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Abstract

In a previous paper [4], we introduced an approach to
design recovery that takes advantage of the interactive and
graphical nature of the majority of today’s applications.
This earlier work is applicable only to interactive graph-
ical applications written in an event-driven programming
style with alternation between user-initiated events and ap-
plication responses. While productivity applications such
as word processors and spreadsheets are of this form, real-
time graphical applications such as flight simulators and
games are not, since the application proceeds even while
the user is idle. In this paper, we propose a design recov-
ery method for real-time graphical applications that uses
video to link lower-level code events with their higher-level
graphical manifestations. We demonstrate by example how
the more easily understood video can shed light on the
harder to understand implementation of a real-time graph-
ical application.

1 Introduction

Software maintenance is central to application develop-
ment. After an application ships, maintenance of the source
code is required to correct problems that arise and also to
enhance the software. It is estimated that 50%–90% of
maintenance effort involves program understanding [16].
One of the primary reasons for this is that often the design
of the software system is not well-documented. Moreover,
trying to understand design from source code is quite diffi-
cult. Consequently, much research has gone into ways for
automatically extracting high-level design from code. How-
ever, existing research on recovering design from source
code has focused on legacy applications, which tend to be
batch and text-based. In contrast, today’s applications tend
to be graphical and event-driven. We propose an approach
to design recovery that links lower-level application events
with their higher-level graphical manifestations. Other de-

sign recovery methods do not make this connection, which
can facilitate software maintenance in the following funda-
mental ways: (1) by identifying a high-level feature visually
(e.g., changing text style in a word processor) and then see-
ing how that feature is implemented by examining the asso-
ciated low-level event(s); and (2) by explaining the purpose
of a low-level event by examining visual displays of the ap-
plication when that event occurred.

In our initial efforts [4] in linking lower-level code events
with their higher-level graphical events, the user uses an
application normally while our system automatically picks
up user actions using before/after screenshots to describe
them visually. In this way, we have a mapping between the
low-level code executed in the action with its higher-level
visual description in the form of before/after screenshots.
Users (perhaps different from those who performed the ini-
tial demonstration) can then search and browse the action
database for design recovery purposes.

Our preliminary work involves user “actions”. In partic-
ular, the start of an action is determined by user input while
the end is detected when the application goes idle after per-
forming the action. However, this approach is restricted to
interactive graphical applications written in an event-driven
programming style with alternation between user-initiated
events and application responses. In contrast, real-time
graphical applications such as flight simulators and games
rarely go idle and many important – possibly overlapping –
events are not directly initiated by user input. In this paper,
we shall present a method for identifying low-level code
events that removes the limitations of “actions” to directly
support real-time graphical applications.

Our use of before/after screenshots in earlier work for
visually describing low-level events, while adequate for
productivity applications, presents problems for real-time
graphical applications. In particular, before/after screen-
shots are not as effective when the beginning and end of
an event look similar or when there are many overlapping
events. In this paper, we shall improve upon before/after
screenshots and resolve these problems by using video to



describe the low-level code events.
To demonstrate our approach, we have built a tool,

named DRT/Video (for Design Recovery Tool using Video),
that works with C/C++ X Window System real-time graphi-
cal applications as well as the productivity applications con-
sidered in our earlier work. Because our previous tool [4]
is named simply DRT, any mention of “DRT” in this paper
shall refer to our previous tool for productivity applications
while any reference to “DRT/Video” shall refer to the new
one for real-time graphical applications.

The rest of the paper is organized as follows. Section 2
describes our technique for finding low-level code events.
Section 3 describes how we use video to depict the higher
level graphical manifestations of the low-level code events.
Section 4 demonstrates how we can take advantage of the
linkage between low-level code events and their higher level
visual descriptions to perform design recovery of a real-time
graphical application. Section 5 discusses related work.
Section 6 summarizes the paper and suggests future work.

2 Low-Level Code Events

The low-level code events for DRT/Video differ from
the actions in the older DRT tool in several respects: un-
like DRT actions, DRT/Video low-level code events may
(1) start without being an immediate consequence of user
input; (2) end without the application going idle; and (3)
overlap with other low-level code events.

For example, in the older DRT tool, consider an action
that is detected when the user makes a text selection using
the mouse in a word processor. The action is started as a di-
rect consequence of mouse events and ends when the word
processor goes idle after executing code to make the text se-
lection. Such actions do not overlap with any other actions.

In contrast, consider an example of a DRT/Video low-
level code event in a flight simulator with dynamic weather
conditions. An aircraft may fly from a sunny area, pass
through a thunderstorm midway, and then arrive at another
sunny region. The low-level code event(s) for the thunder-
storm: (1) is not an immediate consequence of user input;
(2) ends without the application going idle; and (3) overlaps
with other low-level code events involved in flight model-
ing, scenery rendering, etc.

We shall find such low-level code events in two steps:
(1) we find “single function events” that denote time in-
tervals during which an execution burst of a particu-
lar function occurs; and (2) we find “multiple function
events” that denote time intervals during which an ex-
ecution burst of a set of functions occurs. For exam-
ple, a single function event might tell us that thunder-
storm::update(...) was called frequently during time inter-
val [25, 300]. A multiple function event might tell us that
a set of functions {thunderstorm::update(...), thunder-

storm::draw(...), aircraft::simulateTurbulance(...)} was
called frequently during the time interval [23, 302]. We
shall define more precisely the notions of single function
events in Section 2.1 and multiple function events in Sec-
tion 2.2.

2.1 Single Function Events

Consider a particular function f . Suppose it was called
at times t1, . . . , tn throughout an application execution.
Roughly speaking, a single function event (SFE) occurs
for f in time interval [ti, tj ] when f is called frequently
in [titj ]. More precisely, we use a constant TIMEOUT to
determine when a function is no longer being called fre-
quently, so f will have a SFE in time interval [ti, tj ] if
and only if (a) for k = i, . . . , j − 1, the lengths of inter-
vals [tk, tk+1] are < TIMEOUT; (b) the length of interval
[ti−1, ti] is ≥TIMEOUT or i = 1; and (c) the length of
interval [tj , tj+1] is ≥TIMEOUT or j = n.1

As we shall compute SFEs for all functions f that have
executed in the application demonstration, we shall use a
3-tuple (f, s, e) to indicate that a SFE occurred for function
f in time interval [s, e]. As an example, suppose a function
f is called at times 1.0, 1.8, 2.2, and 3.5 while a function
g is called at times 1.5, 2.3, and 3.0. If TIMEOUT=1.0,
then we shall obtain SFEs (f, 1.0, 2.2), (f, 3.5, 3.5), and
(g, 1.5, 3.0).

In terms of implementation, we use the GNU C/C++
compiler’s -finstrument-functions option to have our SFE
detection code run on every application function call. We
have observed that the SFE detection code has marginal im-
pact on execution speed, so instrumented real-time graphi-
cal applications continue to be highly usable for demonstra-
tion purposes.

2.2 Multiple Function Events

Roughly speaking, a multiple function event (MFE) con-
sists of a maximal set of SFEs with similar start times and
also similar end times. More precisely, given a constant
TOLERANCE < TIMEOUT, we shall allow the start times
to vary by at most TOLERANCE and the end times to also
vary by at most TOLERANCE. The requirement TOLER-
ANCE < TIMEOUT ensures that any given function f has
at most one SFE in a given MFE. Consequently, we can
speak of a set of m functions {f1, . . . fm} corresponding
to a MFE and it will be understood that there are m corre-
sponding SFEs in such a MFE.

A MFE with functions {f1, . . . , fm} will occur in time
interval [tmin, tmax] if and only if the following conditions

1Observe that it is possible to have an SFE in time interval [ti, ti] where
f is called only once. Thus, SFEs make sense in productivity applications
also where user actions may be very short with some important functions
f being called only once per user action.
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Figure 1. Multiple function events example.

all hold: (1) there is some function f ∈ {f1, . . . , fm}
with SFE (f, tmin, e); (2) there is some function f ∈
{f1, . . . , fm} with SFE (f, s, tmax); (3) every function f ∈
{f1, . . . , fm} has a SFE (f, s, e) where s ∈ [tmin, tmin +
TOLERANCE] and e ∈ [tmax − TOLERANCE, tmax]; and
(4) the MFE must be maximal in the sense that no other
MFE satisfying the above conditions contains a superset of
this MFE’s SFEs

We shall use the 3-tuple ({f1, . . . , fm}, s, e) to denote
the unique MFE with functions {f1, . . . , fm} and time in-
terval [s, e].

Observe that each SFE (f, s, e) will be part of at least
one MFE since we will either have a MFE ({f}, s, e)
or, if this is not maximal, some MFE containing SFE
(f, s, e). Moreover, it is possible for the same SFE to be
part of multiple MFEs. For example, suppose we have
SFEs (f, 1, 4), (g, 2, 5), and (h, 3, 5). If TOLERANCE=1,
then we will end up with two MFEs containing (g, 2, 5):
({f, g}, 1, 5) and ({g, h}, 2, 5). (See Figure 1.) The larger
MFE ({f, g, h}, 1, 5) is not valid since (f, 1, 4) and (h, 3, 5)
have start times that vary by 2, which is greater than the al-
lowed tolerance of 1.

Our algorithm for finding all such MFEs is somewhat
involved. A high-level description of the algorithm is given
in the Appendix.

3 High-Level Graphical Events

Unlike the older DRT tool that uses before/after screen-
shots to describe actions, DRT/Video uses video to describe
low-level code events. While before/after screenshots are
adequate for describing user actions in productivity appli-
cations such as word processors and spreadsheets, they are
less so for real-time graphical applications.

For example, consider the flight simulator thunderstorm
scenario from Section 2. The MFE corresponding to the

thunderstorm may start at the very early signs of bad
weather and end with the last remnants of the storm. Conse-
quently, it may not be obvious from before/after screenshots
that this MFE corresponds to a thunderstorm. This is partic-
ularly an issue if the functions in the MFE are more generic
weather modeling subroutines that do not contain explicit
references to “thunderstorm” in their names. Video is also
better than before/after screenshots when there is overlap
among events. For example, the aircraft may just happen to
start raising its flaps at the beginning of the thunderstorm
event, so it would appear from the before/after pictures that
perhaps the MFE refers to raising of the flaps. However, it
would be obvious from the video that flap raising was com-
pleted long before the end of the thunderstorm MFE.

One might wonder whether today’s computers are fast
enough to do video capture of real-time graphical applica-
tions in software. Surprisingly, they are; video capture hard-
ware is not required. On a 1.1 GHz Pentium III computer,
we have been able to capture video using the tool xvid-
cap2 at 10 frames per second for a window of size 640x480
with only occasional and short-lived slowdowns; real-time
graphical applications remained highly usable. However,
since frame compression is computationally expensive, we
had to perform this video capture by storing uncompressed
frames on disk. Of course, once the video has been cap-
tured in real-time, compression of the video can be done
afterwards to save disk space.

4 Design Recovery

In this section, we shall describe typical usage of
DRT/Video.

4.1 DRT/Video Tool User Interface

Figure 2 shows the user interface of the tool. Recall that
DRT/Video links low-level code events with their high-level
graphical events. As explained in Section 2, the low-level
code events are found using MFEs, which in turn are com-
promised of SFEs. The user interface has two views for
low-level code events: (1) an “MFE overview” view that
excludes SFEs (shown on left in Figure 2) and (2) a more
detailed “MFE contents” view that includes SFEs (shown
in the upper right in Figure 2). Also, as explained in Sec-
tion 3, the high-level graphical events are identified by the
user from a video of the application demonstration. Conse-
quently, there is a third view showing the video.

The MFE overview depicts MFEs over time. The time
bar in the view — the dashed vertical line — indicates the
current time in the demonstration. The horizontal position

2This tool can be downloaded from
http://www.sourceforge.net/projects/xvidcap.
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Figure 2. DRT/Video user interface.

and width of a MFE indicates its starting time and duration.
However, there is no significance to the vertical position or
height of a MFE in this view. We ensure that MFEs over-
lapping in time are not placed in the same row. Specifically,
we lay out MFEs by considering them in non-decreasing or-
der of end times and placing each MFE at a vertical position
corresponding to the topmost row that is free (i.e., causes no
overlap). Observe that this layout algorithm tends to place
shorter MFEs in top rows, so if the user is for example look-
ing for a short MFE then it will likely be near the top of
the view. The MFE contents view zooms in on only the
MFE(s) intersecting the time bar in the MFE overview and
shows the SFEs compromising those intersected MFE(s).
Note that the width of the SFEs may be slightly smaller
than the width of their MFE due to the tolerance parameter.
Again, the time bar in this view denotes the current time at
this point of the demonstration.

All three views – MFE overview, MFE contents, and
video – are synchronized: if the user moves to time t in
the demonstration (e.g., using the time slider or one of the
“animate”, “next MFE”, or “prev MFE” buttons), then all
three views will correspond to time t. Note also that all
three views allow the user to zoom in and out.

4.2 Game Example

To demonstrate typical usage of DRT/Video, we shall
consider design recovery of the real-time graphical game
Pingus 0.6.0, a Lemmings clone for Linux. In this game,
the player needs to guide a group of penguins safely to the
exit on each level, while saving them from fatal falls, by
giving them commands such as build a bridge, dig a hole,
or redirect other penguins in the other direction.

The game makes a good example for several reasons.
First, Pingus 0.6.0 is a substantial C++ application con-
sisting of 61,842 lines of code. Second, the game would
not work at all with our previous version of DRT. This is
because (1) several penguin actions, such as walking and
falling, are not directly initiated by user input so the older
DRT tool would not be able to detect the start of such
events; and (2) code is executed at almost all times since
at least one penguin is typically in motion in game play so
the older DRT tool would not be able to detect the end of
events as there is little if any idle time.

For this demonstration, we played the game Pingus for
about a minute and a half under DRT/Video. The video
was taken at 10 frames per second. We used a timeout of
0.25 seconds and tolerance of 0.2 seconds, which resulted
in 6,169 SFEs and 382 MFEs. As explained in Section 2,
the SFEs were identified in real-time while the MFEs were
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found after the demo. It took 17 seconds to identify all
MFEs using the algorithm described in the Appendix on a
1.1 GHz Pentium III computer.

4.3 Top-Down Design Recovery

In the context of the DRT/Video tool, top-down design
recovery means using higher level video events to shed light
on their corresponding lower level code events. For ex-
ample, if we look at the video view in Figure 2, we see
penguins walking. Correspondingly, we would expect to
find a MFE corresponding to walking. This is indeed the
case as is evident from the MFE Contents view, which
shows a MFE active at the moment compromised of SFEs
Actions::Walker::update(...), Actions::Walker::draw(..),
and several other functions involved in walking. DRT/Video
currently does not differentiate between instances of the
same class, so there is only one MFE active even though
there are three penguins walking.

In this level of the game, if the penguins keep walking
to the right, they would fall off a tall cliff. To prevent them
from dying, the player would need to make them “floaters”
– meaning that they would be given a propeller to slow them
down during the fall. This is done before the fall while they
are still walking towards the cliff edge.

If one is not familiar with the code at all, then it is not
obvious which functions would be executed in this chain of
events. Even if one has briefly looked at the code and no-
ticed that there are classes for walkers, fallers, and floaters,
questions still remain. When a penguin is made into a
floater while it is still walking towards the cliff edge, is it
considered a walker, a floater, or both? When the penguin
starts falling, is it considered a faller, a floater, or both?

Figure 3 depicts this chain of events. In particu-
lar, Figure 3, (a) shows the penguin – already converted
to a floater – walking towards the drop. The MFE
contents view tells us that it is considered a walker at
this point since Actions::Walker::update(...) and Ac-
tions::Walker::draw(...) are being repeatedly called and
no other penguin is walking at that point in the video.
(Incidentally, Actions::Splashed::update(...) and Ac-
tions::Splashed::draw(...) refer to a penguin just in front
that fell to its death without a propeller.) Figure 3, (b) shows
the initial drop of the floater penguin. The MFE contents
view tells us that it is actually considered a faller at this
point with functions such as Actions::Faller::update(...),
Actions::Faller::draw(...), and a host of others compro-
mising the fall MFE. Figure 3, (c) shows that soon after-
wards the propeller takes effect and the penguin turns into
a floater, with functions Actions::Floater::update(...), and
Actions::Floater::draw(...) being executed.

Observe that without the video guiding our analysis of
the code, it would be more difficult to understand the pre-

cise scenarios in which penguins are transformed between
various types. The video is higher level and more easily sets
the context for the lower-level code events.

4.4 Bottom-Up Design Recovery

In the context of the DRT/Video tool, bottom-up design
recovery means shedding light on lower level code events
by observing their corresponding higher level video events.

However, while it is easy to simply view an entire video
from start to end to identify interesting higher-level visual
events for top-down design recovery, it would be much
more difficult to consider all MFEs manually to identify in-
teresting lower-level code events. Consequently, it is impor-
tant to provide the user some way of finding MFEs of inter-
est. The DRT/Video tool supports keyword search for this
purpose. Figure 4 shows the result of the keyword query
“faller”. In the MFE overview, shaded MFEs indicating
matching MFEs with at least one SFE containing the query
word(s) in the function name. The darker the shading, the
better the match (in a cosine similarity sense as discussed
below) with white MFEs indicating no match at all.

In this example, examining MFEs with “faller” in them
would allow us to make a similar observation as that done in
Section 4.3 with respect to falling floater penguins. Specif-
ically, we would notice that the matching MFEs seem to
be divided into two groups: those with short durations and
those with long durations. (See Figure 4.) And so, we
can use the video to shed light on those two groups in a
bottom-up fashion. In doing so, we would observe from the
video that the longer matching MFEs correspond to pen-
guins falling to their death while the shorter ones corre-
spond to an initial quick short fall followed by activation
of the propeller to slow the penguin down (in which case it
is then considered a floater).

One problem with the bottom up approach using key-
word queries is that it requires some initial familiarity with
the source since the user needs to know the precise words
to use in the keyword query – although stemming is done to
alleviate this problem somewhat. For example, should we
search for “faller”, “jumper”, or “diver”?

DRT/Video also allows the user to click on a MFE to find
similar MFEs. In this way, the user can find related code,
which can then be explained visually through corresponding
video segments.

For both keyword queries and finding similar MFEs,
there is a query function set Q: (1) for a keyword query, Q

consists of all functions containing all the query keywords
in their names; and (2) for a similar MFEs query, Q con-
sists of all the functions in the MFE clicked by the user.
DRT ranks MFEs related to this query function set using
the standard cosine similarity measure used in information
retrieval [21, p. 185]. In particular, if we let M denote the
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Figure 3. A penguin with a propeller walking off the cliff edge.
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Figure 4. The results of the keyword query “faller”.

set of functions in some MFE, then the cosine similarity be-

tween Q and the M is
∑

f∈Q∩M
w(f)2

√

∑

f∈Q
w(f)2

√

∑

f∈M
w(f)2

, where

we set weight w(f ) to one.

5 Related Work

As explained in Section 1, our earlier work on DRT [4]
was applicable only to interactive graphical applications
written in an event-driven programming style with alter-
nation between user-initiated events and application re-
sponses. DRT/Video removes this restriction to fully sup-
port real-time graphical applications. Other related work
follows below.

5.1 Software Visualization

Since DRT/Video uses video to visually describe low-
level code events, one can view the tool as a software
visualization system. Other work on software visualiza-
tion typically involves the development of new visualization
techniques —- independent of the application display —
whether they be visualizations of the source code itself [1]
or perhaps visualizations of more abstract entities such as
algorithms and data structures [3, 10].

5.2 Macro Recorders and Programming by
Demonstration

Macro recorders allow users to record their actions and
replay them later [6]. For example, a spreadsheet user can
automate the selection of certain cells and subsequent copy-
ing to another location. DRT/Video also allows users to
record a demonstration of the application but for the pur-
poses of design recovery; actions are not replayed later to a
running application.

Macro recorders record the user’s actions verbatim. In
contrast, a programming by demonstration system creates
generalized programs — possibly with conditionals and
loops — from the recorded actions [6]. For example, such
a tool may generalize from the actions of a spreadsheet
user that it should select all of the rows before row “To-
tal”. As another example, the SMARTedit system [12, 13]
can generalize editing tasks such as deleting HTML com-
ments from examples. Such generalizations can become
more accurate when multiple demonstrations are given by
the user for a particular task so that incorrect inferences are
filtered out. The DRT/Video tool does not currently do any
such generalization, but one can imagine adding clustering
to discover more abstract code events (e.g., the notion of a
penguin action in the game Pingus whatever that action may
be).
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The work on editable graphical histories [11] introduces
the notion of before/after pictures to identify past actions in
a macro recorder or programming by demonstration system.
As an example of this approach, the authors developed a
tool that captures the user’s actions in a drawing program
using before/after pictures so the user could easily go back
to some previous point in the session, edit the drawing at
that point, and then replay subsequent drawing operations
performed in the past. DRT/Video is similar in the sense
that it uses video to visualize the application state at a very
high level of abstraction.

5.3 Software Clustering

Much of the design recovery literature involves soft-
ware clustering. Software clustering attempts to automati-
cally decompose software systems into meaningful subsys-
tems to facilitate understanding of those systems (e.g., for
maintenance tasks) or to reuse subsystems in other applica-
tions [2, 5, 15, 18].

Our approach does not result in a hierarchical decompo-
sition of subsystems. Rather, we obtain a collection of exe-
cution traces through the application — namely, the MFEs
whose SFEs may crosscut multiple subsystems. However,
it is possible to visually identify hierarchical relationships
in the MFE overview view in the sense that certain shorter
MFEs may be seen to always lie within the time intervals of
certain longer MFEs.

Software clustering techniques can be divided into
two categories: knowledge-based and structure-based ap-
proaches [18]. Knowledge-based approaches attempt to un-
derstand what different pieces of source code do by us-
ing reverse engineering techniques and pre-existing domain
knowledge [2, 15]. For example, such a technique may rec-
ognize clusters at a conceptual level, such as a cluster of
functions responsible for “reserving an airline seat”.

Structure-based approaches look at simpler syntactic in-
teractions between objects [5, 18]. For example, the objects
may be functions while the syntactic interactions may be
function calls. Structure-based algorithms typically iden-
tify clusters based on maximization of cohesion and/or min-
imization of coupling. Most software clustering researchers
have concentrated on structure-based techniques as they do
not require building of a knowledge base or problem do-
main semantics [18].

Our approach does not require any knowledge of the
real-time graphical application in particular (e.g., flight sim-
ulator); rather, it requires knowledge of real-time graphi-
cal applications in general (e.g., many interesting events in-
volve repeated invocation of a function over a time interval
and have obvious graphical manifestations over that same
time interval).

5.4 Dynamic Analysis

There has been related research done on selective trac-
ing of atomic units of activity. For example, the drive-by
analysis approach employed in the Jinsight tool [14] al-
lows users to define their own notions of execution “burst”
by specifying triggers, filters, requested threads, and burst
ending criteria. Jinsight returns dynamic information from
the burst only, thus allowing users to prune potentially very
large amounts of trace data to only those items of interest.
We also have a notion of an execution burst in the DRT tool
– namely in the form of SFEs and MFEs – but we predefine
it as explained in Section 2 to automatically capture bursts
that correspond closely to interesting events that occur in a
real-time graphical application. While Jinsight does share
the generic idea of an execution burst with DRT/Video, it
does not automatically find bursts (without user input) nor
does it describe them visually from the application display.

However, there is an interaction-driven tool, LeNDI, for
reverse engineering legacy interfaces [7, 17] that identi-
fies the text screens encountered while an application is
used and ways (e..g, keyboard input) for getting from one
text screen to another. Such information can be helpful in
migrating text-based legacy interfaces to newer platforms
(e.g., GUIs or the web) or perhaps wrapping them for inter-
action with other systems. While it may seem that LeNDI
is similar to DRT/Video in the way it uses the application
display, LeNDI actually makes no connections to the corre-
sponding burst code. The authors acknowledge that LeNDI
does not shed much light on the application code behind
those text-based interfaces [17]: “Clearly, if the end goal
is to extend or modify the system functionality by modi-
fying its current code, then such interaction-based under-
standing is insufficient because it provides only a model of
the user tasks that the system supports and it completely ig-
nores low-level design decisions such as data structures and
algorithms.”

The “software reconnaissance” technique involves run-
ning test cases with and without the desired feature and
looking for code executed in the test case(s) with the feature
that is not executed in the test case(s) without it [19, 20].
Unlike “software reconnaissance”, DRT/Video does not re-
quire the user to manually set up various test cases with and
without certain features. Rather, the user simply demon-
strates the application normally exercising a variety of fea-
tures. Video and MFEs provide the connection between fea-
tures and implementation.

Anomaly detection, much like MFEs, identifies interest-
ing low-level events throughout the application execution
but these anomaly events represent abnormal/buggy behav-
ior that should be corrected [9]. Consequently, unlike our
approach, anomaly detection involves a training phase to
identify expected behavior followed by a checking phase to
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see if any abnormal behavior is present.

6 Conclusions and Future Work

In this paper, we have explored a method for design re-
covery of real-time graphical applications using video. The
method involves linking low-level code events with their
higher level graphical manifestations. We have described
how to identify low-level code events in a two step pro-
cedure: first, we identify single function events that corre-
spond to time intervals during which a particular function is
called frequently; and second, we identify multiple function
events that are compromised of SFEs all of which have sim-
ilar start and end times. The higher level graphical events
can be identified by simply watching a video of the applica-
tion demonstration. We have demonstrated how the linkage
between the low-level code events and the high-level graph-
ical events can be used for both top-down and bottom-up
design recovery.

For future work, we would like to support heavily data-
driven real-time graphical applications. In such applications
(e.g., a physical simulation), the control flow is very similar
throughout the execution, so we would not pick up many in-
teresting MFEs. However, interesting low-level events can
be found if we look at the program state over time, perhaps
using invariant mining [8]. For example, in a flight simu-
lator, when an airplane starts to descend, there would be a
corresponding low-level event indicating that certain vari-
ables are now negative say. However, we would need to
look for invariants that hold only during a limited period
of time – much like work done on anomaly detection using
invariant mining [9].

We would also like to create “video hyperlinks” to more
directly link visual objects in the video with their corre-
sponding low-level code events. This would allow one to
attach to a visual object to trace its execution much as one
would attach to a thread or process in a debugger. For ex-
ample, in a basketball game, one could click on the ball in
the video to see the associated code for the physical sim-
ulation of the ball – even in the presence of other moving
objects such as the players, referees, and spectators. The
video hyperlink can also be used in the other direction. The
user can click on a low-level code event to highlight the vi-
sual object(s) in the video to which the event corresponds.
So if one clicks on some low-level physical simulation code
event(s) and sees that the ball is highlighted in the video,
then it would be immediately clear that this code is respon-
sible for physical simulation of the ball. To create video
hyperlinks, we could look for objects in the video segment
that undergo some transformation (e.g., changes in location,
color, texture, shape, etc.) over a time interval that coincides
with that of a low-level code event.
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Appendix

At a high-level of abstraction, our algorithm for finding
MFEs is as follows:

1. SFE input set I :={all SFEs found in execution}; SFE
active set A := ∅; MFE result set R := ∅

2. while SFE input set I 6= ∅ or SFE active set A 6= ∅:

(a) if I = ∅ or SFE (fI , sI , eI) with minimum end
time in I has eI > TOLERANCE + eA where
(fA, sA, tA) is SFE with minimum end time in
A:

i. add MFE(s) containing (fA, sA, eA) (and
possibly other SFEs) in A to R but omitting
those MFE(s) that are subsets of MFEs al-
ready in R

i. remove (fA, sA, eA) from A

(b) else: // SFE (fI , sI , eI) with minimum end time
in I has eI ≤ TOLERANCE + minimum end time
of SFEs in A (if any)

i. add SFE (fI , sI , eI) to A

i. remove SFE (fI , sI , eI) from I

The algorithm works as follows. We maintain three sets:
(1) the SFE input set I ; (2) the SFE active set A; and (3)
the MFE result set R. Any given SFE (f, s, e) will be in
one and only one of these sets, starting out in the SFE input
set I , then moving to the SFE active set A (in step 2, (b)),
and finishing off in the MFE result set R (possibly as part
of multiple MFEs in R) (in step 2, (a)).

To see why the algorithm works, observe that we would
only construct MFEs containing SFEs with start times and
end times within the tolerance limits in step 2, (a), i, so the
output will only contain valid MFEs provided that they are
maximal. The condition for whether to move an SFE from
the SFE input to the SFE active set or from the SFE active
set to the MFE result set ensures that all SFEs in the active
set A have end times within TOLERANCE of each other,
and so we need only check whether the start times are also
within TOLERANCE when generating MFEs. The reason
why we may need to generate more than one MFE con-
taining (fA, sA, eA) is because SFEs may have start times
within TOLERANCE of SFE (fA, sA, eA)’s start time but
up to 2×TOLERANCE from each other’s start times.

To see that the MFEs generated in step 2, (a), i are maxi-
mal, consider any maximal MFE M = ({f1, . . . , fm}, s, e)
that should be in the MFE result set R. Consider the func-
tion f whose SFE (fM , sM , eM ) in M is first processed
in step 2, (a). Since SFEs are considered in order of non-
decreasing end times, it follows that fM ’s SFE end time
is ≤ the end times of other SFEs in M . Moreover, when
SFE (fM , sM , eM ) is processed in step 2, (a) all SFEs in
M are in the set A since their end times vary by at most
TOLERANCE and we do not process SFE (fM , sM , eM ) in
step 2, (a), i until we are sure that there is no SFE remaining
in the input set whose end time is ≤ eM + TOLERANCE.
Since (fM , sM , eM ) is the first SFE in M to be processed
in step 2, (a) it follows that no MFE containing a subset of
the SFEs of M has already been put in the MFE result set
R. Consequently, the maximality test passes and we add
exactly MFE M to the result set R. When the other SFEs in
M are processed later, the maximality test will fail and we
will not add any subset MFEs of M .

The actual implementation used is a bit more complex
since some optimizations are made. For example, we make
the maximality check more efficient by observing that for
any MFE in R, there comes a point in time at which that
MFE could not possibly be a superset of any future MFEs
considered for addition to R.
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