
Helping Users Avoid Bugs in GUI Applications

Amir Michail
University of New South Wales
Sydney, NSW, Australia, 2052
amichail@cse.unsw.edu.au

Tao Xie
University of Washington
Seattle, WA, USA, 98195

taoxie@cs.washington.edu

Abstract

In this paper, we propose a method to help users avoid
bugs in GUI applications. In particular, users would use the
application normally and report bugs that they encounter to
prevent anyone — including themselves — from encounter-
ing those bugs again. When a user attempts an action that
has led to problems in the past, he/she will receive a warn-
ing and will be given the opportunity to abort the action —
thus avoiding the bug altogether and keeping the applica-
tion stable. Of course, bugs should be fixed eventually by
the application developers, but our approach allows appli-
cation users to collaboratively help each other avoid bugs
– thus making the application more usable in the meantime.
We demonstrate this approach using our “Stabilizer” pro-
totype. We also include a preliminary evaluation of the Sta-
bilizer’s bug prediction.

1 Introduction

Despite advances in testing and formal verification, ap-
plications today are still plagued with thousands of bugs.
For example, as of this writing, the Mozilla browser has
around 20,000 open bugs. Bugs can be annoying in vari-
ous ways. A crash is disastrous if the user has not saved
his/her work recently. A bug may be more subtle, slowly
corrupting state — and perhaps corrupting saved files also.
Moreover, bugs could simply be wrong, unexpected, or in-
tuitive behavior, often frustrating the user.

The situation is even worse than this: not only do appli-
cations today contain thousands of bugs, but many of those
bugs linger for a long time. For example, bugs in the Linux
kernel have an average lifespan of 1.8 years, with the me-
dian being around 1.25 years [2].

Given that bugs are a fact of life today and that they often
remain unresolved for a long time, what can we do to im-
prove this situation? Could users somehow avoid bugs al-
together — and the annoyances that come with them — by
simply avoiding the situations that trigger them? Avoiding

bugs would make the application more usable until those
bugs are eventually fixed.

The idea of avoiding bugs is not new: it is already done
manually by users. Anyone who has encountered a bug will
likely try to avoid it in the future. But such a manual ap-
proach has problems.

First, the manual approach to bug avoidance requires re-
membering the bug, which can be difficult if the application
has many bugs. Moreover, this memory burden is actually
worse than it sounds, since the user needs to remember new
bugs on each release. If a bug is fixed, the user would also
want to remember that as well to take advantage of a pre-
viously broken feature. And of course, if the user is using
many applications, then the user needs to remember bugs
(and whether they are fixed yet) for each of those applica-
tions.

Second, the manual approach to bug avoidance does not
make it easy for users to learn from other users. For exam-
ple, it would be better if a user could avoid a bugwithout
even encountering it once. This could be done if a user
finds out about the bug in advance from other users. But
this rarely happens. It is completely unrealistic to expect
a user to read through and remember thousands of bugs in
a bug tracking system so that he/she could avoid them —
particularly if the user is likely to encounter only a small
fraction of those bugs in his/her typical usage.

Third, the manual approach to bug avoidance requires
the user to figure out the circumstances under which a bug
occurs. But manually identifying the bug exposure con-
ditions may not be easy. Moreover, for particularly com-
plicated bug exposure conditions, there is much to gain by
pooling together execution context from many users to de-
termine the contexts in which a bug occurs.

In this paper, we propose a tool-based approach to help
users avoid bugs in GUI applications. The idea is that users
would use the application normally and report bugs that
they encounter to prevent anyone — including themselves
— from encountering those bugs again. When a user at-
tempts an action that has led to problems in the past, he/she
will receive a warning and will be given the opportunity

1



to abort the action — thus avoiding the bug altogether and
keeping the application stable.

Observe that such a tool-based approach directly ad-
dresses the three problems of manual bug avoidance men-
tioned earlier. First, since the user would be given a warning
that a bug is likely, the user need no longer remember bugs
to avoid them. Second, since these bug warnings would
be based on bug reports from all users, it is now possible
for a user to avoid a bug without even encountering it once.
Third, bug exposure conditions can be determined from bug
reporting information from multiple users using automated
methods (e.g., machine learning techniques).

We have built a system to demonstrate our approach,
which we have named “Stabilizer”, as avoiding bugs can
be seen as “stabilizing” the application. Currently, the Sta-
bilizer works with Java GUI applications.

The rest of the paper is organized as follows. Section 2
motivates our approach by example. Section 3 describes the
bug prediction method. Section 4 presents a preliminary
evaluation of bug prediction. Section 5 discusses related
work. Section 6 summarizes the paper and suggests future
work.

2 A Motivating Example

To motivate our approach, we shall run atarget appli-
cation, FreeMind 0.7.1, under the Stabilizer to demonstrate
what typically happens when a bug is encountered. Free-
Mind is a “mind-mapping” tool written in Java, consisting
of 21,983 lines of code. It allows users to easily create and
modify a visually pleasing tree of concepts (e.g., for brain-
storming).

In what follows, we shall describe step-by-step what
would happen if we perform a certain sequence of actions
in FreeMind starting with an empty Stabilizer database.

First, we start up the Stabilizer system. Currently, this
is done as follows: (1) start up theStabilizer serverthen
(2) start up theStabilizer client. The Stabilizer server is
responsible for maintaining a central database of bug avoid-
ance data. The Stabilizer client provides the GUI to the
Stabilizer system and is responsible for making use of bug
avoidance data for bug prediction. (In Figure 1, the client
is the window on the left.) Second, we start up the target
application, FreeMind, using theStabilizer runner. (In Fig-
ure 1, the target application, FreeMind, is the window on
the right.) The Stabilizer runner does on-the-fly Java byte-
code instrumentation of the target application and will abort
GUI callbacks if asked to do so by the client.

When an application is started with the Stabilizer runner,
the Stabilizer client will download bug avoidance data from
the Stabilizer server. (In this example, the server database is
empty at application startup.) When the user reports a bug
(or “not bug” as explained below), the client keeps track of

this new bug avoidance data. The client is also responsible
for making bug predictions based on the data downloaded
from the server and also any additional bug avoidance data
accumulated in this particular application execution. When
the user quits the application, the client updates the server
database with the new bug and “not bug” reports.

Returning to our example, when we start up FreeMind
under the Stabilizer, we perform the following actions:
(1) we create a new mind map (which automatically gets a
root node with text “New Mindmap”); (2) we change zoom
level from 100% to 200%; (3) we give the root node a child
by pressingF10 to access the menu, then using the key-
board to select menu itemEdit⇒New Child Node; and
(4) we type “a” as the text for the newly created child node.
So far we have not observed any bugs. (Figure 1 shows the
results of the actions performed thus far.)

Next, we attempt to delete the child node just created. So
we pressF10 to access the menu, then use the keyboard to
select the menu itemEdit⇒Node⇒Remove Node. But
now we observe a bug: instead of the child node being
deleted, we see that a sibling node was created instead. So
now the root has two children.

At this point, with the cursor still in the edit field of the
newly created node, we pressF11, a Stabilizer keyboard
shortcut for reporting a bug from within the target applica-
tion. When we do so, the Stabilizer pops up a “Report Bug”
dialog. (See Figure 2.) When reporting a bug, we provide a
text descriptionby explaining what happened in words and
we also provide avisual descriptionby zooming in on the
relevant parts of the before and after screenshots. (See Fig-
ure 2.) Although before and after screenshots of the entire
screen are taken automatically by the Stabilizer, the user
can additionally manually zoom in on the interesting part of
each screenshot using the mouse.

After pressingOkay button on the “Report Bug” dialog,
we immediately get a warning dialog giving us the option of
aborting a FreeMind action. The warning dialog shows us
past bug reports (and also “not bug” reports as we shall see
shortly) ordered by increasing distance to the current con-
text on which the bug prediction is made. (See Figure 3 for
another warning dialog that will appear later in this exam-
ple.)

This bug warning (not shown in figures) is based on one
bug report, namely the one we just made. The warning
stems from a “focus lost” event from the child node edit
field. The reason this warning is given is that bug predic-
tion takes into account past events by default. In this case,
the bug report we just made shares some event history with
the “focus lost” event.

We decide to allow the “focus lost” event to be pro-
cessed, so we clickContinue Action on the warning dialog.
Indeed, after allowing execution to continue, we encounter
no bug. So we click on theReport Not Bug button in the

2



Figure 1. Running FreeMind under the Stabilizer.

Figure 2. Reporting a bug.

Figure 3. A bug warning.

3



client GUI to indicate that the previous warning was in error
– thus improving the Stabilizer’s bug prediction. (The “Re-
port Not Bug” dialog is similar to the “Report Bug” dialog
shown in Figure 2.)

Now, we still wish to delete the child node as well as the
new one that was created due to a bug. So we try to do it in a
different way by using FreeMind’s popup menu rather than
the menubar at the top. Perhaps the node deletion bug may
not occur. (In a real-life scenario with many users running
FreeMind under the Stabilizer, it would be natural for some
of those people to use the popup menu to delete a node.)
Indeed, clicking the right mouse button for the popup menu
(rather thanF10 for the menubar at the top) and selecting
the menu itemNode⇒Remove Node does indeed delete
the child as expected. So we delete both children in this
way, leaving only the root node.

Now, we try to create a child node again for the root.
Creating a child using the menubar at the top was not a
problem before, so we try it again by pressingF10 to ac-
cess the menubar, but doing so results in a warning. This is
not surprising sinceF10 is in the history of the bug report
that we made earlier. (If another user received this warning
— unaware of our actions, “bug”, and “no bug” reports —
he/she could look at the warning dialog’s list of “bug” and
“no bug” reports, which are sorted by increasing distance to
the current situation.) At this point, we click onContinue
Action to ask the Stabilizer to process theF10 event and al-
low us to access the menu. As no bug subsequently occurs,
we file a “not bug” report.

Next, we pressF10 again and indeed there is no
bug warning this time. We then select the menu item
Edit⇒New Child Node. At this point, we get another
warning, this time about the “new child” event. Again, this
occurs because this event was in the history of the bug re-
port made earlier. Since “new child” worked for us before,
we would expect it to work again, so we clickContinue
Action and indeed a child is created with no bug. So we file
a “not bug” report.

Now, we type the text “b” in the new child and press
return. We get a warning on the return event. We ignore the
warning and clickContinue Action. No bug subsequently
occurs and we file a “not bug” report.

At this point, we try to delete this child (with text “b”)
using the menubar viaF10. Recall that this led earlier to a
bug where a child is added instead. So we pressF10, but
no warning occurs. We then use use the keyboard to select
Edit⇒Node⇒Remove Node. We now get a warning as
expected. (See Figure 3. Observe that this warning includes
both “bug” and “not bug” reports. The “bug” report has a
lower distance to the current context as expected. Inciden-
tally, the “not bug” report refers to the one we filed after
the “focus lost” warning.) Inspecting the bug report in the
warning dialog, we see that it looks very similar to the cur-

rent situation, so we clickAbort Action, thus avoiding the
bug. We then use the popup menu to delete the child. We
get no warning and the child is correctly deleted.

It turns out that the bug in question actually affects all
menu items underEdit⇒Node in the menubar: if you ac-
cess any of those menu items using the keyboard (e.g., start-
ing with F10), a new sibling node will be created. So in-
deed, it makes sense to give warnings whenF10 is fol-
lowed by a “new sibling” event. The reason is this: even
though there does exist a menu itemEdit⇒Node⇒New
Sibling Node, there are many other menu items under
under Edit⇒Node as well, so if we seeF10 followed
by a “new sibling” event, the user probably picked some
menu item other thanEdit⇒Node⇒New Sibling Node,
in which case there will be a bug. So a warning makes sense
in this context as it is likely that a bug would occur.

3 Bug Prediction

The Stabilizer’s bug prediction problem is this: given an
application stateS and an evente, would processing event
e in stateS likely result in a bug given past bug and “not
bug” reports?

We shall use a bounded execution history to approximate
the current application stateS, which we describe in Sec-
tion 3.1. The way in which the bounded history is used
for bug prediction is explained in Section 3.2. The way in
which the bug and “not bug” reports are used to provide
training data for bug prediction is explained in Section 3.3.
The actual bug prediction itself uses a distance weighted
nearest neighbor learner, which is described in Section 3.4.
The distance measure used for the learner is presented in
Section 3.5. Finally, we describe support for manual bug
prediction for those situations where learning is not work-
ing well (e.g., when our approximation to the stateS is not
good enough) in Section 3.6 .

Please note that the Stabilizer prototype intercepts (and
possibly aborts) event callbacks. However, to simplify
the exposition, sometimes we will not distinguish between
events and their callbacks.

3.1 Bounded History

There are two obvious ways in which execution history
could improve bug prediction. First, if a sequence of two
or more actions is required to trigger a bug, then a history
(provided it is long enough) would allow us to predict a bug
when the sequence of those two or more actions is observed.
Second, history can help us even when only one user initi-
ated action is sufficient to trigger a bug. In particular, a user
initiated action may actually result not only in one event
(e.g., “new sibling” in FreeMind) but an “event burst” (e.g.,
“new sibling” quickly followed by a “focus gained” event

4



for the edit field in the new sibling node). If the user subse-
quently reports a bug, the most recent event will not in fact
be the one that initiated the action. History allows us to take
into account previous events and give warnings on earlier
events that initiate actions (e.g., “new sibling” rather than
the subsequent “focus gained”).

We keep track of two separate bounded histories: one
for events and another for code (either function calls or ba-
sic blocks). Both histories are handled in the same way as
described below. (The size of the event history is 10 by de-
fault, while the size of the code history is 100 by default.)

Let H = (h1, . . . , hn) denote a bounded history of
sizen. We shall define the historyH in a way so that no
item occurs multiple times inH , but at the same time, some
sense of sequence is still preserved. In this way, more fre-
quent items (e.g., more frequent events or function calls)
will not dominate the bounded history. We shall use the
notationH + x to denote the addition of a new itemx to
H = (h1, . . . , hn). If item x is not already inH , then the
first itemh1 in H is removed and itemx is appended to the
end: H + x = (h2, . . . , hn, x). If item x is already inH ,
sayH = (. . . , hi, x, hj . . .), then it is simply moved to the
end:H + x = (. . . , hi, hj , . . . , x).

Note that a sense of sequence is preserved in the history
H = (h1, . . . , hn). In particular, supposehi precedeshj

in H = (. . . , hi, . . . , hj , . . .). Then it must be the case that
the latest addition ofhj was done after the latest addition of
hi. Note also that if we add distinct itemsx1, . . . , xk in that
order toH = (h1, . . . , hn) wherek ≤ n, thenx1, . . . , xk

will be the most recent items in the history (irrespective of
whether some of those items were already in the history)
while also retaining their order:(· · · ((H + x1) + x2) +
· · · + xk) = (. . . , x1, x2, . . . , xk).

3.2 Validating Events

Let He andHc denote the current event and code his-
tories, respectively.He consists of all accepted events (i.e.,
those for which either no warning occurred or a warning did
occur yet the user continued) andHc contains either func-
tion calls or basic blocks leading up to the most recent event
in He. Any more recent function calls/basic blocks are tem-
porarily kept elsewhere and will be added toHc later when
an event following them is accepted and added toHe.

Whenever an eventx in the target application is about
to be processed, its callback is intercepted by the Stabi-
lizer runner. The runner then issues a “validatex” re-
quest to the Stabilizer client to determine whether it should
proceed with or abort eventx’s callback. Whenever the
Stabilizer client receives the “validatex” request, it per-
forms a prediction based on the event and code histories,
namely(He + x, (· · · ((Hc + y1) + y2) + · · ·+ yk)) where
y1, y2, . . . , yk denote function calls/basic blocks not yet

added toHc that precede eventx, to determine whether
a bug is likely to occur based on past data. (See Sec-
tion 3.4.) Note thatx is not an accepted event at this
point, so it is not already part of the historyHe. We shall
use(Hp

e , Hp
c ) to denote the histories used for prediction,

namely(He + x, (· · · ((Hc + y1) + y2) + · · · + yk)).
If the client predicts that a bug is likely, then a warning

dialog will appear allowing the user to either abort or con-
tinue the action. If the user chooses to abort the action, the
client will inform the Stabilizer runner to abort the current
action and eventx’s callback will not be executed. Now
if the client predicts that a bug is not likely or it predicts
that a bug is likely but the user continues the action any-
way, then the client will perform the same processing in
both cases. Namely, the client updates the histories as fol-
lows: He := Hp

e , Hc := Hp
c . Now thatx’s callback has

been accepted, it is now the most recent event inHe and
any calls/basic blocks leading up tox have been added to
Hc.

3.3 Bug and “Not Bug” Reports

If the user reports a bug, then a training example con-
sisting of the current event and code histories,He andHc

respectively, is added to the training data. Specifically,
(He, Hc, "bug") is added to the training set, where “bug”
is the classification of this training example. Note thatHc

contains only the code history leading up to the most recent
event (since at bug prediction time we would not have the
code that will execute after the event).

If the client predicts that a bug is likely and issues a
bug warning, then the user continues the action anyway
despite the bug warning, and yet the action turns out to
be apparently bug-free, then the user can report “not bug”
to tell the Stabilizer that the warning should not have oc-
curred in this context. In this case, a training example con-
sisting of the event and code histories used for prediction
at the time of the previous warning, which we denote as
Hp,w

e andHp,w
c , are added to the training data. Specifically,

(Hp,w
e , Hp,w

c , "not bug") is added to the training set, where
“not bug” is the classification of this training example.

3.4 Distance Weighted Nearest Neighbor Learner

Bug prediction is done using the well-known distance
weighted nearest neighbor learner [9, pp. 233–234]. The
idea is to consider the “closest”k training examples to
see whether a bug is likely or not, for some constant
k ≥ 1. More precisely, we use a distance measure0 ≤

d((Hp
e , Hp

c ), (H ′

e, H
′

c) ≤ 1 to determine how close each
training example(H ′

e, H
′

c, type) is to the event and code
histories used for prediction,(Hp

e , Hp
c ). (See Section 3.5

for our definition ofd.)

5



Distance weighted nearest neighbor prediction is done as
follows. If the distance to the closest training example is 0,
then we take a majority vote on the classification among
only those training examples of distance 0 to(Hp

e , Hp
c ). So

if the majority say there is a bug, then we predict a bug.
Otherwise, we predict no bug.

If the distance to the closet training exam-
ple is greater than 0, then we consider the
closest k training examples to (Hp

e , Hp
c ), say

(H ′

e,1, H
′

c,1, type1), . . . , (H
′

e,k, H ′

c,k, typek), where we
exclude training examples of maximum distance 1. (The
number of such training examples may be less thank if
there is insufficient training data. Also, by default, the Sta-
bilizer actually considers all neighbors with distance less
than 1, which is reasonable as we shall take into account
the distance to each of those neighbors when making a
prediction. However, users can if they wish specify ak
value to restrict the numbers of neighbors considered to
only the closestk ones with distance< 1.)

We then compute two scores, one for the classifi-
cation “bug” and the other for the classification “not
bug”. Let X denote the set of training examples among
(H ′

e,1, H
′

c,1, type1), . . . , (H
′

e,k, H ′

c,k, typek) where typei
is “bug”. Let Y denote the set of training exam-
ples among (H ′

e,1, H
′

c,1, type1), . . . , (H
′

e,k, H ′

c,k, typek)
where typei is “not bug”. The “bug” score is com-
puted by

∑

(H′

e
,H′

c
,”bug")∈X

1/d((Hp
e , Hp

c ), (H ′

e, H
′

c))
2

and the “not bug” score is computed by
∑

(H′

e
,H′

c
,"not bug")∈Y

1/d((Hp
e , Hp

c ), (H ′

e, H
′

c))
2. If

the “bug” score is greater, we predict a bug, otherwise we
predict a “not bug”.

3.5 Distance Measure used in Learner

As before, we letHp
e andHp

c denote the event and code
histories used for prediction and we letH ′

e and H ′

c de-
note a training example event and code histories. Since our
bounded histories do not contain duplicate items, we shall
at times treat histories as sets, as there will be no confusion
given the context.

We compute a normalized distance between the pre-
diction event and code histories and the training exam-
ple event and code histories, which we denote by0 ≤

d((Hp
e , Hp

c ), (H ′

e, H
′

c) ≤ 1. This is done as follows. If
the event added most recently toHp

e (i.e., the last in the se-
quence) is not present inH ′

e, thend((Hp
e , Hp

c ), (H ′

e, H
′

c) =
1 and the procedure for determining distance is completed
at this point. The rationale here is that a bug warning if any
would be about the most recent event and so this event is
absolutely critical to bug prediction. Thus, we require that
the most recent event be present inH ′

e to give a distance
d((Hp

e , Hp
c ), (H ′

e, H
′

c) that is less than one.
If the event added most recently toHp

e (i.e., the last in the

sequence) is present inH ′

e, then we compute the standard
cosine similarity from information retrieval [11, p. 185] of
Hp

e andH ′

e:

Se(H
p
e , H ′

e) =

∑

x∈H
p

e ∩H′

e

wp
e(x)w′

e(x)
√

∑

x∈H
p

e

wp
e(x)2

√

∑

x∈H′

e

w′
e(x)2

where the weight of an itemx, denoted bywp
e(x) for Hp

e

andw′

e(x) for H ′

e, is set tori−1
e , wherex is theith item in

the corresponding history and the ratiore ≥ 1 is a constant.
(Values ofre > 1 give greater weight to more recent items
in the histories. We usere = 1.5 by default.)

We also compute the cosine similarity of the code histo-
ries,Hp

c andH ′

c:

Sc(H
p
c , H ′

c) =

∑

x∈H
p

c ∩H′

c

wp
c (x)w′

c(x)
√

∑

x∈H
p

c

wp
c (x)2

√

∑

x∈H′

c

w′
c(x)2

where the weight of an itemx, denoted bywp
c (x) for Hp

c

andw′

c for H ′

c, is set tori−1
c , wherex is theith item in the

corresponding history and ratiorc ≥ 1 is a constant. (We
userc = 1.1 by default.)

We then compute the combined similarity0 ≤

S((Hp
e , Hp

c ), (H ′

e, H
′

c) ≤ 1 as follows:

S((Hp
e , Hp

c ), (H ′

e, H
′

c) = αS(Hp
e , H ′

e)+(1−α)S(Hp
c , H ′

c),

for some constant0 ≤ α ≤ 1 that is used to determine how
important the event history similarity score is with respect
to the code history similarity score. (We usedα = 1 for
the motivating example in Section 2, which means that the
code histories were ignored. When we do use both event
and code histories, we typically useα = 0.5, as is done in
the evaluation configurations that make use of code history
in Section 4.)

Finally, the distance d is defined as follows:
d((Hp

e , Hp
c ), (H ′

e, H
′

c) = 1 − S((Hp
e , Hp

c ), (H ′

e, H
′

c).

3.6 Support for Manual Bug Prediction

In situations when learning is not effective (e.g., because
our approximation to the state is insufficient), the user can
override automated bug prediction. In particular, when fil-
ing a bug report, the user can specify “always warn”. More-
over, when filing a “not bug” report, the user can specify
“never warn”. When looking at neighbors, if among the
closest ones there is a neighbor with “always warn”, then
a warning will be given regardless of the other neighbors.
Otherwise, if among the closest ones there is a neighbor
with “never warn”, then a warning will not be given re-
gardless of the other neighbors. This feature should only
be used as a last resort when learning is ineffective in a par-
ticular context. (It is not used in the motivating example in
Section 2 nor is it used in the evaluation in Section 4.)

6



4 Evaluation of Bug Prediction

This section presents the preliminary experiment con-
ducted to evaluate the Stabilizer’s capability of automated
bug prediction. We first describe the experimental subjects,
including the subject programs, mutants, and tests. We then
discuss the experiment design. We finally present the ex-
perimental results and discuss threats to validity.

4.1 Subjects

The subjects used in the experiment had been previously
developed and used by Memon et al. in evaluating different
types of GUI test oracles [8]. The subject programs include
four GUI applications. The first three columns of Table 1
show the program names, the number of lines of code, and
the number of classes, respectively. For each application,
Memon et al. created 100 mutants (i.e., 100 versions each
of which is seeded with a bug) based on the collected bugs
introduced during the development of these four applica-
tions. They used an automated tool to generate 600 test
cases for each application (independently of the mutants).
They also developed a GUI test replayer for running these
tests automatically.

A mutated methodis a mutant’s method that is seeded
with a bug. To automatically determine whether an exe-
cution exposes a bug in a mutated method, we manually
inspect the original code and mutated code, and derive the
bug-exposure condition under which the execution of the
mutated code can cause differences in the program state or
return value at the exit of the mutated method. At an ap-
propriate location within the mutated method, we manually
insert a piece of code that informs the runner when the bug-
exposure condition is satisfied.

A bug-triggering callbackfor a mutant is a callback
that at least once directly or indirectly invoked the mutated
method during the executions of the 600 tests. Note that one
particular execution of a bug-triggering callback does not
necessarily expose a bug or even cover the mutated method.
To control the scale of the experiment, for each mutant, we
select all those tests that execute at least one triggering call-
back for the mutant (no matter whether these tests expose
bugs) and use the Stabilizer to run the selected tests on the
mutant. Because unselected tests for a mutant exercise ap-
plication features irrelevant to the buggy code, we expect
that our experimental results shall be similar to the ones of
running all 600 tests for each mutant.

A bug is deterministicwith respect to a bug-triggering
callbackc if wheneverc is executed, the bug is guaranteed
to be exposed within the execution ofc, and isnondeter-
ministic with respect toc if the bug is exposed by at least
one but not all executions ofc among the executions of 600
tests. Because deterministic bugs are trivial for the Stabi-

program loc classes mutants tests
TerpWord 1747 9 2 170
TerpPresent 4769 4 9 56
TerpPaint 9287 42 0 –
TerpSheet 9964 25 8 150

Table 1. Subject programs used in the exper-
iment

lizer to predict, we select a mutant in the experiment if the
mutant contains a nondeterministic bug with respect to one
of its bug-triggering callback. However, we do not select
a mutant if the number of selected tests for the mutant is
fewer than 20 because the Stabilizer assumes a repeated use
of a bug-triggering callback; we do not select a mutant with
all 600 selected tests because the mutant might contain a
bug that is not related to event callbacks. The fourth and
fifth columns of Table 1 show the number of selected mu-
tants and the average number of selected tests for a selected
mutant. The third application, TerpPaint, has zero selected
mutants because none of its mutants satisfy our selection
criteria.

4.2 Experiment Design

The objectives of the experiment are to investigate the
following research questions:
• RQ1: Can event history or code history (i.e. regular

method calls or basic blocks) be useful in improving
the automated bug prediction?

• RQ2: Can lower-level execution information be useful
in improving the automated bug prediction (i.e. the
arguments of event callbacks or the arguments/returns
of regular method calls1)?

• RQ3: Can the Stabilizer’s automated bug prediction
be improved over time?

To answer these questions, we at first define a default
configuration to be using only events and event callback ar-
guments in prediction and setting the event history size as
10. We then design six configurations for the experiment:

• Configuration 1: default configuration excluding
event callback arguments.

• Configuration 2: default configuration.
• Configuration 3: default configuration with the addi-

tion of regular method calls.
• Configuration 4: default configuration with the addi-

tion of regular method calls with argument/return val-
ues.

1We collect the label and the type of the component associatedwith
an event as the argument of the event’s callback. For example, when
a user selects anEdit menu, the callback argument is collected as
“Edit#javax.swing.JMenu#”. For a method argument or return, be-
sides its runtime-type name, we collect its value in a stringform if it is a
primitive type, collect “null” if it is a null reference, andcollect “not null”
if it is a non-null reference.

7



• Configuration 5: default configuration with the addi-
tion of basic blocks.

• Configuration 6: default configuration with the event
history size set to one (i.e., only the most recent event
is used for prediction).

The code history size is set to be 100 for Configurations 3,
4, and 5, where code information is used.

To characterize the effectiveness of automated bug pre-
diction, we use two measures: precision and recall, which
are standard measures from information retrieval [11]. In
our context,precisionis defined to be the number of cor-
rectly predicted buggy events divided by the total number
of bug warnings.Recallis defined to be the number of cor-
rectly predicted buggy events divided by the total number of
events that were actually buggy. Note that these two mea-
sures do not involve the total number of events encountered,
buggy or not. For each combination of selected mutants and
six configurations, we calculate precision and recall over the
execution of all selected tests for the selected mutant. Note
that the execution of each combination starts with an empty
Stabilizer database. In addition, to answer the last ques-
tion (RQ3), for each combination we divide the sequence of
executed callbacks into four parts (called periods) of equal
size. Then we calculate precision and recall for each period
by considering all those callbacks that are executed before
and within the period.

Normally, whenever the Stabilizer client is asked to vali-
date an event, it sends the runner an “abort” or “proceed” to
tell it whether the event callback should be aborted or exe-
cuted. However, “abort” is only sent after a bug warning in
which the user has decided to abort the action. “proceed”
is sent either if there is no bug warning, or there is a bug
warning and the user has decided to continue the action.
However, to build an automated evaluation setup, we need
to take human users out of the loop. Consequently, we need
to simulate the user’s behavior on a bug warning dialog. For
the purposes of automated evaluation, whenever the client
is asked to validate an event callbackc, instead of popping
up a bug warning dialog, it simply continues the action (thus
corresponding to the case where a human user would ignore
the warning and continue the action). During the execution
of the action, if no bug-exposure condition is satisfied, a
“not bug” is automatically reported; if a bug-exposure con-
dition is satisfied, a “report bug” is automatically reported.

4.3 Experimental Results

Figures 4-7 use boxplots to present the experimental re-
sults. The box in a boxplot shows the median value as the
central line, and the first and third quartiles as the lower and
upper edges of the box. The whiskers shown above and be-
low the boxes technically represent the largest and smallest
observations that are less than 1.5 box lengths from the end

Config 1 Config 2 Config 3 Config 4 Config 5 Config 6

0
20

%
40

%
60

%
80

%
10

0%

Figure 4. Precision for the six configurations.

Config 1 Config 2 Config 3 Config 4 Config 5 Config 6

0
20

%
40

%
60

%
80

%
10

0%

Figure 5. Recall for the six configurations.

of the box. In practice, these observations are the lowest
and highest values that are likely to be observed.

Figures 4 and 5 show the precision and recall for the mu-
tants with the six configurations. Figures 6 and 7 show the
precision and recall for the mutants over the four periods
with the combined data from all six configurations. From
Figures 6 and 7, we have observed that precision and recall
were increased over time, indicating that the Stabilizer had
learned over time. From Figures 4 and 5, we have observed
that the Stabilizer can achieve around an 80% median for
precision and recall. But it seems it would be hard to im-
prove since we tried some obvious lower-level execution in-
formation (i.e., regular method call history, basic block his-
tory, callback argument values, regular call argument/return
values) and did not get discernable improvement. However,
it is clear to us that event history is important, at least to han-
dle event bursts (e.g., in FreeMind); this issue was discussed
in Section 3.1. We speculate that if we want to improve sig-
nificantly on the Stabilizer’s bug prediction performance,
we would need to look at much more of the program state.

8



Period 1 Period 2 Period 3 Period 4

0
20

%
40

%
60

%
80

%
10

0%

Figure 6. Precision for the four periods.

Period 1 Period 2 Period 3 Period 4

0
20

%
40

%
60

%
80

%
10

0%

Figure 7. Recall for the four periods.

4.4 Threats to Validity

The threats to external validity primarily include the de-
gree to which the subject programs, bugs, and test cases are
representative of true practice. Although the GUI applica-
tions used in the experiment are fairly large with complex
GUIs, they do not reflect a wide spectrum of possible GUI
applications. In addition, the total number of selected mu-
tants in the experiments is only 19. These threats could be
reduced by more experiments on wider types of subjects in
future work. The threats to internal validity are instrumenta-
tion effects that can bias our results. Faults in our prototype
and the test replayer might cause such effects. To reduce
these threats, we manually inspected many collected traces
for each subject. In addition, the selection of mutants and
their tests in the experiment might also cause instrumenta-
tion effects. Threats to construct validity arise when man-
ually derived bug-exposure conditions might not reflect the
actual bug-exposure conditions when buggy code is used by
real users. In the future, we plan to conduct case studies on
the Stabilizer being used by real users.

5 Related Work

The cooperative bug isolation project developed by Liblit
et al. [7] collects predicate and crash information about de-
ployed software from a set of runs produced by users. They
develop the predicate elimination and statistical debugging
techniques to identify a predicate as a bug-exposure con-
dition for a crash-causing bug. Our approach operates at
deployment sites too, but focuses on a narrower range of ap-
plications: GUI applications. Our approach considers any
undesirable behavior as a bug, whereas the cooperative bug
isolation project is mainly concerned with program crashes.

Comparing to bug isolation in general, the final results
(prediction results) of our approach are directly used by
application users, whereas the final results (fault-exposure
conditions) of bug isolation are mainly used by developers
(the cooperative bug isolation project deliberately makesits
approach to be unobtrusive to user behavior). Data avail-
able for predicting a buggy event callback are limited to
the execution information before a buggy event callback,
whereas data available for finding bug-exposure conditions
in bug isolation are all the execution information before the
bug-exposure site (even after the application has started the
execution of the buggy event callback). In this regard, we
speculate that the bug prediction problem in our particular
setting might be more challenging than the bug isolation
problem in general. On the other hand, bug isolation needs
to produce human-understandablebug-exposure conditions,
which could be used but not required in bug prediction; in
this regard, bug isolation is more challenging.

Given a faulty run and a larger number of correct runs,
Manos and Reiss [10] select the correct run whose basic
block profiling is closest to the faulty run. They then com-
pare the structural spectra of the selected correct run and the
buggy run, and report the suspicious parts of the program as
buggy portions. Given an event callback to be executed and
a set of historical runs of the same callback, our approach
predicts whether the callback to be executed is buggy using
the nearest-neighbor strategy.

Given a failing test, Zeller and Hildebrandt [12] develop
the Delta Debugging algorithm to systematically generate
and run test inputs that are slightly different from the fail-
ing test input, in order to isolate the parts in the input that
cause the failure. Different from their approach, our ap-
proach does not proactively generate tests to exercise the
callback to be predicted but takes advantage of historical ex-
ecution information exercised by users. Our approach pro-
vides mechanisms to share the collective knowledge of user
executions among various sites alleviating the problem of
lacking enough data for prediction.

Elbaum et al. [4] empirically investigate the relationship
between anomalies and failures by evaluating the predic-
tive capabilities of various anomaly detection schemes in

9



the context of failure analysis. They use behaviors exposed
by in-house integration testing to define normal behaviors.
Then they detect anomalies by detecting deviations from
normal behaviors. We can view characteristics of a call-
back’s passing runs as normal behaviors and characteris-
tics of its failing runs as abnormal behaviors. Given a pro-
gram behavior, Elbaum et al.’s approach detects its devia-
tions from normal behaviors, whereas our approach deter-
mines whether it is more similar to historical normal behav-
iors (passing runs) or abnormal behaviors (failing runs).

Demsky and Rinard [3] develop an approach for dynam-
ically detecting and repairing data structures that violate
specified consistency constraints, rather than attemptingto
increase the reliability of the code manipulating the data
structures. Their approach enables a program to continue
to run successfully within its designed operating envelope.
Our approach takes a similar perspective on making buggy
code usable: we dynamically predict and prevent the exe-
cution of buggy code before it gets fixed. However, without
requiring any specification, we attempt to prevent a GUI ap-
plication from entering a corrupted state instead of aggres-
sively repairing an already-corrupted state.

Our approach is related to intrusion detection research in
computer security. In our case, we attempt to avoid bugs,
rather than intrusions. However, our use of a supervised
learner (nearest neighbor) on a bounded execution history
is similar to the sliding window nearest neighbor method
used in intrusion detection systems [6].

Finally, our use of before/after screenshots to visually
describe application state at a very high level of abstraction
is similar to work done on editable graphical histories [5]
and the DRT design recovery tool for interactive graphical
applications [1].

6 Conclusions

In this paper, we have proposed a tool-based approach to
help users avoid bugs in GUI applications. The idea is that
users would use the application normally and report bugs
(and also “not bugs”) that they encounter to prevent anyone
— including themselves — from encountering those bugs
again. When a user attempts an action that has led to prob-
lems in the past, he/she will receive a warning and will be
given the opportunity to abort the action — thus avoiding
the bug altogether and keeping the application stable. We
have illustrated our approach by example using our Stabi-
lizer prototype, explained how the Stabilizer’s bug predic-
tion works, and presented a preliminary evaluation of the
Stabilizer’s bug prediction.

For future work, we would like to test the Stabilizer with
multiple users. The Stabilizer prototype was designed with
distributed operation in mind, so implementation-wise, sup-
porting multiple users on different computers will be easy

and we plan to do this soon. However, evaluation of Sta-
bilizer usage with multiple users will require some thought.
In particular, we would like to get some sense of how to pre-
dict the “stabilization time” of an application given a hostof
factors: the number of users, the number of bugs, the size of
the application, etc. Also for future work, we would like to
address privacy (e.g., users inadvertently sending sensitive
information in a bug or “not bug” report) and security (e.g.,
competitors crippling an application through dishonest bug
and “not bug” reports).

Acknowledgments

We would like to thank Atif Memon and Qing Xie for
their assistance in our use of the TerpOffice benchmarks.

References

[1] K. Chan, Z. Liang, and A. Michail. Design recovery of in-
teractive graphical applications. InProceedings of the 25th
International Conference on Software Engineering, pages
114–124, 2003.

[2] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An
empirical study of operating systems errors. InProc. 18th
ACM Symposium on Operating Systems Principles, pages
73–88, 2001.

[3] B. Demsky and M. Rinard. Automatic detection and repair
of errors in data structures. InProc. 18th ACM SIGPLAN
Conference on Object-Oriented Programing, Systems, Lan-
guages, and Applications, pages 78–95, 2003.

[4] S. Elbaum, S.Kanduri, , and A. Andrews. Anomalies as pre-
cursors of field failures. InProc. International Symposium
of Software Reliability Engineering, pages 108–118, 2003.

[5] D. Kurlander and S. Feiner. Editable graphical histories. In
IEEE Workshop on Visual Languages, pages 127–134, 1988.

[6] T. Lane and C. E. Brodley. Temporal sequence learning and
data reduction for anomaly detection.ACM Transactions on
Information and System Security, 2(3):295–331, 1999.

[7] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. InProc. ACM SIG-
PLAN 2003 Conference on Programming Language Design
and Implementation, pages 141–154, 2003.

[8] A. M. Memon, I. Banerjee, and A. Nagarajan. What test or-
acle should I use for effective GUI testing? InProc. 18th
IEEE International Conference on Automated Software En-
gineering, pages 164–173, 2003.

[9] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
[10] M. Renieris and S. P. Reiss. Fault localization with nearest

neighbor queries. InProc. 18th IEEE International Con-
ference on Automated Software Engineering, pages 30–39,
2003.

[11] I. H. Witten, A. Moffat, and T. C. Bell. Managing Giga-
bytes: Compressing and Indexing Documents and Images.
Morgan Kaufmann, 1999.

[12] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input.IEEE Trans. Softw. Eng., 28(2):183–
200, 2002.

10


