
Policy-Based Exception Handling

in Business Processes

Rachid Hamadi and Boualem Benatallah

School of Computer Science and Engineering

The University of New South Wales

Sydney, NSW 2052, Australia

{rhamadi,boualem}@cse.unsw.edu.au

Technical Report

UNSW-CSE-TR0428

August 2004

Abstract

A workflow management system (WfMS) provides a central control point for defining busi-
ness processes and orchestrating their execution. A major limitation of current WfMSs is
their lack of support for dynamic workflow adaptations. This functionality is an important
requirement in order to provide sufficient flexibility to cope with expected but unusual sit-
uations and failures. In this report, we propose Self-Adaptive Recovery Net (SARN), an
extended Petri net model for specifying exceptional behavior in workflow systems at design
time. SARN can adapt the structure of the underlying Petri net at run time to handle
exceptions while keeping the Petri net design simple and easy. The proposed framework
also caters for high-level recovery policies that are incorporated either with a single task
or a set of tasks, called a recovery region. These recovery policies are generic constructs
that model exceptions at design time together with a set of primitive operations that can
be used at run time to handle the occurrence of exceptions.

1 Introduction

A workflow management system (WfMS) provides a central control point for defining busi-
ness processes and orchestrating their execution [GHS95, CCPP98]. A major limitation
of current WfMSs is their lack of support for dynamic workflow adaptations. This func-
tionality is an important requirement in order to provide sufficient flexibility to cope with
expected but unusual situations and failures.

In a workflow process, each task can fail, e.g., its execution produces unexpected
results. Therefore, exception handling must be part of the workflow process. If we want
to model a workflow that takes into account and reacts to failures adequately, then the
exception handling part ends up dominating the normal behaviour part [HA00]. Existing
workflow modeling languages such as traditional state machines, statecharts, and Petri nets
[Pet81] are not suitable when the exceptional behaviour exceeds the normal behaviour since
they do not, as such, have the ability to reduce modeling size, improve design flexibility,
and support exception handling at design time.

There are two main approaches that deal with exceptions in existing WfMSs: (i) the
Ad-Hoc approach and (ii) the Run Time approach. The former integrates all expected
exceptions within the normal behavior of the business process. This makes the design
of the workflow complicated and inconvenient. The latter deals with exceptions at run
time, meaning that there must be a workflow expert who decides which changes have to
be made to the workflow process in order to handle exceptions (see, e.g., [RD98]).

One solution, which is discussed in this report, is to use high-level recovery policies
that are incorporated either with a single task or a set of tasks that we will call hereafter
a recovery region. These recovery policies are generic constructs that model exceptions at
design time together with a set of primitive operations that can be used at run time to
handle the occurrence of exceptions. Note that our proposed approach concentrates on
handling exceptions at the instance level and not on modifying the workflow schema such
as in [CCPP98].

We identified a set of recovery policies that are useful and commonly needed in many
practical situations. The problem, often overlooked, is that adding recovery policies to
workflow modeling languages is a delicate issue. In fact, while in general new policies
may provide the support and flexibility described above, they also make the workflow
model more complex. Complexity severely compromises the usability (and therefore the
adoption) of such models. Therefore, the hard part lies in striking a balance between
expressive power and simplicity. As a consequence, the goal that guided our work is exactly
that of striking this balance and “right-sizing” the model, while providing room for it to
evolve as the need arises. This required an analysis of existing workflow applications and
of their exceptional behaviors so that we could:

• determine a set of recovery policies that could adequately model most of them and

• avoid the artificial introduction of complex recovery policies that we could have
thought useful but that are rarely used in practice.

In this report, we propose Self-Adaptive Recovery Net (SARN), an extended Petri
net model for specifying exceptional behavior in workflow systems at design time. The
proposed framework also caters for high-level recovery policies that are incorporated either
with a single task or a recovery region, i.e., a set of tasks. Our contribution is twofold:

1

• Self-Adaptive Recovery Net (SARN). An extended Petri net model for specifying
exceptional behavior in workflow systems at design time. This model can adapt the
structure of the underlying Petri net at run time to handle exceptions while keeping
the Petri net design simple and easy.

• High-level recovery policies. These recovery policies are generic constructs that model
exceptions at design time. They are incorporated with either a single task or a set
of tasks called a recovery region. Note that this list of recovery policies is not
exhaustive. Indeed, new (customized) recovery policies can be added.

Handling exceptions introduces two major aspects. First, the system should provide
support (i.e., a set of recovery policies) to enable the flexibility to deal with expected
exceptions. Second, expected exceptions should only be allowed in a valid way. The
system must ensure the correctness of the modified SARN w.r.t. consistency constraints
(such as reachability and absence of deadlock), so that constraints that were valid before
the dynamic change of SARN are also valid after the modification.

The rest of the report is organized as follows. Section 2 introduces the proposed
model SARN along with a motivating example. Section 3 presents the task-based recovery
policies. Their extension to a set of tasks or region is given in Section 4. Finally, Section 5
reviews some related work and concludes the report.

2 Self-Adaptive Recovery Net

In this section, we introduce the model proposed, i.e., Self-Adaptive Recovery Net (SARN).
SARN is an extended Petri net model. We will first informally give the definition of Petri
nets.

Petri nets [Pet62, Pet81] are a well-founded process modeling technique that have
formal semantics. They have been used to model and analyze several types of processes
including protocols, manufacturing systems, and business processes. A Petri net is a
directed, connected, and bipartite graph in which each node is either a place or a transition.
Tokens occupy places. When there is at least one token in every place connected to a
transition, we say that the transition is enabled. Any enabled transition may fire removing
one token from every input place, and depositing one token in each output place. For a
more elaborate introduction to Petri nets, the reader is referred to [Mur89, Rei85, Pet81].

SARN extends Petri nets to model exception handling through recovery transitions
and recovery tokens. In SARN, there are two types of transitions: standard transitions
representing workflow tasks to be performed and recovery transitions that are associated
with workflow tasks to adapt the recovery net in progress when a failure event occurs.
There are also two types of tokens: standard tokens for the firing of standard transitions
and recovery tokens associated with recovery policies. There is one recovery transition
per type of task failure, that is, when a new recovery policy is designed, a new recovery
transition is added. When a failure (such as a time out) within a task occurs, an event is
raised and a recovery transition will be enabled and fired. The corresponding sequence of
basic operations (such as creating a place and deleting an arc) associated with the recovery
transition is then executed to adapt the structure of SARN that will handle the exception.

2

2.1 A Motivating Example

A simplified Travel Planning workflow specified as an SARN model is depicted in Figure 1.

� � � � � � � � � � � 	 �
 � � � � � � � � � 	 �

� � � � � � � � 	 � � � � � � 	 �

� � � � � 	 � �
� � � � � � � � � � 	

� � � � � � 	 � � �

� � � � 	 � � �

� � � � � �

� � � � � � �

� �� �

� �
 ! " #

� �

Figure 1: Travel Planning Workflow as a SARN

In this workflow process, a sequence of a Flight Booking task followed by a Hotel
Booking task is performed in parallel with an Attraction Searching task. After these
booking and searching tasks are completed, the distance from the attraction location to
the accommodation is computed, and either a Car Rental task or a Bike Rental task is
invoked. The symbol Se

t1 within the Flight Booking task means that a Skip1 recovery policy
is associated with it.

The part drawn in dotted lines is created after the sequence of primitive operations
associated with the Skip recovery transition has been executed. When a Skip failure event
e (e.g., e=“no response after one day”) occurs during the execution of the task Flight
Booking, the Skip recovery transition appears and the operations associated with it are
executed.

Note that, in this report, exceptions constitute events which may occur during workflow
execution and which require deviations from the normal business process. These events
can be generic such as the unavailability of resources, a time-out, and incorrect input
types, or application specific (i.e., dependent) such as the unavailability of seats for the
Flight Booking task in the Travel Planning workflow. In this latter case, events must be
defined by the workflow designer.

2.2 Definition of SARN

In the following, we will give the formal definition of SARN.

Definition 2.1 (SARN)
A Self-Adaptive Recovery Net (SARN) is a tuple RN = (P, T, T r, F, i, o, `,M) where:

• P is a finite set of places representing the states of the workflow,

• T is a finite set of standard transitions (P ∩ T = ∅) representing the tasks of the
workflow,

1 Details about the Skip recovery policy and other task-based recovery policies will be discussed in
Section 3.

3

• Tr is a finite set of recovery transitions (T ∩ Tr = ∅ and P ∩ Tr = ∅) associated
with workflow tasks to adapt the net in-progress when a failure event occurs. There
is one recovery transition per type of task failure such as Skip and Compensate,

• F ⊆ (P × (T ∪Tr))∪ ((T ∪Tr)×P) is a set of directed arcs (representing the control
flow),

• i is the input place of the workflow with •i = ∅,

• o is the output place of the workflow with o• = ∅,

• ` : T → A ∪ {τ} is a labeling function where A is a set of task names. τ denotes a
silent (or an empty) task (represented as a black rectangle), and

• M : P → N × N represents the mapping from the set of places to the set of in-
teger pairs where the first value is the number of standard tokens (represented as
black small circles within places) and the second value the number of recovery tokens
(represented as black small rectangles within places). 2

In the SARN model, there are some primitive operations that can modify the net
structure such as adding an arc and disabling a transition (see Table 1). Several of these
basic operations are combined in a specific order to handle different task failure events.
The approach adopted is to use one recovery transition to represent one type of task
failure. Thus a recovery transition represents a combination of several basic operations.

Table 1: Primitive Operations

Basic Operation Effect

CreateArc(x,y) An arc linking the place (or transition) x

to the transition (or place) y is created
DeleteArc(x,y) An arc linking the place (or transition) x

to the transition (or place) y is deleted
DisableArc(x,y) An arc linking the place (or transition) x

to the transition (or place) y is disabled
ResumeArc(x,y) A disabled arc linking the place (or

transition) x to the transition (or place)
y is resumed, i.e., will participate in
firing transitions

CreatePlace(p) A place p is created
DeletePlace(p) A place p is deleted
CreateTransition(t) A transition t is created
SilentTransition(t) An existing transition t is replaced

by a silent transition
ReplaceTransition(t,t’) An existing transition t is replaced

by another transition t’

DeleteTransition(t) A transition t is deleted
DisableTransition(t) A transition t will not be able to fire
ResumeTransition(t) A disabled transition t is resumed, i.e,
AddToken(p) A standard token is added to a place p

RemoveToken(p) A standard token is removed from a place p

AddRecoveryToken(p) A recovery token is added to a place p

RemoveRecoveryToken(p) A recovery token is removed from a place p

4

In the example depicted in Figure 1, the Skip recovery policy Se
t1 is associ-

ated with eight basic operations: (1) DisableTransition(t1), (2) CreatePlace(p1),
(3) AddRecoveryToken(p1), (4) CreateArc(t1,p1), (5) CreateTransition(t2), (6)
SilentTransition(t2), (7) CreateArc(p1,t2), and (8) CreateArc(t2,p2).

It should be noted that this sequence of operations must be executed as an atomic
transaction.

In SARN, when a task failure occurs, a recovery token is injected into a place and the
set of primitive operations associated with the recovery policy are triggered.

2.3 Enabling and Firing Rules in SARN

In ordinary Petri nets, a transition is enabled if all its input places contain at least one
token. An enabled transition can be fired and one token is removed from each of its input
places and one token is deposited in each of its output places. The tokens are deposited
in the output places of the transition once the corresponding task finishes its execution,
that is, the tokens remain hidden when the task is still active. Upon the completion of
the task, the tokens appear in the outgoing places. If no task failure events occur, SARN
will obey this enabling rule.

Besides supporting the conventional rules of Petri nets, some new rules are needed in
SARN as a result of the new mechanisms added (recovery transitions and tokens). Here
is what will happen when a task failure event occurs:

1. The recovery transition corresponding to this failure event will be created and a
recovery token is injected in the newly created input place of the recovery transition.

2. Once a recovery token is injected, the execution of the faulty task will be paused
and the system will not be able to take any further task failure event.

3. Once a recovery transition is created, the basic operations associated with it will be
executed in the order specified. The net structure will be modified to handle the
corresponding failure. Note that this sequence of basic operations does not introduce
inconsistencies such as deadlocks.

4. When all operations associated with the recovery transition are executed, all the
modifications made to the net structure in order to handle the failure will be removed.
The net structure will be restored to the configuration before the occurrence of the
failure event.

5. The recovery tokens generated by the execution of the operations will become stan-
dard tokens and the normal execution is resumed. The enabled transitions will then
fire according to the standard Petri net firing rules.

2.4 Valid SARN Models

A key issue in supporting dynamic SARN structural changes is that the system should
guarantee that the modified SARN is valid w.r.t. consistency constraints such as reacha-
bility and liveness. For instance, the system must not allow to skip a running task to a
non-subsequent task (in the control flow). Consistency rules must be established in order

5

to control any invalid use of the recovery policies or restrict their use (to a specific part(s)
of the SARN model).

SARN must meet certain constraints in order to ensure the correct execution of the
underlying workflow at run time. Each transition t must be reachable from the initial
marking of the SARN net. That is, there is a valid sequence of transitions leading from
the initial marking to the firing of t. Furthermore, we require that from every reachable
marking of the SARN net, a final marking (where there is only one standard token in
the output place o of the SARN net) can be reached, i.e., there is a valid sequence of
transitions leading from the current marking of the net to its final marking.

To verify the correctness of our SARN model, we utilize some key definitions for Petri
net behavior properties adapted from [Mur89].

Definition 2.2 (Reachability)
In a SARN net RN = (P, T, T r, F, i, o, `,M) with initial marking M0 = i, a marking Mn

is said to be reachable from M0 if there exists a sequence of firings that transforms M0 to
Mn. A firing or occurrence sequence is denoted by σ = M0t1M1t2M2 . . . tnMn or simply
σ = t1t2 . . . tn. In this case, Mn is reachable from M0 by σ and we write M0[σ〉Mn. 2

Definition 2.3 (Liveness)
A SARN net RN = (P, T, T r, F, i, o, `,M) is said to be live, if for any marking Mn that
is reachable from M0 = i, it is possible to ultimately fire any transition of the net by
progressing some further firing sequence. 2

Definition 2.4 (Boundedness)
A SARN net RN = (P, T, T r, F, i, o, `,M) is said to be k-bounded or simply bounded, if
the number of tokens in each place does not exceed a finite number k for any marking
reachable from M0 = i. A SARN net RN = (P, T, T r, F, i, o, `,M) is said to be safe if it
is 1-bounded. 2

The boundedness property is useful in checking, for instance, that a place stands for a
status or a condition if the number of tokens it contains is either zero or one, or if a place
stands for a number of resources then boundedness can be used to check if the number of
resources overflows.

A SARN model that satisfies the above properties is said to be valid.

2.5 Task States

Each task in a workflow process contains a task state variable that is associated with a
task state type which determines the possible task states [GSCB99]. A transition from
one task state to another constitutes a primitive task event.

Figure 2 shows the generic task states. It is consistent with the proposed standard of
the Workflow Management Coalition [WfM99]. At any given time, a task can be in one
of the following states: NotReady, Ready, Running, Completed, Aborted, or Frozen.

The task state NotReady corresponds to not yet enabled task. When a task becomes
enabled, i.e., all its incoming places contains at least one token, the task state changes
into Ready. A firing of a task causes a transition to the Running state. Depending

6

� �
� �
� �

� �
� �
� �

Enable_Task()

NotReady Ready

Fire_Task()

End_Task()

Freeze_Task()

Abort_Task()

Frozen

Resume_Task()

Aborted

Completed

Running

Figure 2: Generic Task States

upon whether an activity ends normally or is forced to abort, the end state of a task is
either Completed or Aborted. The Frozen state indicates that the execution of the task
is temporarily suspended. No operations may be performed on a frozen task until its
execution is resumed.

3 Task-Based Recovery Policies

In what follows, we will discuss the identified task-based recovery policies. We will first
informally describe the recovery policy, then give a formal definition, and finally, give an
example to illustrate how the workflow system modelled as a SARN behaves at run time.
We will distinguish between nine recovery policies, namely, Skip, SkipTo, Compensate,
CompensateAfter, Redo, RedoAfter, AlternativeTask, AlternativeProvider, and Timeout.
Note that this list is not exhaustive. Indeed, new (customized) task-based recovery policies
can be added.

3.1 Skip

The Skip recovery policy will, once the corresponding failure event occurs during the
execution of the corresponding task T: (i) disable the execution of the task T and (ii) skip
to the immediate next task(s) in the control flow. This recovery policy applies to running
tasks only.

Formally, in the context of SARN, a Skip(Event e, Transition T) recovery policy,
when executing a task T and the corresponding failure event e occurs, means (see Figure 3):

Precondition: state(T) = Running.

Effect:

1. DisableTransition(T), i.e., disable the transition of the faulty task,

2. CreatePlace(p1): create a new place p1,

3. CreateTransition(Tr S): create a Skip recovery transition,

4. CreateArc(p1,Tr S): p1 is the input place of the Skip recovery transition,

5. AddRecoveryToken(p1): inject a recovery token into the input place of the Skip
recovery transition (see Figure 3(b)),

7

6. execute the basic operations associated with the Skip recovery transition to modify
the net structure in order to handle the exception (see Figure 3(c)),

7. execute the added exceptional part of the SARN net,

8. once the exceptional part finishes its execution, i.e., there is no recovery token within
the added structure, the modifications made for the task failure event are removed,
and

9. resume the normal execution by transforming the recovery tokens on the output
places of the skipped task into standard tokens (see Figure 3(d)).

�

�

�

�

� � � � � � �� �

(a) Task T running (b) A Skip failure event
occurs

�

�

�

(c) Handling Skip failure
event

�
�

�

�

(d) Resume normal
execution

	
 	

� � � � � �� � �

Figure 3: Skip Recovery Policy

The operations associated with a Skip recovery transition, in order to complete step (7)
above, are as follows (see Figure 3(c)):

(a) CreateArc(T,p1): add an incoming arc from the skipped task to the input place of
the recovery transition,

(b) SilentTransition(Tr S): replace the Skip recovery transition with a silent transi-
tion (i.e., a transition with no associated task or an empty task), and

(c) ∀ p ∈ T• CreateArc(Tr S, p): add an outgoing arc from the silent transition to each
output place of the skipped task T.

For instance, in the Travel Planning workflow example (see Figure 1), we associate
with the task Hotel Booking a Skip recovery policy at design time. Upon the occurrence of
a skip failure event (for instance, “no response after one day”) while executing the Hotel
Booking task, the resulting SARN net will look like Figure 4(a). After executing the set
of basic operations corresponding to the Skip recovery policy, the SARN net will become
like Figure 4(b). Once the skip failure is handled, the SARN net will look like Figure 4(c).

3.2 SkipTo

The Skip recovery policy defined previously is generic in the sense that there is no need to
ask the designer at which step of the execution she wants to resume the execution from.
Indeed, when skipping the running task, the immediate next task(s) with respect to the

8

������ �����	�
��� � �����	�

��� ��� �� 	 ������	�
� ����	��

�������� �� 	

���� ��	�� �

�� ��	�� �

������

�������

�
� �
� �

 ��������!
" ��		�	�

$

#

(a) Occurrence of a skip failure event “no re-
sponse after one day” while executing Hotel

Booking

%&'()* +,,-'.(/,*0 & +,,-'.(

1** 234* ',. 50324)'.(
6 '7*3.40

8,9:;*3* ',.

+'-0 <0.*3 &

832 <0 .*3&

6 '7*=>

6'7*?@>

7

A 8,9:&0*0B
C 6'73D&0B

E F

E

(b) The SARN net after executing the Skip re-
covery policy operations

G HIJ KL MNN OIPJ QNLR H MNN O IPJ

S LL TU VL IN P WRU TV K IPJ

X IYLU PVR
Z N[\]LUL IN P

M IOR ^R PLU H

Z U T ^R PLU H

X IYL _`

X IY L ab`

Y

c Z N[\HRLRd

e W O I\\Rd

f g

f

(c) The SARN net just before resuming the normal
execution

Figure 4: Skip Recovery Policy Example

control flow will be executed. An interesting variant of the Skip recovery policy could be
to skip to certain task(s) and not necessarily to the immediate next task(s). We will call
this derived recovery policy SkipTo. It should be noted that the tasks of the set of tasks
T to skip to must be pairwise independent and each task of T must be a subsequent task
of the skipped task T1.

Formally, a SkipTo(Event e, Task T1, TaskSet T) recovery policy, when its cor-
responding failure event e occurs when executing a task T1, is defined as follows (see
Figure 5):

Precondition:

• state(T1) = Running,

• ∀ T2, T2′ ∈ T (T2, T2′) /∈ F+ ∧ (T2′, T2) /∈ F+, that is, the tasks of T are pairwise
independent with respect to the flow relation F (see Definition 2.1). F+ denotes the
transitive closure of F , and

• ∀ T2 ∈ T (T1, T2) ∈ F+, i.e., there is a path, with respect to the flow relation F ,
from the skipped task T1 to the task(s) of T to skip to.

Effect:

1. DisableTransition(T1): disable the transition of the faulty task,

2. CreatePlace(p1): create a new place p1,

3. CreateTransition(Tr ST): create a SkipTo recovery transition,

9

4. CreateArc(p1,Tr ST): p1 is the input place of the SkipTo recovery transition,

5. AddRecoveryToken(p1): inject a recovery token into the input place of the SkipTo
recovery transition (see Figure 5(b)),

6. execute the elementary operations associated with the SkipTo recovery transition
(see Figure 5(c)),

7. execute the added exceptional part of the SARN net to handle the exception,

8. remove the modifications made for the skip to failure event, and

9. resume the regular execution by transforming the recovery tokens on the input places
of the task(s) to skip to into standard tokens (see Figure 5(d)).

�

� �

� � � � � � �� �

(a) Task T1 running
Task T2 to skip to

(b) A SkipTo failure
event occurs

�

(c) Handling SkipTo
failure event

�

�

(d) Resume normal
execution

�

� �
�

� �� �
�

� �
�

� �� �
�

� �
�

� �� �
�

� �

Figure 5: SkipTo Recovery Policy

The basic operations associated with a SkipTo recovery transition are as follows (see
Figure 5(c)):

(a) CreateArc(T1,p1): add an incoming arc from the skipped task to the input place
of the recovery transition,

(b) SilentTransition(Tr ST): replace the SkipTo recovery transition with a silent tran-
sition, and

(c) ∀ T2 ∈ T ∀ p ∈ •T2 CreateArc(Tr ST, p): add an outgoing arc from the silent
transition to each input place of the task(s) to skip to.

Figure 6 gives an example of the SkipTo recovery policy where the running Flight
Booking task is skipped to the Distance Computation task. We associate with the task
Flight Booking a SkipTo recovery policy at design time. When a skip to failure event, e.g.,
“unavailability of seats”, occurs while executing the Flight Booking task, the resulting
SARN net will look like Figure 6(a). After executing the set of basic operations associated
with the SkipTo recovery policy, the SARN net will become like Figure 6(b). Finally, once
the SkipTo exception handled, the Travel Planner workflow will look like Figure 6(c).

10

������ �����	�
��� � �����	�

��� ��� �� 	 ������	�
� ����	��

�������� �� 	

���� ��	�� �

�� ��	�� �

������

�������

� ����

 ��������!
" ��		�	�

$%

#

(a) Occurrence of a skip to failure event “un-
availability of seats” while executing Flight

Booking

&'()*+ ,--.(/) 0-+1 ' ,--.(/)

2++ 345+ (-/ 61435*(/)
7 (8+4/51

9-:;<+4+ (-/

,(.1 =1/+4 '

943 =1 /+4'

7 (8+>?

7(8+@A?
B =<//(/)
C 7(84D'1E

F GH

I

(b) The SARN net after executing the SkipTo

recovery policy operations

J KLM NO PQQ RLSM TQOU K PQQ R LSM

V OO WX YO LQ S ZUX WY N LSM
[L\OX SYU

] Q^ _`OXO LQ S

P LRU aU SOX K

] X W aU SOX K

[L\O bc

[L\O d ec
f a` SS LSM
g Z R L__Uh

ij

k

l l

(c) The SARN net just before resuming the normal
execution

Figure 6: SkipTo Recovery Policy Example

3.3 Compensate

The Compensate recovery policy removes all the effects of a completed task. The task
must be compensatable, i.e., there is a compensate-T task that removes the effect of the
task T (see [BCTH03] for more details about compensatable tasks). Note that the event
of compensating a task can occur any time after the completion of the task and before
the workflow execution terminates. Furthermore, we assume that there is no data flow
dependencies between the task to be compensated and the subsequent completed task(s).

Formally, in the context of our model, a Compensate(Event e, Task T) recovery
policy of a task T when its corresponding failure event e occurs means:

Precondition:

• state(T) = Completed and

• T is compensatable, i.e., there is a compensate-T task of T.

Effect:

1. ∀ t ∈ T | (T, t) ∈ F+ ∧ state(t) = Running do DisableTransition(t),
so that state(t) = Frozen, hence all running subsequent task(s) of the task to be
compensated are disabled (recall that T is the set of transitions, i.e., tasks of the
workflow),

2. CreatePlace(p1): create a new place p1,

3. CreateTransition(Tr C): create a Compensate recovery transition,

4. CreateArc(p1,Tr C): p1 is the input place of the Compensate recovery transition,

11

5. AddRecoveryToken(p1): inject a recovery token into the input place of the Com-
pensate recovery transition,

6. execute the primitive operations associated with the Compensate recovery transition,

7. execute the exceptional part of the SARN net,

8. remove the modifications made for the task failure event, and

9. resume the execution of the workflow.

The operations associated with a Compensate recovery transition are as follows:

(a) ReplaceTransition(Tr C,compensate-T): associate to the Compensate recovery
transition the task compensate-T that removes the effects of the task T and

(b) ∀ t ∈ T | state(t) = Frozen ∀ p ∈ •t do CreateArc(compensate− T, p): add an
outgoing arc from the compensate-T transition to each input place of the suspended
running task(s).

Figure 7 gives an example of the Compensate recovery policy where the Flight Booking
task was compensated while the system was executing the Distance Computation task.
At design time, we associate with the task Flight Booking a Compensate recovery policy.
When a compensate failure event, for instance, “cancel flight”, occurs while executing
the task Distance Computation, the resulting SARN net will look like Figure 7(a). After
executing the set of basic operations associated with the Compensate recovery policy, the
SARN net will appear like Figure 7(b). Finally, once the Compensate exception is handled,
the Travel Planner workflow will look like Figure 7(c).

������ �����	�
��� � �����	�

��� ��� �� 	 ������	�
� ����	��

�������� �� 	

���� ��	�� �

�� ��	�� �

������

�������

� ���

 ��������!
" ��		�	�

#

$% %

%

(a) Occurrence of a compensate failure event
“cancel flight” while executing Distance Com-

putation

&'()*+ ,--.(/) 0-+1 ' ,--.(/)

2++ 345+ (-/ 61435*(/)
7 (8+4/51

9-:;<+4+ (-/

,(.1 =1/+4 '

943 =1 /+4'

7 (8+>?

7(8+@A?
B 9-:;'1+1C
D 7(84E'1C

FG G

G
H

9-:;1/84+1I&'()*+,--.(/)

(b) The SARN net after executing the Compen-

sate recovery policy operations

J KLM NO PQQ RLSM TQOU K PQQ R LSM

V OO WX YO LQ S ZUX WY N LSM
[L\OX SYU

] Q^ _`OXO LQ S

P LRU aU SOX K

] X W aU SOX K

[L\O bc

[L\O d ec
f]Q^ _KUOUg
h [L\X i KUg
j]Q^ _U S\XOUg

k l

l

m

n

(c) The SARN net just before resuming the normal
execution

Figure 7: Compensate Recovery Policy Example

12

3.4 CompensateAfter

The Compensate recovery policy removes the effects of a completed task any time after
the completion of the task and before the workflow execution terminates. An interesting
case that will not have effects on the subsequent dependant tasks is when compensating
a task just after finishing its execution and before initiating any subsequent dependant
task. We will call this particular Compensate recovery policy CompensateAfter.

Formally, a CompensateAfter(Event e, Task T) recovery policy of a task T when its
corresponding failure event e occurs means:

Precondition:

• state(T) = Completed and

• T is compensatable, i.e., there is a compensate-T task of T.

Effect:

1. CreatePlace(p1): create a new place p1,

2. CreateTransition(Tr CA): create a CompensateAfter recovery transition,

3. CreateArc(p1,Tr CA): p1 is the input place of the CompensateAfter recovery tran-
sition,

4. AddRecoveryToken(p1): inject a recovery token into the input place of the Com-
pensateAfter recovery transition,

5. execute the basic operations associated with the CompensateAfter recovery transi-
tion,

6. execute the added exceptional part of the SARN net to handle the exception,

7. remove the modifications made for the task failure event, and

8. resume the execution of the workflow.

The operations associated with a CompensateAfter recovery transition are as follows:

(a) ReplaceTransition(Tr CA,compensate-T): associate with the CompensateAfter
recovery transition the task compensate-T that removes the effects of the task T,

(b) ∀ p ∈ T• CreateArc(compensate− T, p): add an outgoing arc from the
compensate-T transition to each output place of the compensated task,

(c) disable all outgoing arcs of the compensated task, and

(d) remove one (standard) token from each output place of the compensated task.

In Figure 8, an example of the CompensateAfter recovery policy is given where the
Attraction Searching task was compensated just after it finishes its execution and while
Hotel Booking was running. The task Attraction Searching was associated with a Compen-
sateAfter recovery policy at built time. When a compensate after failure event occurs just

13

after completing the execution of the task Attraction Searching, the resulting SARN net
will look like Figure 8(a). Once the set of basic operations associated with the Compen-
sateAfter recovery policy are executed, the SARN net will look like Figure 8(b). Finally,
after handling the CompensateAfter exception, the Travel Planner workflow will appear
like Figure 8(c).

������ �����	�
��� � �����	�

��� ��� �� 	 ����� �	�
� ����	��

�������� �� 	

���� ��	�� �

�� ��	�� �

������

�������

� ���
! ��������"
# ��		�	�

$%

% &'

(a) Occurrence of a compensate after failure
event just after completing Attraction Search-

ing

()*+ ,- .//0*1+ 2/-3) .//0*1+

4-- 567- */1 83657, *1+
9 *:-6173

;/<=>-6- */1

.*03 ?31-6)

;65 ?3 1-6)

9 *:-@A

9*:-BCA
D ;/<=)3-3E
F 9*:6G)3E

4 57 9*:6G)3E

H

H

;/<=31:6-3 I4-- 567- */ 183657, *1+

J

KL

(b) The SARN net after executing the Compen-

sateAfter recovery policy operations

M NOP QR STT U OVP WTRX N STT U OVP

Y RR Z[\R OT V]X[Z\Q OVP
^ O_R[V\X

` Ta bcR[R OT V

S OUX dX VR[N

` [Z dX VR[N

^ O_R ef

^ O_R g hfi `Ta b NXR Xj
k ^ O_[l NXj
m ` Ta bX V_[RXj

n o

p qr

(c) The SARN net just before resuming the normal
execution

Figure 8: CompensateAfter Recovery Policy Example

3.5 Redo

The Redo recovery policy repeats (once) a finished task T because, for instance, the results
obtained are not delivered (or produced) as expected. Note that, like the Compensate
recovery policy, the event of redoing a task can occur any time after the completion of the
task and before the workflow execution terminates. Furthermore, we assume that there is
no data flow dependencies between the task to be repeated and the subsequent completed
task(s).

Formally, a Redo(Event e, Task T) recovery policy of the task T when its corre-
sponding failure event e occurs means:

Precondition: state(T) = Completed.

Effect:

1. ∀ t ∈ T | (T, t) ∈ F+ ∧ state(t) = Running do DisableTransition(t), so that
state(t) = Frozen, hence all running subsequent task(s) of the task to be repeated
are disabled,

2. CreatePlace(p1): create a new place p1,

3. CreateTransition(Tr R): create a Redo recovery transition,

14

4. AddRecoveryToken(p1): inject a recovery token into the input place of the Redo
recovery transition,

5. execute the elementary operations associated with the Redo recovery transition,

6. execute the exceptional part of the SARN net,

7. remove the modifications made for the task failure event, and

8. resume the execution of the workflow.

The operations associated with a Redo recovery transition (to complete step (5) above)
are as follows:

(a) disable all incoming arcs of the task to be repeated,

(b) disable all outgoing arcs from each output place of the task to be repeated,

(c) CreateArc(p1,T): add an outgoing arc from the created place p1 (that contains a
recovery token) to the task T to be repeated,

(d) SilentTransition(Tr R): replace the Redo recovery transition with an empty task,

(e) add an outgoing arc from each output place of the task to be repeated to the empty
Redo recovery transition, and

(f) add an outgoing arc from the empty Redo recovery transition to each input place of
the disabled transitions.

Figure 9 gives an example of the Redo recovery policy where the Flight Booking task
was repeated while the system was executing the Distance Computation task. At design
time, we associate with the task Flight Booking a Redo recovery policy. When a redo
failure event, e.g., “change flight date”, occurs while executing the task Distance Com-
putation, the resulting SARN net will look like Figure 9(a). After executing the set of
primitive operations associated with the Redo recovery policy, the SARN net will become
like Figure 9(b). Finally, once the redo exception is handled, the Travel Planner workflow
will look like Figure 9(c).

3.6 RedoAfter

The Redo recovery policy repeats the execution of a completed task any time after the
completion of the task and before the workflow execution terminates. An interesting case
that will not have effects on subsequent dependant tasks is when redoing a task just after
finishing its execution and before initiating any subsequent dependant task. We will call
this particular Redo recovery policy RedoAfter.

Formally, a RedoAfter(Event e, Task T) recovery policy of a task T when its corre-
sponding failure event e occurs means:

Precondition: state(T) = Completed.

15

������ �����	�
��� � �����	�

��� ��� �� 	 ������	�
� ����	��

�������� �� 	

���� ��	�� �

�� ��	�� �

������

�������

� �� �

 ��������!
" ��		�	�

#

$% %

%

(a) Occurrence of a redo failure event “change
flight date” while executing Distance Computa-

tion

&'() *+ ,--.(/) 0-+1 ' ,--.(/)

2++ 345+ (-/ 61435*(/)
7(8+4/51

9-: ;<+4+ (- /

, (.1 =1/+4 '

943 =1/+4 '

7 (8+>?

7 (8+@A?
B 9-:;'1+1C
D 7 (84E'1C

2 35 7 (84E '1C

FG G

G
H

(b) The SARN net after executing the Redo re-
covery policy operations

I JKL MN OPP QKRL SPNT J OPP Q KRL

U NN VW XN KP R YTW VX M KRL
Z K[NW RXT

\ P] ^_NWN KP R

O KQT `T RNW J

\ W V `T RNW J

Z K[N ab

Z K[N c dbe \P] ^JT NTf
g Z K[W h JTf
ee `Tf P RT

i j

j
k

ll

(c) The SARN net just before resuming the normal
execution

Figure 9: Redo Recovery Policy Example

Effect:

1. CreatePlace(p1): create a new place p1,

2. CreateTransition(Tr RA): create a RedoAfter recovery transition,

3. AddRecoveryToken(p1): inject a recovery token into the input place of the Re-
doAfter recovery transition,

4. execute the primitive operations associated with the RedoAfter recovery transition,

5. execute the added exceptional part of the SARN net to handle the exception,

6. remove the modifications made for the task failure event, and

7. resume the execution of the workflow.

The operations associated with a RedoAfter recovery transition (to complete step (4)
above) are as follows:

(a) disable all incoming arcs of the task to be repeated,

(b) CreateArc(p1,T): add an outgoing arc from the created place p1 to the task T to
be repeated,

(c) DeleteTransition(Tr RA): delete the RedoAfter recovery transition, and

(d) remove one (standard) token from each output place of the task to be repeated.

16

In Figure 10, an example of the RedoAfter recovery policy is given where the Attraction
Searching task was repeated just after it finishes its execution and while Hotel Booking was
running. The task Attraction Searching was associated with a RedoAfter recovery policy
at built time. When a redo after failure event “modify attraction time”, for instance,
occurs just after completing the execution of the task Attraction Searching, the resulting
SARN net will look like Figure 10(a). Once the set of basic operations associated with
the RedoAfter recovery policy are executed, the SARN net will look like Figure 10(b).
Finally, after handling the RedoAfter exception, the Travel Planner workflow will look like
Figure 10(c).

������ �����	�
��� � �����	�

��� ��� �� 	 ����� �	�
� ����	���������� �� 	

���� ��	�� �

�� ��	�� �

������

�������
� ��� ! ��������"

# ��		�	�

$%

% &'

(a) Occurrence of a redo after failure event
“modify attraction time” just after completing
Attraction Searching

()*+,- .//0*1+ 2/-3) .//0*1+
4-- 567- */1 83657, *1+

9 *:-6173;/<=>-6- */1

.*03 ?31-6)

;65 ?3 1-6)

9 *:-@A

9*:-BCA
D ;/<=)3-3E
F ?>11*1+

4 57 9*:6G)3E

H

H IJ

K

(b) The SARN net after executing the Re-

doAfter recovery policy operations

L MNO PQ RSS TNUO VSQW M RSS T NUO
X QQ YZ[Q NS U \WZ Y[P NUO

] N^QZ U[W
_ S` abQZQ NS U

R NTW cW UQZ M

_ Z Y cW UQZ M

] N^Q de

] N^Q f ge
h _S` a MW QW i
j c bUU NUO
kk cWiS UW

l

mmno

p

(c) The SARN net just before resuming the normal
execution

Figure 10: RedoAfter Recovery Policy Example

3.7 AlternativeTask

The AlternativeTask recovery policy allows another task T’ to be executed in place of a
running task T in case the later fails.

Formally, in the context of SARN, an AlternativeTask(Event e, Task T, Task

T’) recovery policy of a task T by another task T’ when its corresponding failure event e
occurs means (see Figure 11):

Precondition: state(T) = Running.

Effect:

1. DisableTransition(T): disable the running task T,

2. CreatePlace(p1): create a new place p1,

3. CreateTransition(Tr AT): create an AlternativeTask recovery transition,

17

4. CreateArc(p1,Tr AT): p1 is the input place of the AlternativeTask recovery transi-
tion,

5. AddRecoveryToken(p1): inject a recovery token into the input place of the Alter-
nativeTask recovery transition (see Figure 11(b)),

6. execute the basic operations associated with the AlternativeTask recovery transition
to modify the SARN structure(see Figure 11(c)),

7. run the added exceptional part of the SARN net,

8. remove the modifications made for the net once the exceptional part finishes its
execution, and

9. resume the normal execution by transforming the recovery tokens on the output
places of the substituted task into standard tokens (see Figure 11(d)).

�

�

�

�
� � � � � � �� �

(a) Task T running (b) An AlternativeTask failure
event occurs

�

�
�

(c) Handling AlternativeTask
failure event

�
�

�
�

(d) Resume normal
execution

� �
� �� �� � � � � �

Figure 11: AlternativeTask Recovery Policy

The basic operations associated with an AlternativeTask recovery transition are as
follows (see Figure 11(c)):

(a) CreateArc(T,p1): add an incoming arc from the replaced task T to the input place
p1 of the recovery transition Tr AT,

(b) ReplaceTransition(Tr AT,T’): replace the AlternativeTask recovery transition
with the alternative task T’, and

(c) ∀ p ∈ T• CreateArc(T′, p): add an outgoing arc from T’ to each output place of the
substituted task.

3.8 AlternativeProvider

The AlternativeProvider recovery policy allows an alternative execution of a task T by
another provider P in case the current provider fails to execute the task T. This is espe-
cially interesting in the context of Web services since each transition represents a service
community from which a service is chosen at run time to execute the corresponding task.

18

Formally, in the context of SARN, an AlternativeProvider(Event e, Task T,

Provider P) recovery policy of a task T by another provider P when its corresponding
failure event e occurs means (see Figure 12):

Precondition: state(T) = Running.

Effect:

1. DisableTransition(T): disable the running task T,

2. CreatePlace(p1): create a new place p1,

3. CreateTransition(Tr AP): create an AlternativeProvider recovery transition,

4. CreateArc(p1,Tr AP): p1 is the input place of the AlternativeProvider recovery
transition,

5. AddRecoveryToken(p1): inject a recovery token into the input place of the Alter-
nativeProvider recovery transition (see Figure 12(b)),

6. modify the SARN structure by executing the basic operations associated with the
AlternativeProvider recovery transition (see Figure 12(c)),

7. run the added exceptional part of the SARN net,

8. remove the modifications made for the net once the exceptional part finishes its
execution, and

9. resume the normal execution by transforming the recovery tokens on the output
places of the substituted task to standard tokens (see Figure 12(d)).

�

�

�

�
� � � � � � �� �

(a) Task T running (b) An AlternativeProvider
failure event occurs

�

�
�

(c) Handling AlternativeProvider
failure event

�
�

�
�

(d) Resume normal
execution

� �
� �� �� � �

	 �
	

Figure 12: AlternativeProvider Recovery Policy

The basic operations associated with an AlternativeProvider recovery policy are as
follows (see Figure 12(c)):

(a) CreateArc(T,p1): add an incoming arc from the replaced task T to the input place
of the recovery transition,

(b) ReplaceTransition(Tr AP,T’), that is, replace the AlternativeProvider recovery
transition with the task T’ of the alternative provider P, and

(c) ∀ p ∈ T• CreateArc(T′, p): add an outgoing arc from T’ to each output place of the
replaced task.

19

3.9 Timeout

The Timeout recovery policy allows a time limit d to be associated with a task. The task
fails after d units of time if it has not completed within that time.

In terms of our SARN model, a Timeout(Task T1, Time d) recovery policy of a task
T1 when its corresponding Timeout failure event occurs after d units of time means (see
Figure 13):

Precondition: state(T1) = Running.

Effect:

1. DisableTransition(T1): suspend the execution of the task T1,

2. CreatePlace(p1): create a new place p1,

3. CreateTransition(Tr T): create a Timeout recovery transition,

4. CreateArc(p1,Tr T): p1 is the input place of the Timeout recovery transition,

5. AddRecoveryToken(p1): inject a recovery token into the input place of the Timeout
recovery transition,

6. execute the elementary operations associated with the Timeout recovery transition,

7. execute the added exceptional part of the SARN net,

8. remove the modifications made, and

9. freeze the normal execution of the workflow.

�

�

�

�

� � � � �� � � �

(a) Task T1 running (b) A Timeout failure
event occurs

�

�

� �

(c) Handling Timeout
failure event

�

�

� �

(d) Freeze normal
execution

� ��� � � �
� 	 � 	

Figure 13: Timeout Recovery Policy

The operations associated with a Timeout recovery transition (to complete step (6)
above) are as follows (see Figure 13(c)):

(a) CreateArc(T1,p1): add an incoming arc from the suspended task T1 to the input
place of the recovery transition and

(b) SilentTransition(Tr T): replace the Timeout recovery transition with an empty
task.

Table 2 gives a summary of the identified task-based recovery policies described pre-
viously.

20

Table 2: Task-Based Recovery Policies

Recovery Policy Notation Task Status Brief Description

Skip(Event e, Task T) S
e
T Running Skips the running task

T to the immediate
next task(s) if the
event e occurs

SkipTo(Event e, Task T, ST
e
T,T Running Skips the running task

TaskSet T) T to the specific
next task(s) T if
the event e occurs

Compensate(Event e, Task T) C
e
T Completed Removes the effect of

an already executed
task T if the event
e occurs

CompensateAfter(Event e, CA
e
T Completed Removes the effect of

Task T) an already executed
task T just after
completing it if the
event e occurs

Redo(Event e, Task T) R
e
T Completed Repeats the execution

of a completed task T

if the event e occurs
RedoAfter(Event e, Task T) RA

e
T Completed Repeats the execution

of a completed task T

just after finishing it
if the event e occurs

AlternativeTask(Event e, AT
e
T,T ′ Running Allows an alternative

Task T, Task T’) execution of a task T

by another task T’

if the event e occurs
AlternativeProvider(Event e, AP

e
T,P Running Allows an alternative

Task T, Provider P) execution of a task T

by another provider P
if the event e occurs

Timeout(Task T, Time d) T
d
T Running Fails a task T if not

completed within a
time limit d. The
execution is frozen

4 Region-Based Recovery Policies

The recovery policies defined in the previous section apply to a single task only. In this
section, we will extend them to a recovery region, i.e., a set of tasks. We will first define the
notion of recovery region and then extend some of the single task-based recovery policies
to be applied to a recovery region.

4.1 Recovery Region

A recovery region is a connected set of places and transitions. Recovery regions are required
to have a certain structure. We require that a recovery region has one input place and
one output place. The output place of a recovery region is typically an input place for
the eventual next recovery region(s). To make the definition of recovery regions clear, we

21

will separate them in such a way that, between the output place of a recovery region and
the input place of the eventual subsequent recovery region(s), a silent transition will occur
transferring the token from a recovery region to its subsequent recovery region(s). This
will cause a non-overlapping of recovery regions, hence making them clearly separated.

A recovery region is then a subworkflow that can be seen as a unit of work from the
business perspective and to which a set of recovery policies may be assigned. As such,
a recovery region is more than a traditional subworkflow. Formally, a recovery region is
defined as follows.

Definition 4.1 (Recovery Region)
Let RN = (P, T, T r, F, i, o, `,M) be a SARN net. A recovery region is a subnet R =
〈PR, TR, FR, iR, oR, `R〉 of RN where:

• PR ⊆ P is the set of places of the recovery region,

• TR ⊆ T denotes the set of transitions of the recovery region R,

• iR ∈ PR is the input place of R,

• oR ∈ PR is the output place of R,

• `R : TR → A∪ {τ} is a labeling function, and

• Let TR = {t ∈ T | t• ∩ PR 6= ∅ ∧ •t ∩ PR 6= ∅}. Then R must be connected (i.e.,
there is no isolated place or transition). 2

R represents the underlying Petri net of the recovery region that is restricted to the
set of places PR and the set of transitions TR.

4.2 Region-Based Recovery Policies

In what follows, we will discuss the identified region-based recovery policies. They are
mainly based on an extension of their corresponding task-based recovery policies.

We will distinguish between eight region-based recovery policies, namely, SkipRe-
gion, SkipRegionTo, CompensateRegion, CompensateRegionAfter, RedoRegion, RedoRe-
gionAfter, AlternativeRegion, and TimeoutRegion.

Note also that region-based recovery policies should only be allowed in a valid way.
The system must ensure correctness of the modified SARN with respect to consistency
constraints (reachability, liveness, and boundedness), so that these behavior properties
that were valid before the dynamic change of SARN are also preserved after the handling
of the exception.

4.2.1 SkipRegion

The SkipRegion recovery policy will, when the corresponding failure event occurs during
the execution of the corresponding recovery region R: (i) disable the execution of the
running tasks within the recovery region R and (ii) skip the non-completed tasks of the
recovery region R to the immediate next task(s) of R. This recovery policy applies to

22

running recovery regions only, i.e., there are tasks within the recovery region R that are
still running. This means that, eventually, some tasks within the recovery region are
completed while others have not yet executed.

Formally, in the context of SARN, a SkipRegion(Event e, Region R) recovery policy
when executing tasks of the recovery region R and the corresponding failure event e occurs
means (see Figure 14):

�

�
� � � �

� � � � �

R

(a) Region R running (b) A SkipRegion failure event e occurs

� �

	 �

� � �
� �

�

� � � �

R

� �

	 �

� � �
� �

(c) Handling SkipRegion failure event (d) Resume normal execution

�

�

� � � �

R

� �

	 �

�
� �

�

�

� � � �

R

� �

	 �

�
� �

�

� �

� �� � � � � � � � � �
� � � � � � � �
� � ! " # � � �
$ % & � � � � �

Figure 14: SkipRegion Recovery Policy

Precondition: ∃ T ∈ TR | state(T) = Running.

Effect:

1. ∀ T ∈ TR | state(T) = Running do DisableTransition(T): disable all running tasks
of the recovery region R,

2. CreatePlace(p1): create a new place p1,

3. CreateTransition(Tr SR): create a SkipRegion recovery transition,

4. CreateArc(p1,Tr SR): p1 is the input place of the Skip recovery transition,

5. AddRecoveryToken(p1): inject a recovery token into the input place of the SkipRe-
gion recovery transition (see Figure 14(b)),

23

6. execute the basic operations associated with the SkipRegion recovery transition to
modify the net structure in order to handle the exception (see Figure 14(c)),

7. execute the added exceptional part of the SARN net,

8. once the exceptional part finishes its execution, i.e., there is no recovery token within
the added net structure part, the modifications made for the task failure event are
removed, and

9. resume the normal execution by transforming the recovery tokens on the output
places of the skipped task into standard tokens (see Figure 14(d)).

The operations associated with a SkipRegion recovery transition, in order to complete
step (7) above, are as follows (see Figure 14(c)):

(a) ∀ T ∈ TR | state(T) = Running do CreateArc(T, p1): add an incoming arc from
the running tasks of the skipped recovery region to the input place of the recovery
transition,

(b) SilentTransition(Tr SR): replace the SkipRegion recovery transition with a silent
transition, and

(c) CreateArc(Tr SR,oR): add an outgoing arc from the silent transition to the output
place oR of the recovery region R to skip.

4.2.2 SkipRegionTo

The SkipRegion recovery policy defined previously is generic in the sense that there is no
need to ask the workflow designer to which step of the execution she wants to resume
the execution from. Indeed, when skipping the running recovery region, the immediate
next task(s) of the recovery region with respect to the control flow will be executed. An
interesting variant of the SkipRegion recovery policy could be to skip to certain task(s)
and not necessarily to the immediate next task(s) of the recovery region. We will call this
derived recovery policy SkipRegionTo. It should be noted that the tasks of the set of tasks
T to skip to must be pairwise independent and each task of T must be a subsequent task
of the skipped recovery region R.

Formally, a SkipRegionTo(Event e, Region R, TaskSet T) recovery policy , when
its corresponding failure event e occurs when executing tasks of the recovery region R, is
defined as follows (see Figure 15):

Precondition:

• ∃ T ∈ TR | state(T) = Running,

• ∀ T1, T2 ∈ T (T1, T2) /∈ F+ ∧ (T2, T1) /∈ F+, that is, the tasks of T are pairwise
independent with respect to the flow relation F , and

• ∀ T ∈ T (oR, T) ∈ F+, i.e., there is a path, with respect to the flow relation F , from
the skipped recovery region R (that is, its output place oR) to the task(s) of T to
skip to (recall that F+ denotes the transitive closure of F).

24

�

� � � � � � �
Τ

� � � � � �

R

(a) Region R running (b) A SkipRegionTo failure event e occurs

	 �

 �

�

�

� �

� R

	 �

 �

�

�

� �

(c) Handling SkipRegionTo failure event (d) Resume normal execution

�

� R

	 �

 �

�

�

�

� R

	 �

 �

�

�

�

� �

� �

� �
� � � � � �

Τ

� � � � � �
Τ

� � � � � �
Τ

�

�

�

�

� � � � � � � � � �
� � � � � � � �
 ! � " # $ � � �
% & ' � � � � �

Figure 15: SkipRegionTo Recovery Policy

Effect:

1. ∀ T ∈ TR | state(T) = Running do DisableTransition(T): disable all running tasks
of the recovery region R,

2. CreatePlace(p1): create a new place p1,

3. CreateTransition(Tr SRT): create a SkipRegionTo recovery transition,

4. CreateArc(p1,Tr SRT): p1 is the input place of the SkipRegionTo recovery transi-
tion,

5. AddRecoveryToken(p1): inject a recovery token into the input place of the SkipRe-
gionTo recovery transition (see Figure 15(b)),

6. execute the elementary operations associated with the SkipRegionTo recovery tran-
sition (see Figure 15(c)),

7. execute the added exceptional part of the SARN net to handle the exception,

8. remove the modifications made for the skip region to failure event, and

25

9. resume the usual execution by transforming the recovery tokens on the input places
of the task(s) to skip to into standard tokens (see Figure 15(d)).

The operations associated with a SkipRegionTo recovery transition are as follows (see
Figure 6(c)):

(a) ∀ T ∈ TR | state(T) = Frozen do CreateArc(T, p1): add an incoming arc from
the running tasks of the skipped recovery region to the input place of the recovery
transition,

(b) SilentTransition(Tr SRT): replace the SkipRegionTo recovery transition with a
silent transition, and

(c) ∀ T ∈ T ∀ p ∈ •T CreateArc(Tr SRT, p): add an outgoing arc from the silent
transition to each input place of the task(s) to skip to.

4.2.3 CompensateRegion

The CompensateRegion recovery policy removes the effect of all already executed tasks
of the completed or running recovery region. The tasks of the recovery region R must be
compensatable, i.e., there is a compensate-T task that removes the effect of each task
T of R. Note that the event of compensating a recovery region can occur any time after
the completion of at least one task of the recovery region and before the business process
execution terminates. Furthermore, we assume that there is no data flow dependencies
between the tasks of the recovery region to be compensated and the subsequent completed
task(s).

Formally, in the context of our model, a CompensateRegion(Event e, Region R)

recovery policy of a recovery region R when its corresponding failure event e occurs means:

Precondition:

• ∃ T ∈ TR | state(T) = Completed and

• ∀ T ∈ TR T is compensatable, i.e., there is a compensate-T task of each task T of
the recovery region R to be compensated.

Effect:

1. ∀ T ∈ TR | state(T) = Running do DisableTransition(T): disable possibly (in case
of compensating a running recovery region) all running transitions of the recovery
region R,

2. ∀ t ∈ T | (oR, t) ∈ F+∧ state(t) = Running do DisableTransition(t), hence pos-
sibly (in case of compensating a completed recovery region) all running subsequent
task(s) of the recovery region R to be compensated are disabled,

3. CreatePlace(p1): create a new place p1,

4. CreateTransition(Tr CR): create a CompensateRegion recovery transition,

26

5. CreateArc(p1,Tr CR): p1 is the input place of the CompensateRegion recovery tran-
sition,

6. AddRecoveryToken(p1): inject a recovery token into the input place of the Com-
pensateRegion recovery transition,

7. execute the primitive operations associated with the CompensateRegion recovery
transition,

8. execute the exceptional part of the SARN net,

9. remove the modifications made for the compensate region failure event, and

10. resume the execution of the workflow.

The operations associated with a CompensateRegion recovery transition are as follows:

(a) ReplaceSequence(Tr CR,compensate-TC
R
): associate to the CompensateRegion

recovery transition the sequence of tasks compensate-TC
R

where TC
R

= {t ∈
TR | state(t) = Completed} that removes the effects of the already completed tasks
TC

R
of the recovery region R and

(b) if ∃ t ∈ TR | state(t) = Frozen then CreateArc(compensate-TC
R
,oR), i.e., add

an outgoing arc from the compensate-TC
R

sequence of tasks to the output place
oR of the recovery region (see Figure 16). Otherwise, ∀ t ∈ T | state(t) =
Frozen ∀ p ∈ •t do CreateArc(compensate− TC

R
, p), i.e., add an outgoing

arc from the compensate-TC
R

sequence of tasks to each input place of the suspended
running task(s) of the business process (see Figure 17).

4.2.4 CompensateRegionAfter

The CompensateRegion recovery policy removes the effects of the already completed tasks
of a recovery region any time after the completion of at least one task of the recovery
region and before the workflow execution terminates. An interesting case that will have
no effects on the subsequent dependant tasks is when compensating a recovery region just
after finishing its execution and before initiating any subsequent dependant task. We will
call this particular CompensateRegion recovery policy CompensateRegionAfter.

Formally, a CompensateRegionAfter(Event e, Region R) recovery policy of a re-
covery region R when its corresponding failure event e occurs means:

Precondition:

• ∀ T ∈ TR | state(T) = Completed and

• ∀ T ∈ TR T is compensatable, i.e., there is a compensate-T task of each task T of
the recovery region R to be compensated.

Effect:

1. CreatePlace(p1): create a new place p1,

27

�

�
� � � �

� � � � �

R

(a) Region R running (b) A CompensateRegion failure event e occurs

� �

	 �

� � �
� �

�

� � � �

R

� �

	 �

� � �
� �

(c) Handling CompensateRegion failure event (d) Resume normal execution

�

�

� � � �

R

� �

	 �

�
� �

�

�

� � � �

R

� �

	 �

�
 �

 �� � � � � � � � � �
� � � � � � � �
� � � ! " � � �
� � � � � � ! � � �

$ % $ %

$ &$ &

 $ &
 $ &

$ %

'

$ %

' ' '
#

#

() * + , - . / $, 0 $ %

() * + , - . / $, 0 $ &

1 	 2 3 4 5 6 7 3 8 � � 9

Figure 16: CompensateRegion Recovery Policy of a Running Recovery Region

2. CreateTransition(Tr CRA): create a CompensateRegionAfter recovery transition,

3. CreateArc(p1,Tr CRA): p1 is the input place of the CompensateRegionAfter recov-
ery transition,

4. AddRecoveryToken(p1): inject a recovery token into the input place of the Com-
pensateRegionAfter recovery transition,

5. execute the basic operations associated with the CompensateRegionAfter recovery
transition,

6. execute the added exceptional part of the SARN net to handle the exception,

7. remove the modifications made for the compensate region after failure event, and

8. resume the execution of the workflow.

The operations associated with a CompensateRegionAfter recovery transition are as
follows:

(a) ReplaceSequence(Tr CRA,compensate-TR): associate to the CompensateRegion-
After recovery transition the sequence of tasks compensate-TR that removes the
effects of the already completed tasks of the recovery region R and

28

�

�

����

�����

R

(a) Region R completed (b) A CompensateRegion failure event e occurs

��

	�

�

� ����

���� ����

����

R

��

	�

�

�

���� ����

(c) Handling CompensateRegion failure event (d) Resume normal execution

�

����

R

��

	�

�

�

���� ����

�

����

R

��

	�

�

�

�
�

�
���� ���������

� 	
����

���� ��������

���� �����������

�

�

�� ��

�

�

�

�

�

�� ��

���� ����

�����

�	�
��������

�	�
�������

�	�
��������
�

���� ����

���� ����

���� ���� ���� ����

�

� �

����

�

���� ����

���� ���� �

� �������� ����

���� ����

���� ������������

����

��������

����

Figure 17: CompensateRegion Recovery Policy of a Completed Recovery Region

(b) ∀ t ∈ T | state(t) = Frozen ∀ p ∈ •t do CreateArc(compensate-TR,p): add an
outgoing arc from the compensate-TR sequence of tasks to each input place of the
suspended running task(s) of the business process.

4.2.5 RedoRegion

The RedoRegion recovery policy repeats the execution of all already completed tasks of the
(completed or running) recovery region R. Note that, like the CompensateRegion recovery
policy, the event of redoing a recovery region can occur any time after the completion of at
least one task of the recovery region and before the business process execution terminates.
Furthermore, we assume that there is no data flow dependencies between the tasks of the
recovery region to be repeated and the subsequent completed task(s).

Formally, a RedoRegion(Event e, Region T) recovery policy of the recovery region
R when its corresponding failure event e occurs means (see Figure 18):

Precondition: ∃ T ∈ TR | state(T) = Completed.

Effect:

1. ∀ T ∈ TR | state(T) = Running do DisableTransition(T): possibly (in case of

29

�

�

����

�����

R

(a) Region R running (b) A RedoRegion failure event e occurs

��

��

�

����� ���� ����

���� ����

�

����

R

��

��

�

�

���� ���� ����

���� ����

(c) Handling RedoRegion failure event (d) Resume normal execution

�

�

����

R

��

��

�

�

����

���� ����

�

�

����

R

��

��

�

�

�
	

	

���� ���������

� 	
����

� ��������

�������� 	�����

������������

�

�

�
 �

��
��

� ��
�

��

�

����

�

����
���� ����

�������� ��������

��������

Figure 18: RedoRegion Recovery Policy

redoing a running recovery region) disable all running transitions of the recovery
region R,

2. ∀ t ∈ T | (oR, t) ∈ F+ ∧ state(t) = Running do DisableTransition(t): disable
possibly (in case of redoing a completed recovery region) all running subsequent
task(s) of the recovery region to be repeated,

3. CreatePlace(p1): create a new place p1,

4. CreateTransition(Tr RR): create a RedoRegion recovery transition,

5. CreateArc(p1,Tr RR): p1 is the input place of the RedoRegion recovery transition,

6. AddRecoveryToken(p1): inject a recovery token into the input place of the RedoRe-
gion recovery transition (see Figure 18(b)),

7. execute the elementary operations associated with the RedoRegion recovery transi-
tion,

8. execute the added exceptional part of the SARN net,

9. remove the modifications made for the redo region failure event,

30

10. remove possibly (in case of redoing a completed recovery region) the recovery token
from the output place oR of the recovery region R, and

11. resume the execution of the workflow (see Figure 18(d)).

The operations associated with a RedoRegion recovery transition (to complete step (7)
above) are as follows (see Figure 9(c)):

(a) disable all incoming arcs of the input place iR of the recovery region to be repeated,

(b) SilentTransition(Tr RR): replace the RedoRegion recovery transition with an
empty task,

(c) add an outgoing arc from the empty RedoRegion recovery transition to the input
place iR of the recovery region R,

(d) disable all outgoing arcs of the output place oR of the recovery region, and

(e) add an outgoing arc from the empty RedoRegion recovery transition to each in-
put place of the possibly (in case of redoing a completed recovery region) disabled
subsequent tasks of the recovery region to be repeated.

4.2.6 RedoRegionAfter

The RedoRegion recovery policy repeats the execution of the already completed tasks of
a recovery region any time after the completion of at least one task of the recovery region
and before the workflow execution terminates. An interesting case that will have no effects
on the subsequent dependant tasks is when redoing a recovery region just after finishing its
execution and before initiating any subsequent dependant task. We will call this particular
RedoRegion recovery policy RedoRegionAfter.

Formally, a RedoRegionAfter(Event e, Region R) recovery policy of a recovery re-
gion R when its corresponding failure event e occurs means (see Figure 19):

Precondition: ∀ T ∈ TR | state(T) = Completed.

Effect:

1. CreatePlace(p1): create a new place p1,

2. CreateTransition(Tr RRA): create a RedoRegionAfter recovery transition,

3. CreateArc(p1,Tr RRA): p1 is the input place of the RedoRegionAfter recovery tran-
sition,

4. AddRecoveryToken(p1): inject a recovery token into the input place of the RedoRe-
gionAfter recovery transition (see Figure 19(b)),

5. execute the primitive operations associated with the RedoRegionAfter recovery tran-
sition,

6. execute the added exceptional part of the SARN net to handle the exception,

7. remove the modifications made for the redo region after failure event, and

31

�

�����

������

R

(a) Region R just completed (b) A RedoRegionAfter failure event e occurs

��

	�

�

� ����

���� ����

�����

R

��

	�

�

�

���� ����

(c) Handling RedoRegionAfter failure event (d) Resume normal execution

�

�����

R

��

	�

�

�

���� ����

�

�����

R

��

	�

�

�

�

�

�

�

�

�� ��

�

�

�

�

�

�� ��

���� ����

���� ����

����

�

���� ����

���� ���� �

� �������� ����

���� ����

� �

� �

���� ���������

� 	
����

� ��������

�������� 	�����

������������

�������� ��������

��������

�������� �������� ��������

��������

Figure 19: RedoRegionAfter Recovery Policy

8. resume the normal execution of the workflow (see Figure 19(d)).

The operations associated with a RedoRegionAfter recovery transition (to complete
step (5) above) are as follows (see Figure 10(c)):

(a) disable all incoming arcs of the input place iR of the recovery region to be repeated,

(b) SilentTransition(Tr RRA): replace the RedoRegionAfter recovery transition with
an empty task,

(c) add an outgoing arc from the empty RedoRegionAfter recovery transition to the
input place iR of the recovery region R, and

(d) remove the standard token from the output place oR.

4.2.7 AlternativeRegion

The AlternativeRegion recovery policy allows another recovery region R’ to be executed
in place of a running recovery region R in case the later fails.

32

Formally, in the context of SARN, an AlternativeRegion(Event e, Region R,

Region R’) recovery policy of a recovery region R by another recovery region R’ when its
corresponding failure event e occurs means:

Precondition: ∃ T ∈ TR | state(T) = Running.

Effect:

1. ∀ T ∈ TR | state(T) = Running do DisableTransition(T): disable all running
tasks of the recovery region R,

2. CreatePlace(p1): create a new place p1,

3. CreateTransition(Tr AR): create an AlternativeRegion recovery transition,

4. CreateArc(p1,Tr AR): p1 is the input place of the AlternativeRegion recovery tran-
sition,

5. AddRecoveryToken(p1): inject a recovery token into the input place of the Alter-
nativeRegion recovery transition,

6. modify the SARN structure by executing the basic operations associated with the
AlternativeRegion recovery transition,

7. run the added exceptional part of the SARN net,

8. remove the modifications made for the SARN net once the exceptional part finishes
its execution, and

9. resume the normal execution by transforming the recovery token on the output place
oR of the recovery region R into a standard token.

The basic operations associated with an AlternativeRegion recovery transition are as
follows:

(a) disable all outgoing arcs of the output place oR of the recovery region to be replaced,

(b) ReplaceRegion(Tr AR,R’): replace the AlternativeRegion recovery transition with
the alternative recovery region R’, and

(c) ∀ t ∈ o•
R
CreateArc(o′

R
, t): add an incoming arc from the output place o′

R
of the

alternative recovery region R’ to each output task of the output place oR of the
recovery region R.

4.2.8 TimeoutRegion

The TimeoutRegion recovery policy allows a time limit d to be associated with a recovery
region. The recovery region fails after d units of time if it has not completed within that
time.

In terms of our SARN model, a TimeoutRegion(Region R, Time d) recovery policy
of a recovery region R when its corresponding timeout region failure event occurs, after d

units of time, means:

33

Precondition: ∃ T ∈ TR | state(T) = Running.

Effect:

1. ∀ T ∈ TR | state(T) = Running do DisableTransition(T): disable all running
tasks of the recovery region R,

2. CreatePlace(p1): create a new place p1,

3. CreateTransition(Tr TR): create a TimeoutRegion recovery transition,

4. CreateArc(p1,Tr TR): p1 is the input place of the TimeoutRegion recovery transi-
tion,

5. AddRecoveryToken(p1): inject a recovery token into the input place of the Time-
outRegion recovery transition,

6. execute the elementary operations associated with the TimeoutRegion recovery tran-
sition,

7. execute the added exceptional part of the SARN net,

8. remove the modifications made, and

9. freeze the normal execution of the workflow.

The operations associated with a TimeoutRegion recovery transition (to complete
step (6) above) are as follows:

(a) ∀ T ∈ TR | state(T) = Frozen do CreateArc(T,p1): add an incoming arc from the
suspended task T of R to the input place of the TimeoutRegion recovery transition
and

(b) SilentTransition(Tr TR): replace the TimeoutRegion recovery transition with an
empty task.

Table 3 gives a summary of the identified region-based recovery policies.

4.3 Correctness Preservation

The SARN net generated by using the previously defined task- and region-based recovery
policies is a consistent net that satisfies the behavior properties defined in Section 2.4 (i.e.,
reachability, liveness, and boundedness).

Proposition 4.1 (Correctness Preservation)
The SARN net RN of a workflow obtained after handling an exception using the above
defined task- and region-based recovery policies is valid, i.e., the reachability, liveness,
and boundedness properties are preserved. 2

Proof. Immediate consequence of Definition 2.1 and of the task- and region-based
recovery policies defined previously. 2

34

Table 3: Region-Based Recovery Policies

Recovery Policy Notation Region Status Brief Description

SkipRegion(Event e, SR
e
R Running Skips the running task(s)

Region R) of the region R to the
immediate next task(s) of
it if the event e occurs

SkipRegionTo(Event e, SRT
e
R,T Running Skips the running region

Region R, TaskSet T) R to the specific
next task(s) T if
the event e occurs

CompensateRegion(Event e, CR
e
R Completed Removes the effect of all

Region R) or already executed tasks of
Running the completed or running

region R if the event
e occurs

CompensateRegionAfter CRA
e
R Completed Removes the effect of an

(Event e,Region R) already executed region R

just after completing it
if the event e occurs

RedoRegion(Event e, RR
e
R Completed Repeats the execution of

Region R) or all already completed
Running tasks of the completed

or running region R

if the event e occurs
RedoRegionAfter(Event e, RRA

e
R Completed Repeats the execution of

Region R) an already completed
region R just after it ends
if the event e occurs

AlternativeRegion(Event e, AR
e
R,R′ Running Allows an alternative

Region R, Region R’) execution of a region R

by another region R’

if the event e occurs

TimeoutRegion(Region R, TR
d
R Running Fails a region R if not

Time d) completed within a
time limit d. The
execution is frozen

5 Related Work and Conclusions

Some studies have considered the problem of exception handling and recovery from activity
failures in WfMSs, such as [EKR95, CCPP98, JH98, RD98, Kli00]. Leymann [LR00]
introduced the notion of compensation sphere which is a subset of activities that either all
together have to be executed successfully or all have to be compensated. The fact that
spheres do not have to form a connected graph leads to very complicated semantics. The
model of Hagen and Alonso [HA00] uses a similar notion of sphere to specify atomicity and
focuses on the handling of expected exceptions and the integration of exception handling
in the execution environment. The approach of Hwang et al. [HHT99] supports users
in handling exceptions once they have occurred. Exception handling suggestions with
information about the way similar situations were handled in previous executions are
provided to users at run time. Grigori et al. [GCDS01] focus on the analysis, prediction,
and prevention of exceptions in order to reduce their occurrences. In contrast, our aim
is to model the recovery from an exception at design time. In addition, an extensive

35

amount of work on flexible recovery in the context of advanced transaction models has
been done, e.g., in [AAA+96, Elm92, GMS87, GHM96, WR92, WS92]. They particularly
show how some of the concepts used in transaction management can be applied to workflow
environments.

In this report, we proposed the Self-Adaptive Recovery Net (SARN) model for specify-
ing exceptional behavior in WfMSs at design time. SARN allows the handling of prespec-
ified events at run time while keeping the Petri net design simple and easy. For existing
models to realize the same functionality, the design effort could be tremendous. We also
identified a set of high-level recovery policies that are incorporated with either a single task
or a recovery region. SARN can handle not only commonly predefined recovery policies
(e.g., Skip and Compensate) but the user is also free to define new recovery policies. By
introducing a set of primitive operations, SARN can be adapted at run time to handle the
occurrence of exceptions while keeping the underlying Petri net design simple and easy.
This method is particularly interesting in designing flexible and self-adaptive business
processes.

To illustrate the viability of our approach, we are currently developing SARN simulator
as part of HiWorD (HIerarchical WORkflow Designer), a hierarchical Petri net-based
workflow modeling tool [BCH+03, CBH+03].

References

[AAA+96] G. Alonso, D. Agrawal, A. El Abbadi, M. Kamath, R. Günthör, and C. Mohan.
Advanced Transaction Models in Workflow Contexts. In Proceedings of the 12th
International Conference on Data Engineering (ICDE’96), New Orleans, USA,
February 1996. IEEE Computer Society.

[BCH+03] B. Benatallah, P. Chrzastowski-Wachtel, R. Hamadi, M. O’Dell, and A. Su-
santo. HiWorD: A Petri Net-based Hierarchical Workflow Designer. In Pro-
ceedings of the 3rd International Conference on Application of Concurrency to
System Design (ACSD’03), pages 235–236, Guimaraes, Portugal, June 2003.
IEEE Computer Society Press.

[BCTH03] B. Benatallah, F. Casati, F. Toumani, and R. Hamadi. Conceptual Modeling
of Web Service Conversations. In Proceedings of the 15th International Confer-
ence on Advanced Information Systems Engineering (CAiSE’03), volume 2681,
pages 449–467, Klagenfurt, Austria, June 2003. Springer Verlag.

[CBH+03] P. Chrzastowski-Wachtel, B. Benatallah, R. Hamadi, M. O’Dell, and A. Su-
santo. A Top-Down Petri Net-Based Approach for Dynamic Workflow Model-
ing. In Proceedings of the International Conference on Business Process Man-
agement (BPM’03), volume 2678, pages 336–353, Eindhoven, The Netherlands,
June 2003. Springer Verlag.

[CCPP98] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow Evolution. Data and
Knowledge Engineering, 24(3):211–238, 1998.

[EKR95] C.A. Ellis, K. Keddara, and G. Rozenberg. Dynamic Change within Work-
flow Systems. In Proceedings of the Conference on Organizational Computing
Systems (COOCS’95), pages 10–21, Milpitas, USA, August 1995. ACM Press.

36

[Elm92] A.K. Elmagarmid. Database Transaction Models for Advanced Applications.
Morgan Kaufmann, 1992.

[GCDS01] D. Grigori, F. Casati, U. Dayal, and M.-C. Shan. Improving Business Process
Quality through Exception Understanding, Prediction, and Prevention. In
Proceedings of the 27th Very Large Data Base Conference (VLDB’01), Rome,
Italy, September 2001.

[GHM96] D. Georgakopoulos, M.F. Hornick, and F. Manola. Customizing Transaction
Models and Mechanisms in a Programmable Environment Supporting Reliable
Workflow Automation. IEEE Transactions on Knowledge and Data Engineer-
ing, 8(4):630–649, 1996.

[GHS95] D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow
Management: From Process Modeling to Workflow Automation Infrastructure.
Distributed and Parallel Databases, 3(2), April 1995.

[GMS87] H. Garcia-Molina and K. Salem. Sagas. In Proceedings of the ACM SIGMOD,
San Francisco, USA, 1987.

[GSCB99] D. Georgakopoulos, H. Schuster, A. Cichocki, and D. Baker. Managing Pro-
cess and Service Fusion in Virtual Enterprises. Information Systems, Special
Issue on Information Systems Support for Electronic Commerce, 24(6):429–
456, 1999.

[HA00] C. Hagen and G. Alonso. Exception Handling in Workflow Management Sys-
tems. IEEE Transactions on Software Engineering (TSE), 26(10):943–958,
October 2000.

[HHT99] S. Hwang, S. Ho, and J. Tang. Mining Exception Instances to Facilitate Work-
flow Exception Handling. In A.L.P. Chen and F.H. Lochovsky, editors, Proceed-
ings of the Sixth International Conference on Database Systems for Advanced
Applications (DASFAA’99), Hsinchu, Taiwan, April 1999. IEEE Computer So-
ciety.

[JH98] G. Joeris and O. Herzog. Managing Evolving Workflow Specifications.
In Proceedings of the 3rd Conference on Cooperative Information Systems
(CoopIS’98), New York, USA, August 1998.

[Kli00] J. Klingemann. Controlled Flexibility in Workflow Management. In Proceed-
ings of the 12th Conference on Advanced Information Systems Engineering
(CAiSE’00), Stockholm, Sweden, June 2000.

[LR00] F. Leymann and D. Roller. Production Workflow — Concepts and Techniques.
Prentice Hall, 2000.

[Mur89] T. Murata. Petri Nets: Properties, Analysis and Applications. In Proceedings
of the IEEE, volume 77(4), pages 541–580, April 1989.

[Pet62] C.A. Petri. Kommunikation mit Automaten. PhD thesis, University of Bonn,
Germany, 1962. (In German).

37

[Pet81] J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall,
Englewood Cliffs, 1981.

[RD98] M. Reichert and P. Dadam. ADEPT flex: Supporting Dynamic Changes of
Workflows without Losing Control. Journal of Intelligent Information Systems,
10(2):93–129, 1998.

[Rei85] W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical
Computer Science Vol.4. Springer-Verlag, Berlin, Germany, 1985.

[WfM99] WfMC. Workflow Management Coalition, Terminology and Glos-
sary. Document Number WFMC-TC-1011, February 1999.
http://www.wfmc.org/standards/docs.htm/.

[WR92] H. Wächter and A. Reuter. The ConTract Model. In A.K. Elmagarmid, ed-
itor, Database Transaction Models for Advanced Applications, pages 219–264.
Morgan Kaufmann, 1992.

[WS92] G. Weikum and H.J. Schek. Concepts and Applications of Multilevel Trans-
actions and Open Nested Transactions. In A.K. Elmagarmid, editor, Database
Transaction Models for Advanced Applications. Morgan Kaufmann, 1992.

38

