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Abstract 

TCP was designed to work well in networks with low channel error rates. Wireless networks on 

the other hand are characterized by frequent transmission losses. As a result, when TCP is used in 

wired/wireless internetworks, the losses due to channel errors are mistaken as congestion losses 

and the sending rate is unnecessarily reduced in an attempt to relieve the congestion, resulting in 

a degraded performance. There are several studies to model the behavior of TCP in such 

environments, typically under last-hop wireless scenarios. The consensus is that TCP needs some 

form of intimations to segregate wireless loss from congestion loss and behave accordingly in its 

window control. However, it is not an easy task to detect the type of loss from TCP behavior as 

shown in this report with the help state transition models. In order to further extend the model for 

more accuracy in capturing the exact TCP window control, we plan to carry out a series of 

simulation studies for a synthetic heterogeneous environment with multiple TCP/UDP flows, 

keeping the state diagram in mind.  

Key words: TCP/IP, wireless networks, congestion control, wireless loss, multiple flows, UDP, 

State Transition Model, loss detection. 
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Introduction 

User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) are examples of end-

to-end transport protocols used in the Internet. Both protocols offer multiplexing functionality, 

which enables more than one process to use the network simultaneously. However, UDP and TCP 

differ in the kind of service they offer to the application layer protocols. UDP offers a 

connectionless, unreliable datagram service. It ensures that corrupted packets are not delivered to 

the application layer, but makes no effort to request a retransmission of a corrupted or missing 

segment. It assumes that the application layer will provide error correction if it is necessary.  

TCP, on the other hand, offers a reliable, connection-oriented, byte-stream service. TCP assumes 

that the underlying network infrastructure is unreliable and could lose or duplicate segments 

during their transmission. It is a full-duplex protocol, which means that each TCP connection 

supports a pair of byte-streams, one flowing in each direction. TCP is an end-to-end protocol. 

That is, TCP turns a host-to-host packet delivery service, provided by IP, into a process-to-

process communication channel TCP makes every effort to ensure that the application protocol 

receives its data in order, without duplicates, exactly as it was sent. In addition, TCP supports 

flow control and congestion control. Flow control ensures that the sender does not send too much 

data to overrun the receiver's buffer. Congestion control ensures that the sender does not transmit 

more data into the network than it can handle.  

Congestion is the phenomenon that occurs at a router when incoming packets arrive at a rate 

faster than the router can switch (or forward) them to an outgoing link. Then the queue size in 

router increases, eventually exceeding available buffer space. There are two classes of router 

algorithms, namely queue management (QM) and scheduling, that are related to congestion 

control. QM algorithms manage the length of packet queues by dropping packets when necessary 

or appropriate, while scheduling algorithms determine which packet to send next and are used 
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primarily to manage the allocation of bandwidth among flows [1]. The most common scheduling 

algorithm is FIFO (First-In First-Out), which means that the packet that first enters the buffer will 

be the one to leave the buffer first. We also assume FIFO in the rest of the paper and do not 

discuss scheduling further here as it is out of the scope of our work.  

When the buffer is full, some packets will have to be dropped. A straightforward solution is to 

drop the packets that are just arriving at the input port; that is, if a packet arrives and finds the 

queue full it will be dropped. This policy is known as tail-drop or drop tail (DT). In essence, it is 

a reactive approach to QM. Other solutions include proactive approaches, which come into play 

before the buffer gets full. It symbolizes active QM (AQM) i.e., informing the sender about 

incipient congestion before a buffer overflow happens so that senders are informed early on and 

can react accordingly. AQM may involve techniques, such as dropping the first packet in the 

queue (not very common) or dropping a random packet already stored in the queue. Each of these 

solutions has certain advantages and disadvantages (which we will not elaborate on due to space 

limitations), but DT is the most widespread dropping policy. DT is simple to implement, has been 

tested and used for many years. At the same time, it was shown to interact badly with TCP's 

congestion control mechanisms and to lead to poor performance. In 1993, Floyd and Jacobson [2] 

proposed a pro-active random packet dropping strategy, now known as Random Early Detection 

(RED), in order to solve the above-mentioned problems caused by DT. RED uses randomization 

in an efficient manner, without requiring any changes at the end hosts. In fact, the subsequent 

studies of its efficiency in controlling congestion show that RED performs well with TCP that 

perceive drops as a form of implicit notification of congestion. In particular, a TCP sender will 

react to these packet drops by reducing its sending window size (i.e., sending rate). This slower 

sending rate translates into a decrease in the incoming packet rate at the router, which effectively 

allows the router to clear up its queue. The IETF (Internet Engineering Task Force) has already 

recommended for the wide deployment of RED some years ago. It is supported by router vendors 
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and is implemented in a number of products. Nonetheless, RED is not currently widely used, 

despite the eight years that have passed since its introduction.  

Heterogeneous Environment 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Heterogeneous network under consideration 
 
Heterogeneity (in terms of transmission media) is an attribute that most characterizes the 

evolution of modern communications networks. The popularity of wireless networking has 

increased dramatically over the past few years. The recent proliferation of mobile devices and the 

introduction of efficient wireless communication protocols have placed new requirements on 

existing protocols, such as TCP (the most prevalent congestion control protocol used on the wired 

Internet), that must evolve to meet the needs of this new mobile Internet. Integrating high delay, 

high channel error, wireless networks with existing wired networks still poses significant 

challenges to the research community. Incorporating end-to-end congestion control for wireless 

networks is one of the primary concerns. Consider, for example, the problem of providing reliable 

end-to-end data delivery to the application layer in an Internet that includes both wired and 
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wireless networks. Though wireless last hop is most common today, wireless links are expected 

to continue to proliferate and will exist anywhere in a future heterogeneous internetwork. It has 

been found that TCP and UDP may be used (may be inefficiently) in a variety of networks, 

including Ethernet, FDDI, and WLAN. They can run over a variety of physical media, including 

wires (such as optical fibers), and wireless (such as radio waves, or infrared signals). However, 

unlike UDP, TCP being an end-to-end protocol, it shows some unique behaviors in a 

heterogeneous environment that we discuss below.  

Though a TCP connection usually works over all these different media/networks, historically 

TCP has been designed mainly for wired networks [3]-[5]. So it has been highly tuned with 

certain assumptions in mind, which are valid only for wired networks. For example, the BER (or 

the probability that any given bit might get corrupted) is small over wired media (for instance, 10-

6 to 10-7 for copper cable, and 10-12 to 10-14 for optical fiber). But, in wireless media, BER is 

normally in the range of 10-1 to 10-3, which is quite unacceptable for normal TCP operation. 

Again, when a data segment is lost, in a wired network it is relatively safe to assume that this was 

most likely due to congestion (i.e., more segments than what network can handle). But, if a 

wireless link or sub-network is involved, it could as well be because of channel error resulting in 

a bad reception at the destination. Thus, packet loss in wired networks is primarily due to 

congestion, and as such is not applicable to wireless networks in which the bulk of packet loss is 

due to error at the physical layer (lossy channel). Certainly, TCP was not designed with such 

heterogeneity in mind; hence, the performance of TCP over heterogeneous internetworks (where 

links may be wired and/or wireless) is severely degraded due to packet losses. 

Packet losses in afore-mentioned heterogeneous internetworks may be due to: a) errors on the 

wireless channel, b) congestion in a bottleneck wired link, or c) both. The worst of them is, 

however, wireless losses, which are interpreted to be a (pseudo) congestion by TCP, leading to 

immediate window cutbacks resulting into poor channel utilization. Even at a loss rate of as low 

as 10%, TCP throughput is found to degrade catastrophically. In mobile wireless networks where 
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wireless link is the last hop, errors on that link can cause TCP sender initiated retransmissions, 

and window cutbacks because TCP interprets the loss as being caused by congestion on some 

bottleneck link in the wired backbone network. Hence, for heterogeneous networks, optimal TCP 

window control is still an open issue.  

We identify the key differences between wireless loss and congestion loss as: a) wireless error is 

natural (we have no control over it) and unavoidable, whereas congestion is created by network 

and we may avoid it by adding extra resources to some extent, b) wireless loss is unpredictable, 

whereas congestion provides us with some early warning, and c) wireless loss is a transient event, 

whereas congestion is a continuous event (so packet loss is correlated). The differences are 

summarized in Table I. 

Table I: Distinctions between loss types 
 
Wireless loss Congestion loss 
Due to channel error Caused by packet dropping at buffer 
High BER leading to high Packet Error Rate 
(PER) 

Zero BER but high Packet Error Rate (PER) 

Mostly random; sometimes bursty (correlated)  Always correlated 
Transient (off-and-on) event; non-differentiable 
in time domain 

Continuous event; differentiable in time 
domain 

Beyond our control (not estimable) We can control (estimable) 
Unpredictable Predictable 
Happens without any prior indication Happens with a priori indication  
 
Review of Wireless TCP Works 
 
Various proposals have been worked out to improve the performance of TCP over heterogeneous 

internetworks, where both congestion losses and losses due to the transmission errors can occur. 

We review them briefly here.  

The end-to-end schemes (Split-TCP) such as I-TCP [6], WTCP [7] have been proposed to 

mitigate the performance loss without attempting to decouple the cause of the packet loss. The I-

TCP splits the transport link at the wireline–wireless border. The base station maintains two TCP 

connections, one over the fixed network, and another over the wireless link. Since I-TCP uses 

TCP over the wireless link, it suffers from poor performance in dealing with wireless losses. In 
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WTCP, the TCP connection from the source is terminated at the base station, and another reliable 

connection is created from the base station to the mobile host. However, the base station 

acknowledges a TCP segment to the source only after the mobile host acknowledges that 

segment. This way, TCP’s end-to-end semantics are preserved.  

Snoop [8] is similar to WTCP, except that it is implemented at the link layer of the base station. 

The base station sniffs the link interface for any TCP segments destined for the mobile host, and 

buffers them if buffer space is available. If the base station sees a duplicate acknowledgment, it 

detects a segment loss and if it is buffered then Snoop identifies a loss over the local wireless 

link, retransmits the lost segment and starts a timer. The duplicate acknowledgment is also 

dropped to avoid unnecessary fast retransmission at the sender. 

A simple solution proposed in many works tries to follow the “divide and conquer”  strategy. 

They employ the simple solution of allowing a link level retransmission scheme to recover the 

packets lost due to channel errors thereby limiting the response of the transport protocol to mostly 

congestion losses. This divides the losses into two layers, namely link and transport, because both 

layers have error recovery capabilities, though at different levels (link layer is hop by hop; 

transport is end-to-end). So the link layer is responsible to recover from losses due to 

transmission errors, allowing the transport protocol to recover from congestion losses. We may 

call it as localization of wireless loss. However, in order to maintain the segregation between the 

different layers, the link layer should not be required to be aware of the semantics of the transport 

level protocol. Also, in order to make the deployment of the new solution easier, the 

modifications should preferably be minimal. It has been observed that link-level error recovery 

protocols, proposed for improving the performance of TCP over wireless networks, achieve 

considerable throughput performance improvement. The solutions include Snoop [8], Explicit 

mechanisms [9] such as (Explicit Bad State Notification, Explicit Loss notification etc.), Delayed 

Duplicate Acknowledgements. When TCP Sack [10] and TCP Vegas [11] are compared with and 

without Snoop, they display a contrasting behavior, with TCP Sack being the best without Snoop 
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and TCP Vegas the worst, and TCP Vegas the best with Snoop and TCP Sack the worst. This led 

to the modification of Snoop code to make TCP Sack to behave the best with Snoop also.  

TCP Vegas compares the actual RTT with the expected RTT and accordingly increases and 

decreases the congestion window when the difference is lower or higher than predefined 

threshold. It prevents the congestion in the network. The disadvantage of these algorithms is that 

these require higher computational capability. The same idea is used in TCP-Probing [12] where 

the detection of a packet loss triggers the sending of probes to measure the current RTT. 

Other end-to-end solutions do not mention explicitly the cause of packet loss; it is worth 

mentioning as these enhancements are caused to improve TCP performance. TCP Westwood [13] 

measures goodput i.e., the reception rate and uses that rate to set the congestion window when a 

packet lost is detected. TCP Santa-Cruz [14] follows the same concept in TCP Vegas, except that 

it replaces the round trip delay measurements of TCP with estimations of delay along the forward 

path, and uses an operating point for the number of packets in the bottleneck. TCP-real [15] 

combines the idea from TCP Westwood and TCP Santa- Cruz, by measuring the rate at the 

receiver. 

A traditional way of looking at this problem is not to distinguish between packet loss caused by 

congestions and that due to wireless channel error, and to solve the complete system as a black 

box [16]-[18]. Thus, by not taking into account the packet loss due to wireless channel error when 

determining the sending rate, the problem is translated into an old one, for which a known 

solution exists. Still, researchers are working for the optimal solution. 

Another approach is to peep into the TCP and/or IP headers and to understand the cause of error 

by adding/setting extra bits (such as ECN) as modifications to the network protocol. The 

solutions based on this point of view are not easy to deploy because they requires modifications 

to network infrastructure or protocol. Moreover, due to security reasons, this approach is 

discouraged; also encrypted traffic in protocols, such as IPSec, cannot be seen at intermediate 

routers.  
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Another approach is to provide a framework where both channel loss and congestion loss can be 

treated as is appropriate for wireless access where the channel loss can be dominant or 

comparable to congestion loss. A preliminary distinction between these two losses is possible on 

the basis of a fact indicating that congestion loss is correlated while channel loss may vary from 

random to bursty.  In these works [19]-[24], they used an abstraction for wireless loss scenarios 

for channel-induced packet loss for a bulk TCP transfer between source and destination over a 

single link (i.e., queue along with channel). On the other hand, other works [25]-[29] considered a 

typical abstraction for congestion loss model that randomly drops packet at the buffer. These 

losses are over an end-to-end path with multiple links shared a large number of TCP sources and 

destinations. 

Previous Works on Loss Detection 
 
This work [30] extends TCP-Friendly Rate Control (TFRC) algorithm to use an end-to-end loss 

differentiation algorithms (LDAs) when a connection uses at least one wireless link in the path 

between the sender and receiver. When a TFRC receiver detects losses, it invokes the LDA. If the 

LDA classifies the loss as a congestion loss, then the TFRC receiver includes it in its calculation 

of the loss event rate. However, if the LDA classifies it as a wireless loss, then the TFRC receiver 

does not count it in the loss event rate. Either way, a lost packet is not retransmitted. It assumes 

link level retransmission. 

This work [31] proposes an end-to-end method to classify the nature of packet loss in a hybrid 

wired/wireless environment. Specifically, they monitor the most recent RTT at the time each loss 

occurs to determine its most likely nature. Proposed end-to-end solutions differ mainly in the 

measure(s) they use to infer the cause of loss. These measures may be estimated at the sender 

without any support from the receiver (e.g. round-trip delay), or may require support from the 

receiver (e.g. one-way delay or delay variance). This approach integrates two techniques: packet 

loss pairs (PLP) and Hidden Markov Modeling (HMM). Two back-to-back packets form a packet 

loss pair, where one packet is lost while the second packet is successfully received. The purpose 
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is for the second packet to carry the state of the network path, namely the round trip time (RTT), 

at the time the other packet is lost. Under realistic conditions, PLP provides strong differentiation 

between congestion and wireless type of loss based on distinguishable RTT distributions. An 

HMM is then trained so that observed RTTs can be mapped to model states that represent either 

congestion loss or wireless loss. 

In this paper [32] the authors define a class of functions named loss predictors, which may be 

used by a TCP sender to guess the actual cause of a packet loss (congestion or transmission error) 

and take appropriate actions. These loss predictors use simple statistics on round-trip times and/or 

throughput, to determine the cause of a packet loss. In this scheme, the receiving host measures 

the interarrival times of packets. Assuming the last hop is wireless and the bottleneck, if the time 

between received packets is close to the minimum, then a lost packet in-between is assumed to 

have been lost due to wireless errors and not congestion. 

NCPLD (Non-Congestion Packet Loss Detection) [33] predictors compare the measured RTT 

with the lowest RTT (or that at the knee of the goodput load curve). If the former is close to the 

latter, then the cause of a packet loss is assumed to be wireless errors. Otherwise the loss is 

congestion.  In the Spike scheme [34] the receiving host measures one-way delays, and switches 

to congested (wireless) state as the delay exceeds (drops below) a certain threshold. The ZigZag 

scheme [30] extends Spike to include the mean and deviation of measured one-way delays as well 

as number of losses in computing the delay thresholds. Intuitively, the higher the number of 

losses the higher the threshold beyond which congestion is assumed, i.e. the cause of the loss 

being wireless errors becomes more likely. 

State Transition Model of TCP Window Control 
 
Communication protocols are usually specified by one of the following three methods: 1) 

Informal methods, such as the sequence chart, 2) Formal methods, such as State Transition 

Models (which include Finite State Machines (FSM), Communicating FSM (CSFM), and Petri 

nets), Programming Languages Models (which include Abstract Programs, CCS (Calculus of 
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Communicating systems), CSP, and Temporal logic) and Hybrid Model (which includes 

Extended FSM (EFSM)), and 3) Language Standards such as SDL (FSM + extensions), Estelle 

(EFSM + extended Pascal) and LOTOS (CCS+ADT). In this work, we use CFSM model to 

specify the TCP window behavior, whosre event-model easily maps to CFSM formalism as 

shown below.  

Communicating Finite State Machines (CFSM) 

Communications protocols are idealized as Finite State Machines with state transitions being 

driven by event invocations from higher and lower layers in the protocol stack, and in some 

(exceptional) cases by timer events within a layer. In CFSM model, a protocol is described as a 

set of Communicating Finite State Machines. Each CFSM represents a component (or process) of 

the network (in OSI term, a protocol entity, e.g. sender, receiver). The channels that connect 

CFSMs are assumed to be FIFO queues. (An error-prone channel is also modeled as another 

CFSM). Selecting the model of specification, in order to effectively capture the protocol 

functionality, is very important, as it has a great impact on the (possibly automatic) 

implementations. CFSMs are an extension of FSMs, hence, they are intrinsically good in 

modeling control paths. CFSMs also can include data computations as part of the transitions, and 

can therefore model protocol data-paths as well. CFSM networks are globally asynchronous, 

locally synchronous; thus they are able to model effectively asynchronous communication events. 

In short, CFSMs are a natural candidate for modeling TCP window behavior. 

An FSM is often simplest to visualize and to describe in graphical form. This form allows state 

transition events to be traced by hand, it also allows explicit data to be captured and described. 

Hence, each CFSM is represented by a directed labeled graph where nodes represent states 

(conditions) of the process; and edges represent transitions (events) of the process. For example a 

simple Request-Response protocol is modeled in Figure 2 as a CFSM. Transitions include actions 

taken the process (e.g. the sending a message) or external stimuli (e.g. the reception of a 

message). The sending message transition is labeled as -Msg where Msg is the type of messages 
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being sent. The receiving message transition is labeled as +Msg where Msg is the head message 

on the incoming FIFO queue of the CFSM (Figure 2). The receiving mode of TCP window can be 

mapped to states while event processing can be associated with the transitions: an event triggers a 

transition, which performs the event processing. 

Initial node is the starting state of a CFSM. Starting at the initial node, a CFSM traverses the 

nodes and transitions. The node currently being visited is called the current node. When a 

machine traverses a sending transition, it sends/appends a message with the same label to its 

outgoing channel. A machine at a node cannot traverse its receiving transition unless there is a 

message matched with the same label on the head of its incoming channel. When a machine 

traverses a receiving transition, it removes the matched head message of its incoming channel. 

Among several possible transitions, a machine traverses one non-deterministically. 

 

 
 

Figure 2. CFSM operating semantic for a Simple request-response protocol 
 

 
State Transition Model of TCP Window 

We first present a 4 state model for TCP window in normal wired environment. The states are 

numbered as 0, 1, 2 and 3 as shown in Figure 3. State 0 corresponds to the initial slow start phase 

of TCP window. From this state, it moves to state 1 where the window operates in the congestion 

avoidance phase. These states correspond to various conditions of the window as shown in Figure 

4.  
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Figure 3. State diagram of TCP window control in wired environment 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. TCP window control with state identifications 
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It is to be noted that, among states 1, 2 and 3, there are two packet-loss-pairs (PLPs), where each 

PLP involves a DUPACK followed by an ACK. C-DUPACK represents DUPACK due to 

congestion. Since this model is for wired environment only, there will not be any other DUPACK 

except due to congestion in the bottleneck link. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. State diagram of TCP window control in heterogeneous environment 
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DUPACK transition? In state 0, it is easy to detect wireless DUPACK because there is no other 

transition from state 0, named as DUPACK. But it is not true for states 1, 2 and 3 because there 

wireless DUPACKs are co-existent with congestion DUPACKs. Hence, though we do not want 

any state transition for wireless DUPACKs, TCP will confuse with congestion DUPACK (as they 

are indistinguishable) and will make a transition to the next state as per congestion DUPACK 

rule. This will cause undesirable state transitions leading to slow start all over.  

The intriguing issue here is to find out some mechanism to differentiate between red W-

DUPACK and black C-DUPACK in states 1, 2 and 3. The most common measure used in the 

literature is RTT based. But our model shows that it is insufficient. 

Conclusion and Future Work 
 
TCP can detect packet drops and interpret them as indications of congestion in the network. But, 

at the same time, it mistakes a channel loss as congestion because channel loss also gives rise to 

packet loss. This makes TCP, in its current form, a bad choice for wired/wireless environments. 

In this work, we have modeled the window behavior as a state transition graph to show that why 

and when TCP window can not distinguish between wireless loss from congestion loss. This 

provides a new direction to the problem and helps us to rethink about the issue for a plausible 

solution.  

One may argue that including TCP in the limited memory of a wireless phone may not be 

technically feasible or economically reasonable. Instead, a simpler transport protocol, like UDP, 

should be used. Or, perhaps, one can avoid the transport layer altogether. In light of the principles 

of layered system design and the end-to-end argument, one should be cautioned against these 

approaches.  

In future, we plan to evaluate the performance of various TCP modifications using the ns-2 

simulator [35] based on the observations obtained from the state transition model. The 

heterogeneous internetwork topology to be considered in the simulation is the same one as shown 

in Figure 1, where N different sources are connected to the router R1, which in turn is connected 
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to the router RR over some wireless and wired links. RR is connected to RR+1 via a bottleneck link. 

RR+1 is finally connected to the router RM over again some wireless and wired links. N different 

receivers are connected to the router RM by wired and wireless links. Several recent studies 

[30],[31],[36] have noted that the number of flows in the network significantly impacts TCP 

performance evaluation in heterogeneous networks. To emulate real life scenarios, we consider 

various traffic conditions together. Most of previous studies have considered the so-called greedy 

users assumption whereby sources are saturated. Here, in our model, multiple TCP flows are 

intermingled with multiple UDP flows. All flows are passing over a combination of wired and 

wireless links. Moreover, some flows for both TCP and UDP are on last hop wireless. 
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