

A Quality-Driven Systematic Approach for Architecting Distributed
Software Applications

Tariq Al-Naeem1, Ian Gorton2, Muhammed Ali Babar12, Fethi Rabhi3 and Boualem Benatallah1
1 School of Computer Science & Engineering, University of New South Wales, Australia;

{tariqn,malibaba,boualem@cse.unsw.edu.au}
2 National ICT Australia Ltd; {ian.gorton@nicta.com.au}

3 School of Information Systems, Technology and Management, University of New South Wales,
Australia; {f.rabhi@unsw.edu.au}

UNSW-CSE-TR-0433

September 2004

Abstract

Architecting distributed software applications is a complex design activity. It involves making
decisions about a number of inter-dependent design choices that relate to a range of design
concerns. Each decision requires selecting among a number of alternatives; each of which
impacts differently on various quality attributes. Additionally, there are usually a number of
stakeholders participating in the decision-making process with different, often conflicting,
quality goals, and project constraints, such as cost and schedule. To facilitate the architectural
design process, we propose a quantitative quality-driven approach that attempts to find the
best possible fit between conflicting stakeholders' quality goals, competing architectural
concerns, and project constraints. The approach uses optimization techniques to recommend
the optimal candidate architecture. Applicability of the proposed approach is assessed using a
real system.

1. Introduction

Designing the software architecture (SA) for a distributed application is widely an important
and complex activity. Its importance lies in the fact that it embodies several design decisions
that will be difficult and costly to change downstream if they are subsequently discovered to
be flawed. It is complex because the architect must make complex design trade-offs to meet
competing architectural requirements [1].

Further difficulties arise due to the early life-cycle nature of architecture design. As few or
no concrete artifacts typically exist at this stage, it is hard, often impossible, to thoroughly
reason about the consequences of many design decisions. This is especially true of design
decisions that are embodied in off-the-shelf distributed component infrastructures (e.g. J2EE,
.NET, CORBA) that are often utilized in the architecture. For these reasons, architects use
prototypes and previous experience to justify their designs.

Additionally, there are often a number of stakeholders involved in the design process with
each having conflicting quality goals. Furthermore, software design is often constrained by
project cost and schedule, which always need to be satisfied.

In an attempt to help alleviate architectural design complexity, this research aims at
providing techniques and tools to support disciplined reasoning during the SA design process.
This work is motivated by the need to:
• Help various stakeholders of a system express the desired quality goals in a measurable

form, and formalize the process of prioritizing those goals.
• Help architects determine the candidate architecture that best satisfy stakeholders' quality

goals and meet stated project constraints.
This paper describes a quality driven design approach, ArchDesigner, that promotes a

disciplined engineering and reasoning framework during SA design. The novelty of our
approach lies in the use of optimization techniques, particularly Integer Programming [2], for
optimizing the SA design comprised of multiple inter-dependent design decisions.

ArchDesigner improves upon previous approaches, which evaluate and select among given
coarse-grained SAs [3, 4] without giving guidance on how to arrive at these architectures. We
argue that the evaluation of all candidate SAs is a difficult, often impossible task, since the
number of candidate SAs can be very large. Our approach therefore evaluates and selects
among candidate SAs in a fine-grained fashion, thereby helping stakeholders arriving at a
suitable SA solution.

We assess the applicability of ArchDesigner using a case study of a deployed system that
had several stakeholders with different quality goals, multiple inter-dependent design
decisions, and project constraints.

2. Background

Software quality is the degree to which an application possesses the desired combination of
quality attributes [5]. SA plays a central role in achieving system wide quality attributes. The
design of distributed application architectures is, however, inherently more complex than
standalone systems. Distributed applications must deal with, for example, additional failure

modes, non-determinism, deployment configuration and management, machine and network
performance and scalability. It is consequently necessary to consider quality requirements
early in the SA design stage.

2.1. Supporting quality considerations during SA design

The software engineering community has developed different methods to support systematic
reasoning about various quality attributes (e.g., real-time [6], reliability [7], and performance
[8]) during software architecture design. However, these methods study a specific quality
attribute in isolation. In reality, quality attributes interact with each other. For example, there
is generally a conflict between configurability and performance [9]; performance also impacts
modifiability, and each quality attribute impacts cost [10].

Some researches have developed methods to make quality attributes a central consideration
during application design. Bosch [11] proposes a method that explicitly considers quality
attributes during the design process. Hofmeister et al. [12] describe a framework known as
global analysis to identify, accommodate, and describe architecturally significant factors
including quality attributes early into the design phase. However, these methods do not
sufficiently support the reasoning about the quality consequences of each design decision.

The work of Chung et al. [1] provides a framework that considers each design decision
based on its effects on the quality attribute space. However, it does not provide support to
explicitly perform trade-off analysis between competing design decisions.

Bass et al. have proposed the Attribute Driven Design (ADD) method [10] to help the
architect base the design process on the desired quality attributes. ADD is basically built upon
Attribute Based Architecture Styles (ABAS) [13], and architectural views [14, 15]. It
provides a framework to make design decisions with known affects on the desired quality
attributes. However, the codified knowledge or experience of an architect may present more
than one design alternatives for each design decision. In this situation, a quantitative reasoning
framework to support the multi criteria decision analysis can complement methods like ADD.

2.2. Quantitative reasoning for design decisions

Kazman et al. [4] propose the Cost Benefit Analysis Method (CBAM) to quantify design
decisions in terms of cost benefit analysis. They apply a quantitative approach to evaluate and
select from competing architectural strategies. The idea is that stakeholders will essentially
choose the strategies that maximize their return on investment (ROI). CBAM, however, does
not help identifying architectural candidates, since design decisions are considered
independently. Rather, it relies on other methods like Architecture Tradeoff Analysis Method
(ATAM) [16] to identify competing architecture strategies. ATAM is a SA evaluation
method, which itself needs a SA as an input to the evaluation process.

Mikael et al. [3] developed a quantitative approach to support the comparison of candidate
architectures using Analytical Hierarchy Process (AHP). This method provides a structured
way of eliciting stakeholders� preferences for desired quality attributes and helping them gain
quantified understanding of the benefits and liabilities of different architecture candidates.

The goal of [3] is similar to ours, but the approach differs in a number of ways. Like
CBAM, this method assumes that a small set of architecture candidates have been created, but

gives no guidance on how these alternatives are supposed to be reached. In contrast to existing
approaches, which evaluate coarse-grained architecture candidates, our approach offers
guidance quite early during the architectural design process. This is achieved through the
evaluation of various fine-grained design options, which together produce the resulting SA.

3. Proposed Approach

3.1. Goals of the approach

Our goal is to reduce the complexity and increase the reliability of SA design. One way of
doing it is by systemizing the architectural design process, as suggested earlier in [23]. This
would help architects to systematically determine the optimal combination of design
alternatives (i.e. the best candidate architecture). To achieve this goal, our approach must
satisfy two main requirements:

1. Local Requirement: for each individual design decision, the approach should select the
alternative that best matches stakeholders� preferences on associated quality
attributes.

2. Global Requirement: the selection of one or a combination of individual design
alternatives must not violate stated project constraints, and must also maintain
decisions' inter-dependencies.

For the first requirement, we need to use a mechanism by which we can compute values
offered by each alternative with respect to their corresponding design decisions. The higher the
value for one alternative is, the better it becomes comparatively to others. Hence the values
computed must be influenced by stakeholder preferences on quality attributes.

However, for a particular design decision, it may not always be the case that the alternative
with the highest value obtained will be selected, as it may result in a constraint violation. For
example, the selection of a particular alternative may incur additional costs on top of costs
incurred by other decisions, violating the cost constraint stated by participating stakeholders.
This example shows the global requirement that must be met.

The design approach must also deal with inter-dependencies among different decisions.
Initially, we identified two types of dependencies (Alternative-Based and Context-Based
dependencies), which we discuss in section 4.2. As an example, assume that we have two
design decisions, each having several alternatives. If the best alternative (yielding the highest
value score) for the first design decision conflicts with the best alternative from the second
design decision, then it is difficult for the architect to resolve the clash.

Based on these observations, we argue that the SA design problem can be formulated as a
global optimization problem, since design decisions are highly dependent on each other, and
the selection of any design alternative must not violate global constraints. Therefore, we state
the optimization problem as follows:

�we seek to maximize the value of the SA for all stakeholders involved by selecting
alternatives yielding highest value scores, whilst assuring that dependencies are
maintained and global constraints stated are not violated�.
To the best of our knowledge, none of the existing design approaches explore the potential

of applying optimization techniques for solving complex software design problems, comprised
of multiple inter-dependent architectural design decisions.

3.2. The ArchDesigner Approach

ArchDesigner comprises three steps, as shown in Figure 1. It starts with the first design
decision and computes value scores for its potential alternatives solutions. This is repeated for
each design decision. The second step transforms the computed value scores into a normalized
form, in order to prepare them for the third step. Finally, the third step formulates the
optimization equations so as to maximize the values associated with selected alternatives,
subject to stated constraints and inter-dependencies.

Value Score Computation

Consider first
design decision

Compute
alternatives� value

scores using
MADM methods

Other design
decisions
remaining

Yes

No

Consider next
design decision

Value Score Normalization
Normalize

computed value
scores

Optimization Formulation
Formulate the
optimization

problem

Solve the
optimization

problem

Optimal Combination
of Alternatives

Figure 1. ArchDesigner process

3.2.1. Step 1: Value score computation

We define the value score of a design alternative as the degree to which an alternative
satisfies the desired quality attributes. For a particular design decision, potential design
alternatives are evaluated across a set of quality attributes associated with that design
decision. Figure 2 depicts the process of computing alternative value scores pertaining to a
particular design decision. The input to this process is twofold:
1. Design alternatives and their relative support for associated quality attributes. One

alternative, for instance, may offer high reliability but low performance. Another one may
provide high performance at the expense of security.

2. Preferences on associated quality attributes provided by different stakeholders. For
example, one stakeholder may be more concerned with performance and loose-coupling at
the expense of reliability and modifiability. Another stakeholder may be more interested in
modifiability and implementation complexity only.

For the computation method, we rely on Multiple Attribute Decision Making (MADM)
methods [17], which are widely used in different business areas. They enable stakeholders to
make preference decisions about the available alternatives that are characterized by multiple,
usually conflicting, attributes.

There are several MADM methods available, including AHP, SAW, and ELECTRE. In
this paper, we employ the Analytic Hierarchy Process (AHP) method [18]. ArchDesigner is,
however, flexible enough to accommodate other MADM methods, at the discretion of the
different stakeholders.

Multiple-Attribute Decision
Making (MADM) method

Stakeholder 2

Stakeholder u

Relative preferences on quality
attributes

Design alternatives and their relative
impact on quality attributes

Alternative
1

Alternative
2

Alternative
n

Quality
Attribute 2

Quality
Attribute 1

Quality
Attribute 3

-

++

++

 --

+
--

++

Stakeholder 1

Value
Score for

each
alternative

Quality
Attribute k

Figure 2. Computation of value scores

The AHP process
Unlike other MADM methods, AHP relies on relative weighting (pair-wise comparison) and is
thus less sensitive to judgment errors common to other methods using absolute assignments.
Basically, AHP comprises four main steps:

• Preparation: this step articulates the different elements involved in the decision-making
process for the designated decision. It entails identifying design alternatives, quality
attributes that will be used for evaluating these alternatives, and also the different
stakeholders participating in this decision.

• Weighting Quality Attributes: the aim of this step is to determine the relative weight for
every quality attribute. For each design decision, each stakeholder provides their
preferences on relevant quality attributes by comparing every pair of quality attributes

(Qa,Qb), using AHP�s weighting scale shown in Table 1. This is used to determine how
important Qa is, in comparison to Qb. Note that values (2, 4, 6, and 8) represent
compromises between these preferences. This means that for k quality attributes,

2
)1(−kk

 pair-wise comparisons will need to be made by every stakeholder. Stakeholder
preferences on quality attributes are aggregated before we compute quality attributes�
weights Wz, for kz ≥≥1 .

• Weighting Alternatives' Quality Support: next we determine how each design
alternative relatively supports the relevant quality attributes. For every quality attribute
Qa, we compare the n potential design alternatives in a pair-wise fashion. The values in
Table 1 are used for assigning weights, to determine how alternative Ax supports quality
attribute Qa in comparison to alternative Ay. We can then derive the relative support
each alternative is offering to every quality attribute. This yields us an n x k support
matrix:

)1,1;(kanxSS xa <=<=<=<==
where every entry (x,a) corresponds to how alternative Ax relatively supports quality
attribute Qa.

Table 1. AHP weighting scale

If A is � as (than) B Quantitative
Weight

equally important 1
moderately more important 3

strongly more important 5
very strongly more important 7

extremely more important 9

• Computing Value Scores: we can now compute the value score Vij for alternative i of

design decision j using the following formula:

iz

k

z
zij SWV ∑

=

=
1

 (1)

3.2.2. Step 2: Normalization of value scores

Before moving on to the third step, we need to normalize the alternatives value scores obtained
in the previous step. The reason for this is that the alternatives value scores from different
decisions will be summed in the next step. Hence, we have to scale them relatively. To do this,
we weight the different decisions Nj relatively in a manner that reflects their relative
significance to the application. Naturally, some design decisions are more important than
others, and thus should receive higher weights. Having done this, we then multiply the
obtained value scores by the weight of their corresponding decision:

ijjij VNV ×=' (2)

3.2.3. Step 3: Optimization formulation

In this step, we seek to maximize the accumulative value score, which represents the objective
function. This can best be formulated using Integer Programming (IP):

Maximize:

'

11
ijij

n

i

m

j

VX
j

∑∑
==

 (3)

Subject to:

1:],...,1[
1

=∈∀ ∑
=

ij

n

i
Xmj

j

 (4)

tmiii m
XXXCost cos21 Constraint),....,,(

21
<= (5)

timemiii m
XXXTime Constraint),....,,(21 21

<= (6)

1<=+ abij XX , bj ≠ (7)
Where:

1≥m denotes the number of design decisions considered.
2≥jn denotes the number of alternatives within design decision j.
[]1,0∈ijX , where 1 denotes that alternative i is selected for design decision j, and 0 denotes

non-selection of this alternative.
'

ijV denotes the normalized value score for alternative i of design decision j.
tcosConstraint denotes cost constraint.

timeConstraint denotes time constraint.

),....,,(21 21 miii m
XXXCost and),....,,(21 21 miii m

XXXTime are functions that take a list of alternatives
as an input and compute the expected cost and time respectively required to implement this
combination.

Equation 3 maximizes the accumulative value score by selecting a combination of
alternatives yielding the highest value score possible. Equation 4 guarantees that only one
alternative is selected for each design decision. Equations 5 and 6 guarantee that the
alternatives selected do not violate the cost and time constraints. Note that Cost() and Time()
are generic functions that are influenced by the project context in which they are applied.
These functions can, however, leverage generic estimation models, such as COCOMO [19],
for estimating the cost and time required. Finally, equation 7 enforces dependencies among
alternatives from different decisions, particularly the case where two alternatives cannot be
selected at the same time.

4. Case Study

4.1. The Project

The Glass Box (GB) project [20] is a part of a multi-year, research program1 to generate new
tools and technologies for information analysts. The GB itself is a production software
system, which is deployed in the analyst�s working environment. Its basic role is to capture
detailed information on a user�s workstation activities during information gathering and
analysis tasks. This information is recorded over long time periods, and made available to a
range of research projects based at research labs across North America. There are
approximately 15 separate research projects funded by the overall program.

The GB application is further intended as an integration and test platform for the
participating research projects. The research projects are required to link their software into
the GB environment, and demonstrate their capabilities in helping analysts to solve real
problems. This requires instantaneous notification of the analyst�s actions, such as opening a
document or performing a search. Also, in order to share knowledge generated from each
research tool, there must be mechanisms for storing data generated from each tool and
notifying other tools of its existence.

Glass Box
environment

GB
Datastore

GB
Development

Team

Information
Analysts

Research
Teams

develops

uses

Integrates
with

Funding
Agency

funds

Figure 3. Glass box stakeholders

Figure 3 depicts the relationship between the GB application and the various stakeholders

involved. Information Analysts are the primary users of the GB. It is integrated with their
work environment, and provides both transparent and explicit tools to record actions. The GB
Development Team is responsible for all aspects of GB design, development and deployment.
The Research Teams see the GB as a software tool and data repository. They need to access
the data in the repository, and programmatically integrate their tools with the GB
environment. The Funding Agency is responsible for approving development plans and
allocating associated budgets, and for the overall success of the program.

The GB project commenced in 2002, and in early 2003 the first version of the software
was released and successfully deployed. This version was primarily concerned with satisfying
the needs of the Information Analysts in capturing and storing their work activities.

1 http://www.ic-arda.org/Novel_Intelligence/As

The initial GB version was a 2-tier client-server system, utilizing a database, file store, and
a set of tools to capture user activities when they accessed Web sites, documents, and
commenced and completed assignments. It ran standalone on each user workstations. Nightly
scripts extracted the data from individual databases and merged them into a central data store
for periodic distribution to the Research Teams.

Immediately after this release, planning for version 2 commenced. While the focus of
version 1 had been the creation of an information capture environment for analysts, the next
version had a much wider set of requirements. Briefly, these were:
• Provide programmatic access to the GB database for the research project teams.
• Provide a mechanism to immediately inform the research tools when an analyst performs

an action that is of interest to their technology.
• Provide secure programmatic access to a GB environment from a remote site.
• Ensure that the GB environment could scale to support deployments with large numbers

of users.

An additional requirement was that this new set of functionality must be delivered in a one-
year period based on a fixed development budget.

4.2. Analyzing the case study

We applied ArchDesigner as a post-mortem analysis of the major architectural design
decisions that were made during the GB design. We then compared the results obtained by
ArchDesigner with the design decisions that were actually made.

Architecture

Event
Notification Authentication

API
Programming

Language
Heterogeneity

State
Management

Database
Deployment API Style Remote

Access

Glass Box
Project

Figure 4. GB design decisions and their interdependencies

For this purpose, we held several interviews with the Lead Architect (LA) of the project.

Initially, there were at least 9 architectural design decisions that had undergone extensive
discussions and evaluation during the design stage. These decisions are shown in Figure 4. We
have selected 5 decisions out of 9 to include in our study. These are represented with grayed
boxes in Figure 4.

Directed arrows in Figure 4 depict inter-dependencies among the different decisions. For
example, State Management and Architecture decisions are independent, while Event
Notification and Authentication decisions are dependent on the Architecture decision. We use

the terms superior and inferior to describe this kind of relationship. For example, the
Heterogeneity decision is inferior to Architecture decision.

A list of the selected design decisions is shown in Table 2, along with the corresponding
alternatives that were considered, relevant quality attributes, and the stakeholders
participating in the decision-making process. Highlighted alternatives represent the real
selections made.

Table 2. List of selected decisions, along with their alternatives, quality

attributes, and stakeholders
Design Decision Alternatives Quality Attributes Stakeholders

Architecture
(ARCH)

• 3-tier using J2EE
(THTJ)

• 3-tier using .Net
(THTD)

• 2-tier (TWOT)
• COABS (COAB)

• Modifiability
• Scalability
• Performance
• Cost
• Development effort
• Portability
• Ease of installation

• Development team
• Research Teams
• Funding agency

Event
Notification

(EVNT)

• Publish-Subscribe
using JMS (JMS)

• Publish-Subscribe
using MSMQ (MSMQ)

• Database triggers
(TRGR)

• COABS (COAB)

• Reliability
• Performance
• Complexity of
implementation

• Development team
• Research Teams

Authentication
(AUTH)

• Database-based
security (DB)

• J2EE-based security
(J2EE)

• .Net-based security
(.NET)

• COABS (COAB)

• Complexity of
implementation

• Ease of deployment
and setup

• Development team
• Research Teams

Remote Access
(RMAC)

• Browser-based (HTTP)
• Web services (WEBS)
• Secure network (VPN)

• Performance
• Security
• Modifiability
• Complexity of
deployment

• Complexity of
implementation

• Development team
• Research Teams
• Funding agency

Supporting
non-windows
platforms for
API (HETR)

• Java Language
(JAVA)

• Browser (BROW)
• C Language (C)

• Usability
• Modifiability
• Cost
• Development effort

• Research Teams
• Development team

COABARCH =

EVNT = TRGR

ARCH - EVNT

THTJ

JMS

TWOTTHTD

TRGRMSMQ MSMQJMS TRGR MSMQJMS COAB TRGR

Figure 5. Dependencies between Architecture and Event Notification decisions

COABARCH =

AUTH = J2EE

ARCH - AUTH

THTJ

DB

TWOTTHTD

.NETDB DB DB COAB

Figure 6. Dependencies between Architecture and Authentication decisions

To handle inter-dependencies inherent in the project, we identified two types of decisions

inter-dependencies:
• Alternative-Based Dependency: Here the alternatives available in an inferior decision

change depending on the alternative selected by its superior decision. Dependency
examples are shown in Figure 5 and 6 respectively between the Architecture and Event
Notification decisions and also between Architecture and Authentication decisions. In the
latter, Database-Based (DB) is the only authentication alternative if the Two-Tier
(TWOT) architecture alternative is selected.

• Context-Based Dependency: Here an alternative�s support for certain quality attributes
(for an inferior decision) may change positively or negatively depending on the
alternatives selected by its superior decision. This we refer to as the decision context. As
an example, consider the �Java� language alternative from the Heterogeneity decision.
The dependency here stems from the fact that cost and development effort quality
attributes will relatively drop (i.e. improves) if the Three-Tier J2EE (THTJ) architecture
alternative is selected. This means that the same Java alternative will receive different
value scores under different tree paths.
After analyzing the selected design decisions and their alternatives and inter-dependencies,

171 potential combinations of alternatives existed for the architect to consider. In addition,
every design decision involved more than one group of stakeholders, each of which favored
different solutions. Also, the project was constrained by a one year duration. All these issues
made the design activity quite complex.

5. Application of the Approach

5.1. Value score computation

In this step, we leveraged a generic AHP tool, ExpertChoice [21], for computing alternatives'
value scores. We applied AHP to every design decision in turn. For every decision, we asked
the LA to provide us with the preferences on quality attributes that were expressed from the
perspectives of different stakeholders. Due to space limitations, we show only how we
computed value scores for the Architecture (ARCH) design decision.

Table 3 shows the quality attributes� preferences provided for the Funding Agency
stakeholder. In several cases, certain quality attributes were not of any importance to a given
stakeholder. The Research Teams stakeholder, for instance, was not concerned about the
development costs incurred by the GB development team. We treated these cases by assigning
them the lowest weight possible (1 or 9) in comparison to every other quality attribute.

Table 3. Preferences on quality attributes provided by Funding Agency

stakeholder for ARCH decision

Stakeholder 1st Quality
Attribute 2nd Quality Attribute Quantitative

Weight
Modifiability Scalability 5
Modifiability Performance 2
Modifiability Cost 1
Modifiability Dev. Effort 1
Modifiability Portability 3
Modifiability Ease of Inst. 1
Scalability Performance 1/4
Scalability Cost 1/5
Scalability Dev. Effort 1/5
Scalability Portability 1/2
Scalability Ease of Inst. 1/2

Performance Cost 1/5
Performance Dev. Effort 1/5
Performance Portability 2
Performance Ease of Inst. 1

Cost Dev. Effort 1
Cost Portability 5
Cost Ease of Inst. 4

Dev. Effort Portability 5
Dev. Effort Ease of Inst. 4

Funding Agency

Portability Ease of Inst. 1/2

After gathering quality preferences for the stakeholders, we realized that these preferences

varied from one stakeholder to another, resulting into different quality attribute priority ranks.

This is shown in Table 4. Different stakeholder preferences were then aggregated by
computing the geometric mean for every quality attribute, resulting in the quality attributes'
weights shown in the last column of Table 4.

Table 4. Quality attributes' weights computed for every stakeholder on ARCH

decision
Stakeholders Quality

Attributes Dev. Team Research Teams Funding Agency Aggregated

Modifiability 0.216 0.294 0.184 0.280
Scalability 0.087 0.092 0.038 0.082

Performance 0.052 0.117 0.087 0.097
Cost 0.245 0.019 0.272 0.135

Dev. Effort 0.245 0.019 0.272 0.135
Portability 0.050 0.155 0.053 0.094

Ease of Inst. 0.106 0.304 0.093 0.177

We next asked the LA to provide us with each alternative�s support for different quality

attributes. This data was provided from the perspective of development team only, since it
requires technical knowledge that only the development team possesses. Table 5 depicts the
alternatives� pair-wise comparisons with respect to portability quality attribute.

Interestingly, some pair-wise comparisons were essentially impossible to weight - for
example, those involving COABS [24] with respect to certain quality attributes such as
performance and development effort. The LA was not able to determine the appropriate
weight since the development team had limited exposure to the COABS technology, and no
reliable benchmarks were available to compare this proprietary solution with other
alternatives. We treated these comparisons by assigning them the weight 1, with the
assumption that they were equally strong in supporting the questionable quality attributes.

Table 5. Pair-wise comparisons for ARCH alternatives with respect to

portability attribute
Quality

Attribute 1st Alternative 2nd Alternative Quantitative
Weight

THTJ THTD 9
THTJ TWOT 9
THTJ COAB 1
THTD TWOT 1
THTD COAB 1/9

Portability

TWOT COAB 1/9

Using AHP, this data were transformed into the relative weights shown in Table 6. Using

this table, we can tell how each alternative relatively supports every quality attribute. For
example, Three-Tier J2EE seems to be the best alternative supporting modifiability.

Applying formula (1) on the results in Table 6 and aggregated weights shown in Table 4,
we obtain the following value scores for ARCH decision shown in Table 7. Similarly, we
computed value scores for all other decisions shown in Table 7. Note that the JAVA

alternative for the Heterogeneity decision is duplicated, to address the context-based
dependency with THTJ.

Table 6. ARCH Alternatives' support weights

Alternatives Quality
Attributes THTJ THTD TWOT COAB

Modifiability 0.521 0.182 0.046 0.250
Scalability 0.402 0.402 0.054 0.143

Performance 0.204 0.204 0.347 0.246
Cost 0.166 0.120 0.487 0.227

Dev. Effort 0.152 0.110 0.515 0.223
Portability 0.450 0.050 0.050 0.450

Ease of Inst. 0.168 0.368 0.256 0.208

5.2. Normalization

In this step, we asked the LA to weight the different decisions relatively so as to determine
their relative significance to the GB application. Figure 7 plots the different decisions across a
10-point weighting scale.

We then multiplied the value scores obtained in the previous step by their corresponding
decision's weights using formula (2), resulting in the normalized value scores shown in last
column of Table 7.

1 2 3 4 5 6 7 8 9 10

 AUTH RMAC HETR EVNT ARCH
Figure 7. Weights of different design decisions

5.3. Optimization formulation

Before formulating the optimization problem, we need to determine the GB constraints and
how each alternative impacts on these constraints. The GB version 2 was constrained by a
one-year development schedule. Based on discussions with the LA, it seemed that it was hard
(sometimes unrealistic) to exactly determine the time required to implement every particular
alternative. However, it appeared that in some cases they were able to determine whether a
particular alternative would violate the time constraint, without exactly specifying how long
its implementation would take. This was the case with the VPN Remote Access and J2EE-
Based Authentication alternatives, where it was believed that implementing either of these
alternatives would exceed the schedule constraint.

Apart from these two alternatives, all other alternatives were feasible within the time
constraint. To cope with this situation, we used the following formula:







<=
=

=>
=

otherwise months 21
1or
 1 if months 21

),....,,(
23

34

21 21 X
X

XXXTime miii m

The Time() function will return a number greater than 12 months only if the combination
involves either X34 (VPN Remote Access) or X23 (J2EE-Based Authentication). X34 = 1 reads

as the selection of 3rd alternative of 4th decision. This would result in a constraint violation
according to formula (6).

Table 7. Obtained alternatives' value scores

Design Decision Alternatives Value Scores Normalized Value
Scores

THTJ 0.314 3.14
THTD 0.205 2.05
TWOT 0.236 2.36

Architecture
(ARCH)

COAB 0.246 2.46
JMS 0.258 2.064

MSMQ 0.272 2.176
TRGR 0.229 1.832

Event
Notification

(EVNT)
COAB 0.241 1.928

DB 0.215 0.215
J2EE 0.358 0.358
.NET 0.223 0.223

Authentication
(AUTH)

COAB 0.204 0.204
HTTP 0.326 1.304
WEBS 0.227 0.908 Remote Access

(RMAC) VPN 0.446 1.784
JAVA 0.257 1.285

BROW 0.294 1.47
C 0.155 0.775

Support non-
windows

platforms for
API (HETR) JAVA with THTJ 0.295 1.475

By applying the optimization equations, we obtained the following combination: Three-

Tier J2EE for Architecture, JMS for Event Notification, Database-Based for Authentication,
Java Language for Heterogeneity, and Browser-Based for Remote Access. This was
recommended as the optimal candidate architecture with the highest accumulated value score
of "8.198". This combination only varied in the case of the Remote Access decision from the
alternatives that were actually chosen in the GB project (see Table 2).

6. Discussion

6.1. General findings

The following are the main findings of this study:
• The recommended candidate architecture shows an acceptable accuracy level for the

proposed approach, since only one design decision (RMAC) was different from the actual
design. RMAC was however the second lowest important decision.

• Overlooking context-based dependencies may lead to sub-optimal design decisions. This
was the case with the Heterogeneity decision, as Browser alternative would have been

ranked first, if contextual influences from the superior decision (Architecture) were not
considered.

• Based on feedback from the LA, the aggregation of stakeholders� preferences on quality
attributes (for each design decision) seems to have produced a reasonable compromise
between the stakeholders� conflicting quality goals.

• The project constraints have to be considered in the selection process. Time constraints
excluded two alternatives from two different decisions (Authentication and Remote
Access), though they were ranked first in their corresponding design decisions.

• Feedback on the approach from the GB LA was positive. The systematic and highly
visible decision process would likely have been helpful to the GB team through the
architecture design. It would have made the many discussions on design alternatives
explicit, and aided communication within the team and justification of decisions to
stakeholders.

6.2. ArchDesigner�s contributions

The main contribution of ArchDesigner is the disciplined methodological support it offers to
the SA design process. ArchDesigner does not claim to replace architects in making
architectural decisions. It rather helps architects in:
• Making informed architectural decisions: Through quantitative evaluation of stakeholder

quality preferences and design alternative support for quality attributes, ArchDesigner
provides a formal way of rationalizing and justifying decisions. It also promotes a
rigorous yet simple way of reasoning about architecture quality early in the design stage,
through the explicit evaluation of quality attributes.

• Engineering distributed SA systematically: ArchDesigner offers a disciplined engineering
approach for designing distributed software architectures. In a fine-grained fashion, it
enables architects to examine and evaluate all candidate architectures and explore the
tradeoffs between available design alternatives.

• Alleviating design complexity: ArchDesigner helps make the architecture design process
more systematic by formally handling the various design decisions, alternatives, inter-
dependencies, stakeholder quality goals, and project constraints. By managing all forces
influencing the design process, it also helps determining the optimal combination of design
alternatives.

• Handling the concerns of different stakeholders: Through an aggregation of stakeholder
preferences on quality attributes, ArchDesigner strikes a balance among conflicting
stakeholder quality goals. In addition, ArchDesigner facilitates the communication of
architectural design decisions among different stakeholders, thus increasing the accuracy
of decisions made.

6.3. Limitations

Some limitations were observed during the study:
• AHP's 9-point weighting scale is limiting, leading to inconsistencies. This was observed

when comparing Web Services and VPN alternatives with respect to the Complexity of

Deployment quality attribute. We assigned this a weight of 9 as it was the highest weight
possible, but we would have assigned it a relatively much higher weight if possible.

• Uncertainties in judgments were not formally treated, particularly judgments involving the
COABS alternative. We believe that treating judgmental uncertainties would strengthen
ArchDesigner in yielding more accurate results.

• By recalling the way the Remote Access decision was made, it appeared that a different
cognitive approach was followed. Therefore, different decision-making approaches such
as profiles [22] might be appropriate for certain design decisions.

• As reported in section 5.3, it was unrealistic to expect accurate estimates about the time
required to implement every design alternative. However, it was possible to tell from
experience whether a particular alternative would need more/less than 12 months to
implement. A possible resolution is to have a relative weighting against the time
constraint, which is called ideal-value rating [16].

• Judgment consistency level was not measured before computing value scores. Measuring
the consistency level of stakeholders� judgments would help ensure the accuracy of the
judgments. In case of inconsistent judgments, stakeholders may need to revise the weights.

7. Conclusion and Future work

In this paper, we proposed ArchDesigner as a systematic approach for facilitating the
architectural design of distributed software applications. Using optimization techniques, it
attempts to determine the optimal combination of design alternatives that best satisfy
stakeholders' quality goals and project constraints. To provide validation of the approach, we
applied it as a post-mortem analysis to an already implemented project, and the results showed
a high level of accuracy for ArchDesigner.

As reported in the previous section, there were few limitations observed from the results
obtained. We plan to address these limitations. Moreover, since our study was conducted as
post-mortem, the potential for bias in the recollections of the LA exists, which may have
influenced the AHP scoring. We also simplified the design problem by only selecting a subset
of the design concerns in the GB project. Thus, we intend to conduct another experiment
during the SA design stage of a system. We also plan to build a tool based on the
ArchDesigner to support SA design process.

References

[1] L. Chung, et al., Non-Functional Requirements in Software Engineering: Kluwer
Academic Publishers, Boston, Ma.,1999
[2] D. Anderson, D. Sweeny, and T. Williams, An Introduction to Management Science:
Quantitative Approaches to Decision Making: South-Western Eductional Publishing,2002
[3] M. Svahnberg, C. Wholin, and L. Lundberg, A Quality-Driven Decision-Support Method
for Identifying Software Architecture Candidates. Int. Journal of Software Engineering and
Knowledge Engineering, 2003. 13(5): p. 547-573.
[4] R. Kazman, J. Asundi, and M. Klein. Quantifying the Costs and Benefits of Architectural
Decisions. Proc. of the 23rd International Conference on Software Engineering. 2001.
Toronto, Canada.

[5] IEEE Standard 1061-1992, Standard for Software Quality Metrics Methodology. New
York: Institute of Electrical and Electronic Engineers,1992
[6] M.H. Klein, et al., A Practitioner's Handbook for Real-Time Analysis: Guide to Rate
Monotonic Analysis for Real-Time Systems: Kluwer Academic,1993
[7] M.R. Lyu, ed. Handbook of Software Reliability Engineering. 1996, McGraw-Hill and
IEEE Computer Society: New York.
[8] C.U. Smith and L.G. Williams, Software Performance Engineering: A Case Study
Including Performance Comparison with Design Alternatives. IEEE Transactions on
Software Engineering, 1993. 19(7).
[9] L. Lundberg, et al. Quality Attributes in Software Architecture Design. Proceedings of
the IASTED 3rd International Conference on Software Engineering and Applications. Oct.,
1999.
[10] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice. 2 ed: Addison-
Wesley,2003
[11] J. Bosch, Design & Use of Software Architectures: Adopting and evolving a product-
line approach: Addison-Wesley,2000
[12] C. Hofmeister, R.L. Nord, and D. Soni, Applied Software Architecture. Reading, MA:
Adison-Wesley Longman,2000
[13] M. Klein and R. Kazman, Attribute-Based Architectural Styles, Tech. Report,
CMU/SEI-99-TR-022, Soft Engineering Institute, Carnegie Mellon University
[14] P.B. Kruchten, The 4+1 View Model of architecture. Software, IEEE, 1995. 12(6): p.
42-50.
[15] D. Soni, R.L. Nord, and C. Hofmeister. Software Architecture in Industrial
Applications. Proc. of the 17th International Conference on Software Engineering. 1995.
Washington, U.S.A.: ACM Press.
[16] P. Clements, R. Kazman, and M. Klein, Evaluating Software Architectures: Methods
and Case Studies: Addison-Wesley,2002
[17] K.P. Yoon and C. Hwang, Multiple Attribute Decision Making: An Introduction: Sage
Publications,1995
[18] T.L. Saaty, The Analytica Hierarchical Process: McGraw-Hill,1980
[19] B. Boehm, Software Engineering Economics: Prentice-Hall,1981
[20] I. Gorton and J. Haack. Architecting in the Face of Uncertainty: An Experience Report.
Proc. International Conference on Software Engineering. 2004. Edinburgh, Scotland.
[21] Expertchoice, http://www.expertchoice.com Last accessed 20th Aug., 2004
[22] M. Morisio, I. Stamelos, and A. Tsoukias. A New Method to Evaluate Software Artifacts
against Predefined Profiles. Proc. of Workshop on Software Enginering Decision Support
Methodologies: SEKE. 2002.
[23] T. Al-Naeem, F. Rabhi, B. Benatallah and P. Ray, Towards Systematic Approaches for
Designing B2B Applications, Int�l Journal of Electronic Commerce (IJEC), 2004, to appear
[24] COABS, http://coabs.globalinfotek.com Last accessed 20th Aug., 2004

