
1

Planning an Empirical Experiment To Evaluate The Effects Of Pair Work On The Design
Phase Of The Software Lifecycle

Hiyam Al-Kilidar1, Ross Jeffery1, Aybuke Aurum2, Cat Kutay1

1School of Computer Science and Engineering
2School of Information Systems, Technology and Management

University of New South Wales
Sydney, NSW, 2052 Australia

{hiyama | rossj | ckutay@cse.unsw.edu.au}, aybuke@unsw.edu.au

Abstract

This report presents the details of an empirical experiment designed to evaluate the effects of Pair
Work on the design phase of software development lifecycle. The experiment is designed to
investigate the effects of pair work on the quality of design products and whether the pair work
approach in the design process is more efficient or cost effective than individual work approach.
The aims of the experiment are to compare the quality of the design products produced by pair
designers and individual designers as well as compare the efficiency and cost effectiveness of the
pair work approach and the individual work approaches in the design process. In addition, the
experiment studies the partner's expectations and practices during the pair work experience. The
experimental hypotheses, design, inputs, outputs, and evaluation measures will be described.

2

Introduction

The design and development process in software lifecycle involves the explanation of how design
products meet the requirements. Software design products represent different views of a software
system under development such as architectural, logical, structural etc. Those views are used as
communication tools between stakeholders to understand, communicate, manage and maintain
software systems. High level design representations provide a common conception of a system
structure and include abstractions of its components and the relationships between them. It also
allows for the manifestation of early decisions about prioritizing concerns of the system qualities.
Lower levels (detailed) design representations illustrate the program specifications that are later
passed to coding and implementation phases including details of the internal specifications and
behaviours of the system components and modules, data definitions, inter-component and/or
module interface documentation etc. The larger the system the more crucial are the design phase
products for the analysis, communication, management and maintenance purposes.[1, 2]

The products of the design process form the plans for the coding phase performed by
programmers [3]. To the best of our knowledge, there are no studies to evaluate the effects of pair
work approach on the process and products of the design phase of the software development
lifecycle. However, literature revealed that the product and process of pair programming work in
the software development lifecycle have been examined in experiments such as [4-8]. Those
experiments examined the effects of pair programming compared to individual programming on
the quality of produced code, as well as investigated some aspects of the effects of the pair work
process and its effects on the partners’ experiences. These experiments only examined the quality
of the code and the coding process and did not investigate the products and process of the design
phase that precedes the coding phase.

Software Design Phase

Design is an activity that is concerned with producing representations of programs that reflect
requirements. The Design phase is commonly divided into stages that describe the system at
different levels of abstraction to translate the user requirements into source code. The
development process is characterized by four distinct phases of Requirement Analysis, Design,
Coding and Testing. These phases can be sequential or iterative and each phase is mainly
charcterised by both its process and product. The software design phase aim to illustrate, control
and manage the massive amount of detail and complexities (relationships of many sorts between
many parts) involved in the creation of systems [9].

Design Process

The design process transforms an input document of user requirement specification into design
documents output with specifications of algorithms and data structures that form the basis for the
coding phase[10-12].
An initial design process begins with activities such as the study, understanding and analysis of
the problem from different angles by specifying and analyzing the users requirements and hence,
the identification of alternate preliminary design strategies and software architectures. This is
followed by a detailed design stage which refines the architectural representations and deciding
on a design methodology /practice. The third design stage will detail the procedural design and
data structure and specifications of algorithms and development of model. These stages often
overlap and feedback is used to refine earlier outputs making the design process a highly iterative
one. [10, 11, 13, 14]

3

Design Products

The representations of the design process can vary between high-level details of an overall
diagram representation of control-flow to very near to actual programs such as a metacode or
pseudo code description of a program. Achieving such an outcome evolves around making major
decisions of issues such as preparation of abstracts of operations, system data, interface and
control linkages between parts of system and other systems, choice between design alternatives,
trade offs to meet requirements based on conditions and constraints etc. [9].

The Human factor in Software Engineering

The software Engineering process for developing software systems involve the participation of
people as system users, specifiers, analysts, designers, programmers, managers, technicians etc.
Limitations and abilities of people should be taken into account when designing a system for it to
be used in the best possible way. In addition, an understanding of human interaction patterns can
help identify possible ways of increasing productivity and effectiveness of processes [11].

Individual and collaborative Work

The traditional popular practice of executing the development stages is through teams of
professionals. The teams’ size can range between 2 and several hundred people. The mechanism
of executing the assigned tasks in a team situation, usually involve partitioning the work and
assigning team members to carry out different tasks as individuals and then communicate/
combine their outputs to/ with other members of the team [11, 15].

Pair Work

Pair work is a form of collaborative or group work that involves two people working together as
one unit to produce a single output. The feature that differentiates pair work from other
collaborative or group work is that instead of partitioning the work into different tasks where each
group member performs a different task, in pair work both partners actually perform each task
together, making it possible to create and continuously review what is being created. It is claimed
that such a process makes it possible to identify and fix defects early, hence, produce a better
quality product [4, 5, 7, 16, 17]. It is also suggested that pair work enhances interactions and
communication channels between partners, provides opportunities for learning, as well as making
the whole process more enjoyable than working individually [6, 17, 18].

Pair Programming

The concept of programming in pairs was known since the 1950's [16], but has recently been "re-
invented" by extreme programming. In extreme programming of agile methods, code is produced
as a result of collaboration between two programmers. The pair programming technique is
identified as two programmers working side by side on the same problem using one computer to
produce one artifact (algorithm, code). One partner acts as a driver who controls the creation tool
(e.g. pencil, mouse, keyboard) and writes code, while the second partner reviews the drivers'
work and acts as an observer and/or quality assuror who continuously and actively examines the
driver's work, watching for defects, thinking of alternatives, looking up resources, and
considering strategic implications. Partners deliberately switch roles periodically, and both are
equal active participants in the process at all times and both claim equal responsibility for their
product [4, 6, 8, 16, 17, 19-21].

Some experiments such as [4, 6, 7] suggest that benefits of pair programming include the early
detection of many mistakes with a statistically lower end defect content and shorter code length.
In addition, people involved in pair work learn significantly more about the system development

4

and work and talk together more often, gaining better team dynamics and information flow as
well as enjoy their work more and solve problems earlier and faster. The project ends up with
more people understanding each part of the system [4, 6, 7, 16, 17, 21, 22].

Related Experiments

Literature review of pair work experiments such as [4, 6, 7] have shown that pair programming in
software development processes yields better products in less development time and happier,
more confidant programmers who outperformed individual programmers. The same experiments
have also shown that pair programming also contributed to factors such as improvement in
software quality and reduction in time to market, which are factors of the success of XP[4]. It is
also suggested that pair programming reduces maintenance expenses and improve customer
satisfaction. Other experiments such as [8] has shown that pair programming leads to more stable
solutions, however the same experiment has also shown that pair programming is a rather
expensive technology contrasting the results of [7] that pair programmers needed less time to
accomplish their tasks.

Pair Work in the Design Phase

This research provides an extension to the previous studies of pair programming. Although it is
suggested in literature [4, 6, 16, 17, 21, 22] that the pair programming technique is not only
applicable to the coding phase of the development lifecycle, but also include the design phase, no
experiment has targeted the design phase process and evaluated the design outcome as a separate
product component from the code. What is usually evaluated and compared in experiments are
code lengths and defects per line of code as measures of the developed software quality [4, 6-8].

Design is an activity that involves making decisions based on scientific principles, technical
information and imagination about the creation and organization of solution outlines
(architecture, logical, structural etc) for a problem. [3, 9, 23]. The design process is concerned
with describing how design product meets the requirement, while the design products are used by
different stakeholders in the software system as tools of analysis, management, communication
and maintenance as well as provide the plans to the coding phase by programmers [1, 3].
Therefore, the design phase outputs vary in their level of abstraction from conceptually higher
level of abstraction to detailed lower levels of system representations such as pseudo codes or
structured English.

Personal preferences and styles in making decisions are more apparent in design activities than
other activities such as coding ones. More than one acceptable solution to any problem is quite
common and therefore, conducting experiments to compare between the design processes and the
quality of the design products are more difficult than conducting similar experiments to compare
between programming/ code processes and quality of products.

The difficulties associated with the conduct of design experiments include, but are not limited to,
the degree of control the researcher has over the design activities compared to experiments of
coding activities. This implies that some design elements may not be clear enough to be
communicated or documented during the design process. In the case of designers working in
pairs, an effort might be necessary to work on and further develop communication and
negotiation skills to explain and exchange ideas and resolve differences of opinion between
partners may prove to be necessary.

Other difficulties are associated with the evaluation of the quality of design products. Unlike the
quality of code that can be objectively determined by the number of defects per line of code, the
quality of design representations/products is more complex. Design representations vary in form
and characteristics to represent different views of the system [3]. Evaluating the quality of
representations is a highly subjective issue since designs are, by nature, subjected to personal

5

preferences and style of designers. In order to reduce subjectivity, the quality of the design
products will be based on ISO/IEC 9126 Software Engineering - Product Quality, Internal Quality
Characteristics and Metrics [24, 25].

Quality and Quality Measures of Software Design

Quality is a term that is hard to define precisely. Many definitions have been introduced in the
literature to define quality [26]. The International Standards Organization (ISO) formally defines
Quality as “The totality of features and characteristics of a product or service that bear on its
ability to satisfy specified or implied needs”. A definition of software quality proposed by
Pressman is “Conformance to explicitly stated functional and performance requirements,
explicitly documented development standards, and implicit characteristics that are expected of all
professionally developed software”[13]. Since most of the quality factors such as Correctness,
Reliability, Usability, etc. are highly subjective, it follows that the quality measures are
sometimes impossible to develop let alone objectively measure. The International Organization
for Standardization ISO and the International Electro-technical Commission IEC have produced
the ISO/IEC9126 International Software Engineering –Product Quality Standards that is divided
into four parts. Part1 (ISO/ IEC 9126-1) is the Quality Model, Part2 (ISO/ IEC 9126-2) External
Metrics, Part3 (ISO/ IEC 9126-3) Internal Metrics, and Part4 (ISO/ IEC 9126-4) for Quality in
Use Metrics[24, 25, 27, 28].

Please refer to Fig. 1 for the quality model as described in ISO/IEC 9126 [25]. Each one
of the six quality characteristics in Fig 1 is further described by a set of sub charectistics.
Each one of these subcharacteristics is defined in terms of external and internal metrics
[24, 27]. For each metric, the purpose, method of application, measurement, formula and
data element computations, Interpretation of measured value, metric scale type, measure
type, input to measurement, reference and target audience is identified and described.

Fig 1: Quality Model for external and internal quality

6

For the purposes of evaluating the quality of design products, the ISO/IEC 9126 standards of
Internal Metrics [24] identify metrics of subcharacteristics of the Functionality, Usability and
Portability characteristics to be gathered from the design as the source of input to the
measurement. Therefore, in evaluating the design products of our proposed experiment, these
three quality characteristics will be evaluated.

The Functionality sub-characteristics to be evaluated in this experiment are suitability which is
measured by the metrics of functional adequacy, and functional implementation coverage,
security which is measured by metrics of access auditability and access controllability and
functionality compliance that checks for satisfaction of the DFD rules. For the Usability sub-
characteristics to be evaluated the understandability measured by completeness of description,
evident functions, and function understandability metrics are used, in addition to the usability
compliance metric. For the Portability characteristic, the metrics of hardware environmental
adaptability and system software environmental adaptability are measured.

Details of the Experiment designed to evaluate the process and product of design phase

An experiment is planned to evaluate the design process and products of individual and pair
designers. This experiment introduces the concept of pair work in the design phase to mirror the
pair programming concept. Designing in pairs is the representation of two designers jointly
working on the same desk/computer to produce one set of design documents. Both designers are
responsible for the creation and modification made to the design deliverables. One designer acts
as a driver who composes the specifications or design ideas and representations, while the second
designer continuously and actively observes, reviews and guides the driver's work. The two
designers deliberately switch roles periodically, and both are equal active participants throughout
the design process at all times. Following the strategy of XP in writing test before code [29], the
design products are to be tested and evaluated according to the internal quality measures
identified in ISO/IEC 9126-3 [24]. Metrics of functionality, usability and portability
characteristics as identified in [24, 25] will be measured for the design products since the
ISO/IEC 9126-3 [24] standards identify the design phase to be the source of input to the
measurement of metrics of these quality characteristics.

Aims of experiment

1. Compare between the quality of the design products produced by pair designers and
individual designers

2. Compare between pair work and individual work approaches in the design process.
3. Gain knowledge about the partners’ expectations and practices during the pair work

experience.

Research Questions and Hypotheses

This section presents the Research Questions (RQ) and the Hypotheses (H) to be tested in the
experiment, and the types of questions asked to illicit the relevant information.

RQ1. What effects does pair work have on the quality of designs?

The quality characteristics to be investigated for the design products are Functionality, Usability
and Portability based on the ISO/IEC 9126-1 [25]and 9126-3 [24] standards. Therefore, the RQ1
was divided into three hypotheses:

7

H1. Pair work approach produces a more functional Design-Product than individual work
approach.

RQ1a0 If H1 is false, what factors contribute to pair work being no better than
individual work approach in producing a more functional design product?

RQ1a If H1 is true, what factors contribute to pair work being better than individual
work approach in producing a more functional design product?

H2. Pair work approach produces a more usable Design-Product than individual work approach.

RQ1b0 If H2 is false, why is pair work no better than individual work approach in
producing a more usable design product?

RQ1b If H2 if true, why is pair work better than individual work approach in producing
a more usable design product?

H3. Pair work approach produces a more portable Design-Product than individual work approach.

RQ1c0 If H3 is false, why is pair work no better than individual work approach in
producing a more portable design product?

RQ1c If H3 is true, why is pair work better than individual work approach in producing
a more portable design product?

RQ2. What effect does pair work have on the efficiency and cost effectiveness of the design
process?

The design process is to be investigated for the efficiency and cost effectiveness according to the
two following hypotheses:

H4. The pair work approach is more time efficient than individual work approach to produce
software designs.

RQ2a0 If H4 is false, why is the pair work approach no more time efficient than
individual work approach to produce software designs?

RQ2a If H4 is true, why is pair work approach more time efficient than individual work
approach to produce software designs?

H5. The pair work approach is more cost effective than individual work approach in producing
software designs.

RQ2b0 If H5 is false, why is the pair work approach no more cost effective than
individual work approach in producing software designs?

RQ2b If H5 is true, why is pair work approach more cost effective than individual work
approach in producing software designs?

RQ3. What factors affect the experience and practices of partners in pair work?

The process of pair work is influenced by many factors. Hypotheses representing such factors are
formulated to be analysed from questions to be given to partners after the completion of the pair

8

work process asking about their pair work experience and how it may differ from individual
work, and what historical factors these differences may depend on. The hypotheses state that each
of the following affects pair performance:
H6. The extent to which partners followed the pair work process as compared to other types of
collaborative work.
H7. Whether the partners had previously worked with the same partner.
H8. The way differences in opinion were dealt with.
H9. The emotive affects of pair work.
H10. The learning experience of pair work as perceived by the partners.
H11. Differences in levels of competence.
H12. The gender combinations of pairs.

Experiment Scope

The experiment will run as part of the course work for Software Project Management Class in the
School of Computer Science and Engineering at the University of New South Wales. The
students in the course will be asked to produce design products as well as plan and track their
design activities using Microsoft Project. All subjects will be asked to produce the same design
deliverables.

Experiment population

The subjects of the experiment are approximately 225 undergraduate computer engineering
students in their second semester of 3rd year. All subjects will have passed at least one design
course. The majority of them are trained in design methods of Data Flow Diagrams (DFD) and
Entity Relationship Diagrams (ERD). For those with no prior DFD knowledge, tutorials on DFD
are arranged for them in the first week of the semester before the start of experiment. All subjects
will also be given instructions on pair work and will be asked to read the article by Williams and
Kessler [17]. The subjects will also be given a quiz on pair work practices prior to the beginning
of experiment to ensure they put the effort into learning the pair work practices.

Due to the relatively short period of time allocated to produce each deliverable, subjects will be
given the option to choose their own partners to reduce personality clash issues between partners.
This is based on the assumption that subjects will pair with colleagues that they have no personal
problems working with.

Information about subjects' weighted average marks (WAMs), as calculated by the University,
and their gender will be collected to form part of the analyses of results. The assumptions are that
WAMs are a competence measurement of performance and subjects with higher WAMs are
better designers than subjects with lower WAMs. This allows the subjects to be classified into
Good Designers (GD), Average Designers (AD) and Novice Designers (ND). The classification
will be used for analysis of pair performance based on the combination of designer levels (GD-
GD, GD-AD, GD-ND, AD-AD, AD-ND, ND-ND). In addition, it is assumed that gender issues
have no effect on performance. Pairs of different gender combinations (male/male, male/female,
or female/female) can be analysed for practices and communication issues within the pairs.

Experiment Context

The subjects will be asked to design part of a realistic network project management tool that is
capable of effectively and efficiently manage a large number of autonomous collaborating
partners. The part to be designed by the subjects include two modules, a planning module and a
tracking one. The vision is of a system in which there is remote management of separate
production units coupled with expert systems that monitor the complete production process and
are able to take corrective, perfective and adaptive action, as required. The principle technology
enablers for this system are:

9

• The Internet, which will provide communication between remote users and centralized server.

• The expert system that enables the skills of expert producers to be made available to many
other producers.

The subjects will be given detailed information about the system context and user requirements
together with a set of conceptual data models in ERD format. The ERD's are used to identify
principal entities and the principal relationships between those entities that must be managed in
the database, along with the values of the attributes of those entities and relationships.

Also given to the students will be a set of use cases that describe the system's behaviour to be
used as functional and design scope [30] for both the planning and the tracking modules to be
designed. The use cases will provide enough information to show system behaviour without
describing system interface design.

Pilot Study

A pilot study will run using the tutors as test cases. This will take place prior to the start of the
experiment. The objective of the pilot study is to verify the feasibility of the experiment in terms
of the difficulty of the design and the time required to complete a reasonable design from the
given requirements. It also enables the researchers to develop a set of evaluation metrics for the
design that are suitable for the requirements and design format used and at the same time comply
with ISO/IEC 9126 standards.

Course of the Experiment

The experiment itself will run over a period of 8 weeks. Subjects will be randomly divided into
14 tutorial sessions. Each tutorial session will consist of 12-18 subjects. In order to give all
subjects the opportunity to practice working in pairs as well as individually, the experiment task
is divided into designing two modules, the planning module and the tracking module. For the
planning module, two use cases are given and for the tracking module, three use cases are given.

Each student will work as an individual and as a partner in a pair on one of the design modules.
Subjects who will design the planning module individually will be required to pair with another
individual when designing the tracking module. Subjects who work in pairs designing the
planning module will be asked to design the tracking module individually.

Following the strategy of writing test before code of XP [29], the first design activity the subjects
will be asked to consider is to establish the quality plan for their design deliverables. The subjects
will be given quality metrics derived from ISO/IEC quality standards [24, 25] explaining what is
to be achieved, and they will be asked to establish how each metric is it to be measured. The
subjects will be required to consider these points for how their design is to be evaluated, and to
show which part of their design deliverables is representative of each quality metric.

In designing the planning module, subjects will be given 3 weeks to complete their task. Table 1
illustrates the allocation and numbers of participants in the experiment for producing the planning
module.

Group A (Control) 75 Individual Designers
Group B (Treatment) 75 Pairs of Designers

Table1: 2x1 Experimental design for Planning Module

For the tracking module, the tutorial groups will be switched. Those who worked individually
will be asked to work in pairs, and vice-versa. This exercise will last for 3 weeks and subjects are

10

asked to produce the same design documents as the planning module. Table 2 illustrates the
allocation and numbers of participants in the experiment for producing the tracking module.

Group A (Control) 150 Individual Designers
Group B (Treatment) 75 Pair of Designers

Table2: 2x1 experimental design for Tracking Module

Data Collection and Evaluation

The design outputs of the planning and tracking modules will include a process model in DFD
format, a database storage model in table format, an interface model with screen dumps of
system, as well as a time log of all their activities using Microsoft Project Reports.

The Data Flow Diagrams (DFD’s), Data Tables and Interface Designs are design representations
of both the planning and the tracking modules. The DFD’s provide a network representation of
the structure and logic of the system partitioning it into its components according to the use cases.
The subjects will be asked to start with a context level DFD, then level 0, then detail and expand
the processes until 3rd level according to the use cases, and provide Structure English or pseudo
code for the 3rd level diagram. In the data table deliverable, the subjects are asked to specify the
attributes of the entities that they use for each entity. Screen shots of system functionality
(behaviour) represent the interface deliverable.

Subjects are asked to electronically submit all their design deliverables together with time logs of
all their design activities. Partners in pairs will be asked to have just one submission and they
would each get the same mark. In order to eliminate bias in evaluation of designs, the design
deliverables will be double blindly assessed to ensure that the assessor does not know if an
individual or a pair produced the designs.

For Hypotheses 1-3

Hypotheses H1-H3 test for the quality of the design product from the developer's point of view.
Evaluation of quality characteristics is usually a subjective issue. In this experiment an effort is
made to reduce subjectivity of quality assessment of design products by the use of ISO/IEC 9126
set of Software engineering - Product quality standards [24, 25]. The standards have developed
metrics that can be measured by tallying the number items represented in the design documents.
This feature gives more credibility towards reducing subjectivity in evaluating designs. Based on
these ISO/IEC 9126 Software Engineering –Product Quality standards [24, 25], the internal
quality characteristics [24]are evaluated for this experiment. The experiment is restricted to the
design phase of the software life cycle, therefore, Internal quality characteristics and sub-
characteristics of the design products will be tested for functionality, usability and portability
since according to ISO/IEC 9126- 3 of internal metrics [24]. These three quality characteristics
and their subcharacteristics as shown in Fig 2 and described earlier are the ones associated with
the design phase.

Tables 3 and 4 describe the guidelines for evaluating the planning and the tracking modules. The
quality attributes to be verified were based on the metrics in [24], and the scope of measure
describing the source and tally of the measures.

11

Scope of Measure Design Product Measured
The attribute of
quality to be
verified

Goal : What to
achieve in this area

Metric : How to measure this Use
Case 2

Use
Case 3

Overall DFD Interfa
ce

Data
Table

Functional Metrics

Functional
Adequacy

Whether all
functionality exists

Interface functionality deals with
forms/screens/reports/menus etc

X : 2 X : 1 X

 2.1 Risk Rating screen occurs 24 hours after Risk
entry

 2.2 Contingency plan request only if risk>2

 3.1 Rating Evaluation is time limited

 DFD should have processes for each data
manipulation

X : 6 X : 1 X

 2.1 Save new risk for review

 2.2 Receive feedback and link to risk for review

 2.3 If risk> 2 add to permanent risk list

 2.4 Save Contingency Plan

 2.5 Save Likelihood and Impact

 2.6 Eliminate Risk<2

 3.1 Save and add risk evaluations

Total Score of Functional Adequacy Metric = Actual DFD/7+ Actual Interface/3

Functional
Implementation
Coverage

Whether the
functions are enough
to do what the client
wants

Interface: should show the screens/links. X : 6 X : 1 X

 2.1 Read Existing Risk List

 2.2 Enter New Risk

 2.3 Read Risk Rating Feedback

12

 2.4 Enter Contingency Plan

 2.5 Enter Risk Likelihood

 2.6 Enter Risk Impact

 3.1 Enter Risk Rating

 DFD has flows for all data reports X : 3 X : 2 X

 2.1 Report existing Risks from data base

 2.2 Report Risk Rating from data base

 2.3 Report Contingency plan (likelihood and impact)
to Management

 3.1 Send Risk Evaluation Request

 3.2 Save Risk Evaluation value in data base.

 Data Table should have data attributes in data base X: 1 X: 1 X

 2.1 Risk evaluation should be in data table

 3.1 Risk time of entry should be in data table

 Total Score of Functional Implementation Coverage Metric= Actual DataTable/2 + Actual DFD/5+ Actual Interface/7

Measure: Exists:

Login screen 1/3 X : 1/3
Login process 1/3 X : 1/3

Access
auditability

Records should be
kept of participants
contributions.

User data attached to database data 1/3

 X

 X : 1/3

Access
controllability

Access to system
should be controlled
to some data.

Measure: Exists Data link between login process and
all report data for each screen in Use Case

X X X X

Functional
compliance

DFD rules Data Flows are maintained between levels X X

 Data base consistency : only one process writes to
each data base

X

Usability Metrics

13

Completeness of
description

All functions
described in an
understandable
manner

Measure: Step through Use Case and subtract one
point for ambiguity as to data presented in screen at
any point

X : total
is 6

X : total
is 1

 X

Evident Functions User able to
understand how to
perform tasks from
design

Measure: Step through Use Case and subtract 1 point
for any ambiguity in terms of which button links to
which screen

X : total
is 6

X : total
is 1

 X

Function
Understandability

User able to
understand what to
do at each interface

Measure: Step through Use Case and subtract one
point for ambiguity as to data to be entered on screen
at any point

X : total
is 5

X : total
is 1

 X

Usability
Compliance

Comply with
requirements for
interface design

Measure: More than one task required on a single
interface. Subtract one from total and divide by total.

X: total
is total
no
interfac
es

X: total
is total
no
interfac
es

 X

Portability Metrics

Hardware
environmental
adaptability

Adapt to different
status of system :
hardware link exists
or not

Measure: Any acknowledgement of System online or
offline on Interface OR DFD

 X
(0 or 1)

X X

System software
environmental
adaptability

Tailoring for user's
preferred interface

Measure: Any functionality in interface for selecting
which data to view.

 X
(0 or 1)

 X

Maintainability Metrics

Scope Design should be
extendable to entire
system

Measure: Context diagram deals with Tracking as
well as Planning

X
(0 or 1)

X

14

Interconnectivity Design should not
repeat similar
operations

Measure: Level 0/1 diagrams should link Use Cases
through processes on the Risk Database

X
(0 or 1)

X

Abstraction Design should be

abstract at the higher
level Measure: Context diagram uses generic data flows

X
(0 or 1)

X

Table 3: Guidelines for the Planning Module Design Evaluation

15

 Scope of Measure Design Product Measured
The attribute of
quality to be
verified

Goal : What to
achieve in this area

Metric : How to measure this Use
Case
1

Use
Case
4

Use
Case
5

Ov
era
ll

DFD Interfa
ce

Data
Table

Functional Metrics

Functional
Adequacy

Whether all
functionality exists

Interface functionality deals with
forms/screens/reports/menus etc

X : 1 X : 2 X : 1 X

 1.1 Status screen shows Continue, Plan Advance or
Plan Delay

 4.1 Workpackage Task list has option to add new
Task

 4.2 Final Screen to display summary of Task data
and submit (may be same as data entry screen)

 5.2 Select 'Accept', 'Accept after modification' or
'Reject' after each quality attribute for each work
product

 DFD should have processes for each data
manipulation

X: 2 X : 3 X : 1 X

 1.1 Compare actual task time to planned
time/duration

 1.2 Save actuals with plan data

 4.1 Retrieve data on tasks from Work Package

 4.2 Retrieve data on people and material resources
from Task

 4.3 Retrieve data on time planned for task from Task

 5.1 Retrieve list of completed Work Products with
their Quality Attributes list

Total Score for Functional Adequacy Measure =Actual DFD/6 + Actual Interface/4

16

Functional
Implementation
Coverage

Whether the
functions are enough
to do what the client
wants

Interface: should show the screens/links. (Note: some
of these may be in the same screen)

X : 2 X : 6 X : 1 X

 1.1 Status of project showing actuals against plans
and estimates

 1.2 Status screen should include Plan Advance or
Plan Delay where necessary

 4.1 Display List of Work Packages for that user
account

 4.2 Table to display and enter resources on task

 4.3 Table to display and enter participant skills and
skill level.

 4.4 Table to display and enter materials and material
quality and quantity

 4.5 Table to enter Actual Time for task

 4.6 Form to enter new task details

 5.1 Display list of completed work products

 DFD deals with all data reports X : 1 X : 1 X : 1 X

 1.2 Report Project Plan data

 4.1 Report Work Package Data

 5.1 Report Work Product Data

 Data Table stores all data attributes in data base X : 1 X : 2 X : 1 X

 1.2 Project Plan has planned and actual
times/duration

 4.1 Work Package has task list

17

 4.2 Task list has resources (people with skills and
materials with quantity and quality)

 4.3 Task list has the actual time linked

 5.1 Work Products have quality attributes links for
each product

Total score for Functional Implementation Coverage Measure= Actual DataTable/4 + Actual DFD/3+ Actual Interface/8

Measure: Exists:

Login screen 1/3 X : 1/3
Login process 1/3 X : 1/3

Access
auditability

Records should be
kept of participants
contributions.

User data attached to database data 1/3

X

 X : 1/3

Access
controllability

Access to system
should be controlled
to some data.

Measure: Exists Data link between login process and
all report data for each screen in Use Case

X X X X X

Functional
Compliance

DFD rules Data Flows are maintained between levels

 X X

 Data base consistency : only one process writes to
each data base

 X X

Usability Metrics

Completeness of
description

All functions
described in an
understandable
manner

Measure: Step though Use Case and subtract one
point for ambiguity as to data presented in screen at
any point

X :
total
is 2

X :
total
is 6

X :
total
is 1

 X

Evident Functions User able to
understand how to
perform tasks from
design

Measure: Step though Use Case and subtract one
point for ambiguity in terms of which button links to
which screen

X :
total
is 2

X :
total
is 6

X :
total
is 1

 X

18

Function
Understandability

User able to
understand what to
do at each interface

Measure: Step though Use Case and subtract one
point for ambiguity as to data to be entered on screen
at any point

X :
total
is 1

X :
total
is 6

X :
total
is 1

 X

Usability
Compliance

Comply with
requirements for
interface design

Measure: More than one task required on a single
interface subtract one from total and divide by total.

X:
total
is
total
no
interf
aces

X:
total
is
total
no
interf
aces

X:
total
is
total
no
interf
aces

 X

Portability Metrics

Adapt to different
status of system :
hardware link exists
or not

 X X X Hardware
environmental
adaptability

Adapt to different
hardware of system

Measure: Any acknowledgement of System online or
offline on Interface OR DFD

 X
(0
or
1)

System software
environmental
adaptability

Tailoring for user's
preferred interface

Measure: Any functionality in interface for selection
which data to view.

 X
(0
or
1)

 X

Maintainability Metrics

Scope Design should be
extendable to entire
system Measure: Context diagram deals with Tracking as

well as Planning

X
(0
or
1)

X

Interconnectivity Design should not

repeat similar
operations Measure: Level 0/1 diagrams should link Use Cases

through processes on the Risk Database

X
(0
or
1)

X

19

Abstraction Design should be
abstract at the higher
level

Measure: Context diagram uses generic data flows

X
(0
or
1)

X

Re-Use Design has re-used

features from PPM
Measure: Each design should match PPM design in:
a. Context Level outline
b. Interface generic design
c. Data Table attributes

X
(0 or
1)

X
(0 or
1)

X
(0 or
1)

X

Table: Guidelines for the Tracking Module Design Evaluation

20

For Hypotheses 4-5

In Hypothesis 4 and 5 the average actual time spent on the design activities will be compared for
the control and treatment groups. From the time logs and number of design defects, the efficiency
is compared for H4. The design defects are identified by the difference between the "perfect
numeric value" identified in the measurement, formula and data elements computations column
of [24] and the actual value calculated from the subject designs. For H5, time logs and number of
designers involved form the basis for the cost effective calculations based on Net Present Value
(NPV) will be compared.

For Hypotheses 6 - 12

A questionnaire to participants in the Pair groups will address issues with pair work experience as
well as the quality of the design product produced according to the variables in hypotheses 6-12.
Qualitative analyses of the questionnaire will be performed against the subjects design
performance in pairs and as an individual.

Threats to Validity

The following types of validities are considered in the design of this experiment.

Internal Validity

In this experiment, subjects are divided into treatment groups of pairs and control groups of
individuals for the first half of the experiment, and the two groups will be switched for the second
half of the experiment. It can be argued that subjects who work as a pair in the first half will have
an advantage of peer learning that put them in a better stead when they later work as individuals.
Therefore, the analyses of the two groups will be done separately before they are combined.

Although the students will be randomly allocated to tutorial groups, they will however, be given
the opportunity to choose a partner, in an effort to reduce personality clash issues between
partners given the relatively short period of time for producing the deliverables. That choice
might have a threat to conclusion validity if not all pairs have the same knowledge and
competence in design work. Therefore, students' WAM's will be considered in the analyses to
distribute the students according to their performance levels combinations.

Another threat to the internal validity is the varying guidance abilities of the tutor or lecturer
overseeing each group during the different tutorial sessions. To reduce such impact, an on-line
FAQ page of the subject course addressed all questions raised in all tutorial sessions for all
subjects to access.

Construct Validity

The experiment was structured to measure the design products across two different work
approaches. The designs are based on the subject's construction of DFD's, Databases and
Interface diagrams. The measures of evaluation are identified and developed before the subjects
start working on their designs to eliminate interpretation difference. The work approaches were
individual work and pair work. The subjects are unfamiliar with pair work, so the questionnaire
will be used to exclude partners who do not follow the pair work process. Therefore, there is no
threat to construct validity.

Conclusion Validity

21

The conclusion validity of this experiment depends on three factors. Firstly, the statistical power
is not considered threats since the participating subjects are undergraduate students and it is
possible to have a large number of participants in comparison to other studies.

Secondly, the measures for the experiment outcomes are fairly objective. The efficiency and cost
effectiveness are based on actual time logs. The measurements of the quality of the design
outcomes are based on metrics derived from the ISO/IEC 9126 set of software product quality
standards. This allows for quality characteristics to be evaluated through a tallying process that
greatly reduces the subjectivity associated with measuring quality characteristics of products. In
addition, one evaluator will conduct the evaluation and assessment of all design outputs to ensure
consistency.

Finally, the abilities of the subjects do not change between paired or individual work approaches
since the same subjects are allocated to both approaches at some stage. Therefore, the conclusion
validity can be considered high.

External Validity

The subjects are undergraduate students; therefore, their selection may not be representative
enough to directly transfer the results to the software industry. However, the subjects are in their
pre-final year prior to joining industry, their design knowledge has been recently acquired and
tested, and their task is to design part of a solution to a realistic problem. So, it can be argued that
the results will have a high level of external validity. In any case, the results are of interest, as it is
important to find out whether the quality of the products produced by pair work justifies the costs
involved.

There is a great need for replication to enable the generalization of the results. The ER-Model
may not be representative of industrial problems. The data model used in this study is smaller and
less complex than industrial data models. However, the diagram uses a majority of the concepts
normally found in an ER-model.

Conclusion and Future Analyses

The report presented the empirical design of an experiment to be conducted with 3rd year students
in computer engineering. The experiment aims to assess the effect of pair work on the design
phase of the software lifecycle. The objectives of the experiment are (a) to evaluate the quality of
design deliverables produced by designers working in pairs compared to designers working
individually, (b) to compare the efficiency and cost effectiveness of a design process carried out
in pairs to an individually carried out design process. In addition, information about the practices
and emotive of partners in pair work experience is obtained.

For the quality measures of the design products, assessments will be made according to quality
characteristics, sub characteristics and metrics derived from the ISO/IEC 9126 software
engineering product quality standards in order to reduce subjectivity. In addition, assessments of
the design process will be based on efficiency and cost effectiveness. Pair work practices of
partners will be analysed from data that will be obtained from participants in a questionnaire after
the pair work experience.

Acknowledgements

Many thanks to Dr. Barbara Kitchenham, Cat Kutay, Mike Berry and Dr. Karl Cox for their
valuable input and collaboration in this work.

22

References

[1] P. Clements, R. Kazman, and M. Klein, Evaluating Software Architectures
Methods and Case Studies: Addison-Wesley, 2002.

[2] T. DeMarco, Structured Analysis and system Specification. New York, 1979.
[3] D. Budgen, Software Design. Essex, UK: Pearson Educational Limited, 2003.
[4] L. Williams, R. R. Kessler, W. Cunningham, and R. Jeffries, "Strengthening the

case for pair programming," IEEE Software, pp. 19 - 25, 2000.
[5] A. Pandy, N. Kameli, A. Eapen, C. Miklos, F. Boudigou, I. Sutedjo, M. Paul, V.

Vijay, and W. Mcdermott, "Application of Tightly Coupled Engineering Team for
Development of Test Automation Software - A real World Experience," presented
at 27th Annual International Computer Software & Applications Conference,
Dallas, Texas, 2003.

[6] L. Williams and R. R. Kessler, "Experimenting with Industry's "Pair
Programming" Model in the Computer Science Classroom," Journal on Software
Engineering Education, 2000.

[7] J. T. Nosek, "The Case for Collaborative Programming," Communications of the
ACM, vol. 41, pp. 105 -108, 1998.

[8] J. Nawrocki and A. Wojciechowski, "Experimental Evaluation of Pair
Programming," presented at European Software Control and Metrics Conference
ESCOM 2001, Maastricht, 2001.

[9] P. Freeman, "Fundamentals of Design," in Tutorial On Software Design
Techniques, P. Freeman and A. I. Wasserman, Eds., 4th ed: IEEE Computer
society press, 1984.

[10] C. Easteal and G. Davies, Software Engineering: Analysis and Design. London:
McGraw-Hill Book company, 1989.

[11] I. Sommerville, Software Engineering, 4th ed: Addison-Wesley Publishers Ltd.,
1992.

[12] E. Robertsson and H. Eriksson, "An Empirical Study on product and Process
quality in object-oriented Design," in School of Information Systems. Sydney:
University of New South Wales, 1999.

[13] R. S. Pressman, Software Engineering, A Practitionar's Approach, 2nd ed:
McGraw-Hill Inc., 1987.

[14] E. Isaacs and A. Walendowski, Desiging from both sides of the screen: New
Riders publishing, 2002.

[15] B. Curtis, H. Krasner, and N. Iscoe, "A field Study Of The Software Design
Process For Large Systems," Communications of the ACM, vol. 31, pp. 1268-
1287, 1988.

[16] L. Williams and R. R. Kessler, Pair Programming Illuminated: Pearson
Education, Inc., 2003.

[17] L. Williams and R. R. Kessler, "All I really need to know about Pair
Programming I learned in Kindergarten," Communications of the ACM, vol. 43,
pp. 108 - 114, 2000.

[18] P. R. Laughlin, R. P. McGlynn, J. A. Anderson, and E. S. Jacobson, "Concept
attainment by individuals versus co-operative pairs as a function of memory, sex
and concept rule," Journal of Personality and Social Psychology, pp. 410--417,
1968.

23

[19] K. Beck, "Embracing Change with Extreme Programming," IEEE Computer, pp.
70 - 77, 1999.

[20] R. Jeffries, "What is Extreme Programming," vol. 2002, 2001.
[21] A. Cockburn and L. Williams, "The costs and benefits of pair programming," in

Extreme Programming Examined: Addison Wesley, 2001.
[22] L. Williams and R. Kessler, "The effects of "Pair-pressure" and Pair-Learning" on

Software engineering Education," presented at Conference of Software
Engineering Education and Training, 2000.

[23] J. C. Jones, Design Methods: Seeds of Human Futures: John Wiley & Sons, 1981.
[24] ISO/IEC, "ISO/IEC 9126-3 Software engineering -Product quality- part3: Internal

metrics," 2002.
[25] ISO/IEC, "ISO/IEC 9126-1 Software engineering- Product quality- Part 1:

Quality model," 2001.
[26] B. Wong, "An Investigation of the Cognitive Structures used in Software Quality

Evaluation," in Information Systems, Technology and Management. Sydney:
University of New South Wales, 2002.

[27] ISO/IEC, "ISO/IEC 9126-2 Software engineering -Product quality- part2:
External metrics," 2002.

[28] ISO/IEC, "ISO/IEC 9126-4 Software engineering -Product quality- part4: Quality
In Use metrics," 2002.

[29] K. Beck, eXtreme Programming explained, Embrace Change: Addison-Wesley,
2000.

[30] A. Cockburn, Writing effective Use Cases: Pearson Education Corporate Sales
Division, 2001.

