

Exploring the Issues of Boundary Definition in the
Application of COSMIC-FFP to Embedded Systems

Jacky Keung, Suryaningsih, Ross Jeffery
National ICT Australia &

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052 Australia
{jkeung, rossj}@cse.unsw.edu.au

UNSW-CSE-TR-0336

 1

Abstract

Software sizing plays an essential role in software management and in providing input for
estimation and benchmarking purposes. Despite the claim of emerging popularity of function points
as a size measure, it is not widely accepted in all software domains. The most popular technique is
Function Point Analysis that has become the “de-facto” standard in the business application
environment. When applied to non-MIS systems many researchers have criticized the counts as
misleading and not reflective of the size of the systems. The release of COSMIC Full Function Point
technique is aimed at overcoming these shortcomings. This paper presents a single-case study in a
telecommunication company to examine the applicability of the COSMIC Full Function Point
technique in the domain of embedded telephone switching systems (a type of real-time system).
Through the experience of this study, it is found that there is very limited experience in this area.
The current counting convention is thought to be inadequate in many areas such as peer-to-peer
sizing and that the field is still evolving. Due to uncertainty and ambiguity in the measurement
process, counter’s subjectivity plays an important role in function point counting.

Keywords: Software Metrics, Software Cost Estimation, Empirical Software Engineering, case
study

1 Introduction

Computer software has become an important part of business operations. Effective management of
software development and support is often a difficult challenge. Managers are faced with problems
such as budget overruns, late deliveries, and difficulties in justifying the value on investment and
poor software quality. These problems can be attributed not only to technical issues but also
management issues.

Managers are often unable to setup reasonable expectations for project estimates or benchmarks for
project evaluation simply because of the lack of standard metrics in the organization to measure the
software project. More often than not they have to rely solely on their experiences and “gut
feelings”. Therefore, from the management perspective there is a need for more objective and
quantifiable information for project estimation and control.

A famous quote in this area by DeMarco states: “You can’t control what you can’t measure” [25].
Alan Albrecht introduced the concept of functional size measure using function points in 1979, with
the vision to “develop a relative measure of function value delivered to the user that was
independent of the particular technology approach used” [7]. However, several researchers have
observed, the application of function point technique is not as straightforward or simple as it first
seems. It requires experience and expertise [8][9][10][24]. The establishment of the measurement
context to be used during the measurement process requires some subjective judgments to be made.
This is in turn could influence the final counts generated. Though the counts may differ they are not
necessarily “incorrect” counts according to the rules of the counting manual.

According to Desharnais [3], though this might seem to be an unscientific approach, this is the
current practice in the industry. As another researcher Rule [20] points out, function point based
metrics are considered as giving a relative measure of size rather than an absolute measure. Abran
[2] also suggests that it is possible to get different answers out of a measurement process when the
measurement instrument is used to measure the same context but for different purposes or

 2

perspective. However, he also emphasizes that “you get different answers depending what you want
to know, and not depending on the measurement instrument”.

Its descendant is the Full Function Point (FFP) technique; it is an extension of the traditional
Function Point Analysis (FPA) specifically developed to cater for both MIS and real-time system
measurement [17]. COSMIC (Common Software Measurement International Consortium) is a
group established by 6 major countries in the world, with the aim to achieve an international
standard set of software measurements that is ISO compliant. The COSMIC Full Function Point
method is a refinement of FFP, Mark II and the FPA technique, to address a variety of software
domains especially MIS and real-time systems [23]. It is aimed impact to resolve the different
interpretation of the original FPA concepts, which resulted in counting inconsistencies. [6]

Hasting [5] states that formal model validation is essential for the credibility and adoption of a
technique. He notes that “none of the models would seem to have undergone rigorous formal
verification. There is only limited evidence published on empirical validation for the function point,
feature point and MKII models.”

For the industry to progress and to be able to use these metrics in their own organization as well as
to benchmark against another, raises the need for international standardization on methods and
ways to convert one to another (Total Metrics 1998).

This study focuses on two issues that were raised by researchers based on observation and
experience during the application of the function point technique. Firstly, an important issue that
has been raised by researchers is the issue of the counting boundary. The ISO/IEC 19761:2003
defined boundary as “A conceptual interface between the software under study and its users”. The
“appropriate” definition for the counting purpose is essential since the boundary establishes the area
to assist the counters to decide without ambiguity what should be included and excluded in the
counting process. According to Desharnais [3], “Changing the application boundary will change the
functional size”. Secondly, in relation to the possibility of having different size measures for a
system which are dependent on the point of view of the describer. Hasting [5] recognizes that
software could be measured in terms of system size which refers to the measure of functionality
delivered to the business users or the component functionality which is a measure of the
functionality delivered by sub-systems. Hasting [5] also recognizes that the FPA based models can
not be guaranteed to be partitioned into independent components, which means that the sum of the
components functionality might not be equal to the total system size.

The impacts of the two issues described above on the FFP counts are explored via the measurement
of an enhancement project of a telephone switching system (real-time system) from a leading
telecommunication company. Three system models are proposed presenting two levels of system
abstractions and two boundary views. Details of findings are presented and discussed in section 4
and 5 respectively, and section 6 concludes the paper.

2 Research Design

As argued previously, there is no clear definition of what constitutes the “right size”. There is the
possibility that the same systems could have different size measures that are compatible with the
counting rules. The measure as mentioned previously is dependent upon the point of view of the
describer. The different perspective that could arise with the different interaction experienced or
level of details concerned necessary. This issue involves broader concerns in relation to the

 3

usefulness of one perspective to another and that often one size measure is not adequate to represent
a system size.

There are five major steps in calculating function points. They are:

1. Determine Type of Counts
2. Identify counting boundary
3. Determine Unadjusted Function Point Count
4. Determine Value Adjustment Factor (VAF)
5. Calculate Final Adjusted Function Point Count

The Value Adjustment Factor is not used in this case study, due to criticisms made by researchers
[7][10][12] that the adjustment process is not effective in improving effort prediction. Lokan and
Abran [13] also suggest that the FFP technique assumes that general system characteristics (GSC)
and Value Adjustment Factor (VAF) do not add value to functional software size. Therefore this
study will only use the first three steps (i.e. 1, 2 and 3), in order to generate the unadjusted function
point counts.

The approach taken to explore the impact of the subjectivity issues on the function point counts
using FFP technique is therefore:

1. Determine Type of Counts: this establishes the purpose and scope of the counting, and

defines what needs to be measured.

2. Identify counting boundary: There are two phases involved in identifying the counting

boundary. As mentioned earlier, the counting boundary is dependent upon the viewpoint of the
describer (system vs. component sizing). This involves the separation of the application to be
measured to its peers (within and different layers) as seen from diagram below (Figure 2.1).

Users

Layer 2Layer 1

A C

B

Or

Devices D

 Figure 2.1 Possible System Interactions

 4

Figure 2.1 above summarizing the possible interaction any system might have (the grey area/dot
represents changes made to the applications). Layer 1 applications refer to applications that support
the end-users (human or devices), while layer 2 applications refer to infrastructure software.

This is then followed by the assignment of boundary for counting purpose (figure 2.2). The first
(boundary 1) refers to design from the top-level design perspective, which is looking at the system
size as one large system with the boundary drawn between the system and the end-users.

The second level refers to the explosion of the system size into finer granularity increasingly
dependent upon the system design, which is taking account of all the sub systems associated with
the performance of system functionality. The boundary is to be drawn between sub-systems in
which the users of the sub-systems will no longer be the direct end-users but the various sub-
systems (boundary 2).

System Boundary (2)

System Boundary (1)

Sub-
system

Sub-
system

Sub-
system

Sub-
system

 Layer 1 Application

 Figure 2.2 Assigning Boundary

3. The assignment of the function points follows the pre-defined context as established by the
boundary as well as applying the rules and guidelines provided in the counting manual.

Finally, comparison is made on the counts generated.

3 Methodology

The organization under study is a telecommunication company in Australia involving mainly the
switching division. Their switching division is responsible for delivering and maintaining switching
systems for the provision of national and international telecommunications services to enterprises
and the general public. Approximately 4 million lines of code are maintained to provide these
services. Throughout the years, many projects were initiated to accommodate changing client
demands for customized services or call facilities. The need to be able to selectively forward calls
to pre-defined destination resulted in the Selective Call Forwarding (SCF) enhancement project,
which then becomes the project under study. While it is recognized that a single-case design choice
may reduce the external validity of the study, due to the exploratory nature of the study, it is of
greater interest to thoroughly explore a single case rather than to obtain broader information
generalization. According to Stake [21], this type of research is classified as an instrumental case

 5

study approach. This is where a particular case is examined to provide insight into an issue and to
illustrate how the concerns of the researcher are manifest in the case.

The use of a completed enhancement project (SCF project) is to illustrate the issues to be
investigated. In an enhancement project, software development involves mainly the modification of
the base application to perform additional or new functions. Most of the organization’s project
development involves enhancements to the existing application rather than purely new
development.

3.1 Data Collection

There are two stages involved in the data collection. The first stage in the counting process is the
establishment of the purpose of the counting and the measurement context (boundary and level of
abstraction) to be used in the counting process. This is where a need for an understanding for the
overall system is necessary. To achieve this, interviews were used. This is to maintain the flexibility
to discover or unfold the participant’s view [15][25]. The participant is given freedom to express
their perspective; the involvement of both the system analyst and designer in the study also means
that better understanding of the system can be achieved.

The second stage is where the detailed data needed for to perform the FFP count is gathered from
the requirement specification. Again, this is with the help of the system experts.

The generation of the unadjusted function point counts requires detailed information of the SCF
project in terms of the data element used, and inflow and outflow of data. Documents that are
needed to facilitate the counting would be those system documentation that show data used in the
system as well as the inflow and outflow of these data to and from the application being modified
and also the sub-processes that make up those processes. In performing the function point
calculation not all of the documentations are used. In this case, only the strategic document,
requirement change request (RCR) and the Top Level Design (TLD) are used.

Strategic Documentation describes the new requirements to be developed as well as the top-level
overview of the implementation. Requirement Change Request (RCR) outlines the new service
specification that the client demanded. Top Level Design (TLD) outlines the changes (additional,
modification and deletion) that are needed on the infrastructure (identified from the Technical
Requirement Specification) in order to achieve the specified requirements.

It is not unusual to use triangulation to validate scientific findings; the use of multiple sources of
evidence provides in-depth understanding of the phenomenon being studied. [26][21][4][11] The
data collected from both system documentation and interviews is essential to reduce the likelihood
of misinterpretation and bias of the researcher.

Another strategy adopted to minimize the potential researcher bias as well as to ensure the
completeness of the findings reported was the Member checking technique. Member checking
refers to the process of having the system experts previously interviewed to examine the draft of
raw data collected [11]. By doing this, accuracy and completeness of the data collected is ensured
through the revision, correction or additional feedback received. This strategy is also important
remembering the complexity that is involved in studying a system within a short period of time.
This process is also considered as a way to establish the chain of evidence thus strengthening the
validity of the study.

 6

4 Results and Findings

Identifying what is to be measured is the first stage of the development of measurement context.
The purpose of this measurement process is to calculate the function points associated with the
added, deleted or modified functionality introduced by the implementation of Selective Call
Forwarding (SCF) enhancement project. It is therefore necessary to firstly identify the base package
associated with the project and to understand the functionality that the base package offers.

A scenario below is presented to describe the basic call operations.

1. A call operation is triggered when the network receives an off-hook signal from a
subscriber (Subscriber A picks up his/her phone).

2. The call control process then has the duty to identify the subscriber and check his/her
profile to indicate that the subscriber has permission to make a call.

3. If the subscriber has permission to make a call, the network then gives a response signal in
the form of dial tone.

4. The subscriber then responds by pressing digits on the phone keypad, i.e. entering the call
destination number (Subscriber B).

5. Upon receiving the digits, the call control process analyses the digits to identify the
appropriate action to be taken.

6. The call control in a basic call operation then checks the destination profile making sure
that the destination exists and identifies the possible routing direction.

7. The network then checks the line availability of the destination party.
8. If the line is busy the network gives the caller a “busy tone” otherwise a “ringing tone”.
9. A connection between the two parties will be established only if the destination party

(Subscriber B) answers the phone.
10. Once both parties are connected, the main control process will no longer be in charge of the

operation. The charging and measurement application then takes over the process to collect
the data necessary for call billing and accounting purposes.

11. The call control is in charge of the operation when either party terminates the call.

4.1 The Selective Call Forward Enhancement Project

Selective Call Forwarding (SCF) is an incoming call management feature, which allows the served
user to automatically and selectively forwarded incoming calls. For this purpose the served user can
define a screening list that contains a series of calling numbers on one hand and unique destination
(forwarded-to) number on the other hand.

Based on the previous example, Subscriber B has SCF facility offered and activated and has
specified the screening list below for this facility (Figure 4.1). When subscriber A calls subscriber
B, subscriber A’s call will then be directed to the destination subscriber C. However, if subscriber
D called subscriber B then the call will remain directed to subscriber B since the number is not
listed to be forwarded. The diagram below shows such interaction as an example.

 7

… …

A
B

D

N

 Ringing!!!

9123-4567
(A)

Subscriber B:
Screening List
FROM TO

9234-0976
(C)

(Sub A) forwarded to (Sub C)

C

Figure 4.1 Selective Call Forwarding

In order to perform the call operation scenario above, the company has to maintain a combination
of hardware and software. In this case, we are only interested in the software implementation. We
have discussed the scope of the measurement that defines what needs to be measured. However, it
does not specify how the measurement should be carried out. Recall in our design that identifying
the counting boundary is the second step of the measurement process. Function point based metrics
are dependent upon the concept of boundary since the rules and definitions use the boundary to
identify both data transaction function types.

The diagram (Figure 2.1) represents the interactions that the switching system could have with the
end-user (human or device) and the interaction between software layers or system components.
This supports the argument on the issue that system functionality can be measured in terms of
system’s overall functionality delivered to the end-user (human or devices) or systems components
functionality. [5]

System sizing represents the overall system functionality received by the end-user that is
independent of the technology used. This is useful for external organization evaluation purposes,
e.g. in communicating functionality delivered to client.
However, this type of sizing has very little value for internal evaluation purposes. This is because
often system development involves components that do not contribute to end-user functionality
(e.g. change in infrastructure software) or when the development of a large system is partitioned
into sub-systems that are separately managed by different teams. In this case the above view cannot
be used to compare the different teams’ productivity. Therefore the approach here is to size system
from both views.

 8

The first step of system sizing is to identify all the major groups of data movement between the
boundary of the measured software and:

• Its human user operators
• The boundaries of other software
• Or engineered devices

The scenario discussing the basic call operation is based solely on the interaction of the subscriber
with the call operation application. Based on this scenario, we can identify that a normal user of the
system (call subscriber) interacts with the system via engineered devices attached to the network
which translate the user input so that can be understood by the system and vice versa. User input
can be of three forms, the first input is initiated when the user picks up the telephone, and a signal is
then sent to the system indicating that someone is trying to make a phone call, triggering the main
call control process. The second data entry occurs when the user dials the destination digits and the
third possible data entry is in the form of incoming calls. An incoming call is a data entry that is
sourced from the trunk of the network, which could possibly come from overseas.

The output of the system will be mostly in the form of “dial tone” or “ringing or busy tone” given
back to the user to the appropriate response in the form of recorded voice announcement such as
e.g. “Service is active” during a successful activation.

However, it is also possible to have direct human interaction with the system, i.e. via the operator.
The selective call forwarding feature as explained previously is given on a subscription basis, thus
the operator should have the capabilities to setup specific features for a given subscriber by
updating the subscriber’s profile.
At the end of this step the interaction with hardware and operators are known. The next step is to
identify the applications that handle the interaction. Application software is defined as software that
delivers functionality to support the organization’s core business [18]. There are two broad
categories of applications that are relevant in this case, i.e. The application that supports the call
operation and the application that helps in maintaining user profile for the business (used by
operator only) the diagram below illustrates this scenario. (Figure 4.2)

Device
(Telephone)

 Interface Interface

Tones
Msg.

Signal
Register
Ling Signal

Operator
Control

Operator
(User)

Operator
Command

Response
Report

Call
Handling

Figure 4.2: Operator, Device and Application Interactions

 9

Functionality delivered by system components can be further broken down into functionality
delivered between the software layer and the functionality delivered by the sub-systems. A
switching system consists of the application software, kernel and operating system. A simplified
three-layer model approach for the discussion of software layers in this case is thought to be
adequate since the SCF project studied involved only the modification of the applications layer.
Each of these layers works together in performing a call operation.

The application software is supported with distributed database and a multi-tasking operating
system. The kernel and operating system are acting as supporting software that supports the
application software in performing its function. For example, the kernel assists the application
software in updating the database. Towards the hardware side, the device driver is embedded in the
hardware to act as an interface between the external users of the system, for the purpose of
converting system output so that it can be understood by the subscriber, e.g. giving different tones
or ring types as a result of an operation.

Looking at the lower level sub-system view, the call handling application is very large that can be
further examined and broken down into various sub-system components which have their own
unique functional contribution to the overall call operation. We could identify the call handling
application that consists of two broad categories. The “heart” of the system (the main control
process – CFCS) governs all the call operations, and the “supplementary services” which provide
specific services as requested by the “heart of the system”.

 Device
(Telephone)

 Interface

CFCS

SPDM

SDM

SCH

 Interface

PATED

CH Operator
 (User)

Figure 4.3: Component Interactions

The main control processes in the case of a call operation are:

1. Call Facility Control System (CFCS – main control process). The heart of the system that
governs the overall call operation. Upon receiving a trigger from the subscriber (off-hook),
this process has the duty to determine the action needed to satisfy / fulfill the request.

2. PATED (Prefix Analyzer) – This process has the duty to analyze digits and identifying the
specific association, e.g. a normal call (local, international) and subscriber control code
(facility activation/deactivation).

3. Semi-Permanent Data Manager (SPDM/LSIF) – maintains the subscriber information (i.e.
subscriber profile)

 10

4. Subscriber Command Handler (SCH) – Handles and control subscriber’s activities, and
allows the subscriber to have control over his/her profile e.g. activate a certain facility.

5. Subscriber Data Manager (SDM) - This process changes the subscriber’s data based on
subscriber activity e.g. update the subscriber profile on activation.

Unlike the call handling application that can be further broken down into sub-systems, the
management application used by the operator consists of only the Command Handler (CH), which
allows the operator to manage the subscriber feature via the interface provided by the man-machine
command.
To data peer-to-peer sizing such as illustrated above seems to be an issue that has not been
resolved. The recently released COSMIC counting manual (COSMIC-FFP ISO/IEC 19761:2003)
recognized that distributed systems are often characterized with peer-to-peer communications.
However, the manual offers no explanation on how to size this type of interaction.

4.2 Identify the counting boundary (Assigning Boundary)

The purpose of a boundary is to assist the counter in determining things that should be included or
excluded from the counting process. Desharnais [3] pointed out that in developing the counting
boundary in practice, counters look at what is managed or consistent with the organizational and
budgetary boundaries.

System Boundary (2)

System Boundary (1)

Sub-
system

Sub-
system

Sub-
system

Sub-
system

Layer 1 Application

Figure 4.4: Assigning Boundary

Here we proposed and defined two system boundaries, boundary (1) aims at measuring system
functionality delivered to the end-user (human or device), whilst boundary (2) aims at measuring
system component with each of the sub-system becoming the user of each other.

4.3 The Implementation

The aim of this study is to explore the impact of the issue of boundary and the level of abstraction
used to size the system, i.e. to identify whether:

 11

• The different boundary assignment will have an impact on the final counts generated,
because the rule of the technique reward function points based upon the definition of
boundary.

• The different system view (system vs. component view) will have an impact on the counts
generated.

Based on the arguments presented above, two boundaries and two system views are represented by
three models:

• Boundary (1) Top Level View (System View)
• Boundary (1) Low Level View (Component View)
• Boundary (2) Low Level View (Component View)

Boundary (1) represents the end-user perspective (human or device) and Boundary (2) represents
the sub-system perspective. The system view represents the system overall functionality and
component view represents the component or sub-system functionality.

4.3.1 Boundary (1) Top Level View (System View)

This is where we size the system with a boundary drawn from the user perspective (Human or
device). From the top-level view, the switching system consists of two applications; the application
that relates to the handling of the call operation and the application that used to maintain the
subscriber profile for the business purposes. The boundary proposed here is to incorporate both
applications as one boundary instead of having two separate boundaries for the two. This is because
the operator control application cannot exist independently. Looking at how the system component
works (Figure 4.2), we could identify that the command handler which represents the operator
control actually reuses the call handling component to update a group of data (i.e. the subscriber
profile). Thus we consider both applications as having one boundary to represent the switching
system functionality delivered to end-user. Sizing both applications independently will have a
larger impact due to the double counting of the same group of data used.

4.3.2 Boundary (1) Low Level View (Component View)

The boundary (1) Low Level View case is similar to the case above; the difference here is that this
case represents the explosion of two applications into sub-systems. The boundary drawn here
incorporates all the inter-communication between the sub-systems. This is to explore the impact of
the boundary definition upon the generation of function points and the impacts of transaction
function point type that measures at sub-process level. (Figure 4.4)

4.3.3 Boundary (2) Component Level

The Boundary (2) Component Level here takes the view that the user of the system is now the sub-
systems.

 12

 Device
(Telephone) CFCS

SPDM

SDM

SCH

PATED

CH Operator
 (User)

 Interface Interface

Boundary

 Figure 4.5: Boundary (2) Component Level View

The second boundary is proposed to take into account the data-flow that occurs between the internal
processes. In addition, with the argument that the organization in this study allocates their
development or maintenance effort and budget at component level and that often the development
of the different components are allocated to different groups of developers. Thus this level of
abstraction may provide a comparative study between groups, boundary for the call handling
application is drawn between the sub-systems.

4.4 Determine the Unadjusted Function Points

According to the FPA technique, an enhancement project function point is calculated by (IFPUG
1994):

Enhancement FP = [(Add + Change + Conversion) x VAFA] + (Deleted x VAFB)

Note: The application value adjust factor (VAFA and VAFB) is not used in this case.

Recent released COSMIC-FFP technique (v2.2) calculates an enhancement project by (COSMIC
2003):

Size(change(layeri /functional processi)) = Σ size(added data movement) +
 Σ size (modified data movement) +
 Σ size (deleted data movement)

In this case we adopt the COSMIC-FFP v2.2 for the calculation of the transactional function type
since both FFP version use the concept of data-movement or sub-process in the calculation; while
the changes in the function point type follows the FPA rules.

 13

4.4.1 Boundary (1) Top-Level View

Call Handling

Operator
Control

Signal
Register
Ling Signal

ECE
Tones
Msg.

ECX
Application Boundary

UCG / ILF

Subscriber
Profile

Screening List

 ICR / ICW ICR

 EI

Operator
Command Response

Report

Figure 4.6: Boundary (1) Top-Level View Counting

We identified two groups of data necessary to perform the entire operation; screening list and
subscriber profile (Figure 4.6).

During the service invocation, the system reads the screening list to identify calls to be forwarded.
It is assumed here that the data structure of the screening list is not available therefore it needs to be
developed. The screening list as part of the effort associated with the development of this feature is
included, since this facility operation relies heavily on the screening list data. The new group of
data (screening list) will consists of the directory number and the forwarded to number.

Screening list data is an updated group of data since the data can be updated by the application
during registration of the number to be forwarded and destination number by the subscriber via the
screening list editing (SLE) facility.

It is a multi-occurrence group of data because there are many instances of the data for different
subscribers. The SCF screening list has the maximum of 30 entries, with minimum space allocated
is 5 entries, then an increment of 5.

Since the data is maintained within the counting boundary, the Internal Logical File (ILF) rules of
the FPA’s should be applied. Data functionality is measured by the number of data element types
(DETs) and record element types (RETs) present in a group of data. Count a DET for each user
recognizable, non-recursive field on ILF. Count a RET in any user recognizable sub-group of data
element within an ILF.

There are 2 DETs in this case: Directory number and Forwarded to number. Because there is no
subgroup in this case the screening list is then assigned with 1 RET. Therefore the screening list is
considered as having low complexity (2DETs, 1 RET), which is equal to 7 points according to the
complexity matrix described in IFPUG 4.1 counting manual.

 14

For activation and deactivation of the service, there would be a new development group of data
(call type) to accommodate the different types of calls that the subscriber is entitled to including
SCF facility as well as the activate status for the service. This group of data is also used by previous
requirement (invocation of the facility) to check whether the facility is active for a subscriber. This
group of data thought to be both control and management data because during the subscription time
the operator updates this group of data in order to set the service allowance for the subscriber. This
has no impact on the point allocation since multiple occurrence type of data uses the same formula
to the FPA’s.

There are 2 DETs: Service Type and Status. This group of data has no sub-groups and will be
assigned 1 RET. Again this group of data is classified as low complexity (2 DETs, 1 RET) and has
7 points assigned.

Function Description Function
Type

FTR/
RET

DET FP

Control data function
type:

Screening List UCG 1 2 7
Subscriber Profile UCG/ILF 1 2 7
Unadjusted Function
Point Counts:

 14

Table 4.1: Total UFPC – Control Data Function Type

Transaction function types represent the functionality provided to the user for the processing of data
by an application. Therefore, to identify transactional function types it is necessary to identify the
processes of the application first.

The occurrence of a transaction (an instance of process) is dependent upon the occurrence of an
external trigger. A trigger is an event that initiates a process from a functional perspective. The
event comes from outside the application boundary. When an event occurs, data usually enters the
software boundary.

ICW ICR

Control Process

Processing

ECE ECX

Output Input
Event trigger

Figure 4.7: Control Process Trigger

From the top-level view, there are only two processes that need to be counted (processes with direct
external triggers see Figure 4.7 above)

 15

Process 1. Call Handling

The transaction functionality is calculated through the identification of sub-processes associated
with a process. Sub-process is the lowest level of decomposition of a process action on one group
of data. It is identified as entry, exit, write and read. The identification of the new added sub-
processes followed the requirements from the SCF enhancement project.

Requirement 1: service invocation

- Reading the terminating subscriber profile to check whether SCF service is part of the
subscription. This involves the reading of the selective service relation. The service allowance
flag and the activate status comprises 2 DETS for data read, that is equivalent to 1 function point

- When the SCF feature is active, read the screening list. The data involved in this case is the
screening number, which has 2 DETs, or 1 function point.

- Compare the screening list to the calling line identification. This sub-process does not
receive, send, write or read control data; therefore contributed zero function point.

- If a match is found then the CFU facility takes over the process. SCF forwarding feature is
inherited from the CFU service. Otherwise the basic normal call takes over the operation. The
call will be given normal termination.

Requirement 2: Activation/Deactivation Service

- Reading the terminating subscriber profile to check whether SCF service is part of the

subscription. The reading of the data in this case, although similar to the one in the service
invocation, it will still be counted since the reading of the subscriber profile in this case
represents different functionality.

- Process to update the subscriber active/non-active status if the subscriber has the feature,
otherwise returns error message to the caller. This involves the updating of the active/non-active
status, which contributed to 1 DET.

Requirement 3: The editing of the scanning list is not part of the effort for this facility, therefore is
not accounted for.

Process 2: Operator Control

Requirement 4: The interaction between the operator and the subscriber profile

- Upon the request for subscription for this facility, the subscriber profile needs to be

updated. The data involved in this update is the allowance for the service in the subscriber
profile. Therefore is equivalent to 1 DET and 1 FTR. This contributes to low complexity thus
generates 3 function points.

This fits the definition of External Input (FPA technique): an external input process data or control
information that comes from outside the application’s boundary and maintained an ILF (IFPUG
1994).

 16

Function Description Function
Type

FTR/
RET

DET FP

Control Transaction function type
Call handling – Invocation
Read Subscriber profile ICR N/A 2 1
Read Screening List ICR N/A 2 1
Call Handling -Activation/Deactivation
Read Subscriber profile ICR N/A 2 1
Update Subscriber profile ICW N/A 1 1
Call Handling process points 4

Operator control
Update Subscriber Profile EI 1 1 3
Operator Control Points 3

Unadjusted Function Point Counts: 7

Table 4.2: Total UFPC – Transaction Function Type

The total unadjusted function point counts is therefore
14 + 7 = 21 Function Points. The question on the compatibility of adding results from both
methods, i.e. the result of the FFP technique to of the IFPUG is justified by the fact that both
techniques are based on the same concepts and measurement process [19].

4.4.2 Boundary (1) Component-Level View

The Function Point generated both from top-level view (system view) and lower level view
(component view) using the same boundary should generate the same result. This is caused by
several reasons. Firstly, the COSMIC FFP counting manual states that there is a possibility for
processes to have multiple triggers: processes may have more than one trigger (one primary initial
control event and secondary events). In this case, the entire process is considered as one control
process for counting purpose. The primary control trigger in a call operation would be the off-hook
signal received by the main control process (CFCS), which then stimulates other triggers to activate
other processes such as PATED and LSIF. It is therefore that all the internal control processes
would be considered as one control process (call handling) as shown in the previous case. St-Pierre
[3] also suggests that data-flow and triggers between internal processes should be ignored because
they are considered as mainly dependent upon the system design rather than functionality.

Secondly, although there are numerous data-flow passes between each of the sub-systems (CFCS
and LSIF), they are not counted for as entry or exits in this case, because the rules of the technique
assign points based on the interaction that occurs with the definition of boundary, that is only data
entering and going outside the application boundary is relevant.

In addition the COSMIC FFP technique calculates transaction function types at sub-processes level
(the smallest processing step identifiable from a functional perspective), these are including entry,
exit, read and write.

 17

4.4.3 Boundary (2) Component-Level System view

In the previous two cases, the data flow between internal processes has not been accounted for due
to the use of end-user perspective. In this case, the overall function point counts contribution from
the data function type would be the same as in all the previous cases, since the same group of data
are involved in implementation of the project. It is difficult to allocate these groups of data to a
specific component as both the SDM and SPDM have the capability to update the same group of
data, i.e. the subscriber profile. This creating ambiguity on whether the development of subscriber
profile should be allocated to SDM or SPDM.

The two diagrams figure 4.7 and figure 4.8 below illustrate the specific components of the
switching system invoked during a call operation involving the selective call forwarding facility,
that are invocation and activation/deactivation of the service.

 Interface

Fetch
profile (4)

CFC PATED

SPDM

3) Local# (

Analyze # (2)

Response Phone# B (1)

SubFwd: Yes (#) / No (5)

Yes:
Fwd# (6)

No: Normal
Termination (6)

Sub

Sub A

 Interface

Figure 4.8: The Invocation of Service

 Interface

Facility
SCF (4)

CFC PATED

SCH

SDM

Fetch User
Profile (6)

User
Profile (7)

Update/Error (8)

Update (5)

SPD
Update/Error (9)

Facility (3)

Analyze # (2)

Response (10) Signal (1)

Sub A

Figure 4.9: The Activation/Deactivation of Service

 18

Impacts on each component:

1. CFCS: There is no change in the CFCS control process; the SCF facility inherits the call
forwarding features from the CFU facility. i.e. Once there is a match then the CFU flag is activated.
Thus the rest of the call operation is considered as CFU facility (taken over).

2. LSIF/SPDM
Requirement 1: Service Invocation

Msg: Facility SCF
Active with FTN

CLI and DN

SPDM

Terminating Profile
- Service Active
- Service Type

Screening List
- Calling number
- Destination number

Figure 4.10: SPDM – Service Invocation

There is no change in the data entering this process, the calling number (CLI) and the directory
number (DN) representing the caller subscriber as shown above is different to this facility. These
two numbers are used in a normal call operation to determine the caller and destination number.

The change in this control process is therefore in relation to the reading of the service allowance
and active status – 2 DETs; according to the COSMIC counting manual this change contributes 1
function point.

If the SCF facility needs to be invoked, the reading of screening list is then required. This
contributes 1 function point.

Requirement 2: Service Activation / Deactivation

The only added functionality made to this process is in relation to the subscriber control facility
offered that allows the subscriber to activate or deactivate the SCF facility (Figure 4.11).
Depending upon the request received (activation or deactivation) this control process updates the
services status in subscriber profile. The updating of the data on activation contributes 1 DET,
equivalent to 1 FP.

Updated

Update and Verify

Subscriber Profile
- Service Status
(Active / Inactive)

SDM

User Profile

Fetch User Profile

Figure 4.11: SDM – Activation / Deactivation

 19

Function Description Function
Type

FTR/
RET

DET FP

Control transactional function type
CFCS - - - -
LSIF/SPDM
- Read subscriber profile ICR N/A 2 1
- Read Screen list ICR N/A 2 1
- Reading of service status ICR N/A 2 1
SCH - - - -
SDM – update subscriber profile ICW N/A 1 1
Call handling process points 4

Command Handler EI 1 1 3
Update the subscriber profile 3
Operator control points

Unadjusted Function Point Counts 7

Table 4.3: Total UFPC – Component Level

The total unadjusted function point count in this case is the same as the previous counting. This is
due to the reason that there is no change in the ECE and ECX between the internal processes,
therefore the impact of the boundary cannot be observed here.

The usefulness of the decomposition in this case is the allocation of function points associated with
the effort made by each component. Therefore it can be used for estimation purposes as well as
comparison between the components or groups/team assigned.

We have calculated the total unadjusted function point counts of an enhancement project from three
different models that represents different counting perspective. In the next section, we discuss the
results and their implications.

5 Discussions

5.1 The characteristics of the FFP techniques

As mentioned previously, the FFP technique relies on the concept of boundary to identify both data
and transaction function point types for the assignment of function points to a system. This has an
impact in the sense that the different system view (system vs. component view) will not cause any
variation on the counts generated unless accompanied by the different boundary definitions. That is,
from the two cases Boundary (1) Top Level View and Boundary (1) Component View, these two
models will always generate the same function point counts. This is because the assignment of
function point counts depends solely on the concept of boundary. Although there are many in-flows
and out-flows of data between internal processes as can be seen from the second case (Boundary 1
Component View), they cannot be accounted for because boundary 1 is drawn to incorporate the
intercommunication between these processes.

The introduction of the new control function types seems to improve the measurement ability of the
model in measuring control-related functionality. It was observed that a control process (call
handling) did require a lot of internal processing in serving a call operation. This process has a

 20

significant number of sub-processes present and that any call operation will not leave the call
handling application in a consistent state until all the sub-processes have been carried out. This
would represent a single elementary process in the FPA method, which again will be difficult to
classify the transaction into input, inquiry or output. In particular, the “Internal Logical File”
concept is one of the most difficult concepts to interpret in practice [22]. The COSMIC FFP v.2.2
has a well defined concept of its “Data movement”, therefore the new transaction types at sub-
process/data-movement level removes this ambiguity.

Another advantage of analyzing the impact of an enhancement project at a lower level of
granularity is that any change can be accounted for appropriately, i.e. as [18] pointed out that “only
part of the process (identified by sub-process or data movements) is credited for the change”. This
was again observed in the case study, that it would be easier to take into account the change e.g. an
additional sub-process or data movement that the control process has to perform in relation to the
reading of screening list, which was previously not necessary.

5.2 The characteristics of the System studied

The characteristics of the system studied will also have an impact on the function point generated.
The system under study is partitioned to group common process in which the different components
have specific roles of reading, writing, or manipulating data. Because the FFP technique measures
at this level of detail (i.e. size (entries) + size (exits) + size (reads) + size (writes)), changes to any
of the components can be captured by the technique. However, changes that did not result in the
entry, exit, read or write cannot be accommodating by the technique. For example, changes
required in the program code involving only the internal algorithm for the purpose of setting service
priority cannot be accounted for. This might be due to one weakness of the model as discovered
during the field test that 2 out of 81 processes expected to be counted were not detected because
they involved only internal algorithm [17].

5.3 The sense of coverage

The application of the FFP technique to an enhancement project showed that the introduction of the
new transaction function types (i.e. the measurement functionality at sub-process level) seems to
improve the measurement ability of the model in measuring control-related functionality.
Measuring at this lower level of granularity removes the ambiguity in applying the concept of
elementary process where a large number of sub-processes present in the control process. The
contribution of the new data function types, i.e. the classification of the single occurrence group of
data is not experienced in this case, therefore unknown.

The FFP technique appears to be useful if applied at a higher level of abstraction (represents the
functionality delivered to the system clients). This type of sizing ignores any internal triggers or
processes that occur in a system due to the argument that these internal processes are more likely to
be caused by system design rather than end-user functionality. This is useful for comparing projects
implemented in different environment because of technical independence. However, there is limited
usefulness of the above view of an organization internal evaluation purposes since more often than
not, the development of the system is assigned at the component level.

 21

5.4 The practical aspect

It is generally agreed by researchers the application of function point techniques does require
expertise and experience. Function point counting requires many decisions to be made to resolve
the ambiguity that arises during the counting.

It was the most difficult phase of all because of the need to study how the system operates. This
implies and suggests that an organization use their internal personnel to conduct the measurement
because not only do these people understand how the system works, they also have a better
understanding of how the measurement should be conducted to be useful for the organization. Once
the context of the measurement has been defined and the basic concept is understood, the
identification and the assignment of function points to the data and transaction function types is
relatively easy.

Good measurement practice is essential in today’s IT development, it was discovered that
implementing a metric program such as this case could offers advantages in detecting any
inconsistency in the documentation. In measurement, it is used throughout the software
development life cycle, not only better management or control of projects can be achieved through
more accurate measure of effort, but also improvement in documentation quality.

From the literature, one of the noticeable improvements in this field over the past 5 years seems to
be in the increasing acknowledgement of the complex nature of software size estimation and that
the current improvement in the field is increasingly relevant to the industry practice. The
introduction of structure in separating software layers and recognition of the impact of the different
viewpoints to function point counts (e.g. business enterprise viewpoint, project view point) by Mark
II counting manual (UKSMA 1998) is a typical example of increasing relevance to the industry
practice. The current release of COSMIC-FFP (v2.2) recognizes the difficulties in setting up a
software model to be used during the measurement process. It attempts to improve this aspect by
introducing new steps to be performed to establish measurement context prior to the counting
exercise.

5.5 Limitations

The obvious limitation in this study is the focus of one small enhancement project; this limits the
external validity of the findings. The issues of boundary cannot be thoroughly explored in the case
study. The impact of boundary definition and level of abstraction cannot be seen in the study
because the enhancement project selected did not result in any changes to the data flow between
internal processes. Only the application layer is affected in this project, thus sizing of functionality
delivered by the different software layers is also not experienced in this case.

This study took a simplistic view of the system being studied. The assumptions might seem
“superficial” in certain areas such as the data structure used for the counting purpose. The study
assumed that the data used in the enhancement project was newly developed because the “true” data
structure that the organization used was too complex. Therefore this has an impact on the counts not
being fully accurate in representing the system. However, for the purpose of studying issues of
boundary definition and level of abstraction used had no impact when this assumption is applied
consistently throughout the counts.

 22

This study took two different perspectives at sizing the system, i.e. at the top-level system view as
well as the component level of system view. Nevertheless, it might be still possible to have
different measures for the system other than from those views which again dependent upon the
describer.

5.6 Further Research

There is the argument that related to user functionality can be further broken down into functional
requirements and non-functional requirements which need to be taken into account in order to
better explain the effort in developing the software product. Currently, the non-functional
requirement is represented by the general system characteristics (GSC) and value adjustment factor
(VAF) in both FPA and COSMIC FFP techniques. However, many researchers have found many of
the GSCs are not relevant to the current technology. It is therefore further research for new system
characteristic that relates to real-time system might be appropriate. [13]

There is also a need for further improvement in the counting manuals to incorporate generic
practical application of the technique. It is very important to better guide both practitioners as well
as researchers in applying the technique to practical situations and also be able to establish the
appropriate context for measurement purposes.

6 Conclusions

This study has presented the applicability of full function point method for estimating software size
in the domain of real-time software. By applying the FFP method to a practical application, in
which the issues of counter subjectivity in establishing the counting boundary and the different
system views for measurement purpose were explored. The study showed that a boundary played a
very important role in the assignment of function points to a system. This is because the technique
is highly dependent upon the concept of boundary in identifying both data and transactional
function point types. The results from this study have demonstrated that a system could have
different types of interaction with its users (human or devices) or other software. This suggests that
different people can perceive the software functionality differently and that software sizing
adapting only one perspective can be misleading depending on its use. One type of system size
alone cannot describe the system’s functionality completely. Different sizing is necessary,
depending upon the different purposes or needs.

It is interesting to note that the function point counts derived from different models showed the
same results. As can be seen from the total function points generated from this study (21 FPs), the
enhancement project involved was very small in size. Thus it is unlikely to see noticeable changes
in the various system components. Also the changes introduced by implementation of this project
did not result in change to the interactions (boundary 1 and 2), therefore cannot be observed. It
could be concluded, as long as there is no change to the interaction between the components, the
result of both the different boundary definition and the level of abstraction used will be the same.
This implies that top-level sizing would be adequate to determine the overall total functionality that
a project delivers. However, software development budget for each components are often allocated
to different teams, in this case we might consider using the lower-level sizing to gain specific
estimate for each components.

It is also found that worldwide experience in this field is limited, requires the cooperation of both
researchers and practitioners in the fields to share experiences to stimulate further development as

 23

to achieve an “acceptable” level of the acceptance from both a practical and theoretical perspective.
Practitioners and researchers must be able to understand the current limitation of the models so that
they know how to use them safely and recognize that the application of the function point model
may be consistent and useful provided the resulting measures are used in a relative context.

7 Acknowledgements

The authors would like to thank this telecommunication company for providing financial support
and contribution to the context for this study and their staff for participating in the study.

Funding for this project was also provided by National Information and Communication
Technology Australia (NICTA) and the University of New South Wales.

8 References

[1] A. Abran and P.N. Robillard, Software Management Based on Software Deliverables,

CIPS/CATA Congress 90, 1990, 237 –245.

[2] A. Abran, J-M. Derharnais and S. Oligny, Measuring the functional size of real-time software,

Universite du Quebec a Montreal and Software Engineering Management Research Laboratory
C.I.M Presentation, CA, 1999, 1-104.

[3] J-M. Desharnais, D. St-Pierre, S. Oligny and A. Abran, Software Layers and Measurements,

International Workshop on Software Measurement(IWSW), La Superieur, Quebec, 1999, 1-8.

[4] L. Garcia and F. Quek, Qualitative Researcher in Information Systems: Time to be Subjective?,

Proceedings of the IFIP TC8 WG 8.2 International Conference on Information Systems and
Qualitative Research, Philadelphia, USA, 1997

[5] T. Hasting, Adapting Function Points to contemporary software systems: A review of proposals,

Proceedings of ACOSM' 95, 1995, 103

[6] International Standard ISO/IEC 19761:2003, "COSMIC-FFP Measurement Manual version 2.2

- The COSMIC Implementation Guide), January 2003

[7] D.R Jeffery, and J. Stathis, Function Point Sizing: Structure, Validity and Applicability,

Empirical Software Engineering Vol.1, 1996, 11-30

[8] D.R Jeffery, G.C Low, Function Points and their Use, the Australian Computer Journal, Vol.29,

NO.40, Nov, 1997, 148-156

[9] C. Jones, Sizing up Software, Scientific American, December 1997, 1-7

[10] B. Kitchenham and K. Kansala, Problems with Function Points, National Computing Centre

and Laboratory for Information Processing, 1996, 1-6

[11] P.D. Leedy, Practical Research: Planning and Design, 6th Edition, Prentice-Hall, New Jersey.

1997

 24

[12] C.J Lokan, An Empirical Analysis of Function Point Adjustment Factors, School of Computer
Science, Australian Defense Force Academy, University of New South Wales, December
1998, 1-15.

[13] C.J. Lokan and A. Abran, Multiple viewpoints in Functional Size Measurement, International

Workshop on Software Measurement (IWSM'99), Lac Superieur, Canada, Sept 8-10, 1999,
121-132.

[14] Mark II Function Point Analysis, Counting Practice Manual v.1.3.1 UK Software Metrics

Association (UKSMA), Sep 1998.

[15] C. Marshall and G.B. Rossman, Designing Qualitative Research, 2nd Edition, Sage

Publication, California, 1995.

[16] M. Maya, A. Abran and P. Bourque, Measuring the Size of Small Functional Enhancements

to Software, 6th International Workshop on Software Metrics, University of Regensburg,
Germany, Sept 19-20, 1996, 1-8.

[17] M. Maya, A. Abran, S. Oligny, D. St-Pierre and J-M Desharnais, Measuring the functional

size of real-time software, ESCOM-ENCRESS-98, Rome, 1998, 191-199

[18] P. Morris and J.M. Desharnais, Measuring ALL the Software not just what the Business Uses,

IFPUG Fall Conference, Orlando, Florida, Sep 21-25, 1998, 1-17.

[19] S. Oligny and A. Abran, Field Testing Full Function Points: Recent Results, NESMA Autumn

Congress’98, Nov, 1998, 1-24.

[20] G. Rule, System Size, Component Size and Project Size; Appropriate Measures for Distinct

Purposes, European Software Cost Modeling Conference (ESCOM 1994), Ivrea, May 11-13,
1994, 1-17.

[21] R.E. Stake, “Case Studies”, Strategies of qualitative inquiry, Handbook of qualitative

researcher. 2nd Ed., Thousand Oaks, Sage Publications, California 1998.

[22] C.R. Symons, Come Back Function Point Analysis – All is forgiven!, Conference on Software

Measurement and ICT Control (FESMA-DASMA2001), Heidelberg, Germany, May 9-11,
2001.

[23] C.R. Symons and P.G. Rule, Once size fits all - 'COSMIC' -Aims, Design Principles and

Progress, Proceedings of the 10th European Software Control and Metric Conference
(ESCOM SCOPE 99), Herstmonceux Castle, England. 1999, 1-11

[24] C.R. Symons, Function Point Analysis: Difficulties and Improvements, IEEE Transaction of

Software Engineering, Vol. 14 No.1, Jan, 1988, 2-11.

[25] S. Treble and N. Douglas, Sizing and Estimating Software in Practice: Making MKII Function

Points Works, the McGraw-Hill International Series in Software Engineering, London. 1995

 25

