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Abstract

As XML database sizes grow, the amount of space used for storing the data and auxiliary
supporting data structures becomes a major factor in query and update performance. This paper
presents a new secondary storage scheme for XML data that supports all navigational operations
and answers ancestor queries in near constant time. In addition to supporting fast queries, the space
requirement is within a constant factor of the information theoretic minimum, while insertions and
deletions can be performed in near constant time as well. As a result, the proposed structure features
a small memory footprint that increases cache locality, whilst still supporting standard APIs such as
DOM efficiently. As an example of the scheme’s power, we further demonstrate that the structure
can support efficient structural and twig joins. Both formal analysis and experimental evidence
demonstrate that the proposed structure is space and time efficient.
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1 Introduction

The popularity of XML as a data representation language has produced a wealth of research on
efficiently storing and querying tree structured data. As the amount of XML data available increases,
it is becoming vital to be able to not only query this information quickly, but also store it compactly.
The flexibility of XML makes finding a scheme which satisfies both of these requirements at the same
time extremely challenging. We thus turn to the problem of finding a succinct representation for XML:
a space-efficient representation of the data structure which also maintains low access costs for all of
the desired primitive operations for data processing. There are numerous reasons to maintain such a
compact XML representation on secondary storage:

• Reducing space requirements improves cache locality: Even in the current environment of enor-
mous secondary storage capacities, reducing the space requirements for native XML databases
is an important goal. A typical approach to representing the XML structures in such databases,
whilst also supporting dynamic updates, is to keep at least four pointers per node, to the parent,
first child, and immediate siblings. This approach can also be found in many XML tools, for
example, libxml. In the standard computational model, where a pointer takes O(lg 1n) bits,
using the above approach to represent the topology of n nodes requires Θ(n lg n) space. For large
XML documents, this representation becomes infeasible for many applications, particularly as
the hidden constant in the space bound is relatively high. Furthermore, using more space also
reduces the cache locality and has an adverse impact upon query performance.

• Indirection is expensive: There has been a large amount of work on the succinct representations
of trees [10, 12, 13, 18–22], many of which come within a factor of the optimal lower bound on
space. However, to achieve these lower bounds generally requires a significant amount of address
indirection. Therefore such schemes are not suitable for secondary storage due to the expensive
cost of a random disk seek, which will generally be required upon each indirection. In general,
there is a trade-off between space usage and indirection, which we will optimize for secondary
storage devices in this paper.

When looking for a succinct storage scheme for XML, there are many important features on the
desiderata:

• It must support fast navigational operations: Many XML applications depend upon efficient tree
traversal, using a standard interface such as DOM, or make heavy use of queries involving path
expressions, for which navigational primitives have been shown to play an important role [11].
Hence, it is imperative that the storage scheme supports fast traversal of the XML tree, in all
possible directions, preferably in constant time or near constant time. Previous work, such as
that of Zhang et al [26], has addressed the issue of succinctly representing XML, but at the cost
of linear time navigational operations, which is not acceptable for many practical applications.

• It must support efficient insertions and deletions: Several papers address the space issue by
storing XML in compressed form [4, 16, 17, 23]. They also support path expression queries or
fast navigational access but do not allow efficient updates, which can be a critical concern in
many real database applications. In this paper, we provide a scheme which allows near constant
time updates in practice, with a theoretical worst case time of O(lg2 n).

• It must support efficient join operations: Current query optimization techniques for XML, such
as [11], make heavy use of the structural join [1], which relies on a constant time operator to

1In this paper, lg n is the base 2 logarithm of n
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determine the ancestor-descendant relationship between two nodes. Thus, any general XML
storage scheme should also support such an operator in near constant time.

• It must be practical: Most succinct representation techniques require a transdichotomous model
(that is, the word size of the machine depends on the size of the data). Pointer and block sizes are
usually specified in theoretical terms, whilst neglecting many important practical issues, such as
the fixed word size of all real machines. In this paper, we focus on developing a practical storage
scheme, using values with fit to the natural machine word size, block size and byte alignment, to
allow our scheme to be used in real-world database systems.

• It must be simple: Ideally, as with B-trees, the basis of the data structure should be simple and
clean enough to be used as material for an undergraduate course.

• It should separate the topology, schema and text of the document: All XML query languages
select and filter results based on some combination of the topology, schema and text data of
the document. To allow efficient scans over these parts of the document, it is natural to find a
representation that partitions them into separate physical locations.

• It should permit extra indexes: As different applications generally need to add specialized indices
upon their data, general purpose database systems should use a storage representation which is
flexible enough to allow individual users and applications to create extra indices with ease —
this means that the scheme must provide simple, efficient, and stable means of referencing items
stored using the scheme.

This paper presents a data structure that solves all of the above issues. The proposed structure
achieves that by: separating the tree structure from the data, using the concept of balanced parentheses
to represent the tree structure, and finally adding a compact and yet efficient auxiliary structure to
speedup the search. More specifically, the structure uses an amount of space near the information
theoretic minimum (for a constant 1 ≤ ε ≤ 2 and a document with n nodes, we need 2εn + O(n)
bits to represent the topology of the XML document), and handles updates in O(lg2 n) time. All
navigational operations are supported in O(lg n) time (in practice, the constant factor is extremely low,
so that this is virtually constant). More importantly, the structure is designed to minimize indirections,
and hence is secondary storage “friendly”. The practical efficiency of the structure is demonstrated
through a comprehensive set of experiments.

The rest of this paper is organized as follows: Section 2 summarizes relevant work in the field.
Section 3 presents the basics of our succinct representation scheme, without considering the issue of
efficient navigation or updates. Efficient updates are discussed in Section 4, and efficient navigation in
Section 5. The experimental results are then presented in Section 6, and Section 8 concludes the paper.

2 Related Work

Since XML data can be modeled as trees, storing XML in its succinct form is closely related to
succinct tree representations. The earliest space efficient data representations for static unlabeled trees
were proposed by Jacobson [12, 13], who showed that the information content of a tree of n nodes is
lg kn or O(n) bits. Hence, any representation of such trees must use at least a linear amount of space.
The author then gave a representation which used 2n bits, plus an additional o(n) bits, which supported
ordered tree operations such as finding the first child, next sibling, and parent of a node in O(lg n) time.
The author also introduced two fundamental operations, rank and select, in terms of which all other
operations could be implemented.
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Early works on succinct representations are all based on static representations, and hence are not
easily generalized to support updates. Clark and Munro [5] gave a binary tree representation using 3n
bits, which was used as a Patricia trie to index large, static, text files whilst minimizing the number of
disk accesses. However, their scheme does not support the navigation to a node’s parent, and hence it
is not clear how to extend the scheme to support updates. Munro and Raman [18] then developed a
scheme which essentially solved the succinct representation problem for static unlabeled binary trees,
as it allowed O(1) time navigational operations with asymptotically optimal space. This was achieved
through the use of a balanced parentheses representation, partitioned into three tiers of blocks. How-
ever, for rooted ordered trees, finding the n-th child of a node took O(n) time. On the other hand,
the scheme of Benoit et al [3] can support this operation (and also all other navigational operations)
in constant time. We emphasize that all these results hold only when no updates are allowed, which is
clearly undesirable in a database system.

The first work giving a succinct representation for dynamic labeled trees was that of Munro et
al [19], which supported binary trees with labels of constant size. However, it did not support updating
trees of higher degree. Raman et al [20] extended the 2n bit representation of Jacobson [13] to a
special case of the updatable partial sum problem called the dynamic bit vector problem. It supported
rank and select with updates in O(lg n/ lg lg n) time using an extra o(n) bits space. Alternatively, the
structure supported O(1) time for rank and select with updates in O(nε) time, allowing a trade-off
between time and space. Raman and Rao [22] also considered the space and time cost overhead used
by the memory manager. This paper also improves the lower bound for labeled dynamic binary trees,
supporting navigational operations in O(1) time with updates in O((lg lg n)1+ε) and o(n) additional
space. However, all the above approaches have the problem of using constant size labels, which is not
general enough for XML. They also use a transdichotomous model, where the machine word size fits
nicely to the data size, which does not happen on real database. Also, little consideration was placed
on minimizing accesses to secondary storage, which is still a concern for large data sets.

A closely related problem for ordered trees is the order maintenance problem [2, 9]. Since XML
is ordered, the lower bound for order maintenance gives a lower bound for succinct representations of
XML.

Recent related work of using succinct representations for XML include [10, 26]. Geary et al [10]
used a static approach that decomposed XML into two tiers of trees. It supports all operations in O(1)
time using asymptotically optimal space 2n+o(n) bits. However, it assumes lg |Σ| bits for every label,
and hence does not address the different size of alphabets for internal node labels (element labels) and
leaf node labels (text data). More seriously, since it partitions the tree in a way that a node can appear
multiple times in the representation, it is not trivial to generalize the structure to support updates.

The approach of Zhang et al [26] targeted secondary storage, and used a balanced parentheses
encoding for each block of data. Unfortunately, their summary and partition schemes support rank
and select operations in linear time only. Their approach also uses the Dewey encoding (which is a
variable length, root-to-leaf path identifier) for node identifiers in their indexes. The drawbacks of the
Dewey encoding are significant: updates to the labels can require linear time, and the size of the labels
is also linear to the size of the database in the worst case. Thus, the storage of the topology can require
quadratic space in the worst case.

3 Data Storage

In this section, we give a general overview of our succinct storage scheme for XML data. Sections 4
and 5 will then discuss update handling and optimization in more detail. Our storage structure consists
of three main components, as shown in Figure 2:

Topology layer This layer stores the tree structure of the XML document, and layer facilitates fast
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Improving the Efficiency of
Database−System Teaching.

inproceedings

dblp

author year booktitle@mdate title

2003−06−23 Jeffrey D. Ullman 2003 SIGMOD Conference

Figure 1: A DBLP XML document fragment
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Character Data

Offset TableSymbol Table,

Topology Labels +

Text Data Signatures

(Text Data)
Internal Node Layer
(Tags)

Leaf Node LayerTopology

Figure 2: Overview of the data structure

navigational accesses, structural joins and updates.

Internal node layer This layer stores the XML elements, attributes, and signatures of the text data for
fast text queries.

Leaf node layer This layer stores the text data in the document.

3.1 Representation of Topology

Jacobson [12] showed that the lower bound space requirement for representing a binary tree is
lg(Cn) = lg(4n · Θ(n−

3
2 )) = 2n + o(n) bits, where the Catalan number Cn is the number of possible

binary trees for n number of nodes. As XML documents can be modeled as unranked ordinal trees, we
can use the mapping scheme proposed by Jacobson to map XML documents to binary trees. Based on
this, if we exclude tag name and text data from an XML document, the tree structure of the document
can be represented using one of the many asymptotically optimal encodings described in Katajainen
[14] that use exactly 2n bits.

For our storage scheme, we use the balanced parentheses encoding from Katajainen [14] to repre-
sent the topology of XML. This encoding reflects the nesting of element nodes within any XML doc-
ument. This encoding can be obtained by a preorder traversal of the tree: we output a left parenthesis
when we first visit a node and a right parenthesis when we return from the traversal of its descen-
dant nodes. Figure 3 shows the balanced parentheses encoding of the XML document from Figure 1.
Herein, we will interchangeably use 0 and 〈 to represent left parentheses, and 1 and 〉 to represent right
parentheses. We also define:

• x〈: The position of the left parenthesis of node x in the encoding. We will simply write x instead
of x〈 when the context is clear. For example in Figure 3, author〈 = 6.
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Figure 3: Balanced parentheses encoding of Figure 1

• x〉: The position of the right parenthesis of node x in the encoding. For example, title〉 = 13
in Figure 3.

• excess: The excess is the difference between the number of 0s and 1s occurring in a given section
of the topology. For instance, in Figure 3, the excess of between dblp〈 and @mdate〉 is 3 and
the excess between "2003"〉 and booktitle〈 is -1. Note that measuring excess from the
beginning of the document gives the depth of the corresponding node in the tree.

There are two benefits of this encoding:

1. Each node is encoded using a fixed number of bits, which can help to simplify the indexing
mechanisms and provides a better fit with secondary storage.

2. The position of the parentheses gives an implicit region algebra representation of the XML doc-
ument. This allows us to answer ancestor-descendant queries on any two nodes: x is an ancestor
of y if and only if x〈 < y〈 < x〉.

3.2 Representation of Elements and Attributes

As our representation of the topology does not include a O(lg n) bit persistent object identifier
for each node in the document, we must use an approach like that described in Munro [19], in which
we make the element structure an exact mirror of the topology structure. This allows us to find the
appropriate label for a node by simply finding the entry in the same position of the element structure.
A pointer based approach would require space usage of Θ(n lg n), which is undesirable.

The next issue is to handle the variable length of XML element labels. We adopt the approach
taken in previous work [23,26], and maintain a symbol table, using a hash table to map the labels into a
domain of fixed size. In the worst case, this does not reduce the space usage, as every node can have its
own unique label. In practice, however, XML documents tend to have a very small number of unique
labels. Therefore, we can assume that the number of unique labels used in the internal nodes (E) is
very small, and essentially constant. This approach allows us to have fixed size records in the internal
node layer.

We handle other XML constructs, such as processing instruction and comments, in the same way
by using the same hash table. But as we want E to be small, we must not insert character data into the
same symbol table, as that would rapidly increase the space used. Thus, we map all character data to
an additional label, and handle the actual character data separately.

By limiting the maximum allowed number of unique element and attribute names per XML doc-
ument to E, we need an extra lg E bits of space for each label and O(E) space for the symbol table.
Figure 4 shows an example of the storage of the element array that mirrors the parentheses array.
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Figure 4: The relationship between the topology and element label structures

Algorithm 1 Unoptimized, linear time, basic topological operations
FORWARDEXCESS(start, end, excess)
1 for each current from start to end do
2 if tier0[current] = 〈 then
3 excess← excess− 1
4 else
5 excess← excess + 1
6 if excess = 0 then
7 return current
8 return NOT-FOUND
BACKWARDEXCESS(start, excess)
1 Similar to FORWARDEXCESS but going backward
PREV(node)
1 if node > 0 then return node− 1 else return NOT-FOUND
NEXT(node)
1 if node < |tier0| then return node + 1 else return NOT-FOUND

Note that each element in the XML document actually has two available entries in the array, corre-
sponding to the opening and closing tags. We could thus make the size of each entry 1

2 lg E bits, and
split the identifier for each elements over its two entries. However, the two entries are not in general
adjacent to each other, and hence splitting the identifier could slow down lookups — as we would need
to find the closing tag corresponding to the opening tag — and decrease cache locality. Hence, we
prefer to use entries of lg E bits and leave the second entry set to zero; this also provides us with some
slack in the event that new element labels are used in updates.

Since text nodes are also leaf nodes, they are represented as pairs of adjacent unused spaces in the
internal node layer. We thus choose to make use of this “wasted” space by storing a hash value of the
text node of size 2 lg E bits. This can be used in queries which make use of equality of text nodes such
as //*[year="2003"], by scanning the hash value before scanning the actual data to significantly
reduce the lookup time.

3.3 Representation of Text Data

The final layer of our data structure deals with text data storage. We maintain an array of lg n bit
pointers, one for each text node, pointing to its character data. The actual storage of the character data
then reduces to the traditional problem of storing variable length records. We have two choices for
indexing the array:

• The most concise representation is to pack the array tightly, so that the i-th entry corresponds to
the i-th text node. However, this then means that it takes O(i) time to find the i-th value, since
we do not explicitly store the text node’s position in our structure.
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Algorithm 2 Navigation operations
FINDCLOSE(node)
1 return FORWARDEXCESS(node, |tier0|, 0)
FINDOPEN(node)
1 return BACKWARDEXCESS(node, |tier0|, 0)
PARENT(node)
1 return BACKWARDEXCESS(node, |tier0|, 2)
FIRSTCHILD(node)
1 if tier0[NEXT(node)] = 〈 then
2 return NEXT(node)
3 else
4 return NOT-FOUND
NEXTSIBLING(node)
1 if tier0[NEXT(FINDCLOSE(node))] = 〈 then
2 return NEXT(FINDCLOSE(node))
3 else
4 return NOT-FOUND

• A less concise representation would be to make the array’s structure mirror that of the element
label layer. Then, given a position in the element label array, we could find the corresponding
entry quickly. However, this would waste space for the entries corresponding to non-text nodes.

In our scheme, we choose the first method. The reason for this is that the space savings can be
significant, and we will see in Section 4 a way of substantially reducing the lookup time. In the worst
case, the storage requirement of this method is n

2 lg n bits, because potentially half of the nodes can be
character data. In practice, the number of text nodes in XML is within a constant factor of the number
of element nodes, so this layer generally uses Θ(n lg n) bits space. However, the space requirement
is much reduced by treating elements and text data separately. For instance, if we assumed that the
number of elements is c times the number of text nodes, and that S was the amount of space taken by
considering element nodes and text nodes together, then our scheme would use approximately S/(c+1),
a significant space saving for large c.

3.4 Navigational Operations

We now give a brief description of how one may implement navigational operations on this storage
scheme. The functions in Algorithm 1 are the basic access operations. If x is the position of a paren-
theses in an array of balanced parentheses, then the function NEXT(x) returns the position of the next
parentheses in the array (for this simple data structure, this is a trivial function). The function PREV(x)
is defined analogously. The function FORWARDEXCESS(start, excess) will scan forward from start
along the array and return the position end of the first parenthesis satisfying the given excess from
start. Function BACKWARDEXCESS(start, excess) scans backward along the array and returns the
first position end such that the excess between end and start is equal to excess.

Apart from the basic access operations mentioned in Algorithm 1, other essential navigational
operations are shown in Algorithm 2. From observation, we know that the navigational operations are
closely tied to the basic access operations. Therefore, the speed of the basic access operations is the
determining factor for the performance of our navigational operations. However, both forward and
backward excess operations in Algorithm 1 take linear time, which is unsatisfactory. This is addressed
in Section 5.

4 Handling Updates

So far, we have treated the balanced parentheses encoding as a contiguous array. This scheme is
not suitable for frequent updates as any insertion or deletion of data would require shifting of the entire
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Figure 5: Densities of the parentheses array and the corresponding virtual balanced trie with block size
|B| = 8 and height = 3.

bit array. In this section, we present a small modification to our storage scheme, that changes the space
usage from 2n to 2εn, where ε ≥ 1, so that we can efficiently accommodate frequent updates.

4.1 Empty Space and Density Thresholds

It is obvious that in order to efficiently handle frequent updates, we need to have some empty space
within the array to minimize the chance of shifting the entire array. In our approach, we first divide
the array into blocks of |B| bits each, and store the blocks contiguously. Within each block, we leave
some empty space by storing them at the rightmost portion of each block. Now, we only need to shift
O(|B|) entries per insertion or deletion. We can control the cost of shifting by adjusting the block size.
Section 5 will discuss in detail how we can use auxiliary structures to keep track of the total number of
parentheses per block.

After the initial loading of an XML document, the empty space allocated to leaf nodes will even-
tually be used up as more data is inserted into the database. Therefore, we need to guarantee an even
distribution of empty bits across the entire parentheses array, so that we can still maintain the O(|B|)
bound for the number of shifts needed for each data insertion. This can be achieved by deciding ex-
actly when to redistribute empty space among the blocks and which blocks are to be involved in the
redistribution process.

To better understand our approach, we first visualize these blocks as leaf nodes of a virtual balanced
binary trie, with the position of the block in the array corresponding to the path to that block through
the virtual binary trie. Figure 5 shows such a trie, where block 0 corresponds to the leaf node under the
path 0→0→0, and similarly block 3 corresponds to the path 0→1→1. For each block, we define:

• L: the total number of left parentheses within a block.

• R: the total number of right parentheses within a block.

• DENSITY(b): the density of a block b, defined as L+R
|B| .

Given the above definition of density for leaf nodes, the density of a virtual node is the average
density of its descendant leaf nodes. We then control the empty space within all nodes in the virtual
binary trie by setting a density threshold [min,max], within which the block densities must lie. For a
virtual node at height h and depth d in the virtual trie, we enforce a density threshold of [ 1

2−
d
4h , 3

4 + d
4h ].
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Algorithm 3 Insertion and maintenance operations
INSERT(x)
1 Rightshift tier0[x,L0

x + R0
x] to [x + 2, L0

x + R0
x + 2]

2 tier0[x, x + 1]← {〈, 〉}
3 Increment L0

x, R0
x, L1

x and R1
x

4 if L0
x + R0

x > |B| − 2 then
5 MAINTAIN(x)
MAINTAIN(x)
1 {height,weight, δ} ← {lg n, height, 1}
2 {min, max} ← {B0

x,B0
x + |B|}

3 while

PB1
max

B1
min

L0+R0

(max−min)|B|
≥ 3

4
+ d

4h
do

4 depth← depth− 1
5 δ ← 2δ
6 min← MAX(0, min− δ)
7 max← max + δ
8 Evenly distribute bits in blocks [min,max] and update

the corresponding tier 1 and tier 2 tuples.

For example, the density threshold range for virtual node v0 in Figure 5 is [ 12 − 2
4×3 , 3

4 + 2
4×3 ] =

[0.33, 0.92], since the depth for v0 is 2 and height of the trie is 3.
Each insertion of a node into the XML document adds exactly two consecutive parentheses into

a block (occasionally, the insertion will span two adjacent blocks). We maintain the empty space af-
ter each insertion as follows: if the density of the leaf node exceeds its maximum threshold, then we
redistribute occupied bits among a range of leaf nodes by calling the function MAINTAIN in Algo-
rithm 3. This function traverses up the virtual binary trie and stops at the first ancestor node v which
does not have its maximum density threshold violated. We then evenly redistribute all the occupied
bits (parentheses) amongst all the descendant leaf nodes of the v. It should be stressed that the trie is a
pure visualization of the concept, and that in reality we are simply traversing a sequence of consecutive
blocks in the bit array. Thus, each time we traverse up the binary trie, we are merely doubling the range
of blocks considered for redistribution. Deletions are handled in a similar manner.

The reader may wonder why we use the formula above for controlling the density threshold. This
is due to two factors: first, in order to guarantee good space utilization, the maximum density of a leaf
node should be 1, and the minimum density threshold of root node should be 1/2. Secondly, the density
threshold should satisfy the following invariant: the density threshold range of an ancestor node should
be tighter than the range for its descendant nodes. This is so that space redistribution for an ancestor
node v, the density threshold of all its descendants are also immediately satisfied.

4.2 Space and Time Cost

In the worst case, we use 4 bits per node, since the root node can be only half full. Thus, on a 32-bit
word machine, we can store at most 232/4 = 230 nodes. However, by adjusting the minimum root node
density threshold, from 1

2 to 1
ε it is possible to store more than 230 nodes by choosing a smaller ε. In

practice, ε should be 2 and therefore 2εn bits is in effect 4n. The factor ε should only be less than 2
when the document is relatively static.

The correctness of the above scheme, and its running time, are summarized in the following lemma
(with proof omitted, see Bender et al [2]):

Lemma 1 Given an n node unlabeled higher degree ordinal tree with 2εn bits where ε ≥ 1, we can
obtain update in amortized O(lg2 n) time with block size |B| = Θ(lg n).

In practice, we try to leave approximately 20% of each block empty during insertions. Even when
there are bulk insertions in the middle of the document, the lemma above should still guarantee a good
worst-case performance.
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Figure 6: Example of Tiers of Topology Part

5 Optimizations

This section optimizes navigational operations from linear time (as presented previously) to near
constant time. It also analyzes the total space cost and finally, outlines how containment queries can be
built on top of the proposed succinct storage.

5.1 Auxiliary Data Structure

In order to speedup the navigational accesses, auxiliary data structures (tier 1 and tier 2 blocks) are
added on top of the tier 0 structure we presented in Section 3.1. Both tier 1 and tier 2 contain contiguous
arrays of tuples, with each tuple holding summary information of one block in the lower tier.

Each tier 1 block stores an array of tuples T 0
1 , T 0

2 , . . . , T 0
n , where n is the maximum number of

tuples allowed per tier 1 block. Each T 0
i for 0 < i ≤ n is defined as (L0, R0,m0,M0, D0), where:

L0: the total number of left parentheses of a block.

R0: the total number of right parentheses of a block.

m0: the minimum excess within a single block by traversing the parentheses array from the beginning
of a block.

M0: the maximum excess within a single block by traversing the parentheses array from the beginning
of a block.

D0: total number of character data nodes.

Using the summary information in T 0 tuples, we can then easily calculate the density of each tier
0 block by using the formula density = L0+R0

|B| .

Similar to tier 1 blocks, each tier 2 block stores an array of tuples T 1
1 , T 1

2 , . . . , T 1
n , where n is the

maximum number of tuples allowed per tier 2 block, Each tuple T 1
i for 0 < i ≤ n is then defined as

(L1, R1,m1,M1, D1), where:

L1: the sum of all L0 for all tier 1 tuples T 0 (
∑|B|/|T 0|

i=0 L0
i ).

R1: the sum of all R0 for all tier 1 tuples T 0 (
∑|B|/|T 0|

i=0 R0
i ).

m1: the local minimum excess across all of its tier 1 tuples.

M1: the local maximum excess across all of its tier 1 tuples.

12



Algorithm 4 calculate local excess in Tier 2 block

TIER2LOCALEXCESS(t2)

1 {t1start, t1end} ← {
t2∗|T2|

|T1|
,
(t2+1)∗|T2|

|T1|
− 1}

2 {tier2[t2].m, tier2[t2].M} ← {tier1[t1start].m, tier1[t1start].M}
3 excess← tier1[t1start].L − tier1[t1start].R
4 for each t1 from t1start + 1 to t1end do
5 if excess + tier1[t1].m < tier2[t2].M then
6 tier1[t1].m← excess + tier1[t1].m
7 if excess + tier1[t1].M > tier2[t2].M then
8 tier1[t1].M ← excess + tier1[t1].M
9 excess← excess + tier1[t1].L− tier1[t1].R

D1: the total number of character data nodes for all tier 1 tuples (
∑|B|/|T 0|

i=0 D0
i ).

The three tiers are clearly illustrated in Figure 6, where each tier consists of contiguous fixed size
blocks, which in our implementation, are four kilobytes in size. Therefore, each tier 0 block can hold
up to 32768 bits and each tier 1 block can hold 4KB

|T 0|
tier 0 blocks. Similarly, each tier 2 block can hold

up to 4KB
|T 0| tier 1 blocks, which is equivalent to ( 4KB

|T 0| )
2 tier 0 blocks.

Even though both tier 1 and tier 2 tuples look similar, the values of m1 and M1 are calculated in a
different way to m0 and M0. The algorithm to calculate the local minimum/maximum excess in tier 2
is given in Algorithm 4.

Updating both of the auxiliary tiers is fairly easy. During the insertions and deletions in a tier 0
block, we simply update the appropriate tuples in the corresponding blocks in the higher tiers. Since the
redistribution process we described in Section 4 can be seen as a sequence of insertions and deletions,
the corresponding updates to the auxiliary tiers do not affect the worst case complexity for updates.

5.2 Using Auxiliary Structures

Recall the function FORWARDEXCESS(start, end, excess) in Algorithm 1 returns the position of
the first parenthesis with the given excess within the range [start, end]. If we only have tier 0 available,
then this scan is linear. However, we can use tier 1 to test whether this value lies within the i-th tier
0 block by checking whether (m0

i + ei) ≤ excess ≤ (M 0
i + ei), where ei is the excess between

start and the beginning of the i-th tier 0 block (excluding the first bit). However, as |B| = Θ(lg n),
there are potentially n/|B| tier 1 tuples to scan. Hence, we use tier 2 find the appropriate tier 1 block
within which excess lies, thus reducing the cost to a near constant in practice. This is essentially
how we implement this function, with the pseudo-code given as function FASTFORWARDEXCESS in
Algorithm 5.

Other operations, such as accessing text nodes, can be implemented in a similar fashion to FOR-
WARDEXCESS, and hence we omit the details.

In practice, most matching parentheses lie within the same block, and occasionally are found in
neighboring blocks. This is because the depth of an XML document is generally much less than |B|
(even the depth of the highly nested Tree Bank dataset [7] is much less than 100). Therefore, when
FASTFORWARDEXCESS is called from navigation operations, we rarely need to do access additional
blocks in either the auxiliary data structure or the topology bit array. In worst case, when the matching
parentheses lies within a different block, we only need to read two tier 1 blocks and two tier 2 blocks.

5.3 Space Cost

As we mentioned in Section 4.2, using 32-bit words, we can store 230 nodes; now in our imple-
mentation we also chose to use four kilobyte sized blocks. Based on these values, we now discuss the
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Algorithm 5 Optimized basic topology operations

NEXT(node)
1 if I0

node
< L0

node
+ R0

node
then

2 return I0
node

+ 1
3 else
4 if B0

node
is the last tier 0 block

5 return NOT-FOUND
6 else
7 return B0

node
+ |B|

FASTFORWARDEXCESS(start, excess)
1 current←FORWARDEXCESS(start,B0

x + |B| − 1, excess)
2 if current 6= NOT-FOUND then
3 return current
4 for each T 0

i ∈ B
1
current where T 0

i > T 0
current

5 if current + m0
i ≤ excess ≤ current + M0

i then
6 return FORWARDEXCESS(T 0

i ,B0
T0

i

+ |B| − 1, excess)

7 current← current + L0
i −R0

i

8 for each T 1
j ∈ B

2
current where T 1

j > T 1
current

9 if current + m1
j ≤ excess ≤ current + M0

j then
10 for each T 0

i ∈ B1
j where T 0

i > T 0
j

11 if current + m0
i ≤ excess ≤ current + M0

i then
12 return FORWARDEXCESS(T 0

i ,B0
T0

i

+ |B| − 1, excess)

13 current← current + L0
i −R0

i

14 current← current + L1
j −R1

j

space cost of each component of our storage scheme. Of course, if larger documents need to be stored,
we can simply increase the word size that we use in the data structure.

Tier 0: From Lemma 1 of Section 4.2, tier 0 can take up at most 232 bits space (or d 2εn
|B| e = 217 blocks).

Tier 1: We need lg |B| = 15 bits for each variable (L0, R0,m0,M0, D0) within a T 0 tuple. Each T 0

tuple requires a total of 5 lg |B| = 80 bits including bit alignments and based on this calculation,
each tier 1 block can then store up to b |B|

|T 0|
c = 409 T 0 tuples, Since the maximum number of

nodes can be stored in tier 0 is 230, then we only need 2εn
|B| = 217 T 0 tuples to represent all tier 0

blocks and they can be stored in d 2εn
|B| /b

|B|
|T 0|ce = d10 lg |B|εn

|B|2 e = 321 tier 1 blocks.

Tier 2: We need a total of 24 bits for each variable (L1, R1,m1,M1, D1) within a T 1 tuple. This is

derived from lg |B|+lg( |B|
|T 0|

) = lg( |B|
2

5 lg |B|), where each variable holds the size of a tier 1 tuple and

total number of bits required to represent the total number of tuples per tier 1 block. So each T 1

tuple requires a total of |T 1| = 5 lg( |B|
2

5 lg |B|) = 120 bits and each tier 2 block holds up to b |B|
|T 1|

c =

273 T 1 tuples. Thus, we will only need a total of d 10 lg |B|εn
|B|2

/ |B|
|T 1|

e =
50 lg |B| lg( |B|2

5 lg |B|
)εn

|B|3
= 2 tier

2 blocks to store the 321 tier 1 tuples.

Since we only need a maximum of two tier 2 blocks, we can just keep them in main memory. In
fact, the entire tier 1 can also be kept in main memory, since it requires at most 321 ∗ 4KB = 1MB. In
summary, the space required by the topology layer (in bits) is:

2εn +
10 lg |B|εn

|B|
+

50 lg |B| lg( |B|
2

5 lg |B|)εn

|B|2
= 2εn + o(εn)

and the space required by the internal node layer (in bits) is:
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Algorithm 6 Offset calculation for block and indexes within the block in all tiers

B0
x = b x

|B|
c, I0

x = bx mod |B|c

B1
x = b

B0
x
5 lg |B|

|B|
c, I1

x = b(B0
x5 lg |B|)mod |B|c

B2
x = b

B1
x
5 lg(

|B|2)
5 lg |B|

)

|B|
c, I2

x = b(B1
x5 lg( |B|2)

5 lg |B|
)) mod |B|c

T 0
x = (L0

x, R0
x, m0

x, M0
x ,D0

x) = (I0
x, . . . ,I0

x + 4 lg |B|)
T 1

x = (L1
x, R1

x, m1
x, M1

x ,D1
x) = (I1

x, . . . ,I1
x + 4 lg |B|)

εn lg E + O(E)

We can use the above equations to estimate the space used by an XML file, using as our example
a 100 MB copy of DBLP, which was roughly 5 million nodes. If we assume there are no updates after
the initial loading, we can set ε = 1. According to the equation, we will use roughly 2εn = 1MB for
the topology layer, and εn lg E + O(E) = 8MB, which is consistent with the storage size in Table 1.
This, of course, disregards the space needed for the text data in the document.

Based on the block size |B|, we know the exact size of tuples and tiers in our topology layer.
Therefore, given a bit position x〈, we can calculate which tier 0 block this bit belongs to and which
tier 1 block contains summary information for the tier 0 block. For a given x〈, Algorithm 6 lists all the
calculations needed to find its resident tier 0 to tier 2 blocks and the index within the blocks to get the
summary.

5.4 Theoretically Fast Navigation

Our experiments will demonstrate that the above scheme has impressive speed in practice, because
there are only two tier 2 blocks for a 32-bit word machine. However, in theory, there are Θ(n/ lg2 n)
tier 2 blocks, and hence the worst case for navigational accesses is also O(n/ lg2 n), which is not much
of an improvement on O(n). Fortunately, it is relatively simple to fix this limitation: instead of having
3 tiers, we generalize the above structure in a straightforward fashion to use O(lg n) tiers. This means
that the top-most tier has Θ(n/ lglg n n) = Θ(1) blocks, reducing the worst case navigational access
time to O(lg n), without affecting the overall update cost of O(lg2 n).

5.5 Join Queries

Joins (including structural joins and twig joins) are the primitive operations that form complex
queries, e.g., ancestor-descendant queries or branched queries. Using our storage scheme, we first
scan through the internal node layer to select all of the candidate node lists. As we have mentioned
in Section 3.1, a single scan of internal node layer automatically provides a region encoding labeling
[11, 24, 25] for each node. We can then employ any region encoding based structural join and twig
join algorithms to perform the operations. For our experiments in Section 6, we implemented such join
algorithms by extending the skip join proposed in our previous paper [15] for structural joins and twig
joins.

6 Performance Evaluation

This section presents our experimental results, which demonstrate the superior performance of our
succinct storage scheme in a variety of ways, such as physical storage size, update cost, and naviga-
tional and query performance. All experiments were performed on a PC with a 1.1GHz AMD Athlon
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Data Size # of Text Nodes # of Non-Text Nodes T
0

T
1

T
2

H E D

(MB) (Bytes) (Bytes) (Bytes) (Bytes) (KB) (KB)

1 19,950 27,387 10,752 6,148 5,028 255 79 555
5 107,402 144,859 56,832 6,148 5,028 262 417 2,744
10 209,967 312,205 111,104 6,148 5,028 262 814 5,480
50 1,038,758 1,406,980 548,352 18,436 5,028 284 4,067 27,480

100 2,065,320 2,832,060 1,089,536 30,724 5,028 284 7,990 55,003
500 10,613,430 14,280,334 5,588,992 135,172 5,028 316 41,435 275,513

Table 1: Statistical information of the physical storage of different size XML documents

processor, 768MB of main memory, 1GB of swap partition and 40GB of 10,000 RPM SCSI hard disk.
The PC was running Debian Linux 3.0, kernel build 2.4.25.

For all experiments, we compared the performance of our storage scheme with the implementation
presented by Zhang et al [26], since they demonstrated experimentally that their system outperformed
other related systems in almost all cases. We used several data sets covering a wide range of XML
applications: the Protein Sequence Database (PSD) [6], DBLP [8] and Tree Bank [7] database. Both
PSD and DBLP are extremely regular data sets, whereas Tree Bank’s deep recursive tree structure and
its over 300,000 unique paths make it an interesting and challenging dataset to handle. We prepared
samples of each data set of varying sizes: 5MB, 10MB, 50MB, 100MB and 500MB. The larger sized
samples were created by repetitively duplicating and merging the same dataset until it reached the
desired size.

6.1 Physical Storage Size of Data

In our first experiment, we loaded DBLP into our data structure, and measured the sizes of various
portions of the structure, which are given in Table 1. Columns T 0, T 1 and T 2 represent the disk
usage for tier 0, tier 1 and tier 2. It shows that the size of tier 0 increases the most as document size
increases, which is hardly surprising since its size is linearly proportional to the number of elements in
the document. Tier 1 grows much more slowly, and for all practical purposes the size of tier 2 remains
constant, since gigabytes of XML data would have to be loaded into our database before tier 2 would
increase in size, and then only negligibly. The remaining columns give the size of the hash table used
to hold the tag names (column H), the internal node layer (column E), and the text data layer (column
D). As can be clearly seen, the majority of the space consumed is used up by the internal node label
layer (E) and the text data block (D).

In order to compare our space consumption against previous schemes, we loaded the data sets into
both our storage scheme (scheme S) and Zhang’s storage scheme (scheme Z). A comparison of the
total space used is given in Figure 8(a). Unfortunately, Zhang’s implementation [26] was unable to
load the 500MB dataset due to insufficient memory, and hence we omitted the storage size for the 500
MB category. Figure 8(a) not only further confirms our expectation of the final disk usage storage size,
but it also shows that our storage scheme uses at most 20% of the disk usage of Zhang’s storage scheme
for all three data sets. Since Zhang’s structure is currently the most compact storage system for XML
data, this gives a fivefold improvement over the state of the art. This gain can be partially attributed
to the fact that we manage to avoid using any indexes for querying or navigating data (apart from the
auxiliary tiers defined), whereas Zhang’s storage scheme relies on the use of a B-tree to index both
element tags and text data.
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Figure 7: Average run time for updates and loading

6.2 Update Performance

In our second set of experiments, we tested the scalability of our structure under updates by doing
frequent insertions in both a worst case manner and in a random manner. The worst case for Algorithm 3
is to insert nodes at the beginning of an already completely packed database, with no gaps between
blocks. The random insertion scenario simply inserts a new node as a child of any randomly selected
node.

For both worst case and random insertions, we pre-loaded a set of 1, 5, 10, 50 and 100MB of XML
documents into our databases and packed each one of them, leaving no gaps. For each experiment,
we did multiple runs (resetting the database after each run). The average insertion times per node for
both worst case and random are shown in Figures 7(b) and 7(c). In Figure 7(b), we see initial spike
in the execution time for the worst case insertion. This corresponds to the initial packed state of the
database, so that the very first node insertion requires the redistribution of the entire leaf node layer.
Clearly, in practice this is extremely unlikely to happen, but the remainder of the graph demonstrates
that even this contrived situation has little effect on the overall performance. The graph also shows that
the cost of all subsequent insertions increases at a rate of approximately O(lg2 n), which conforms to
Lemma 1 proposed in Section 4. In fact, all subsequent insertions up to 100,000 took no more than 0.5
milliseconds.

The average random node insertion times are plotted in Figure 7(c). It is interesting to notice how
similar Figure 7(c) is to the worst case insertions of Figure 7(b). The initial jump in time for random
insertion is also due to the redistribution of the whole leaf node layer, since the database was packed
at the beginning. However, after the redistribution process, we have enough gaps between blocks such
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that any random insertion of nodes will at most require redistribution of a few blocks, not the entire leaf
node layer. In fact, when a database is fully packed, the initial redistribution will render the random and
worst case insertion into the same category. Eventually, when the number of gaps gets smaller, more
redistribution is required.

6.3 Node Navigation

To test the performance and scalability of random node navigation, we pre-loaded our XML data
sets, and for each database, we randomly picked a node and called NEXTSIBLING and FIRSTCHILD

multiple times. The average access time for these two operations are plotted in Figure 8(b). The graph
shows that as the database size gets bigger, the running time for FIRSTCHILD and NEXTSIBLING

function both remained constant. This is not surprising, since in reality most nodes lie close to their
siblings, and hence are likely to lie in the same block. Therefore, it generally only takes a scan of a
few bits on average to access either the first child node or the next sibling node. As Figure 8(b) shows,
FIRSTCHILD performed slightly faster than NEXTSIBLING function, which again is unsurprising, be-
cause the first child is always adjacent to a node, whereas its next sibling might lie some distance
away.

6.4 Path Evaluation

One of the most important features of any XML system is its ability to evaluate path expressions
quickly. Using both our storage scheme (with the skip-join algorithm [15]) and Zhang’s implementation
(with their NoK algorithm), we repeated the execution of the queries listed in Table 2 on DBLP, PSD
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Table 2: Query Categories
Data Set Path Expression

Q1 Tree Bank //EMPTY//NP
Q2 PSD //ProteinEntry//refinfo//year
Q3 DBLP //inproceedings//pages
Q4 Tree Bank //EMPTY[.//NP]//VBN
Q5 PSD //ProteinEntry[.//feature-type/

text()="modified site"
AND .//status/text()="predicted" AND
.//author/text()="Needleman, S.B."]//year

Q6 DBLP //inproceedings[.//i]//ee

and Tree Bank databases three times. As can be seen, the queries selected test the performance of
branch queries and ancestor-descendant queries. As we reported before, our PC ran out of memory
when trying to load a 500MB XML document using Zhang’s storage scheme. However, our storage
scheme was able to process the document without any problem, so we have included the run time for
path evaluation for the 500MB data set to show the scalability of both systems.

Figure 8(c) shows the overall run time of each queries on different size databases, using existing
skip-join algorithm on Scheme (S) and the NoK algorithm [26] on Scheme (Z). Lines labeled Z1−6 are
the run-times of the NoK algorithm and the lines labeled Q1−6 are the run-times of our skip based join
algorithms. The NoK implementation obtained from its author was unable to successfully evaluate Q4,
and hence Z4 is omitted from the figure.

Figure 8(c) suggests path evaluation is doable on our storage scheme. In fact, the path evaluation
for Q1−6 using skip-join algorithms and our storage scheme yields a linear performance curve. This
is because the skip based join algorithms require the system to first scan through the internal nodes to
select sets of candidate nodes before either the structural join or twig join can be performed. However,
for most queries, we only need a maximum of one scan of the internal node layer for selecting all
necessary candidate nodes. The higher run-time for query Q5 compared to other queries is mainly due
to the testing of text node values, since we have to fetch each text node’s value. Overall, Figure 8(c)
shows that our proposed skip based join algorithms are significantly more scalable when used on the
proposed storage scheme.

7 Acknowledgments
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8 Conclusions

A compact and efficient XML repository is critical for a wide range of applications such as those
mobile XML repositories running on devices with resources constraints. For a heavily loaded system,
a compact storage scheme could be used as an index storage that can be manipulated entirely in mem-
ory and hence the overall performance could be substantially improved. In this paper, we proposed an
elegant succinct data structure for storing XML data with impressive performance. The performance
justifications are supported both theoretically (through formal analysis) and practically (through exper-
iments with real data sets). In particular, all navigational operations can be performed in near constant
time, while the storage space is within a constant factor of the information theoretic minimum. Fur-
thermore, insertions and deletions can be performed with a theoretical worst case time of O(lg2 n). In
practice, these are also close to constant time. Finally, experiments on real data sets proved that the
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proposed succinct representation improved all storage, access and update performances over previous
results, including the most recent work by Zhang et al. [26], by significant margins.

For future work, we plan to improve the storage space for the text data. Since each data item can
be arbitrarily long and the number of different text values within a text document is generally within
a constant factor of the number of nodes, it is challenging to store them in a succinct manner while
supporting both fast retrievals and updates.
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