. Programming Concepts
and Methods, April 1990.

[33] D. Walker, K. Crary, and G. Morrisett. Typed memory management
via static capabilities. ACM Transactions on Programming Languages
and Systems, 22(4):701–771, 2000.

[34] D. Walker and K. Watkins. On regions and linear types. In Interna-
tional Conference on Functional Programming, pages 181–192, 2001.

[35] P. R. Wilson. Uniprocessor garbage collection techniques. In Proc. Int.
Workshop on Memory Management, number 637, Saint-Malo (France),
1992. Springer-Verlag.

34

