
Multicast Resilience with Quality of Service

Guarantees

William Lau
�
, Sanjay Jha

�
and Suman Banerjee

�

�
School of Computer Science and Engineering

The University of New South Wales, Sydney, NSW 2052, Australia
�

Department of Computer Sciences

University of Wisconsin-Madison, Madison, WI 53706, USA

Email: wlau,sjha@cse.unsw.edu.au, suman@cs.wisc.edu

UNSW-CSE-TR-0408

February 2004



Abstract

This paper defines new algorithms for providing bandwidth guaranteed multicast support to applications that

require resilience in presence of link failures in the network. Our techniques are applicable for networks that are

capable of native network-layer multicast as well as networks that have been enhanced to support infrastructure-

based overlay multicast. For efficient multicast restoration, which are necessary for such a construction, we based

our techniques on online computation and dynamic routing. We define new Integer Linear Programming (ILP)

solutions to the problem, and from experience with the ILP solutions, we derive heuristics that are used to form a

new polynomial-time algorithm.

Results from our experiments show that our proposed mechanisms can significantly improve the bandwidth

efficiency (by 55%) and request acceptance rate (by a factor of 1.5) over alternative mechanisms. The benefits are

comparable for infrastructure-based overlay multicast scenarios. Our results also indicate that the proposed heuristics

solution performs within 12% of the ILP formulation solution with respect to different metrics.



I. INTRODUCTION

We propose algorithms that provide bandwidth guaranteed multicast path construction as well as efficient restora-

tion for applications with quality of service (QoS) requirements. Our algorithms will allow network and application

service providers to construct resilient multicast paths for large group distribution applications. The proposed

techniques can be implemented entirely in the network layer or as an overlay in the provider’s network. In our

work we consider bandwidth requirements of multicast applications as well as efficient failover of these bandwidth

guaranteed paths in presence of failures in the network.

The basic problem we are trying to solve can be explained with a simple example. Consider a wide-area video

broadcast of a popular program where clients register with the content provider for high quality data streaming.

Realizing that a large group of clients have registered, the content provider requests for a relatively long-lived

multicast connection from the network provider. Given the requirements, the network provider sets up the appropriate

multicast tree with bandwidth guarantee, and additionally provides failover guarantee, i.e. immediate failover to a

backup path (tree) in presence of network failures. The problem now is to construct a primary multicast service

tree for normal traffic delivery and use restoration strategies to guarantee traffic recovery over failures within the

network. This involves pre-planning the routes to use and bandwidth required when failure occurs.

We present only single link failures in this paper, and the ideas presented in this paper can be extended to

single node failure with minor modifications. Single failures are the most common type of failure, and majority of

protection/restoration strategies [1], [2], [3] cover single failures only.

We propose new strategies for multicast tree restoration based on online computation — we assume that multicast

requests arrive at the network provider in a sequence and we provision each connection in that sequence. The

multicast paths chosen for the service and the backup path take into account the previously assigned connections

(multicast and unicast) and their implications on residual network capacity. Each request computation does not

affect previously calculated requests and is not dependent on future requests.

We first formulate the new strategies as Integer Linear Programming (ILP) problems. While ILPs can be solved

optimally, they are infeasible due to the exponential computation overheads. Evaluating and analyzing the results

from the ILP solutions, we derive new heuristics that aims to improve network efficiency. Using these heuristics, we

propose a new polynomial-time algorithm for both network-layer multicast as well as infrastructure-based overlay

multicast.

Results from our experiments show that:

1) Our proposed techniques improve bandwidth efficiency by upto 55% and request acceptance rate by a factor

of 1.5 in comparison to other alternative approaches for multicast tree restoration for network-layer multicast

scenarios. We observe similar benefits for infrastructure-based overlay multicast scenarios.

2) The heuristic solution achieves performance that are fairly close to the optimal solution (achieved by the ILP

formulation). For example, the total bandwidth requirement is within 10% of the ILP-based solution and the

acceptance rate is within 12%.



The rest of this paper is as follows. We first present the multicast service model in Section II. The algorithms used

to calculate the service tree are described in section III. The new restoration strategies are introduced in section IV,

and the ILP formulations of the strategies are given in section V. The experimental setup is described in section VI

and the results from the ILPs are evaluated and analyzed in section VII. A new heuristic algorithm is presented

in section VIII, followed by performance analysis of the algorithm with the ILP solutions and another heuristic

algorithm in section IX. The heuristic restoration algorithm is extended to work for overlay-based multicast support

network environments in section X and the results are presented in section XI. Related works are discussed in

section XII and then the paper concludes in Section XIII.

II. MULTICAST SERVICE MODEL

A multicast network will carry traffic for a variety of applications. In this paper, we consider multicast connections

that are relatively long lived and do not have rapid changing group membership. These connections have much

shorter life-time than traditional unicast leased lines but have much longer life-time than the logical TCP connections.

The network provider will be required to provision some bandwidth for these relatively long lived multicast

sessions using centralized or distributed server architectures. The types of applications that fit in this category

are video conferencing, multimedia broadcast (e.g. cable TV. The membership and bandwidth requirements for

such applications are relatively static and the life-time of the multicast connections required are relatively long (one

hour or more).

Other types of multicast connections that are more dynamic or does not require bandwidth restoration guarantees

are best supported using other fully distributed best-effort architectures [4], [5], [6], [7], [8]. Recently several

two-tier overlay architectures have been proposed as a possible application layer solution for providing multicast

services across the Internet [8], [5]. The Overlay Multicast Network Infrastructure (OMNI) [8] consists of a set of

devices called Multicast service Nodes (MSNs) distributed in the network and provides efficient data distribution

services to a set of end hosts. An end-host (client) subscribes with a single MSN to receive multicast data service.

MSNs use a distributed algorithm to organize themselves to form a multicast delivery backbone. The data delivery

path used in the overlay backbone is independent of the data delivery path used by the end-host to the MSN.

Algorithms and mechanisms proposed in this work can be implemented in each network, either in network layer

or as infrastructure based overlay e.g. OMNI.

The restoration model used in this work covers single link failure. The objective is to provide recovery along with

bandwidth guarantees (as per original Service Level Agreement) for multicast connections. For a single domain

(network provider) case, we assume appropriate traffic engineering support based on network mechanisms such as

MPLS [9] and signaling protocols, such as RSVP-TE [10].

The traditional approach to restoration strategies are usually offline computation where all the requests are assumed

to be available at the same time and computed together. Although offline algorithms can potentially achieve better

bandwidth efficiency by taking all the requests into account, it is not suitable for on-demand multicast connections

due to the high computation complexity. Therefore, we take the online computation approach.



III. MULTICAST SERVICE TREE CONSTRUCTION ALGORITHMS

Our basic strategy to provide quick failover of multicast connections in presence of network failures is to construct

a basic multicast service tree, and appropriate backup path(s) that protects the service tree against potential single

link failures in the network. Like restoration techniques proposed by other researchers in the context of bandwidth

guaranteed unicast paths [11], [12], we assume that multiple simultaneous failures in a given network is fairly

unlikely and hence ignored. We use separate algorithms for calculating the service multicast tree and the backup

multicast tree. We first compute an appropriate service tree and subsequently compute efficient paths to restore

traffic during a single link failure. An alternative approach would be to jointly compute the service and the backup

paths. However, calculating the optimal least cost service tree is NP-Hard, and hence a joint computation would

only increase the complexity of this problem.

In this section, we describe the algorithms used to compute the multicast service tree. We have defined an ILP

to compute the optimal least cost multicast service tree , but ILP-based solution is a not viable for on-demand

applications due to high computation costs. The ILP formulation also does not work for infrastructure overlay

multicast networks.

Based on our experience with this formulation we propose a polynomial-time heuristic algorithm to compute

the multicast service tree, and this algorithm also works for infrastructure overlay multicast networks. We call this

heuristic algorithm, Multicast Logical Tree Approximation (MLTA) shown in Algorithm 1.

A. ILP Formulation for Multicast Service Tree

First, we introduce a new ILP formulation used to compute the least cost service multicast tree.
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Consider the cost of using link FH/ -JISK is denoted by � 
�� (normally link weight times the bandwidth
N

required)

and the decision variable �T
�� determines if the link is used in the multicast tree or not. The objective function

(equation 1) is thus to minimize the cost of the multicast tree that connects the source 6 to the set of destinations



< . A tree can be seen as a union of unicast paths that connects the source to destinations with the constraint that

no loop is formed as a result of the union. Equations 2, 3, and 4 define the constraint for conservation of flows

for the unicast paths between source and the destinations. Equation 5 produces the union of the " variables to form

the multicast tree represented by the � variables. The capacity constraints are defined by equation 6 and the binary

constraints for the decision variables defined by equation 7. The available bandwidth on the link is denoted by O 
��
and the set of links denoted by M . If the cost for each link is non-zero, we claim this ILP formulation produces a

least cost tree. We will attempt to prove this by contradiction. Lets assume an optimal solution (minimum) exists

for the ILP formulation which includes a loop for variable � . Removing one of the segments that forms the loop

will result in a reduction in the objective equation (non-zero cost links) while at the same time eliminates the loop.

The solution will still be feasible as it satisfies all the constraints required (reachability is retained). Therefore,

we have found a feasible solution that has lower cost than the optimal solution which contradicts with the initial

assumption. Thus an optimal solution in this ILP formulation cannot contain any loops, and must form a tree. The

tree by definition of the objective function must be the least cost solution with the constraint that the source is

connected to all the destinations.

B. Heuristic Algorithm for Multicast Service Tree

There are many approximation algorithms [13], [14] for the least cost multicast tree problem, however, they do

not work for infrastructure overlay multicast networks. We propose a new approximation algorithm for the least

cost multicast tree problem that also works for the infrastructure overlay multicast networks.

Data : Network Graph: ���������
	 ; Request � ;
Result : New Network Graph: �����
����	 ; Logical Tree � ;
Set cost of all links � that have ������� to � ;

Initialize ����� �"!$#&% ;
for each '�(*) do

If '�(+����� skip to next destination;

Find the shortest path ,.- from any node in ����� to ' ;
�
�/,0-213� ;
Update �����
����	 for using the links in , - and bandwidth availability of the links have to be re-checked;

Find set of connected nodes �����547698 in , - and let �����:�;�����
476<8*=>����� ;

end

Algorithm 1: Multicast Logical Tree Approximation

Let the inputs be: the network graph ? F 2 - M K , and the request that includes the required information (source,

destination, bandwidth). The outputs of the algorithm be: the logical tree, and the updated resource state of the

network graph. 2 denotes the set of vertexes and M the set of edges. The request is to build a logical tree from

source node 6 to a set of destination nodes < . The general idea of MLTA is to create a logical multicast tree. A

logical tree is a connection of logical nodes made up by the source node, the destination nodes, and the Multicast



Service Nodes (MSNs). The logical links of the tree consists of a physical path between the logical nodes. Two

logical links can traverse the same physical link.

We first set all links � without enough available bandwidth O�� to have infinite cost. The requested bandwidth

is denoted by
N
. The source node 6 is assumed to be a MSN and is by default the only MSN in the set of

connected nodes ( ����� ) initially. For each destination, if the destination is part of the tree already and is a MSN

( 8 0������ ) then nothing more needs to be done for this destination node. Otherwise, we find the shortest path

from each connected node to the destination. The least cost path is chosen and is included in the logical tree. Only

the MSN nodes that the path traversed will be added to the set of connected nodes. The resource used by the path

is updated in the network resource state. We also need to check the availability of bandwidth of these links used

on the path after the resource allocation. If the available bandwidth for a link is less than
N

then this link cannot

be used by the logical tree anymore, hence the cost of the link is set to infinity. Otherwise the cost is set to
N
. The

logical tree is completed after all the destination nodes are connected to the tree. This algorithm tries to exploit the

MSN’s multicast capability to reduce bandwidth usage as much as possible. The time-complexity of this algorithm

is ��F
	 <�	�	 
�	�	�2�	 ������	�2�	���	 M�	 K where 
 denotes the set of MSNs in the network. Polynomial-time algorithms like

MLTA scales better than ILP-based solutions for large networks with large multicast sizes. Additionally our results

in Section VII show that the performance of this algorithm is fairly close to the optimal solution obtained by the

ILP for representative scenarios.

IV. MULTICAST RESTORATION STRATEGIES

Give the service tree, the only task left is to provide restoration strategies that guarantee traffic recovery during

single link failures. In this paper, we use the state-dependent restoration strategies. In state dependent strategies,

the route that traffic takes from source to destination is dependent on the failure state of the network. Thus for

different link failures, the route taken to restore traffic from source to the set of destinations can be different.

In the state independent approach, the route used to restore traffic from source to a destination must be disjoint

(link disjoint in our case) from the route used in the service tree. This is not as flexible as the state-dependent

approach where the only mandatory requirement for the backup route is that it must not traverse the failed

components of the failure. We choose to use state-dependent due to this flexibility.

Firstly, we define a simple restoration strategy that is used for comparison with more sophisticated restoration

strategies. We call this the Simple Restoration. Simple Restoration uses unicast connections to restore traffic from

the source to the destinations affected by the failure. Thus for each possible failure scenario, we calculate a set

of unicast connections that restores traffic. Assuming single link failures means that only one failure scenario can

occur at any one time, the backup connections that restore traffic in one failure scenario can use the same backup

bandwidth as backup connections in other failure scenarios. The sharing of the backup bandwidth is the main

motivation for Simple Restoration.

An example is used to illustrate how Simple Restoration behave. Suppose we have a service tree as shown in

figure 1. Node O is the source and nodes � - ? - M are the destinations. The dark line indicates the service tree
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Fig. 1. Example: Service tree with link failure
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Fig. 2. Example: Simple Restoration
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Fig. 3. Example: Line Restoration
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Fig. 4. Example: Whole-Tree Restoration

branches. The link between O and � fails and is indicated by the cross on the link. One possible solution using

Simple Restoration is given in figure 2. Since M is not affected by the failure, it continues to be served by the

original service tree, which is indicated by the black arrow lines. For each of the destinations ( � and ? ) affected

by the failure, a unicast path between the source and the destination is established to recover the traffic, which is

indicated by the grey arrow lines.

Another known restoration strategy is based on Line Restoration [3]. Line Restoration re-connects the service

tree around the failed components. For link failure, it finds another path segment that connects from the start of the

failed link (preceding node) to the end of the failed link (succeeding node). The motivations of Line Restoration

are:

1) Reuses the service tree’s resource for restoring traffic.

2) Retains multicast efficiency when restoring traffic.

However, many related works [15], [16], [17], [18] on the restoration in the context of unicast shows that line

restoration is inferior to path restoration because path restoration provide more routing flexibility for restoring

traffic between the source and destination (Line restoration confines the restoration segment to be near the failed

components). Results in section VII show that line restoration in multicast performs better than Simple Restoration

that uses (unicast) path restoration. This is mainly due to the motivations mentioned above.

For Line Restoration, the solution for the example is illustrated in figure 3. The link between nodes O and �
fails thus the solution is to connect the nodes back to restore traffic flow. A line segment from O to � to � is used
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Fig. 5. Example: Sub-Tree Restoration
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Fig. 6. Example: Skeleton Restoration

in this case, which is shown by the grey arrow lines. The rest of the service tree remains the same as indicated by

the black arrow lines.

For retaining multicast efficiency but also providing flexibility to restore traffic, we propose new restoration

strategies based on a new approach we call Tree Restoration. Tree Restoration uses a new backup multicast tree to

restore traffic during failure. This differs to Line Restoration that fix the service tree during the failure. We propose

three variations of the Tree Restoration approach:

1) Whole-Tree Restoration: Recompute a whole new backup tree for each failure.

2) Whole-Tree with Path Intermix Restoration: Recompute a whole new backup tree for each failure using the

path intermix [19] concept.

3) Sub-Tree Restoration: Recompute a new tree for the destinations disconnected from the service tree due to

the failure.

4) Skeleton-Tree Restoration: a new backup tree that reuses the unaffected portion of the service tree (the skeleton

of the new tree), and connects the affected destinations to the skeleton tree.

Whole-Tree Restoration has complete flexibility in finding a new tree while retaining multicast efficiency. Whole-

Tree Restoration requires traffic to be switched from the service tree to the backup tree during failure. This will

cause traffic disruption for all destinations when switching. The Whole-Tree Restoration solution for the example is

shown in figure 4. Although destination M is not affected by the failure, M will still be part of the backup tree and

will receive traffic from this tree during the failure. The new backup tree connects to all destinations as indicated

by the grey arrow lines.

A method called path intermix [19] allows the service tree’s bandwidth to be re-used by the backup trees

that protect this service tree during failure. By applying path intermix to the Whole-Tree Restoration, the service

bandwidth can be utilized and multicast efficiency retained. Path-intermix encourages links on the service tree to

be used by putting zero cost on the links when computing the backup trees. This gives freedom for the algorithms

to choose the links that minimize bandwidth usage. However, path intermix can only be applied to the strategies

that switch traffic off the service tree during failure. The solution is essentially the same as Whole-Tree Restoration

except the cost of using the links may be different.

Sub-Tree Restoration only computes a tree (sub-tree) for the destinations disconnected from the service tree during



Strategy Multicast Reuse Service B/W

Simple Restoration No Yes

Line Restoration Yes Yes

Whole-Tree Yes No

Sub-Tree Yes Yes

Skeleton-Tree Yes Yes

Whole-Tree Path Intermix Yes Yes

TABLE I

MULTICAST RESTORATION STRATEGIES

the failure. Sub-Tree requires traffic to be forwarded along two trees during failure. The traffic is still forwarded

along the service tree while the backup tree will also be forwarded with traffic. Multicasting efficiency is retained

and the service bandwidth is utilized. However, redundancy can exist due to dual tree usage during failure. The

Sub-Tree solution for the example is shown in figure 5. The unaffected destinations ( M ) continue to receive traffic

from the service tree as indicated by the black arrow lines. The affected destinations ( � and ? ) receive traffic from

a backup sub-tree shown by the grey arrow lines.

Skeleton-Tree Restoration can be seen as restricted form of Whole-Tree Restoration with path intermix. The

difference is that Skeleton-Tree Restoration forces the backup tree to use the resource of the unaffected portion

of the service tree. The unaffected portion of the service tree forms the skeleton for the backup tree that is yet

to be completed. The algorithm then decides the best way to connect the affected destinations to the backup tree.

The affected portion (not including the failed components) of the service tree can be reused with zero cost to the

backup tree. The Skeleton-Tree solution for the example is illustrated in figure 6. Destination M is not affected by

the failure thus the path from the source to M becomes the skeleton for the backup tree. Destinations � and ? are

connected back to the skeleton tree. The skeleton tree is shown in the figure 6 by the grey arrow lines. During the

failure, the traffic is switched from the service tree to the backup tree.

Using a tree for backup retains the benefits of multicasting while reusing part of the service tree also reduces

backup bandwidth requirement. Sharing backup bandwidth between failure scenarios reduce the backup bandwidth

even more. The motivation for this paper is to study the performance between these different strategies. A summary

of the different restoration strategies are given in table I.

V. ILP FORMULATIONS FOR RESTORATION STRATEGIES

This this section, we convert the restoration strategies into new ILP problems. The ILP formulations are used to

evaluate and analyze the performance and behaviour of the different restoration strategies. We use this analysis to

derive new heuristics that we use to develop heuristic algorithms.



TABLE II

MATHEMATICAL NOTATIONS

Symbol Definition Symbol Definition

� set of vertexes. � set of edges.

�����
����	 The network graph ��� set of failure scenarios.
� A failure scenario in ��� . � service tree.

����� set of failures affecting � # source node.

' A destination node in the request. ) The set of destination nodes in the request.

�����
	 	 link connecting � to 	 . � requested bandwidth.

����
 bandwidth available in link. ����
 backup bandwidth in link.

�����
 backup bandwidth required in ��� �
	 	 for � . � -� set of edges connecting source to ' on � .

� � set of failed edges in � . � � set of edges on � .

) � set of destination nodes affected by � . �����
 cost for using ��� �
	 	 in � .

Common notations used in the ILP formulations are given in Table II. We present the ILP formulations in the

following order: Simple Restoration, Line Restoration, Whole-Tree Restoration, Whole-Tree Restoration with Path

Intermix, Sub-Tree Restoration, and Skeleton-Tree Restoration.

A. Simple Restoration ILP Formulation

For each failure that affects the service tree, we find the list of affected destinations and then find the least cost

unicast backup path to each of these destinations. Unicast backup paths from different failure scenarios can share

backup bandwidth with each other, hence, the optimal solution can be reached by computing all the unicast backup

paths together in the ILP formulation.
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The objective function is to minimize the additional backup bandwidth requirement. Let � 
�� represents the

additional backup bandwidth required on link FH/ -JILK . For each failure scenario affecting the service tree ( ��0 ����� ),

the set of affected destinations is defined by < � . We use a unicast path to restore the connection back from the

source 6 to the destinations 8 0 < � . Let " � $
�� represent that decision variable (equation 18) for whether link FH/ -JILK
should be used for failure scenario � to recover traffic to destination 8 . Equations 10, 11, and 12 are the flow

conservation constraints for the unicast path. Equations 13 and 14 are for preventing loops in the unicast path.

Each failure scenario requires certain backup bandwidth on each link to restore traffic. The backup bandwidth

allocation on each link is the maximum of all failure scenarios’ backup bandwidth requirement on the link. For

each failure scenario that affects the service tree, unicast paths are used to retire traffic and these paths require

backup bandwidth on the links traversed. The sum of the bandwidth on link FH/ -JILK used by these unicast paths for

failure scenario � plus the current bandwidth requirement of failure � has on the link, minus the current backup

bandwidth allocated on the link, gives the additional backup bandwidth requirement as a result of failure � . There are

many different failure scenarios affecting the service tree so each of them might require different additional backup

bandwidth on the same link. Since the failures are independent of each other, the additional backup bandwidth that

needs to be allocated on the link is the maximum additional backup bandwidth out of all the failure scenarios.

This is expressed by the constraint in equation 15 and equation 19 prevents negative additional backup bandwidth

requirements. Equation 16 ensures that the additional bandwidth requirement must be within the bandwidth available



on the link. Equation 17 prevents any of the failed links ( M � ) from being used.

B. Line Restoration ILP Formulation

Line restoration aims to reconnect the service tree around the failure. For the optimal solution, the ILP formulation

computes all the line segments protecting each possible failure affecting the service tree together.
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This IP formulation is similar to Simple Restoration except the path is not from source to affected destinations,

but from the node preceding the failure to the nodes succeeding the failure. For single link failure, suppose the

failed link on the service tree is F �%-�� K thus the preceding node is � and succeeding node is � . The objective function

(equation 20) minimizes the additional backup bandwidth requirement in the network. Equations 21, 22, and 23,

are for flow conservation for the path segment that restores the traffic. Equations 24 and 25 are for preventing

loops in the path segment.

The additional backup bandwidth required in each link is the maximum of the additional backup bandwidth

caused by the failure scenarios, this is expressed in equation 26. The cost of using a link in failure scenario � is

given by �
�
�� :
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� - otherwise.

The first case occurs when a link can be used with no additional cost because there is enough backup bandwidth

on the link to accommodate the backup bandwidth already required by this failure scenario with addition of the

current requested bandwidth (
N
). The second case occurs when the backup bandwidth on the link cannot cover all

of the requested bandwidth, thus additional bandwidth needs to be allocated to the link. This additional bandwidth

required becomes the cost for using this link. The final case occurs if the link being considered is down or there is

not enough available bandwidth on this link to satisfy the request. Equation 29 ensures that the additional backup

bandwidth requirement cannot be negative and equation 27 ensures the additional bandwidth required is within the

link capacity limits.

C. Whole-Tree ILP Formulation

We define a new ILP formulation for the Whole-Tree strategy proposed in this paper. The logic is to compute a

whole new backup tree that connects to all destinations for every failure that affects the service tree. The optimal

solution would be reached by computing these trees together in the same ILP formulation.
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The objective is to find the minimum additional backup bandwidth required for the set of backup trees. For each

failure affecting the service tree, we try to find a multicast tree that connects to all the destinations. A multicast tree

can be as a union of individual unicast paths that connect from source to the destinations. The flow conservation

constraints for these unicast paths are expressed in equations 31, 32, and 33. The union of the unicast path is

expressed in equation 34 and the constraints for ensuring a tree structure is expressed in equations 35 and 36.

The cost for using link FH/ -JISK in failure scenario � is defined by �
�
�� , this is the same equation as the one defined

in section V-B. Backup trees for different failure scenarios can share backup bandwidth with each other thus

equation 37 allows the backup bandwidth to overlap. The additional backup bandwidth required on each link is

thus the maximum of the additional backup bandwidth required by the backup trees being calculated.

The ILP formulation is still not completed as there is a small probability of dangling branches on the backup

trees. Dangling branches refer to those links in the tree that do not connect to any receiver. This is possible

due to equation 37 where the cost of using any link can be overlapped between the backup trees in calculation.

Therefore, if including the dangling branches do not increase the objective function then the backup trees with

the dangling branches are one of the optimal solutions of the problem. A post-processing is required to prune

the dangling branches or additional methods can be used to avoid dangling branches. One method for removing

dangling branches is by putting in additional constraints that do not allow the backup trees to have a branch if

neither of the sender-receiver flows use that branch:
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This requires 	 ����� 	�	 M�	 additional constraints. The dangling branch issue applies to all the tree-based ILP

formulations described in this paper.

D. Whole-Tree with Path Intermix ILP Formulation

The Whole-Tree strategy assumes that during failure, the traffic is switched from the service tree to the backup

tree. Thus the bandwidth of the service tree is not used during the failure. We can allow the backup tree protecting the

service tree to exploit the service bandwidth allocated to this service tree. This is the concept of path intermix [19]

where the bandwidth used by the backup tree can be of two types. The first type is the service bandwidth belonging

to the service tree and this is only for the links used by this service tree. The second type is the backup bandwidth

on the link and this is only for the links not used by the service tree.

Using path intermix with complete recalculation of backup tree is the most flexible approach where the backup

tree may choose to use the links on the service tree for with zero cost if it is a good decision to do so. It does not

force the algorithm to reuse any part of the service tree.

For path intermix, the Whole-Tree Restoration ILP formulation remains the same but a new case is added to �
�
��

as shown below. The first case ensures that the cost for reusing service tree’s bandwidth is zero. The edges used

by the service tree is denoted by M � and the edges failed denoted by M � .

� �
�� )
������������� ������������

+.- if FH/ -JILK �03M � and FH/ -JISK 0=M �+.- if FH/ -JILK �03M � and FH/ -JISK��0=M � and � �
�� � N D � 
��N & � 
�� ��� �
�� - if FH/ -JILK �03M � and FH/ -JISK��0=M � and � �
�� � N�� � 
��
and O 
�� 
 N & � 
�� ��� �
��

� - otherwise.

E. Sub-Tree ILP Formulation

For each failure scenario affecting the service tree, Sub-Tree uses a backup tree to restore traffic to the affected

destinations only. The unaffected destinations continue receiving traffic from the service tree. The optimal solution

to this strategy can be reached by computing all the backup trees in the same ILP formulation.



��� � ����
	 
H� � � �R� � 
��Q� (41)�

� " � $
�� &
�
� " � $� 
 ),+.- for / �),6 -(8 ,; 8 03< � ,;���0����	� (42)�

� " � $> � &
�
� " � $� > ) @�- ; 8 0=< � ,;���0 ����� (43)�

� " � $$ � &
�
� " � $� $ ) & @�- ; 8 0=< � , ;��?0 ���	� (44)

" � $
�� D � �
�� D @�- ; 8 0=< � , ; FH/ -JISK 0=M ,;���0����	� (45)�
� � ��(
 D @�- ; /10 2 &5476 9 , ;���0 ��� � (46)�
� � �� > ),+.- ;���0 ����� (47)

� 
���
 � �
�� F � �
��7K - ;GFH/ -JISK 0EM , ;�� 0 � �	� (48)

� 
�� DPO 
�� - ;GFH/ -JILK 0=M (49)

" � $
�� - � �
�� 0 4Q+.-�@R9 (50)

� 
���
 + (51)

This IP formulation is similar to that of Whole-Tree’s except the set of destinations the backup tree connects

with only the affected destinations ( < � ) of the failure rather than every the destinations.

F. Skeleton-Tree ILP Formulation

Skeleton-Tree Restoration is similar to Whole-Tree Restoration with path-intermix, except the unaffected portion

of the service tree forms the skeleton of the backup tree. The affected destinations of the failure is connected back

to this skeleton using the least cost paths.
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Additional constraints to the Whole-Tree Restoration formulation is required to form the skeleton. The constraints

are defined in equations 59 and 60. M $� denotes the set of edges on service tree that routes from the source to

destination 8 . The link cost equation �
�
�� is the same as that defined when using path intermix (Section V-D).

VI. SIMULATION RESULTS

For the simulations, four network topologies are used and are shown in Figures 7, 8, 9, and 10. Network1 and

Network2 [17] are larger network topologies that are taken from actual topologies of provider networks. Note that in

practice, networks of most providers are relatively small in size (i.e. not more than 100 routers). Application service

providers requesting multicast support from these networks will specify a relatively small list of destination nodes

in the provider’s network which need to be connected by appropriate multicast paths. Typically these would be the

border routers of the provider’s network. Therefore it would not be uncommon to have these network provisioned

multicast groups (connecting a subset of border routers) to be fairly small in size, e.g. 10 or 12 routers. In most

of our simulations we limit the multicast group size to these numbers for two reasons: (1) we believe multicast

connections on a provider’s network will typically connect a group of routers of sizes in these ranges, and (2)

from a practical simulation standpoint, we wanted to compare our results to the proposed ILP, and the computation
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Fig. 7. Network1: US Long-Distance
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Fig. 8. Network2: Toronto Metropolitan
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Fig. 10. Network4: Random Dense Network

overheads of the ILP is too high for larger group sizes. Our proposed polynomial-time algorithms clearly generalize

to larger group sizes.

Network3 and Network4 are smaller network topologies that are randomly created.

Without loss of generality in all networks, all links are bi-directional and the link weights are set to 1. For all

experiments, the results are collected from the average of results from 10 different request sets. Each request set

has a 1000 multicast connection setup requests. Requests are randomly generated and have uniform bandwidth

demand of one unit each. The number of destinations per request is uniform within a request set. The number of

destinations is varied across simulation runs.

For large networks: Network1 and Network2, the number of destinations will vary from 2 to 8 in increment

steps of 2. When the number of destinations reaches 10 or more, the simulation run-time for each request set goes

for over 48 hours for the Skeleton-Tree ILP solution. Thus we limit the number of destinations to 8 for large

networks. For smaller networks, the number of destinations is limited by the number of nodes in the network. For

Network3, the number of nodes is 8 thus the maximum number of destinations could only be 7 as the source node

is not counted as a destination. For consistency with other topologies’ simulations, we use only even number of

destinations.

There are two types of experiments, one for the unlimited link capacity scenario, and the other is the limited link

capacity scenario. For the limited link capacity scenario all the links in the network will have the same capacity for

simplicity. The link capacity is chosen in the range where blocked requests occur for majority of the algorithms.

The number of destinations are fixed to 6 in the limited capacity experiments. The link capacity for each network

topology is different due to the size and density of the network.

1) Network1: The link capacity varies from 200 to 400 units with incremental steps of 50 units.

2) Network2: The link capacity varies from 50 to 200 units with incremental steps of 50 units.



3) Network3: The link capacity varies from 500 to 800 units with incremental steps of 100 units.

4) Network4: The link capacity varies from 200 to 400 units with incremental steps of 50 units.

The following metrics are used for analysis of results:

1) Total bandwidth refers to the sum of the bandwidth required by all the service tree and all the backup

paths/trees.

2) Backup bandwidth refers to the bandwidth used by all the backup trees.

3) Average backup structure size is the sum of the links used for restoring traffic over all failure scenarios

affecting the service tree, divided by the number of failure scenarios. The size is measured by the number of

links used.

4) Number of Requests Accepted is the number of requests that can be admitted into the network within the

resource constraints. A request is blocked if the algorithm cannot find a feasible service tree or the set of

feasible backup paths/trees required. The acceptance rate is just the number of requests accepted divided by

the number of requests considered.

The ILP formulations in the experiments are solved using CPLEX 8.1 [20] and the heuristic algorithms are

implemented using C++. The experiments are executed on a PIII 1Ghz Linux Server with 1GB of RAM.

VII. SIMULATION RESULTS PART I

The first set of simulation results assumes full multicast support within the networks, and compares between

seven ILP-based solutions:

1) Unicast Service: uses shortest unicast service paths and ILP in section V-A for calculating the unicast backup

connections.

2) Simple Restoration: uses service tree ILP (section III-A), and Simple Restoration ILP (section V-A).

3) Line Restoration: uses service tree ILP (section III-A), and Line Restoration ILP (section V-B).

4) Whole-Tree Restoration: uses service tree ILP (section III-A), and Whole-Tree Restoration ILP (section V-

C).

5) Whole-Tree Restoration with Path-Intermix: uses service tree ILP (section III-A), and Whole-Tree with

Path-Intermix Restoration ILP (section V-D).

6) Sub-Tree Restoration: uses service tree ILP (section III-A), and Sub-Tree Restoration ILP (section V-E).

7) Skeleton-Tree Restoration: uses service tree ILP (section III-A), and Skeleton-Tree Restoration ILP (sec-

tion V-F).

The reason for including Unicast Service is to show the how much more efficient multicast-based solutions are

compared with solutions without multicast support. Simple Restoration uses multicast for the service tree but not

for backup. To restore traffic, Simple Restoration uses unicast backup connections. Comparing multicast backup

tree solutions with Simple Restoration show the advantage of using multicast for backup. Line Restoration uses

multicast service tree and routes the service tree around the failure. This is the alternative strategy compared with

restoration solutions that use a new backup tree to restore traffic.
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Fig. 11. Total Bandwidth Requirements for Network1
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Fig. 12. Total Bandwidth Requirements for Network2
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Fig. 13. Total Bandwidth Requirements for Network3
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Fig. 14. Total Bandwidth Requirements for Network4

The results are grouped into simulations for unlimited link capacity scenario and for limited link capacity scenario.

A. Unlimited Link Capacity Scenario

The simulation results for the total bandwidth requirement for all the strategies in different network topologies

are shown in figure 11, 12, 13, and 14. The main purpose of these graphs is to show the importance of using

multicasting for both primary service communication and backup communication.

Focusing on the results for multicast group of size 6, the Unicast Service requires 32–50% more total bandwidth

than the other ILP solutions in Network1, 35–43% more in Network2, 23–42% more in Network3, and 33–48%

more in Network4. This highlights the benefit of using multicast for primary and backup communications. Simple

Restoration performs better than Unicast Service mainly due to the bandwidth efficiency of the service tree (they

both use unicast connections for backup).

We now focus only on the solutions that use service tree as it is the central focus of this paper. All the solutions

use the same ILP-based algorithm for the service tree, thus the service bandwidth requirements are about the same.

The main difference between the solutions come from the restoration strategies that have direct impact on the

backup bandwidth requirement.

The backup bandwidth requirement results are shown in figures 15, 16, 17, and 18 for the different network

topologies.
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Fig. 15. Backup Bandwidth Requirements for Network1
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Fig. 16. Backup Bandwidth Requirements for Network2

Network3

2000

3000

4000

5000

6000

7000

8000

9000

2 4 6 8

Multicast Group Size

S
p

ar
e 

C
ap

ac
it

y 
(u

n
it

s)

Simple Res.
Line Res.
Sub-Tree
Whole-Tree
Whole-Tree pi
Skeleton-Tree

Fig. 17. Backup Bandwidth Requirements for Network3
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Fig. 18. Backup Bandwidth Requirements for Network4

We take a snapshot look at the results for multicast group of size 6. This is for analyzing the performance

difference between the restoration strategies.

Simple Restoration clearly performs the worst with 35% more backup bandwidth requirement than others in

Network1, 18% more in Network2, 27% more in Network3, and 35% more in Network4. The trend is aggravated

when the multicast group size increases. All the other restoration strategies retain some form of multicasting during

backup, therefore, retaining multicasting during failure is an essential element for reducing backup bandwidth.

The next worst performer is Line Restoration. Compared with Skeleton-Tree Restoration for group size of 6,

Line Restoration uses 21% more backup bandwidth in Network1, 17% more in Network2, 22% more in Network3,

and 18% more in Network4. Although, Line Restoration retains multicast efficiency by restoring the service tree

and maximize reuses of the service bandwidth, it does not give the restoration algorithm enough freedom to spread

out the backup bandwidth. Skeleton-Tree Restoration gives the algorithm complete freedom to choose the way the

affected destinations join back the skeleton tree. This observation is similar to that of Line Restoration compared

with Path Restoration in the context of unicast [16], [15], [17]. Therefore, restoration that exploits the routing

flexibility to reach further away from the failure can better reduce backup bandwidth.

One of the solutions that perform better than Line Restoration is the Whole-Tree Restoration. Compared with

Skeleton-Tree Restoration for group size of 6, Whole-Tree requires 12% more backup bandwidth in Network1, 16%

more in Network2, 11% more in Network3, and 8% more in Network4. Whole-Tree retains multicast efficiency



and provides complete flexibility on choosing the routes for connecting to the destinations during failure. However,

it does not reuse any of the service bandwidth. Whole-Tree Restoration sacrifices the possibility of reusing service

bandwidth for a higher degree of freedom to spread out the backup bandwidth. Skeleton-Tree Restoration and

Sub-Tree Restoration both forces service bandwidth from the unaffected portion of the service tree to be re-used,

but allow flexibility on choosing the routes taken to restore traffic back to the affected destinations. Results show

that they both perform better than Whole-Tree Restoration. From this, we can deduce that reusing the unaffected

portion of the service tree is as important as routing flexibility. A good algorithm provides a trade-off between the

two.

Sub-Tree Restoration differs from Skeleton-Tree Restoration in the way the affected destinations of a failure are

connected back to the source. Sub-Tree creates a new multicast tree that connects only the affected destinations.

Using a two multicast tree can cause redundancy and the results between the two shows the consequence of this

redundancy. Compared with Skeleton-Tree Restoration, Sub-Tree Restoration requires 7% more backup bandwidth

in Network1, near equivalent in Network2, 8% more in Network3, and 3% more in Network4. The difference

in performance is smaller in dense networks (Network2 and Network4) and performance difference is larger for

smaller size networks (Network3 and Network4). For dense network, there is more chance of spreading the backup

bandwidth out therefore reducing the impact of redundancy. The level of redundancy is largely increased in smaller

size networks thus the observed difference. Hence, using more than one tree during failure causes redundancy

which increases the backup bandwidth requirement.

As mentioned earlier, Whole-Tree Restoration does not reuse the service bandwidth thus requires much more

backup bandwidth than Skeleton-Tree Restoration. By using path-intermix with the Whole-Tree Restoration (Whole-

Tree-pi), we can choose to use the service bandwidth with zero cost and still retain the full freedom of choice on

how to connect the source back to the destinations. Compared with Whole-Tree Restoration by itself, Whole-Tree-pi

reduces backup bandwidth by 8% in Network1, 16% in Network2, 7% in Network3, and 8% in Network4. Path

intermix removes the trade-off between reusing service bandwidth and freedom of choice as mentioned earlier.

Reusing service path is now part of the freedom of choice for the algorithm. Compared with Skeleton-Tree, Whole-

Tree-pi performs about the same for Network1, Network2 and Network4, while requiring 4% more Network3.

Therefore, forcing the unaffected portion of the service tree to be re-used is observed to perform just as well as

encouraging reuse.

An interesting observation to make is the backup bandwidth requirement between the dense networks: Network2

and Network4. Network2 is a larger network requires roughly similar amounts of backup bandwidth in the network

to support 1000 requests. To explain this phenomenon, we use some additional information about the network

state called the link backup bandwidth frequency range. That is, we group the links into equally spaced intervals

(width of 20 units) of backup bandwidth requirement and count the frequency in each interval. We focus on the

Skeleton-Tree results with group size of 6. The results are shown in figure 19.

Comparing the results between Network2 and Network4 shows that in Network2, the backup bandwidth are more

equally distributed between the links at the lower range while in Network4, there are significantly larger amount
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Fig. 22. Number of Accepted Requests for Network2

of links in the high range that contribute much more to the network backup bandwidth requirement. The larger

size of Network2 provides more links for the algorithm to spread the backup bandwidth. Figure 20 shows the

average size of the backup trees (the number of links used) for the Skeleton-Tree solutions in the different network

topologies. The graph shows that the backup tree size are larger in Network2 than in Network4. This indicates that

the algorithm reaches further out to find opportunities (shared bandwidth) that the larger network gives. Similar

trend can be seen between Network1 and Network3.

Comparing results between Network1 and Network2 shows that dense network requires much less backup

bandwidth than sparse networks. Figure 19 shows that the dense networks spread backup bandwidth more equally

between links than in sparse network that have significantly more links having a large backup bandwidth allocation.

This indicates that there are many hot-spots where the backup trees are forced to use. Dense networks provide

more links thus more alternative route that the backup tree can traverse and find opportunities.

The trend line for Network4 indicates that backup bandwidth will start to grow exponentially as group size

increases beyond 8. This coincides with the exponential growth in processing time for Network1 and Network2

when the group size increases over 8.

B. Limited Link Capacity Scenario

For the limited link capacity scenarios, the results are shown in figures 21, 22, 23, and 24. Unicast Service

expectingly has the lowest acceptance rate,and that is followed next by Simple Restoration, while all the other
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Fig. 24. Number of Accepted Requests for Network4

solutions perform very closely with each other (within 5%). The main reason for the blockings is from failing to

find a feasible service tree. Although the backup bandwidth is minimized by the strategies, the service multicast

tree algorithm will eventually utilize the resources of the links in the congested areas (hot-spots). Thus the links on

the hot-spots will always be fully utilized under all the solutions. Note that the chance of blocking is much higher

in multicast then in unicast as the number of links required to set up a multicast tree is significantly higher.

We find that the multicast service tree algorithms impose a higher impact on network efficiency than the backup

restoration strategies because the service bandwidth contributes to most of the total bandwidth requirement. In

networks where the backup bandwidth contributes to a higher percentage of the total bandwidth requirement, the

backup restoration strategies impose a larger impact (Network1 and Network4 in our experiments).

VIII. NEW HEURISTICS RESTORATION ALGORITHM

Integer Linear Programming based solutions are computationally expensive and are known [21] to have expo-

nential worst case times. The Skeleton-Tree Restoration solution can take hours to compute for each set of 1000

requests with multicast group size of 8, and can go beyond 48 hours for group sizes of 10 and over. This is definitely

not desirable for online-based solutions that require on-demand response time. From the observation of the results

on the ILP solutions in section VII, we draw up some heuristics that are observed to improve bandwidth efficiency:

1) Retain multicasting during failure recovery.

2) Force reuse of the unaffected portion of the service tree. This retains the general structure of the original

multicast tree.

3) Use only one tree during failure (switch traffic from the service tree to the backup tree).

We propose a new Approximate Multicast Restoration Algorithm (AMRA) described in Algorithm 2 using these

heuristics. The inputs to the algorithm are: the network resource state ? F 2 - M K , the list of failure scenarios ��� , and

the service tree
�
. The expected outputs of the algorithm are: the set of backup trees ��� , and the updated network

resource state. First, we find the list of failure scenarios that affect the service tree ����� . For each of the failure

scenario, we remove the failed links ( M � ) and then we calculate a backup tree to restore traffic to all destinations.



Data : Network Graph: ���������
	 ; Failure scenario set: ��� ; Service tree: � ;
Result : New Network Graph: �����
����	 ; Backup tree set: ��� ; Failure scenario set: ��� ;

Initialize ������� ;

Find the set of failures ����� affecting the Service tree;

for each � ( ��� � do

Find the set of failed links � � in the current failure scenario;

Remove all failed links � (*� � from �����
����	 ;
Find the skeleton of the service tree �<���	� ��
 6<� 6 �
� 4 ;
Recompute the network links cost � �� ;
Find the list of affected destinations ) � ;
for each '�(*) � do

If ' is already traversed in �<�	�	� ��
 6<� 6 �
� 4 then skip to next destination.;

Find the shortest path ,.- from any node on �<���	� ��
 6 � 6 �
� 4 to ' ;
�<���	� ��
 6 � 6 �
� 4 � , - = �<���	� ��
 6 � 6 �
� 4 ;
For all links used in , - , change the link cost to � ;

end

Add �<���	� ��
 6 � 6 �
� 4 to ��� ;

Update �����
����	 with the new �<���	� ��
 6 � 6 �
� 4 ;
Insert failed links back into ����������	 ;

end

Algorithm 2: Approximate Multicast Restoration Algorithm

The key idea of this algorithm is as follows. We first form the skeleton of the backup tree which is the unaffected

portion of the service tree (the links that are used to connect the source to the unaffected destinations). We then find

the list of affected destinations < � . The special case of the skeleton tree is when all the destinations are affected

thus the skeleton tree only includes the source node. We then go through each affected destination sequentially and

find the least cost path that connects the skeleton tree back to the destination node. This path is then added to the

skeleton tree and the links used in the path will now have infinite cost (prevent loops). This process continues until

all the destinations are connected to the skeleton tree. This skeleton tree then becomes the new backup tree. The

algorithm ends when we find the set of backup trees that protect the service tree from all failure scenarios.



Data : Network Graph: ���������
	 ; Skeleton tree: � ; destination: ' ;
Result : Least cost path: , ;
,�� � # � � 4�� �

;

for each � (+� � do

Find the shortest path , 476<8 from � to ' ;
if cost of , 476<8 � ,�� � # � � 4 then

, �/, 476<8 ;

end
end

Algorithm 3: Shortest Path to Skeleton Tree

To find the shortest path from the skeleton-tree to a destination, we use the algorithm described in Algorithm 3.

This is essentially just a loop that goes through all the node in the skeleton tree ( 2 � ) and find the shortest path

from the nodes to the destination. The shortest path with the least cost is returned. The cost for using link � during

failure � is given by �
�� :

� �� )

�������������������� �������������������

� - if �G0=M � ��� � � ��� �+.- if � �0=M � and �G0=M � and � �0=M � ��� � � ��� �+.- if � �0=M � and � �� � N D � �N & � � � � �� - if � �0=M � and � �� � N�� � �
and O � 
 N & � � ��� ��
and � �0=M � ��� � � ��� �

� - otherwise.

Let � � denotes the backup bandwidth allocated on the link � , and � �� is the backup bandwidth requirement that

failure scenario � has on the link. The first case is for preventing the links ( � 03M � ��� � � ��� � ) already on the skeleton

tree from being re-used. This stops loops formation. The second case is for links that belongs to the service tree

that can be used for path intermix. This link must not be part of the current skeleton tree and is not one of the

failed links. Path intermix allows this link to be used without additional cost. The third case is when there is enough

backup bandwidth to cover the request (
N
) in addition to what has been used by this failure scenario already. The

fourth case is where the backup bandwidth can only cover part of the requested bandwidth. Thus the cost for using

this link will be the additional backup bandwidth needed to cover the rest of the requested bandwidth. The final

case is when sufficient bandwidth is not available ( O � ) on the link to cover the additional bandwidth requirement.

The time-complexity of AMRA is polynomial and in order of ��F
	 � � � 	 F
	 <�	�	�2�	 �
	���
 	�2�	 ��	 M�	 K K . The worst case

for a failure is when all the destinations are affected ( 	 <�	 ) thus the backup tree needs to find connections to all

the destinations. The worst case of founding a connection from the skeleton tree to a destination node is when the

skeleton tree includes all the nodes in the network ( 	�2�	 ) thus for each node, we have to calculate the shortest path



( ��F
	�2�	 	���
 	�2�	 K ).
It is possible for the algorithm to produce some inefficiencies from paths that intersect at an intermediate node.

Although the result is still correct, we can increase efficiency by using the multicast ability at the intermediate node

and remove the redundant components. Redundancy components can exist because links can be used with zero

additional cost. A easy work around is to use a very small value in place of zero cost. This can prevent redundant

components from forming without any extra processing cost, however, the value has to be chosen such that the

resulting path will always be with the real least cost. An alternative is to do some extra processing to remove loops

when calculating the least cost path that connects the destination to the skeleton tree.

AMRA is extended in section X to work for infrastructure overlay multicast networks.

IX. SIMULATION RESULTS PART II

The experiment setup described in section VI is used for the simulation results presented here. The objective

of the simulations is to show the performance difference between the heuristic-based solution and the ILP-based

solution for the full multicast support networks.

Skeleton-Tree Restoration was shown in section VII to perform better than the other ILP-based solutions and is

used in this experiment to compare against the heuristic-based solutions. MLTA-AMRA is our proposed heuristic

solution which uses heuristic algorithms for both service tree computation and backup tree computation. We also

combine MLTA with another heuristic restoration algorithm based on line restoration. This algorithm this called:

Line Restoration Algorithm (LRA). The algorithm is derived using the greedy heuristic approach to approximate

the ILP solution proposed in section V-B. Detail description of the algorithm is available in the Appendix.

1) Skeleton-Tree Restoration: this is a full ILP-based solution that uses service tree ILP (section III-A), and

Skeleton-Tree Restoration ILP (section V-F).

2) MLTA-AMRA: this is a full heuristic-based solution that uses the MLTA service tree algorithm (section III-B),

and AMRA algorithm for restoration (section VIII).

3) MLTA-LRA: this is another full heuristic-based solution that uses the MLTA service tree algorithm (sec-

tion III-B), and LRA: a heuristic algorithm based on line restoration.

The results are grouped into simulations for unlimited link capacity scenario and for limited link capacity scenario.

A. Unlimited Link Capacity Scenario

The total bandwidth requirements are presented in Figures 25, 26, 27, and 28 corresponding to Network1,

Network2, Network3, and Network4 respectively.

From the results, Skeleton-Tree Restoration has the lowest bandwidth requirement followed next by MLTA-

AMRA, and then MLTA-LRA. Results show that MLTA-AMRA requires upto 4% more bandwidth than Skeleton-

Tree Restoration in Network1, upto 10% more in Network2, 5% more in Network3, and 9% more in Network4.

There are two reasons why Skeleton-Tree Restoration performs better: the first reason is due to the ILP that calculates

the optimal least cost service tree. MLTA-AMRA uses an approximation algorithm (MLTA) that produces a sub-

optimal tree. The consequence is that the service tree that MLTA-AMRA uses contains more links. This increases the
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Network3

4000

6000

8000

10000

12000

14000

2 4 6 8

Multicast Group Size

T
o

ta
l B

an
d

w
id

th
 (

u
n

it
s) Skeleton-Tree

MLTA-AMRA
MLTA-LRA

Fig. 27. Total Bandwidth Requirements for Network3
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Fig. 28. Total Bandwidth Requirements for Network4

service bandwidth required and indirectly increases the backup bandwidth required. Backup bandwidth increases

since more links on the service tree translates to more backup path segments. The second reason is because

Skeleton-Tree Restoration uses the more efficient ILP formulation to calculate the backup trees compared to the

greedy approach used in MLTA-AMRA.

MLTA-LRA requires upto 15% more bandwidth than MLTA-ARMA in Network1, upto 13% more in Network2,

upto 13% more in Network3, and upto 21% more in Network4. MLTA-LRA and MLTA-AMRA use the same

service tree algorithm, thus the difference in performance is from the difference in backup algorithms used. LRA

is based on the line restoration strategy and AMRA is based on the skeleton-tree restoration strategy.

The backup bandwidth requirements are shown in figures 29, 30, 31, and 32 for Network1, Network2, Network3,

and Network4 respectively.

In terms of backup bandwidth requirement, MLTA-LRA consumes upto 40% more than MLTA-AMRA in

Network1, upto 52% more in Network2, upto 30% more in Network3, and upto 68% more in Network4. This

show the true extent of the difference between the line restoration strategy (LRA) and the skeleton-tree restoration

strategy (AMRA). AMRA is much more bandwidth efficient.

MLTA-AMRA takes about the same amount of backup bandwidth as Skeleton-Tree Restoration in Network1,

upto 10% more in Network2, upto 6% more in Network3, and upto 12% more in Network4.
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Fig. 30. Backup Bandwidth Requirements for Network2
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Fig. 32. Backup Bandwidth Requirements for Network4

B. Limited Link Capacity Scenario

For the limited link capacity scenarios, the results are shown in figures 33, 34, 35, and 36.

The results show that the three solutions perform very similarly in terms of the acceptance rate. MLTA-AMRA

performs about the same as Skeleton-Tree Restoration for Network1 and Network3. For Network2, the acceptance

rate for MLTA-AMRA reaches within 9% of Skeleton-Tree Restoration. MLTA-AMRA reaches within 12% of

Skeleton-Tree Restoration in Network4. Compared with MLTA-LRA, MLTA-AMRA has upto 4% higher acceptance

rate in Network1, upto 5% higher in Network2, upto 2% higher in Network3, but upto 3% lower in Network4.

The reason why all three solution performs so similar is due to the expensive cost setup for the service trees.

Establishing the multicast service tree is very expensive and as the network becomes saturated, the probability of

finding a feasible service tree is very low for all three solutions. Compare to unicast, multicast needs to connect

to all destinations (in the simulations we use 6 destinations) , which means that the probability of blocking is

substantially higher. We find that the main cause (nearly all) of request blocks for the solutions is from failing to

find a feasible service tree. Although the backup bandwidth is minimized by the restoration algorithms, the service

multicast tree algorithm will eventually utilize the resources of the links in the congested areas (hot-spots). Thus

the links on the hot-spots will always be fully utilized under all the solutions.

Skeleton-Tree Restoration has better bandwidth efficiency and ILP will always find a feasible solution for the
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Fig. 36. Number of Requests Accepted vs Link Capacity

service tree if one exists. Thus it has slightly more acceptance rate than the other solutions, but the hot-spots cause

all the solutions to block most requests at network saturation point.

Interestingly, a higher percentage of MLTA-AMRA’s blocking results from failing to find feasible backup trees

than the other solutions. This is especially significant in Network4 where MLTA-AMRA performs better than

MLTA-LRA. AMRA achieves good backup bandwidth efficiency, however, this can sometimes adversely impact

the network when the network becomes loaded. For example, LRA causes the links in the hot-spots to have higher

backup bandwidth allocation than AMRA. As these links at congested, the higher backup bandwidth allocated on

these links allow path segments to exploit the overlapping property (described in section IV) and thus the path

segments will be able to find routes through the hot-spots, even if the links are full. However, AMRA will have

lower backup bandwidth allocated on these links hence the backup tree will find it harder to find a feasible route

through the hot-spots. It is these hot-spots that cause most of the blockings for MLTA-AMRA. This shows that

there are trade-offs between bandwidth efficiency and load balancing within the network. Load balance is not only

between links, but also balance between the service bandwidth and the backup bandwidth within the same link.

Future work can be directed into investigating techniques in load balancing to increase the acceptance rate in limited

capacity networks.



X. SUPPORTING RESTORATION IN INFRASTRUCTURE BASED OVERLAY MULTICAST

In infrastructure based overlay multicast networks such as OMNI, when a network provider initially deploys

multicast support, it is likely that it will be done incrementally where only a limited number of Multicast Service

Nodes are enabled. Therefore, we modify AMRA to operate in this environment such that it can exploit the MSNs

whenever possible. We call this the xAMRA and the algorithm is described in Algorithm 4.

Data : Network Graph: ���������
	 ; Failure scenario set: ��� ; Logical service tree: � ;
Result : New Network Graph: �����
����	 ; Logical backup tree set: � � ; Failure scenario set: ��� ;

Initialize ������� ;

Initialize ����� �"!$#&% ;
Find the set of failures ��� � affecting the Service tree;

for each � ( ��� � do

Find the set of failed links � � in the current failure scenario;

Remove all failed links � (*� � from �����
����	 ;
Find the skeleton of the service tree �<���	� ��
 6<� 6 �
� 4 ;
Find set of connected nodes �����547698 in �<���	� ��
 6 � 6 �
� 4 and let �����:� ������4 6<8*= ����� ;

Recompute the network links cost � �� ;
Find the list of affected destinations ) � ;
for each '�(*) � do

If ' (*����� then skip to next destination;

Find the shortest path , - from any node in ����� to ' ;
�<���	� ��
 6 � 6 �
� 4 � ,0-�= �<���	� ��
 6 � 6 �
� 4 ;
Update �����
����	 for using the links in ,.- for backup in � ;
Find set of connected nodes ����� 47698 in , - and let �����:� ����� 47698 =>����� ;

end

Add �<���	� ��
 6 � 6 �
� 4 to ��� ;

Insert failed links back into ����������	 ;
end

Algorithm 4: Extended Approximate Multicast Restoration Algorithm

The general idea of xAMRA is to create a logical backup-tree for every failure scenario affecting the logical

service tree. The physical links used in the logical tree do not need to be unique. Due to this non-uniqueness,

we restrict the use of path-intermix in xAMRA. We force the logical backup tree to use the unaffected part of

the logical service tree as the skeleton and use the service bandwidth allocated on the links in the skeleton. The

skeleton is the only component that can reuse the service bandwidth.

First, we find the list of failure scenarios affecting the logical service tree, and then loop through each failure

scenario to find a logical backup tree that restores traffic to the affected set of destinations. The list of links failed

is removed from the network. To create a logical backup tree, we use the skeleton of the logical service tree that is

made up of the links that connect to the unaffected set of destinations. The MSNs used in the skeleton are added



into a set of connected nodes. We assume that the sender transmitting to the source node can do the multicasting

thus the source node can be considered a MSN in this request. Thus the set of connected nodes will include the

source node 6 by default. However, we do not assume the destination nodes to be MSNs. If the destination node

is not a MSN then it cannot deliver a incoming packet out of the network and forward a copy of the packet to the

downstream node at the same time.

For each affected destination, the objective is to find the least cost path that connects from any of the connected

nodes to the destination. The least cost path is included as a skeleton, the network is updated to use this path,

and any new MSNs traversed is added to the connected set. If a feasible path cannot be found to connect to the

destination, then the request cannot be satisfied and the previous network updates for this request will be reversed.

However, if the destination node is already in the connected set then it is already in the skeleton tree and it is also

a MSN (otherwise it will not be in the connected set). Thus there is no need to find a least cost path to deliver the

traffic to this destination node.

Once all the affected destinations are connected to the skeleton, we have a logical backup tree for the failure

scenario. When calculating the least cost path, the cost of using the links are calculated using the following equation:

� �� )
��������� ��������

+.- if � �0=M � and � �� � N D � �N & � � ��� �� - if � �0=M � and � �� � N�� � �
and O � 
 N & � � ��� ��

� - otherwise.

Let the set of all MSNs be denoted by 
 . The time complexity of xAMRA is in the order of ��F
	 ����� 	 F
	 < 	�	 
 	�	�2�	 ������	�2�	 �
	 M�	 K K . Similar to AMRA (see section VIII), it is possible for the algorithm to produce some inefficiencies from

paths that intersect at an intermediate node. An easy work around is to use a very small value in place of zero cost.

XI. SIMULATION RESULTS PART III

The second set of simulation results compares between three solutions on infrastructure based overlay multicast

networks:

1) Unicast Service: uses shortest unicast service paths and ILP in section V-A for calculating the unicast backup

connections.

2) Simple Restoration: uses service tree ILP (section III-A), and Simple Restoration ILP (section V-A).

3) xAMRA: uses the heuristic algorithm MLTA (section III-B) for calculating the logical service tree and the

heuristic algorithm xAMRA (section X) for calculating the logical backup trees.

Note that the ILP service tree solution computes the optimal service tree for the network-layer multicast case

only, and hence we do not include results for that approach in this section.

For the infrastructure based overlay multicast scenario, we use a list of MSNs as shown in Table III and the

multicast group size is fixed to 6 destinations.



TABLE III

LIST OF MSNS USED

Network Topology Multicast Service Nodes

Network 1 3, 5, 6, 8, 11, 12, 18, 20, 23

Network 2 2, 4, 7, 10, 17, 18, 22, 24

Network 3 4, 8

Network 4 3, 5, 7, 8, 9, 11, 14
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The performance of xAMRA and Simple Restoration is highly sensitive to the position of the Multicast Service

Nodes (MSN) and the number of nodes. Thus we have chosen the placement of MSNs strategically to improve

on performance, as Network Providers would do for their network topologies. The reason for the sensitivity is in

the way the logical tree algorithms work. Although the MSNs can help improve bandwidth efficiency by building

logical trees, the MSNs attract too much traffic to the area since the algorithms attempt to use these MSNs. If a

MSN is placed in network hot-spots (the area where the network is most likely be loaded), then the MSN will draw

in more traffic thus aggravating the congestion problem in the area. Knowing this behaviour, we can use the MSNs

to draw traffic to other under-utilized area (load balance) thus improving the utilizing of the network. Systemic

strategies for placing MSNs in the network is beyond the scope of this paper and is left as an interesting research

topic for future work.

The results of the simulations are shown in figures 37, 38, 39, and 40 for Network1, Network2, Network3,

and Network4 respectively.

Results show that significant gains can be achieved by using infrastructure based overlay multicast in the networks,

as compared with no multicast support. For Network1 and Network4, xAMRA gains upto 50% and upto 84% higher

acceptance rate than Unicast Service respectively. This corresponds with the results in section VII where MLTA-

AMRA performs significantly better than Unicast Service in Network1 and Network4. For Network2, xAMRA has

upto 24% higher acceptance rate than Unicast Serivce, and upto 12% higher in Network3. This shows the potential

for using infrastructure based overlay multicast
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Significant acceptance rate improvements (upto 28%) by Simple Restoration over Unicast Service show the

advantage of using logical multicast service tree. Comparing between Simple Restoration and xAMRA, xAMRA

obtains significantly higher acceptance rate in Network1 (upto 18%) and Network4 (upto 48%), while while still

providing small improvements in Network2 (upto 5%) and Network3 (upto 4%). This shows the benefit of using

logical multicast tree for restoration.

XII. RELATED WORK

Kodialam et al. [22] proposed a heuristic algorithm using the nearest neighbour first approach for the multicast

least cost tree problem. The general idea is to connect the destination node to the multicast tree using the least

cost path. However, this algorithm does not work for infrastructure based overlay multicast where only a limited

number of network nodes can perform multicasting. In this paper, we propose a new algorithm that uses the nearest

neighbour first approach to build logical multicast tree in infrastructure based overlay multicast networks.

Fei et al. [2] propose a dual-tree structure for multicast resilience. The idea is to build a secondary tree that is

bi-directional and connects all the leaf nodes together. The possibility of bandwidth sharing between links used

for the secondary tree was not investigated. In this paper we focus on minimizing bandwidth allocation for backup

requirements.

Medard et al [1] proposed an algorithm to compute a backup tree for edge/node redundant graphs. The idea is

to build a secondary tree such that when a link fails, all the destination nodes will be at least connected to one of

the trees. The primary and secondary tree do not need to be completely node disjoint. The focus of their work is

on finding a feasible secondary tree and not minimizing the backup bandwidth.

Banerjee et al [23] propose a probabilistic approach in multicast resilience. Using some random probability for

redundant packets forwarding from leaf to leaf, they improve the chance of packet delivery during network failures.

However, their objective was not focused on network efficiency and does guarantee recovery in deterministic failure

scenarios.

Kodialam et al. [3] propose a heuristic algorithm for the multicast line restoration strategy for network-layer

multicast. They called the algorithm: Multicast Complete Information (MCI). MCI was based on single node

failures only.



In this paper we focus on single link failures and propose a new Integer Linear Programming (ILP) formulation

for the multicast line restoration strategy. We use greedy heuristics to derive an algorithm (in Appendix) that

approximates the ILP solution. Results show that the AMRA has better bandwidth efficiency than the line restoration

heuristics and performs slightly better in limited capacity networks. We also extended our heuristic algorithms to

work for infrastructure-based overlay multicast.

XIII. CONCLUSION

In this paper, we proposed new restoration strategies for multicast resilience with bandwidth guarantees. Results

from ILP formulations of these strategies show that the Skeleton-Tree approach is more network efficient. Using

the observations from the ILP results, we derive new heuristics that form the basis of our new heuristic algorithm

(AMRA). Results show that AMRA forms close to the ILP-based solution and is more bandwidth efficient then the

heuristic algorithm (LRA) based on line restoration. By extending our heuristic algorithms (MLTA and AMRA)

to work in infrastructure overlay networks, we show that significant benefit can be derived from deploying limited

multicast support compared with no multicast support. Our heuristics solution is expected to scale better than the

ILP-based solutions for large network sizes and large multicast group sizes.

We believe that the techniques proposed in this paper can provide significant improvement in bandwidth guarantees

for relatively long-lived multicast flows. Our techniques can be implemented in both network-layer only multicast

as well as infrastructure-based overlay multicast. We believe that the benefits quantified in this paper will serve as

an incentive for network providers to enable such services (even if via overlay-based mechanisms) for large group

distribution applications.
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APPENDIX

A description of a greedy heuristic algorithm based on the line restoration strategy is provided in Algorithm 5.

We call this algorithm: Line Restoration Algorithm (LRA),

Data : Network Graph: ���������
	 ; Failure scenario set: ��� ; Service tree: � ;

Result : New Network Graph: �����
����	 ; Backup path segment set: ��� ; Failure scenario set: ��� ;

Initialize ��� ��� ;

Find the set of failures ��� � affecting the service tree � ;

for each � ( ��� � do

Remove failed link � from ����������	 ;
Recompute the network links cost � �� ;
If � connects from node � to node � then find a shortest path from � to � ;

Add the shortest path to ��� ;

Update �����
����	 for using the new path;

Insert failed link � back into �����
����	 ;
end

Algorithm 5: Line Restoration Algorithm

The inputs to the algorithm are: the network resource state ? F 2 - M K , the list of failure scenarios � � , and the

service tree � . The expected output of the algorithm is the set of backup path segments ��� , and the updated



network resource state. First, we find the list of failure scenarios that affects the service tree ����� . For each of

these failure scenario, we find the backup path segment that restores traffic around the failed link. To find the path

segment, we remove the failed link from the network graph, then we recompute the network link costs �
�� :

� �� )
��������� ��������

+.- if � �)�� and � �� � N D � �N & � � ��� �� - if � �)�� and � �� � N � � �
and O � 
 N & � � ��� ��

� - otherwise.

Let � denotes the failed link, and O�� denotes the available bandwidth on link � . � � denotes the backup bandwidth

allocated on the link � , and � �� is the backup bandwidth requirement that failure scenario � has on the link.

The first case occurs when a link can be used with no additional cost because there is enough backup bandwidth

on the link to accommodate the backup bandwidth already required by this failure scenario with addition of the

current requested bandwidth (
N
). The second case occurs when the backup bandwidth on the link cannot cover all

of the requested bandwidth, thus additional bandwidth needs to be allocated to the link. This additional bandwidth

required becomes the cost for using this link. The final case occurs if the link being considered is down or there

is not enough available bandwidth on this link to satisfy the request.

Once we have the new network link costs, we find the least cost path segment that restores traffic around the

failed link. This least cost path segment is then added to the set of path segments ��� and the network resource

state is updated for using this new path segment. The failed link is inserted back into the network graph, and we

continue to find the next path segment for the next failure scenario. The algorithm ends when all path segments,

which protect the service tree from the single link failures, are found.

The time-complexity of ALRA is � F
	 ����� 	 F
	�2�	 	���
 	�2�	 � 	 M�	 K K , where the Dijsktra’s shortest path algorithm used

runs in ��F
	�2�	 	���
 	�2�	 K .


