
 1

Present Scenarios and Future Challenges in Pervasive Middleware

Amitava Mukherjee

School of Computer Science and Engineering

 University of New South Wales
 Sydney 2052, Australia

amitavam@cse.unsw.edu.au

Debashis Saha

MIS & Computer Science Group
Indian Institute of Management (IIM) Calcutta

 Joka, Kolkata 700 104, India
ds@iimcal.ac.in

December 2003

UNSW-CSE-TR- 0337

 2

Abstract- In order to run applications on pervasive devices, pervasive middleware has to

support context-awareness, as pervasive applications need to adapt to variations of

context of execution (such as network bandwidth, battery power and screen size),

physical change of locations, change of technological artifacts (devices), change of

hardware resources of artifacts, and so on. Recent research efforts have primarily

focused on designing new mobile middleware systems capable of supporting the

requirements imposed by mobility. However, apart from mobility constraint, pervasive

middleware will operate under above-mentioned conditions of a radical change. This

change is varying from physical components (like network heterogeneity) to functional

components (right from heterogeneous devices to context-based applications). Few

contemporary researches have indeed focused on some parts of these requirements; but a

qualitative difference between intended requirements and practical achievements still

remains there. In this article, we discuss some of recent mobile/pervasive middleware

systems, focusing on research issues and challenges ahead to bridge the gap. Typically,

we highlight the key characteristics of pervasive middleware to support context

awareness and service discovery, smartness and adaptation, heterogeneity and

integration, and intelligent interfacing.

Keywords: Pervasive computing, middleware, components, heterogeneity, context-

awareness, interfaces.

 3

Introduction

Pervasive computing [1]-[2] is “omni-computing”. It is “all-pervasive” by combining

open standards-based applications with everyday activities. Pervasive computing

environments increase users’ thought and activities with an all pervasive information

processing and analysis. It provides an environment to perform day-to-day activities that

are enhanced by behavioral contexts of users. In the vision [1] of pervasive computing,

the environment is saturated with a host of computing and communication capabilities

which are gracefully integrated with daily life so that user will be able to exchange

information and control their environments from everywhere using a seemingly invisible

infrastructure of various wireline and/or wireless networks and computing devices [2].

Various peer-to-peer computation and communication devices are creating this

environment to facilitate users’ everyday tasks and to increase productivity as well. This,

in turn, is facilitating the construction of new classes of applications that will be

embedded in the physical environments and integrated seamlessly with user’s everyday

tasks. These applications pose a number of new challenges for the existing middleware (a

bundle of firmware and/or software executing in either client-server or peer-to-peer

mode) technology to live up to the desired level of expectation. This is because of the

presumption of the following architectural model (Figure 1) for pervasive computing [2].

Similar to the model of distributed computing and mobile computing, in pervasive

computing too, a shell of middleware is essential to interface between the pervasive

network kernel and the end-user applications running on pervasive devices. This

middleware will be responsible for keeping the users immersed in the pervasive

computing space and for mediating all interactions with the kernel on behalf of the user.

 4

An Example

A pervasive computing environment may have limited hardware resources,

heterogeneity in networks and devices, dynamic changes in physical environment and

different applications (services) to run on. To understand such a scenario, we consider an

example.

Ray, manager of an international Consulting Company, is attending a conference at

Sydney with his PDA. He uses the PDA to access information in a wireless environment

dynamically via the conference server. Ray performs several activities during a day of the

conference: access the marketing and technical presentations electronically from the

conference web site, select the schedule to attend the presentation, check timing of

cocktail party and cultural functions of conference in the evening, get some alert

messages during the conference to send mail/message to his secretary to run business at

his office.

When Ray enters the conference hotel, he checks the conference program browsing

through PDA to select few presentations to attend. Before attending the presentation, he

decides to look at the abstract of those presentations through on-line conference

proceedings. While doing so, he meets Robert, manger of one of his client’s company,

who is also attending the same conference. They move to swimming pool to finish

pending discussion that they had on last evening through conference call. As they

approach the pool, Ray finds his PDA taking a significant amount of time to access the

abstract of the paper because the quality of network connection deteriorates. While

 5

moving to another location to get a better connectivity, they loose connectivity to access

the proceedings.

They come back to conference site to access the contents of the proceeding and attend

the talk. In the meantime, a reminder beeps on the screen to send messages to his

secretary. After a few minutes, another beep flashes on the screen to remind him to

present his talk after 15 minutes. When he prepares to send messages from his PDA, a

message flashed on the screen to alert him to proceed to a nearby call-room to get a

better hardware infrastructure and network connection. He sends a brief message from

call-room using a notebook computer to his secretary to instruct her to prepare the

schedule on next day’s client meeting. He also has a discussion on day’s business

activities. A beep flashed on the screen of notebook computer to alert him to present his

talk at the conference room.

In the above example, we observe a few important aspects. Ray’ s working

environment has changed very frequently. His location changes dynamically as he moves

from the conference site to swimming pool to call-room back to conference room. In his

environment, functional components, such as devices, services and resources, are

changed frequently. Physical components, such as bandwidth, memory availability of his

PDA, and battery power varies on his change of locations. All functional and physical

components pointed here are the examples of context that need to be adapted to the

dynamism of the user in the environment. As the user is highly mobile, it is impossible to

know a priori the uncertainty in user’ s requirements. So the system would require support

for dynamic reconfiguration. When the user enters the conference hotel, his PDA does

not know physical and functional components in the environment. So a discovery

 6

mechanism provides information about these components. Sometimes the user might

need to actively configure the system to adapt the services available in a certain

environment. In addition to middleware reconfiguration, software infrastructure

associated with the environment is required to discover existing devices and services and

learn their facilities offered and reconfigure them when changes are detected (in our case

a message flash on PDA to alert Ray to precede for better resources and service).

Pervasive Middleware Characteristics

In particular, future middleware that would support the construction of pervasive

applications should include new levels of component interoperability and extensibility,

and new dependability guarantees with QoS-based context-aware services, including

adaptation to changing environments and tolerance of disconnected operations under

heterogeneous environment. Current researches in mobile middleware assume

homogeneous network environments. So there remains the problem of interoperating

with heterogeneous middleware technologies that provide different asynchronous

communication paradigms to cope with frequent disconnections (typically common in a

pervasive network environment). Above all, simplicity at the middleware level is

important to the deployment and the administration of any pervasive application. Even if

each device is equipped with an appropriate interface, the shear multitude of devices will

make it virtually impossible for the owner to take on administrative responsibilities

manually. When a device gets installed initially, users should be able to just plug the

device in, and it should start to work immediately with no hassles. In order to do so, it

must be able to self-configure and activate itself.

 7

Researchers in pervasive middleware have focused on similar challenges and pursued

them in various research endeavors [2]-[4]. From their works, we can conclude that, in

general, a pervasive middleware is characterized by following major paradigm shifts:

• Context awareness and service discovery: learn the environment so that the

interactions between services and devices are made proper to get a desired service.

• Smartness and adaptation: construct, manipulate and display environments, resources

and contents for any services.

• Heterogeneity and integration: handle different applications on different devices

connected to different heterogeneous network environments, and integrate a number

of parameters such as QoS, service reliability, invisibility etc.

• Programming interface: address issues related to service adaptation and integration

• Disconnectivity: protect services and applications from transient failures when users

or devices go out of the range of wireless connectivity.

• Security: minimize threats to privacy, inspite of being pervasive.

Current generation of mainstream middleware [5] is, to a large extent, heavyweight,

monolithic and inflexible, and, thus, fails to properly address the afore-mentioned new

requirements of pervasive applications. Traditional middleware systems have been built

adhering to the principle of transparency: implementation details are hidden from both

users and application designers and are encapsulated inside the middleware itself, so that

the distributed system appears as a single integrated computing facility to application

developers [5]. Though successful for building traditional distributed systems, this

approach suffers from severe limitations, when applied to pervasive computing, where it

 8

is neither always possible, nor desirable, to hide all the implementation details from

either the user [5], [6] or the developer.

Figure 1: Pervasive Computing space [2]

Most of the existing research efforts [2]-[4], [6] have focused on designing

middleware capable of supporting only the requirements imposed by mobility. A concept

of awareness is introduced recently in [7] to break the high level of abstraction

(transparency) for targeted mobile middleware. This approach allows developers to build

applications to be aware of their execution context and to adapt their behavior

accordingly. This balance between awareness and transparency has added a new

PERVASIVENESS
SUPPORT

Pervasive Middleware

Pervasive System

Pervasive Computing

+

MOBILE DISTRIBUTED
SYSTEM

 9

dimension to middleware research [7], [8]. However, apart from mobility constraint,

pervasive middleware will operate in different conditions of a radical change. This

change is varying from physical components (like network heterogeneity) to functional

components right from heterogeneous devices to context-based applications [2]. Few

contemporary researches [2], [4], [6] have indeed focused on some parts of these

requirements, but a qualitative difference between intended requirements and practical

achievements still remains there. In this article, we discuss today’ s mobile/pervasive

middleware systems, focusing on research issues and challenges ahead to bridge the gap.

Typically, we highlight the key characteristics of pervasive middleware to support

context awareness and service discovery, smartness and adaptation, and heterogeneity

and integration, and a multitude of programming interfaces in pervasive systems.

Pervasive Middleware Components

As hinted in Introduction, the success of traditional middleware systems is attributed

to the principle of offering a distribution abstraction (transparency) to both developers

and users, so that a system appears as a single computing facility. These middleware

provide built-in mechanisms and policies to support development for fixed distributed

systems in wired network environments (not for wireless networks). This high level

abstraction of the underlying technology and environment unfortunately makes a little

impact on dealing the specific issues, such as heterogeneity and dynamism, of pervasive

systems.

In order to make a middleware usable in different pervasive domains, it must have a

reusable framework to facilitate services in these domains. We highlight the following

three prime design components of a pervasive middleware:

 10

• Proactive Knowledge on Environment: To discover proactively network bandwidth,

nature of communication, types of devices and their functionalities, such as storage

capacity, input/output capability and battery power. Pervasive middleware should

facilitate a transparent communication model to applications to flexibly interact with

different devices in different network environments. For example, it should notify the

appropriate network layers to take actions, when an incompatibility in networks and

devices becomes imminent for an application [2].

• Building Applications on Context-awareness: To develop systems which determine

user tasks in different contexts, such as profile history, preferences, societal behavior

and environmental conditions. An application is usually synthesized to suit tasks,

associated with components and services. When the application is instantiated with a

device (i.e., integration of applications with devices), it should be able to move

seamlessly from that device to another device and even from one environment to

another environment. Moreover, pervasive middleware should support applications to

scale to add new contexts (or, to modify the existing context) for large systems. For

instance, pervasive middleware should be able to provide the facility to recover from

intermittent network failures.

• Appropriate Programming Interface: To express different activities, preferences of

users, and different characteristics of physical and functional computing components.

Future programming languages will support for expressing context-awareness on a

conceptual level that will be different from existing programming languages. In

essence, the semantic modeling in pervasive middlewares should provide a uniform

 11

and common way to express context-awareness for users’ various activities in their

applications.

Additionally, a pervasive middleware need some more common capabilities, such as

lightweight design and low energy-consumption [4], [8], typically found with a mobile

middleware.

Recent Research Endeavors

In order to fix the limitations of legacy middleware, following research projects have

focused on middleware technologies to support some scenario of pervasive computing.

This results in a group of new/upgraded middleware that has been categorized below in

terms of their research objectives and the key issues addressed by them.

Projects Objectives Key Issues

RCSM [8] To develop a

middleware that

facilitates applications

those require context

awareness in mobile ad

hoc communications.

Context awareness in applications

during development and runtime

operation: It combines the characteristics

of context awareness and ad hoc

communications in a way to facilitate

running complex applications on devices.

X-Middle [9] To develop a mobile

middleware which

supports building

applications that use

both replication and

Disconnected operations in mobile

applications: It allows mobile users to

share data when they are connected, or

replicate the data and perform operations

on them off-line when they are

 12

reconciliation over ad-

hoc networks.

disconnected; data reconciliation takes

place when user gets reconnected.

Gaia [10] To build a distributed

infrastructure where a

middleware coordinates

software entities and

heterogeneous devices.

Dynamic adaptation to the context of

mobile applications: It supports the

development and execution of portable

applications in active spaces.

Environment

Awareness

Notification

Architecture [11]

To develop a

middleware for event

notification by a mobile

computing environment

to applications.

Scarce resources of mobile devices and

dynamicity of the mobile environment:

It models the environment as an

asynchronous event that includes the

information related to the change.

UIC [6] To develop a reflective

middleware (composed

of a pluggable set of

components) for

mobile devices.

Heterogeneity of devices and networks:

It helps users to specialize to the

particular properties of different devices

and network environments.

Nexus [12] To develop a

middleware that

supports location-aware

applications for mobile

users.

Heterogeneity in networks: It provides

an infrastructure that supports

communication in heterogeneous

network environments.

Lime [13] To develop a Programming constructs which are

 13

middleware that

supports physical

mobility of hosts,

logical mobility of

agents, or both.

sensitive to the mobility constraints: It

explores the idea by providing

programmers with a global virtual data

structure and a tuple space (Tspace),

whose content is determined by the

connectivity among mobile hosts.

Tspaces [14] To develop a

middleware that

support

communication,

computation and data-

management on hand-

held devices.

Asynchronous messaging-based

communication facilities without any

explicit support for context-awareness:

It explores the idea of combination of

tuple space (Tspace) and a database that

is implemented in Java. Tspace targets

nomadic environment where server

contains tuple databases, reachable by

mobile devices roaming around.

L2imbo [15] To develop a

middleware that

emphasizes on QoS

support in mobile

applications.

QoS monitoring and control by

adapting applications in mobile

computing environment: It provides the

facilities of multiple spaces, tuple

hierarchy, and QoS attributes.

Aura [16] To develop a pervasive

infrastructure involving

wireless networks,

Distraction-free pervasive computing:

It develops the system architecture,

algorithms, interfaces and evaluation

 14

wearable or handheld

devices and smart

spaces.

techniques to meet the goal of pervasive

computing.

Research Challenges

A critical review of the above projects helps us identify the following immediate

challenges facing the researchers in this domain [2]-[4].

Service discovery

Service discovery dynamically locates a task that matches a user’ s requirements.

Traditional naming and trading service discovery techniques, developed for fixed

distributed systems, where intermittent (rather than continuous) network connection is the

practice, cannot be used successfully in pervasive computing environments. It might

solve the association problem to interact components (tasks) with services. But, the

research challenge would be to make use of this task (needs) to discover services in an

entire pervasive computing environment that would be able to give services to users

based on QoS-aware specifications. In QoS-aware service discovery, application needs

are made explicit and are used to decide how a service would be delivered to users in the

current context. For example, L2imbo [15] has developed a middleware to support QoS

in mobile applications. However, currently these needs are taken into account locally

only. The real issue is to resolve the following concern: “ Hundreds or even thousands of

devices and components (tasks) might exist per cubic meter; with which of these, if any,

is it appropriate for the arriving component to interact” [4].

Context awareness

 15

To accommodate context-awareness [2] of pervasive computing, pervasive

middleware must have facilities for both deployment-time and run-time configurability.

Context (or extension) with respect to an application is to bind and re-bind a number of

pervasive devices to facilitate the continuity of applications running on. The research

challenge will be that N classes of applications will have to adopt M numbers devices (N-

to-M) instead of doing a single new application to a group of devices (1-to-M). The

development of an appropriate program model becomes a challenge to express common

semantics to develop tasks (activities), validate tasks on different of physical

environments and devices, and finally share tasks by different applications (services). To

achieve this goal, in recent research projects [8], [13], [14], task components interact with

services by sharing a tuple space or an event service [11], or data-oriented services [9].

Some researchers have pointed out that data-oriented interaction might be a promising

model that has shown its value for spontaneous interaction inside the boundaries of

individual environments. It seems that this requires ubiquitous data standardization for it

to work across environment boundaries.

Adaptation

To accommodate dynamic requirements and preferences of users, a set of services

and polices need to be installed and uninstalled spontaneously. Different adaptation

schemes need different system configurations that vary over time. The changing

interactions among distributed services and policies may alter the semantics of the

applications built on top of the middleware. Most of the pervasive devices have limited

and dynamically varying computational resources. These embedded components, used in

pervasive devices, are small, and limit to constrained resources. Additionally, as portable

 16

devices run on batteries, a trade-off exists between battery life and computational ability

(or network communication). Here, a research challenge arises because adaptation must

often take place without human intervention to achieve calm computing [1]. Possible

extensions of existing mobile middleware are to include transformation and adaptation

for content and human interface in terms of context in pervasive applications.

Heterogeneity

Future pervasive systems will be heterogeneous in the sense that many different

devices will be available on the market, with possibly different operating systems and

user interfaces. Network connectivity will also be heterogeneous, even if an effort

towards complete convergence through different connection technologies will be made.

To accommodate this variety of heterogeneities, pervasive middleware must have a

facility (in terms of programming interfaces) to adapt to the jitter in environments at both

start-up time and run-time. For example, RCSM [8] has facilitated applications to adapt

to network heterogeneity by providing development and run-time supports. On another

front, the message-passing communication paradigm has already been tried to support

disconnections; for example, X-middle [9] has categorically addressed this issue to

support disconnections of devices with networks.

Semantic modeling

Semantic modeling addresses the challenge of programming interfaces in applications for

various user activities. The challenge is to develop a rich programming semantic to

handle different ontologies for various tasks in application domains. This high-level

semantics would describe the dynamic preferences, characteristics and services.

Ontologies [3] describe different task environments to adapt the changes in user

 17

environments (for example, Roy moves around to adapt different environments to run his

different activities during attending the conference).

Conclusion

Recent research efforts in middleware technology have addressed only a few scenario

of pervasive computing in their works. Truly speaking, researchers have focused on some

specific middleware contexts to meet typical aspects of mobile wireless networks.

Moreover, their prototypes have their own unique architectures and semantics, which

rarely lead to a generic framework. These existing implementations have not directly

addressed most of the characteristics (mentioned in the earlier sections) of pervasive

computing. Further, heterogeneity in these middleware may pose difficult interoperability

hurdles in future to a pervasive computing practitioner engaged in developing real-world

applications in the present structure. Nevertheless, in order to reach Mark Weiser’ s

vision [1] of “ calm computing” , future pervasive middleware must take a key role to

integrate physical and functional components to run different applications seamlessly so

that, when Ray, in our example, would visit the next conference in 2005, he would not

face hassles and social uncomfort any more.

References

1. Weiser, M. The computer for the 21st Century. Scientific American (Sept.1991).

2. Saha, D. and Mukherjee, A. Pervasive Computing: A Paradigm for the 21st Century.

IEEE Computer Magazine (Mar 2003).

3. Banavar, G et al. Software Infrastructure and Design Challenges for Ubiquitous

Computing Applications. CACM (Dec 2002).

 18

4. Kindberg, T. and Fox, A. System Software for Ubiquitous Computing. IEEE

Pervasive Computing (Jan 2002).

5. Geihs, K. Middleware Challenges Ahead. IEEE Computer Magazine (Jun 2001).

6. Mascolo, C et al. Middleware for Mobile Computing. Advanced Lecture Notes,

Springer LNCS 2497 (2002).

7. Mascolo, C et al. Middleware for mobile computing: awareness vs transparency.

Proceeding 8th Workshop Hot Topics in Operating Systems, IEEE CS Press (May

2001).

8. Yau, S S et al. Reconfigurable Context-Sensitive Middleware for Pervasive

Computing. IEEE Pervasive Computing (Jul 2002).

9. Mascolo, C et al. XMIDDLE: A Data-Sharing Middleware for Mobile Computing.

International Journal on Wireless Personal Communications (2002).

10. Roman, M et al. A middleware Infrastructure for active spaces. IEEE Pervasive

Computing (Oct 2002).

11. Welling, G. and Badrinath, B.R. An architecture for exporting environment

awareness to mobile computing applications. IEEE Trans on Software Engineering

(May 1988).

12. Fritsch, D et al. NEXUS Positioning and Data Management Concepts for Location

Aware Applications. Proceedings of the 2nd International Symposium on

Telegeoprocessing, France (2000).

13. Murphy, A. L et al. Lime: A Middleware for Physical and Logical Mobility.

Proceedings of the 21st International Conference on Distributed Computing Systems

(ICDCS-21) (May 2001).

 19

14. TSpaces Project, IBM Research, http://www.almaden.ibm.com/cs/TSpaces/ (2000).

15. Davies, N et al. L2imbo: A Distributed Systems Platform for Mobile Computing.

ACM Mobile Networks and Applications (MONET), Special Issue on Protocols and

Software Paradigms of Mobile Networks (1998).

16. Garlan, D et al. Project Aura: Toward distraction-free pervasive computing. IEEE

Pervasive Computing (Apr 2002).

