
Mapping basic recursive structures to runtime

reconfigurable hardware

Hossam ElGindy and George Ferizis

School of Computer Science & Engineering

The University of New South Wales

Sydney, NSW, Australia

{hossam,gferizis}@cse.unsw.edu.au

FAX: +61 2 9385 5995

UNSW CSE-TR-0419

July 2, 2004

1

Abstract

Recursion is a powerful method that is used to describe many algorithms
in computer science. Processing of recursion is traditionally done using a
stack, which can act as a bottleneck for parallelising and pipelining different
stages of recursion.

In this paper we propose a method for mapping recursive algorithms,
without the use of a stack structure, into hardware by pipelining the stages
of recursion. The use of runtime reconfigurable hardware to minimise the
amount of required hardware resources, and the related issues to be resolved,
are addressed.

2

1 Introduction

Recursion is a powerful tool that is heavily used for the development of
programs today, that allows a programmer to compactly and easily design
code that would be much more complex in design if it is done using iteration.
Recursion makes it easier to develop programs and makes it inherently easier
to debug due to much simpler code being present for reviewing. Recursive
descriptions can be seen in many elegant algorithms such as tree traversals
and “divide-and-conquer” geometrical and mathematical problems in multi-
dimensions [3]. Iterative equivalents for such algorithms are nowhere near
as elegant. Furthermore recursion is fundamental to functional language
paradigms which rely on recursion due to an absence of common iterative
operators.

On a general-purpose processor, recursive descriptions are implemented
by the use of a stack that is used to temporarily store arguments and results
between stages of a recursive function. This solution could be implemented
easily on an FPGA-based system. However the ability of such systems to
provide customised pipelining and parallelism, which software implementa-
tions on a general-purpose processor cannot provide, will not be possible
with such an implementation.

A solution for this problem is not provided by the majority of high level
language development tools such as Handel-C [1], which do not support
recursive procedures. The exclusion of recursive constructs from such tools
is a testimony to the difficulty of the process of mapping them into hardware.

Previous work into mapping recursive functions into FPGAs without
the use of a stack has relied on transforming the function into a loop [?].
However it makes no attempt to parallelise the recursive calls that are made
in instances where a function calls itself multiple times.

In this paper we present a method for mapping “basic” recursive func-
tions into reconfigurable hardware that unrolls the recursion with the use of
runtime reconfiguration, and hence does not use a stack.

Our approach builds on the previous work on unrolling iterative loops
for the purpose of mapping them into runtime reconfigurable hardware [4]
and addresses the additional difficulties that are unique to recursion. These
difficulties include hardware allocation which does not have the constant
growth rate as in iterative loops, and minimising the cost of runtime re-
configuration. In this paper we allude to the use of special-purpose logic to
predict hardware requirements for the function being unrolled at the earliest
time possible. More information can be found in the full technical report [?].

We begin by defining what is meant by “basic” recursive functions. A
“basic” recursive function is a function that, calls itself zero or a constant
number of times, at any depth of recursion all instances of the function call
themselves the same number of times, and when given initial arguments the
maximum depth of recursion can be accurately calculated, or can be calcu-

3

lated at any time during the processing of an input stream of arguments.
We begin by presenting the communication model that is used, followed

by a description of our method for mapping this conceptual model of recur-
sion into hardware solutions on FPGAs that minimises the effect of runtime
reconfiguration delay. We finally present two case studies: merge sort [9] and
Strassen’s matrix multiplication algorithm [11]. The two algorithms rely on
recursion and both of which have been implemented using this method.

2 General recursive problem

We shall now describe a model of recursive processes that illustrates our
proposed solution. We model a basic recursive function as a tree. This is
shown in figure 1, which has an example of a function that calls itself twice.

Figure 1: Tree model of a recursive function

Our implementation is based on pipelining the operation between con-
secutive levels with an area on the chip dedicated to processing the nodes
contained in each level. To allocate the minimum amount of hardware the
number of levels in the recursive tree must be estimated accurately at run-
time. The necessary logic to meet this estimate can then be configured at
runtime. This requires runtime reconfiguration. Therefore an effective im-
plementation of this process requires the ability to hide the delay that is
produced by runtime reconfiguration.

The example in figure 3(a) is not tail recursive, with values being re-
turned back up the recursive tree. This communication pattern presents
problems in pipelining if only a single area of logic is dedicated per level, as
this area will be blocking while waiting for subsequent logic to return data.
A solution to this is presented later in the paper.

We also point out that the recursion in figure 3(a) is balanced, whereas
not all recursive trees are balanced. Unbalanced recursion presents problem

4

in the scheduling of data being sent through the pipeline, as well as intro-
duces an increased complexity in hardware allocation. This is due to the
difficulty in predicting the node population of a level of recursion due to the
irregular growth rate that is a result of unbalanced recursion. The problem
presented by unbalanced recursion is not discussed in this paper and has
been left for future work.

3 General solution

The tree in figure 3(a) models a balanced recursive function with two recur-
sive calls. As indicated by the arrows directed from the children nodes back
to their parent nodes, the recursive calls return values that are processed by
the parent nodes.

Our approach is similar to previous approaches [2, 8] that transform
general recursive calls into two tail recursive calls. Such transformations
have been suggested in the past as software compiler level optimisations [2,
8]. These earlier techniques rely on transforming a recursive call into two
tail recursive calls and using a stack to hold arguments generated in the
first tail recursive call for the second tail recursive call. Such methodology
does not attempt to make use of parallelism and pipelining opportunities
that modern hardware offers. Our approach eliminates the need for a stack
by taking advantage of multiple processing elements and networking that
current reconfigurable hardware makes possible to implement and utilise
on-demand.

LU1 LU1 LU1 LU2 LU2 LU2

Figure 2: Logic unit allocation

We begin by looking at the recursive call modelled in the tree shown in
figure 3(a).

The related problem of unrolling iterative loops and their incremental
mapping into runtime reconfiguration has already been previously addressed
[4]. The hardware produced by the incremental mapping of an iterative
loop follows a linear function in the number of iterations, as the amount of
computations per loop is constant. The unbalanced nature of recursion and
the variable amount of computations per level raise few difficulties in the
mapping if we want to maintain an interrupted throughput.

Our mapping begins by removing upward returns in the tree by adding
another tree that shares the leaves with the original tree. The result is a
DAG as shown in figure 3(b).

5

(a) (b)

Figure 3: A recursive tree, and the corresponding DAG produced.

Construction of the new graph involves the splitting of the statements in
a recursive function into two disjoint sets. The first set contains the state-
ments that occur before the recursive calls. These statements correspond to
the unshaded nodes in the graph. The second set contains the statements
that occur after the recursive calls. These statements correspond to the
shaded nodes in the graph. For each set we define a different logic type as
follows:

1. PreRecursion: This corresponds to logic that can compute during the
expansion portion up to and including the point of truncation. This
is in effect the first tail recursive function.

2. PostRecursion: This corresponds to logic that can compute during
the collapsing of the tree. This is in effect the second tail recursive
function.

An instance of a PreRecursion unit and a PostRecursion unit, creates a
complete instance of the original function. As can be seen in figure 3(b), the
shaded nodes which correspond to units of type PostRecursion are created by
mirroring the unshaded nodes. The nodes that are related in this mirroring
are named twins. Thus a twin corresponds to a complete function instance.

LU1 LU1 LU1 LU2 LU2 LU2

Figure 4: Logic unit allocation

All instances of each unit communicate between levels as shown in fig-
ure 3(b), with extra communication between twin units. They all take in
the necessary arguments to compute the values they are to output.

6

One possible layout in hardware for this DAG is an array as shown in
figure 4, with the communication between logic units set so that the concept
of a twin can be seen. The logic to compute the results of a node may be
replicated in proportion to the node population in that level of the graph
to maintain a constant throughput. However there are instances where
the communication between different levels of recursion incurs more cost
than the actual computation. In this case throughput is bounded by the
communication between logic units, and thus throughput remains constant
irrespective of the amount of logic configured. Following this observation
a minimum amount of logic is configured, which is the amount needed to
compute the resulting computation of a single node.

As the depth of recursion increases, our mapping dedicates the minimum
amount of logic needed as dictated by the maximum depth reached. This is
achieved by the use of runtime reconfiguration to configure logic on demand.
Rruntime reconfiguration is a task that requires time orders of magnitude
longer than the time for performing computation. It will not be desirable to
have the system stall and wait for more logic to be reconfigured when logic
for a new recursive level is required.

To combat this problem, we implement a prediction mechanism that
monitors input into the system and detects the need for more logic before
it is actually needed. All input items pass through this prediction circuitry,
before being placed into the compute logic. The collected information is
used to hide as much of the performance penalty introduced by runtime
reconfiguration as possible. The prediction logic will also be responsible for
deciding how much hardware should be allocated when reconfiguring new
logic, in respect to the node population at that depth of recursion.

When the prediction logic of the pipeline decided that more hardware is
needed when a new item enters the system it has time related to the length of
the currently configured pipeline to configure new logic. Prior configuration
of a suitable pipeline depth will make it possible to hide this cost completely.

4 Hardware Model

Implementation of this methodology into a reconfigurable chip has not been
created as we are still in early stages of development. However a simulator
based on the reconfigurable multiple bus model [7] has been developed. Im-
plementation and testing of the validity of the mapping process have been
performed using this simulator. Logic utilisation and time performance re-
sults are not available yet. However our simulations show that the imple-
mented algorithms are correct, that throughput is constant and that the
need for run-time reconfiguration is predicted at the earliest time possible.

7

4.1 System layout

The hardware system being proposed for mapping recursive structures is
an array of basic modules connected by a network using the reconfigurable
multiple bus (RMB) model [7] with some modifications. Each basic module
consists of a processing logic and a memory module. The RMB was chosen
for its ability to have simultaneous communication between processors with-
out any contention, providing there are sufficient physical bandwidth, in a
self-administered manner. The bus system establishes connections using the
bottommost bus, and “compacts” the connections towards the top bus. The
bus system is synchronous with the time to travel from one controller to an
adjacent one being a single clock cycle.

The bus is organised in a series of network controllers that have multiple
buses running through them. Each controller that has a processing element
or memory module attached to it. The system has the following properties:

• The buses are toroidal in design with communication flowing only in
one direction.

• The buses are 4-bit wide, with the system word being 4-bits. This bus
width was chosen to offset the area used in having multiple bus lines
and to allow for smaller units of configuration.

• The buses are synchronous with the time to send a signal from one
controller to an adjacent controller being a single cycle.

• Memory and processors are placed regularly with processors and mem-
ory modules organised in pairs named ”groups”. This is illustrated in
Figure 5.

MemoryLogic Memory Logic Memory Logic Memory

Figure 5: Logic unit and memory layout on the bus

The top most bus in each controller is a special purpose communication
bus. We associate a small LUT that process the packets transmitted on the

8

top bus before sending them to the next controller. The LUT accepts input
from the group connected to the controller and from the bus and outputs the
result back to the group and onto the bus. This bus can be used to perform
carry-type operations without requiring the use of processor modules. The
processor module in the group associated with each controller is used to
program the LUT at run-time.

The availability of multiple bus lines allows for parallel communication
between different groups of nodes without contention.

4.2 Pipelining of instructions

The special-purpose top bus of the RMB with embedded LUTs is typically
used to simulate operations on words greater than 4 bits without the need
to access the processor modules. The LUT associated with each controller
is programmed appropriately for the operation in progress. In an addition
operation the least significant bits are processed first and the carry bit is
propagated to the controller with higher significant bits, while in a compar-
ison operation the bits are processed in the reverse order. The example in
Figure 6 shows an 8-bit greater-than comparison is made between two num-
bers 11001101 and 11001001 using only 4 processors instead of the 7 needed
if a tree was to be built. The smaller squares represent the LUTs and the
larger squares represent processors. G is the greater than result value, E the
equal result value.

E

11,11

E

(a) First operation

E

00,00

E

(b) Second operation

E

11,01

G

(c) Third operation

G

01,01

E

(d) Fourth operation

G

01,01

(e) Final result

Figure 6: Pipelining of a greater than instruction.

In the second stage of pipelined comparison, shown in Figure 6b., the first
processor is now available for comparing the next two data values, there by
allowing for pipelining of instructions. Pipelining instructions can be used

9

for streaming data through the same instruction, and we use in the merge
sort algorithm where most processors only perform comparison and write
operations.

The correct operation of a pipelined instruction is achieved by sending
fragments of a complete word into different controllers at different times.
We use the knowledge of the distance between controllers, and therefore the
time to travel between them, to ensure that processors send data into the
bus at the same time that the previous controller sends data in. This can
be seen in Figure 6.

This model was chosen for its high level of connectivity. The RMB
is a simple network without complex routing protocols. The system also
provides parallelism that makes it suitable for hiding the latency of run-
time reconfiguration of logic units.

5 Merge Sort Algorithm

Merge sort is a well known recursive algorithm. Starting with a set of inputs
the algorithm reduces the set into smaller problem sets recursively until a set
of suitable size is reached which it then sorts. After this the resulting sorted
sets are merged together recursively until a single sorted set is obtained.

Conceptually the recursion moves in two directions. Starting at a single
point it recursively divides the set into smaller partitions until a truncation
point is reached. These sets are then merged together. It is observed that
while dividing the sets no actual operations are done on the values contained
in these sets. With this observation it is possible to remove the top half of
the recursive graph that divides the sets and input values into each of the
the nodes that are left.

Thus for an input set that contains 8 values we have a recursive tree as
shown in figure 7.

Figure 7: Operation of the merge sort algorithm

Similar to Orenstein et al [9] we allocate a single logic unit per level
of this tree. This is shown in figure 8, with the node that the logic unit

10

controlling that level is currently working on being shaded. As can be seen
each logic unit is not working at the beginning but begins working as values
filter towards it.

(a) First
bucket
operation

(b) Second
bucket
operation

(c) Third
bucket
operation

(d) Fourth
bucket
operation

Figure 8: Merge sort operation over time

For this mapping we will assume the size of the set at the truncation
point is 1 and hence there is no sort operation done at all.

5.1 Mapping

The structure of this problem is such that we only need logic units of type
2. Each logic unit will buffer a certain number of values n before beginning
to merge what has been buffered with the next n values that it receives.

The first logic unit will buffer 1 value and then merge this with the next
value. The next logic unit will buffer 2 values and so on. Logic unit k in
the array will buffer 2k values.

5.2 Hardware Allocation

The recursive tree is largest at the top most level of the tree and then
collapses into a single node. As shown in figure 8, none of these nodes will
be operating in parallel. Furthermore it can be shown that no nodes in the
tree will ever be operating in parallel. Thus no extra hardware per level is
required to maintain constant throughput. For this mapping one logic unit
will be allocated per level of the graph.

5.3 Prediction Mechanism

If the total size of the input stream is known it is trivial to find the depth
of recursion for the entire operation, however for this implementation we
assume that the size of the input stream is not known. Therefore at a given
point in the input stream we require a way to predict a change in the depth
of recursion to enable an area to be reconfigured.

We will assign the following variables:

11

D(t): The depth of the recursion at time t

N(t): The number of elements inputted into the system at time t

Looking at the structure of the graph and therefore nature of the recur-
sive call we can see that the following equation is true:

D(t) = dlog2 N(t)e

By calculating the value of D(t) at the input of every value, and then
comparing it with the previous value of D(t) the need for reconfiguration
can be detected.

A value will enter the system that will cause a need for reconfiguration
just as the previously last configured logic unit begins outputting results.
This is shown in figure 9(a) at a time t. These outputted values pass into a
logic unit that buffers them until it knows these are the final result values,
or is reconfigured to operate the merge sort algorithm.

As shown in figure 9(b), this area will not be needed until the second
stream to be merged arrives at this unconfigured area of logic. This will
occur at a time that is no less than 3t

2 . By configuring a high enough number
of logic units such that the initial value of t

2 is less than reconfiguration time
the cost of reconfiguration can be completely hidden.

(a) System at time t. The
dashed node corresponds to
unconfigured logic.

(b) System at time t2 where

t2 = 3t

2

Figure 9: Stages of system operation during execution.

5.4 Implementation Layout

During regular system operation, we have the logic units arranged in an
array as shown in figure 10. The shaded node is the logic unit controlling
reconfiguration. It should be noted that unlike figure 8 there is only a single
logic unit type on the array. This is due to the fact that the graph does not
expand and then collapse but only collapses as shown in figure 8.

12

Figure 10: System during operation

When the need for reconfiguration arises the reconfiguration unit begins
reconfiguring a new logic unit to compute a further depth of the tree. This
is shown in figure 11. As seen in this diagram, the reconfiguration unit(the
shaded node) reconfigures the next logic unit(shown at the end of the array).
The communication network that the RMB provides allows for this to occur
easily.

�����������
�����������
�����������

�����������
�����������
�����������

Figure 11: System during reconfiguration

6 Strassen’s Matrix Multiplication Algorithm

Strassen’s Matrix Multiplication algorithm [11] is a recursive matrix mul-
tiplication algorithm that reduces the complexity of matrix multiplication
to O(N log2(7)) from O(N 3) which is the complexity of conventional matrix
multiplication algorithms.

The algorithm begins by reducing the larger original multiplication re-
cursively into 7 smaller matrix multiplications until a matrices of a certain
cut off size are reached. From here the matrices are multiplied and then
arithmetic operations are done on the results of these multiplications until a
single result matrix is obtained. It is a simple divide and conquer algorithm.

Here are the arithmetic operations that are done on the matrices, with
the following matrix multiplication with a, b, c, d, e, f, g and h being quad-
rants in the initial matrices to be multiplied.

(

r s

t u

)

=

(

a b

c d

)(

e g

f h

)

(1)

It can be observed from this that the following equations are true:

13

r = ae + bf

s = ag + bh

t = ce + df

u = cg + dh

(2)

From these equations the following has been derived.

r = P5 + P4 − P2 + P6

s = P1 + P2

t = P3 + P4

u = P5 + P1 − P3 − P7

(3)

where

P1 = A1 · B1

P2 = A2 · B2

P3 = A3 · B3

P4 = A4 · B4

P5 = A5 · B5

P6 = A6 · B6

P7 = A7 · B7

(4)

where

A1 = a B1 = g − h

A2 = a + b B2 = h

A3 = c + d B3 = e

A4 = d B4 = f − e

A5 = a + d B5 = e + h

A6 = b − d B6 = f + h

A7 = a − c B7 = e + g

(5)

We observe the following features of the algorithm in respect to it’s
recursive properties:

• The recursive depth is known at the beginning of execution as the size
of the matrices must be known

• It is not tail recursive (as operations occur while splitting into smaller
multiplications and in combining the results)

14

By knowing the depth of recursion at the beginning of execution we can
dismiss the need for any prediction mechanisms for runtime reconfiguration.
The correct amount of area will be configured as the execution begins and
once it has been configured it need not be reconfigured.

The tail recursion is dealt with by the application of two separate logic
types as described earlier. One logic type LT1 will control the dividing of
the matrices (equations (5)) and the actual multiplication at the truncation
point, and the other logic type LT2 will control the merging of results from
these multiplications(equations (3)).









0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15









Figure 12: Example 4x4 matrix

(

0 2 8 10 1 3 9 11 4 6 12 14 5 7 13 15
)

Figure 13: Array of values reordered

6.1 Stream Reordering

Examining the algorithm in the expansion phase of the recursion, we observe
that the values needed for operations are not in continuous areas of the
stream if the matrix is inputted in row major or column major order. This
creates large numbers of values that need to be buffered. As can be observed
in a N ×N matrix A, the first set of operations during the expansion phase
of Strassen’s algorithm would involve arithmetic on the values A(0,0), A(0, N

2
),

A(N
2

,0) and A(N
2

, N
2

). The positions of these values in the stream of size N 2

for a row-major ordering would be 0, N
2 , N2

2 and N2+N
2 . Operating on these

values would clearly involve the buffering of over half the stream. As N

increases, the detrimental performance impact of this would grow rapidly.
We propose a new ordering scheme to overcome this problem.

As can be seen Strassen’s algorithm breaks a matrix into 4 sub-matrices
which then are operated on to produce 7 matrices. The process is repeated
with these sub-matrices until the truncation point of the recursion is reached.

Given 4 sub matrices A,B,C,D, all the operations between the matrices
occur on elements in the same position in each matrix, ie. any operation will

15

involve only (Ai,j , Bi,j, Ci,j , Di,j)∀(i, j). Our reordering scheme attempts to
place these 4 values as close to each other as possible, while still maintaining
the matrices that will be finally multiplied in contiguous memory blocks.

This reordering is achieved by taking a standard level-ordering such as
Ahnentafel indexing and reversing the order in which the numbers per level
are put together.

As can be seen the higher order portion of the final index produced is
based on the lowest depth of the tree, not the highest depth as is usually the
case. An example of this for the matrix in figure 12, is given in figure 13.

By placing the values in this order it is possible to execute the matrix
multiplication in a streaming manner, and with enough processors to execute
the entire procedure with only a small and constant amount of buffering.

Examination of the reordered array shows that A(0,0), B(0,0), C(0,0) and
D(0,0), are the first 4 values in the array. They are then followed by A(0,1),
B(0,1), C(0,1) and D(0,1).

The first 4 values will produce the values for A1:(0,0), A2:(0,0) and so on
until A7:(0,0) with the appropriate arithmetic equations. The next 4 will
create A1:(0,1), A2:(0,1) and so on until A7:(0,1).

When the next stage of recursion attempts to compute the values for the
sub matrices produced by A1, it will find they are not in contiguous blocks
of memory as was the case in the first recursion, but are separated by a
distance of 7 values.

This distance increases with the number of recursion and conforms to
the geometric sequence of 7i where i is the depth of recursion, starting at 0.

b7la l l l l l l lb1 b2 b3 b4 b5 b6 b7

Figure 14: Farm expansion and layout

6.2 Hardware Allocation

This distance presents another problem. A logic unit will be required to
buffer a significant number of values at a greater depth of recursion, but once
it reaches a certain point it is capable of outputting 7 result values for each
value that is inputted. This shows that the bottleneck in the computation
shifts from the communication system to the processing hardware during
computation. This distance problem is removed by the allocation of more
than one processor per level.

As discussed earlier, the distance between related values increases 7 fold
between each level of recursion. A logic unit la will be sending values to
a single unit lb normally. However if it sent values to 7 different units

16

lb1, · · · , lb7 using a round robin type scheduling for the destination of each
value outputted, this distance problem would be removed. This results in
a layout as shown in figure 14. The processor la sends all values to the
processor lb1. This value is placed onto the LUT communication row that
was described earlier until the end of these 7 processors, with each one
taking only the value it is scheduled to take. The arrangement of logic units
is named a farm, and a logic unit sending to the farm is named a farm
expansion. The value being passed through the LUT row never leaves the
farm. A similar system is used for collapsing the tree, but instead the size
of a farm is 4 units.

The amount of buffering and therefore the throughput can be tuned by
adjusting the frequency of farm expansions throughout the system. We will
now examine the effects of different frequencies. With a farm expansion at
every level starting at a level k, the amount of buffering can be kept constant
throughout the operation. It should be observed that the minimum number
of values that will be buffered is 8, 1 value for each quadrant of each matrix
A and B.

We will begin by introducing a variable D, which is the maximum depth
of recursion.

6.2.1 No farm expansions

With one processor per level we observe the following:
Number of processors used:

2D

Maximum amount of buffering needed:

8 × 7D−1

6.2.2 A farm expansion at every opportunity

Number of processors used:

∑

0≤i<D

(

7i + 4i
)

=
7D−1 − 1

6
+

4D−1 − 1

3

Maximum amount of buffering needed:

8

6.2.3 A farm expansion at every opportunity after a level k

Number of processors used:

17

∑

0≤i<D−k

(

7i + 4i
)

=
7D−k−1 − 1

6
+

4D−k−1 − 1

3

Maximum amount of buffering needed:

8 × 7k

6.2.4 A farm expansion at every jth level

Number of processors used:

j ×
∑

0≤i< D
j

(

7i + 4i
)

= j ×
7

D
j − 1

6
+

4
D
j − 1

3

Maximum amount of buffering needed:

8 × 7D−D
j

2LT1 LT1 LT1 LT2 LT2 LT

Figure 15: Strassen array layout

6.3 Implementation Layout

As with the merge operation, we have the logic units arranged in an array
as shown in figure 15.

The two different logic units should be noted, as well as the dashed line
connecting them. This is not a connection on the network, but is drawn to
show which logic unit is coupled with the logic unit of the other type (ie.
working on the same level of recursion).

7 Conclusion

A method for mapping basic recursive structures to run-time reconfigurable
hardware has been demonstrated. Two case studies have been presented to
show the methods validity and correctness, based on an ability to predict the
need for run-time reconfiguration well before it is required. Whereas only
basic recursive structures have been mapped to reconfigurable hardware it
is believed that similar techniques can be used to map more complex and
general recursive structures. The cases of unbalanced recursion and recursive
problems where prediction may not be optimal, as in the case of merge-sort,
as topics for future research.

18

References

[1] Handle-C language reference manual. http://www.celoxica.com/.
[2] J. Arsac and Y. Kodrato. Some techniques for recursion removal from recursive

functions. pages 295–322, 1982.
[3] J. L. Bentley and M. I. Shamos. Divide-and-conquer in multidimensional

space. In Proceedings of the eighth annual ACM symposium on Theory of
computing, pages 220–230. ACM Press, 1976.

[4] K. Bondalapati and V. K. Prasanna. Loop pipelining and optimization for
run time reconfiguration. Reconfigurable Architectures Workshop, May 2000.

[5] H. ElGindy and G. Ferizis. On hiding latency in reconfigurable systems: the
case of merge-sort fo r an fpga-based system. In Proceedings of the 2003
ACM/SIGDA eleventh international symposium on Field programmable gate
arrays, pages 242–242. ACM Press, 2003.

[6] H. ElGindy and G. Ferizis. On Improving the Memory Access Patterns During
The Execution of Stra ssen’s Matrix Multiplication Algorithm. In Twenty-
Seventh Australasian Computer Science Conference, volume 27, 2004.

[7] H. ElGindy, A. K. Somani, H. Schroder, H. Schmeck, and A. Spray. RMB -
A Reconfigurable Multiple Bus Network. Proceedings of the IEEE Symposium
on High-Performance Computer Architecure, pages 108–117, 1996.

[8] Y. A. Liu and S. D. Stoller. From Recursion to Iteration: What are the Opti-
mizations? In Partial Evaluation and Semantic-Based Program Manipulation,
pages 73–82, 2000.

[9] J. Orenstein, T. Merret, and L. Devroye. Linear sorting with O(log N) pro-
cessors. BIT, 23:170–180, 1983.

[10] P. Rondogiannis and W. W. Wadge. First-order functional languages and
intensional logic. Journal of Functional Programming, 7(1):73–101, 1997.

[11] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13:354–356, 1969.

19

