
Automated Interface Synthesis

Vijay D’Silva Arcot Sowmya

School of Computer Science and Engineering

University of New South Wales, Sydney, NSW 2052, Australia

E-mail: {vijayd,sowmya}@cse.unsw.edu.au

S. Ramesh Department of Computer Science and Engineering

Indian Institute of Technology Powai, Bombay 400 076

E-mail: ramesh@cse.iitb.ac.in

UNSW-CSE-TR-0325
September 2003

THE UNIVERSITY OF
NEW SOUTH WALES

1

Abstract

System-on-Chip (SoC) design methodologies rely heavily on reuse of intellectual
property (IP) blocks. IP reuse is a labour intensive and time consuming process
as IP blocks often have different communication interfaces. We present a framework
which automates the generation of HDL descriptions of interfaces between mismatched
IP communication protocols. We significantly improve and extend existing work by
formalising the problem and providing a solution which addresses data mismatches,
pipelining and differences in clock speeds. Importantly, the use of a formal framework
enables us to generate solutions which are provably correct. The developed algorithms
have been implemented and the tool used to synthesise wrappers and bridges for many
SoC protocols. In particular we present a case study of the application of our algorithm
to a specific design obtained from industry.

2

1 Introduction

1.1 Motivation

The current VLSI design scenario is characterised by high performance, complex function-
ality and short time-to-market. A reuse-based methodology for SoC design has become
essential in order to meet these challenges. Typically, a SoC is an interconnection of dif-
ferent pre-verified IP blocks which communicate using complex protocols. Approaches
adopted to facilitate plug-and-play style IP reuse include the development of a few stan-
dard on-chip bus architectures such as CoreConnect[8] from IBM, AMBA[2] from ARM
among others and the work of the VSI Alliance[1] and the OCP-IP[9] consortium. Figure 1
shows a typical bus-based SoC architecture. When IP blocks and buses use different com-
munication protocols or operate at different speeds, wrappers and bridges are introduced
as shown. Unfortunately, the vision of assembling SoCs using IP blocks is yet to become
a reality for various reasons[3] including:

• Lack of a single standard bus architecture resulting in IPs still being designed to
interact with different protocols.

• Integration of IP blocks into a SoC is largely a manual process requiring consider-
able design effort. If possible, protocol mismatches are resolved using off-the-shelf
wrappers. This solution has the side effect of increasing verification overheads.

• Verification of the entire system is a bottle neck due to interface and timing issues.

Interface synthesis is an area of research[5, 14] that seeks to automate the process
of interconnecting components at different levels. Interfaces at low levels are circuits or
devices primarily concerned with physical quantities such as voltage and capacitance while
high level interfaces are state machines or programs which address abstract behaviours such
as the interaction between state machines or processes. We focus on the synthesis of high
level interfaces which facilitate communication between possibly mismatched protocols
described as Finite State Machines(FSMs).

1.2 Related Work

The problem of automatically resolving protocol mismatches by synthesising interfaces has
been addressed in the literature[14]. Differences in signalling convention, data width and
type, sequencing of data, and clock speeds have been identified as the causes of protocol
mismatch.

Preliminary work in this area was done by Borriello and Katz[4] who used timing
diagram specifications of protocols to construct event graphs and generate a transducer
circuit. The designer must provide information for the correct merging of event graphs
and data buses must have the same names.

Narayan and Gajski[10] decompose a sequential protocol specification into combina-
tions of five basic operations, and organise the protocol behaviour as totally ordered sets
of guarded executions. The sets transferring the same amount of data are matched and
an interface is constructed.

3

IP4IP2

IP1

Arbiter
On−Chip Bus

O
n−

C
hi

p
B

us

Bridge

Arbiter
Peripheral Bus

P
er

ip
he

ra
l B

us

IP5

IP3

W
rapper1

W
ra

pp
er

2
Figure 1: System-On-Chip Bus Architecture

�������������
�������������
�������������
�������������

FSMFSM FSM

Protocol1 Protocol2

Prune Interface

FSM2FSM1 Data Bus
Mapping

Interface

Construct Interface

Select Interface

Interface FSM

Figure 2: Design Flow for Interface Synthesis

4

Smith and De Micheli[16] map any given protocol into a standard communication
scheme which requires that a protocol be either a sender or a receiver. Their scheme
can be applied in a multi-party communication environment but their solution is quite
expensive as there is a six cycle latency between a data read and write and an internal
arbiter is used that significantly increases the amount of logic in the system. This work was
extended by Shin and Gajski[15] by using protocol flow graph specifications to synthesise
interfaces which use queues and internal control logic to regulate buffering.

Passerone et al.[13] provide an interface synthesis algorithm for mismatched syn-
chronous protocols specified as regular expressions. Their technique cannot be easily
extended to different kinds of data and clock speed mismatches. Recently, Passerone et
al.[12] stated that the above methods lack a mathematically sound formalisation and at-
tempted a game theoretic formalisation. The synthesis procedure is illustrated with an
example that handles reordering of data. No algorithm is presented, so it is unclear how
the proposed technique can be applied to any two arbitrary protocols.

Interface synthesis has been addressed in the context of network protocols as the pro-
tocol conversion problem[6, 11, 17]. Due to the relative complexity of network protocols,
these solutions use a high level of abstraction and require complex specifications to be pro-
vided. Further, the systems considered are asynchronous unlike most on-chip protocols.

None of the solutions provided in the hardware literature apply to protocols with ar-
bitrary branching structures and loops. Data mismatches are partially addressed while
complex behaviours such as pipelining are not and current solutions for clock speed mis-
matches result in large and complex interfaces.

1.3 Contributions and Overview

In this report, we present a lightweight formalisation of the protocol mismatch problem
and derive an algorithm for interface synthesis. The framework assumes that the protocols
are modelled as FSMs and facilitates design space exploration. We identify the conditions
under which two protocols will mismatch. This aspect of the formalisation is novel and
has not been undertaken in the literature. Special attention is provided to the modelling
of data, an issue which existing solutions do not address. We present an algorithm which
uses an extremely simple specification to automate the construction of interfaces capable
of handling protocols with mismatched data widths, types, clock speeds and pipelining
behaviour. In addition, we use the notion of matched protocols to identify a correctness
criterion and show that the interface constructed is correct.

The modelling and synthesis flow is shown in Figure 2. The designer should provide
FSM style protocol descriptions and a mapping between the data buses of the protocols.
We use FSMs as they capture all the required behaviour and simultaneously minimise
the designer’s effort. The FSM descriptions are used to synthesise all possible correct
interfaces between the two protocols. The designers may then select the interface best
suited to their requirements and it can then be translated into HDL code. We have
applied our technique to synthesise wrappers and bridges between commonly used SoC
protocols such as the Coreconnect Processor Local Bus, AMBA Advanced System Bus,
AMBA Advanced High-performance Bus and the OCPIP Open Core Protocol.

The report is organised as follows. Section 2 introduces the preliminary definitions

5

and formalises the notions of protocol matches and mismatches. Section 3 contains a
formal description of the interface, the interface synthesis algorithm and the extension to
mismatched clock speeds. Section 4 presents the experimental results and we conclude in
Section 5.

2 Protocol Specification and Modelling

We illustrate our approach using a simple protocol referred to as Pipeline, which supports
pipelining. The protocol requests a transfer using the signal Req and writes to the address
bus Addr. This operation is repeated until an acknowledgement Ack is received. The
protocol then waits for a signal Rdy to be asserted, confirming that data will be written to
the bus. If a single read is to be performed, the protocol will read from the data bus Data
and complete the transaction. If a sequence of reads is desired, the protocol will pipeline
the address and data phases by sending the next request and address and reading data
from the bus in the same transition. When it completes a finite sequence of transfers, the
protocol will stop until it is ready to start a fresh transaction. All actions performed by
the protocol are synchronised with a clock which emits ticks at regular intervals.

The behaviour of Pipeline can be modelled as a FSM shown in Figure 3(a). The
state machine has a set of input channels Ack, Data, Rdy and output channels Req,

Address. Data and Address are buses or data channels and all the others are control
channels. Pipeline begins its operation in state 0 and transits to state 1 performing the
write operation Req! which causes an event to take place on the channel Req. In state 1, if
the acknowledgement signal Ack does not arrive, it is detected by the operation Ack# and
a transition is made to state 0 in order to resend the address. In state 2, when the input
Rdy occurs, denoted by Rdy?, the protocol will transit to either state 3 or 4, depending
upon an internal condition that indicates whether a non-pipelined or a pipelined transfer
is to be performed. The details of the internal condition are irrelevant at this level of
description. If a non-pipelined operation is desired, the protocol will reach state 4, read
data and transit to state 5 which is the final state. If a protocol is in a final state, we can
infer that one or more data transfers have occurred. In all other respects, the final state
is identical to the initial state.

The sequence of transitions from state 0 through states 1,2 and 4 to state 5 is an
example of a transaction run. When the protocol completes a transaction, it resides in
the final state until a new transaction is to be undertaken.

Figure 3(b) models a slave corresponding to Pipeline called PipelineSlave. When
Pipeline makes a request, PipelineSlave will receive it, read the address and first send
an acknowledgement and then the Rdy signal to reach state 3. In state 3, PipelineSlave
will transit to state 1 writing the data which was requested to the bus and will simulta-
neously read the address corresponding to the pipelined request if one is made. If there is
no pipelined request, PipelineSlave will transit to state 4 which is the final state. It can
be seen from this behaviour that Pipeline and PipelineSlave can communicate successfully
to complete a transaction.

Figure 3(c) is another master, NoPipeline, for PipelineSlave. Its interaction is similar
to that of Pipeline but it will never cause PipelineSlave to transit from state 3 directly

6

0

1

2

3

Address!y
Req!

Ack?5

4

Rdy?Rdy?

Address!y
Req!

Ack#

Data?x

Address!y
Req!

Data?x

(a) Pipeline

0

Req?

1

Ack!

2

3

Req?

Data!x4

Data!x

Rdy!

Req#

Address?y

Address?y
Req?

Address?y

(b) PipelineSlave

0

1

Req!

2

4 3

Ack?

Rdy?

Address!y
Req!

Ack#

Data?x

Address!y

(c) NoPipeline

Figure 3: Examples of Protocols

7

to state 1 as it does not require pipelined operation. The protocol pair NoPipeline and
PipelineSlave illustrate that it may not always be clear via naive visual inspection(”Do
these protocols look the same?”) if two protocols match. Hence, there is a need for a
systematic approach to determining whether a pair of protocols match. We attempt this
through Definitions 1, 6 and 7.

Definition 1 A protocol is a communicating Finite State Machine P = (Q,Σ,∆, V,A,−→
, q0, qf). Q is a set of control states, Σ = ΣI ∪ ΣO and ∆ = ∆I ∪ ∆O are sets of disjoint
input and output control and data channels. V is a set of internal variables and A is the
set of actions that can be performed. −→⊆ Q ×A× Q is the state transition relation. q0

and qf are the initial and final states.

An action S in A is of the form G :Nb where G is a set of guards or blocking operations
and Nb is a set of nonblocking operations which can be performed. Guards check for
the presence, denoted as c?, or absence, denoted as c#, of events on control channel c.
Nonblocking operations are writes on control channels , denoted as c! which cause events
to occur, and reads or writes on data channels, denoted as d!, d?x. τ is the empty action.

A transition is written as q
G:Nb−→ q′ and a sequence of transitions as q

α
=⇒ q′ where

α = G1 : Nb1, . . . , Gk : Nbk. A transaction run is a sequence of transitions q0

α
=⇒ qf in

which the protocol begins and completes a transfer or sequence of transfers.
The predicate blocking(q) is true in a state q if all outgoing transitions are labelled

with blocking actions. q is non-blocking if all outgoing transitions have only nonblocking
actions. When the protocol is in a state and a clock tick occurs, the transition whose
guard evaluates to true is taken. If more than one guard is true, a nondeterministic choice
is made. We require that all actions either cause events or respond to them and all states
are either blocking or nonblocking.

Further we restrict our focus to a subclass of nondeterministic protocols which are
weakly deterministic. A protocol is weakly deterministic if, when a state has multiple
target states for a given action, these target states are either distinguishable from each
other by their output events, or will lead to states which are distinguishable in this manner.
Pipeline is an example of a weakly deterministic protocol. As observed earlier, state 2 is a
nondeterministic state. But its two successors 3 and 4 are distinguishable as 3 emits signal
Req while 4 does not. In fact, the slave protocol PipelineSlave infers that the requested
transfer is pipelined by checking for the presence of the signal Req. As a result, even though
one of the protocols is nondeterministic, together they compute unique transactions.

These notions are formalised in Definitions 2, 3 and 4 below.

Definition 2 A action is legal if it does not contain a control read as well as a control
write. That is, for any c, c′ if c? ∈ G1 : Nb1 then c′! /∈ G2 : Nb2.

Legal actions ensure that causality cycles do not occur by requiring actions to either
cause events or respond to them.

Definition 3 Two non-blocking states q1, q2 are output distinguishable if for any q ′
1
, q′

2
, G1 :

Nb1, G2 : Nb2 : q1

G1:Nb1−→ q′
1
, q2

G2:Nb2−→ q′
2
, there exists at least one c! ∈ G1 : Nb1 such that

c! /∈ G2 : Nb2 or vice versa.

8

Definition 4 A protocol is weakly deterministic if q0

α
=⇒ q1

G1:Nb1−→ q′
1

and q0

α
=⇒ q2

G2:Nb2−→
q′
2

and q1 6= q2 then, q1 and q2 are output distinguishable.

We encounter weak determinism when modelling protocols because only the external
events are modelled. Transitions and choices which are governed by internal conditions
are not visible resulting in non-determinism in the model. Henceforth, when discussing
actions, we shall use S1 as syntactic sugar for the action G1 : Nb1.

2.1 Protocol Compatibility

We now focus on the problem of protocol mismatch. Consider the protocol Handshake in
Figure 5(a). When selected for a read transfer by the presence of events on the channels
SEL and READ it will read the address from ADDR. If the signal ENABLE arrives, it will write
data on the data channel RData and transit to state 3 completing the transfer.

Pipeline (which has been replicated in Figure 5(c) for readability) and Handshake are
a pair of protocols which are mismatched for many reasons: they have different chan-
nel names, different number of operations on channels and Pipeline supports pipelined
operation while Handshake does not.

Intuitively, we would like to declare a pair of protocols as matched if they have the
same number and names of channels. Further, if we ‘run’ the two protocols together, they
should enable each other to exchange a series of messages, make progress and terminate
the transaction successfully. While they run concurrently, any control or data signal sent
by one should be received by the other. If one protocol is blocking on a set of guards,
an action by the other should make at least one of the guards true. Conversely, if one
protocol performs a nonblocking action, the other protocol should respond to it.

To formalise the notions above, we define a predicate permit.

Definition 5 Given a pair of actions S1 and S2, permit(S1, S2) holds whenever if S1

contains a read operation c? then S2 contains the write operation c! and vice versa. Further
if one has the operation c# then the other should not have c!.

We now define a relation between the states Q1 and Q2 of two protocols P1 and P2

with final states rf and tf that formalise the notion of a protocol match.

Definition 6 A transaction relation is a symmetric binary relation R ⊆ Q1 × Q2 satis-
fying:

1. 〈rf , tf 〉 ∈ R

2. if 〈r, t〉 ∈ R and ¬blocking(r) and ¬blocking(t) then, whenever r
S1−→ r′ and

t
S2−→ t′ it holds that permit(S1, S2) and 〈r′, t′〉 ∈ R

3. if 〈r, t〉 ∈ R and ¬blocking(r) and blocking(t) then, whenever r
S1−→ r′ it holds that

there exists S2, t
′ : (t

S2−→ t′ and permit(S1, S2)) and for all such S2, t
′ : 〈r′, t′〉 ∈ R

9

a?

0

1

2 3

0

1 2

3 4

a!a!

c!b!b?,c#c?,b#

(a) Matched Pair with weak determinism

a?

0

1

2 3

0

1 2

3 4

a!a!

b! c!
a?,b# b?,c#

(b) Unmatched Pair

0

d2!

21

d1!

0

1 2

d1? d2?

(c) Unmatched Pair with data

0

1

0

1

a# b#

(d) Matched pair with blocking states

Figure 4: Protocol pairs

10

ENABLE?

SEL?
READ?

RData!x

0

1

23

ADDR?y

ADDR?y
READ?
SEL?

(a) Handshake

Ack!
ENABLE!

SEL!
Req?

RData?x
Rdy!

:

:

3 2

10
ADDR!y READ!

Address?y

Data!x
Req#

Req? :
Address?y

READ!SEL!
Data!x
ADDR!y

(b) Interface for Hand-

shake and Pipeline

0

1

2

3

Address!y
Req!

Ack?5

4

Rdy?Rdy?

Address!y
Req!

Ack#

Data?x

Address!y
Req!

Data?x

(c) Pipeline

Figure 5: Protocols and Interface

4. if 〈r, t〉 ∈ R and blocking(r) and blocking(t) then, whenever r
S1−→ r′ and t

S2−→ t′

such that permit(S1, S2) it holds that 〈r′, t′〉 ∈ R

Using this relation, we formalise the notion of matched protocol pairs.

Definition 7 A protocol pair P1 and P2 with initial states r0 and t0 is said to match if
there exists a transaction relation R such that 〈r0, t0〉 ∈ R.

Figure 4 illustrates a few cases of protocol match and mismatch which motivate the
conditions in the transaction relation. Figure 4(c) illustrates two non blocking protocols.
Their behaviour is unacceptable and is rejected by the second condition as one protocol
might write data to the channel d1 and the other might attempt to read from d2.

Figures 4(a) and 4(b) are protocol pairs in which one protocol is weakly deterministic.
The protocols in Figure 4(b) do not match as after a signal is sent on channel a one
protocol may send a signal on either channel b or channel c while the other protocol may
be capable of receiving only one depending on whether it is in state 1 or state 2.

Figure 4(d) illustrates a protocol pair which can reach their final states if no signal is
sent on channels a and b. This is allowed by the last condition of the relation. Though
protocols of the form shown in Figures 4(c) and 4(d) are quite unlikely to occur in real
designs, they have been included as they motivate conditions which have been included
for theoretical correctness.

The transaction relation for Pipeline and PipelineSlave is {〈0, 0〉, 〈1, 1〉, 〈2, 2〉, 〈3, 3〉, 〈4, 3〉, 〈5, 4〉}.
No such transaction relation exists between the protocols Pipeline and Handshake and we
may conclude that the two protocols mismatch.

11

3 Interface Synthesis

3.1 Interfaces between Protocols

In the case of a protocol mismatch, system designers will introduce a device called an
interface which mediates between the protocols as shown in Figure 2. This is akin to
wrappers and bridges introduced by designers when interconnecting IP blocks. The in-
terface will be connected to the channels of both protocols and can distinguish between
them. It will be two-phased, receiving data and control from one and sending to the other.
Further, it will contain counters and data buffers and will ensure that all data which is
read is output and no new data is independently generated by the interface.

Figure 5(b) describes the behaviour of an interface between the protocols Handshake
and Pipeline. It assumes that Address,ADDR and RData,Data are corresponding pairs
of channels of equal width. When the interface is in state 0 and receives a request from
Pipeline it will read data from Address, write the same information to ADDR and write to
the channel Sel causing both protocols to transit from their initial states. In state 1, the
interface will write to the channels Ack and ENABLE and cause both protocols to transit
to their respective state 2. State 3 handles the interesting case of Pipeline requesting a
pipelined read operation. The data which has been obtained from Handshake is sent to
Pipeline and the address obtained from Pipeline is also sent to Handshake which is selected
for a new transfer. This transition from state 3 to 1 preserves the latency which a pipelined
operation attempts to achieve. The interface will decide if a pipelined operation is being
requested by checking for the presence or absence of Req in state 3.

The interface in Figure 5(b) can be automatically synthesised from the FSM de-
scriptions of Pipeline and Handshake. In general, corresponding channels may have differ-
ent data types and widths. The interface will then have to perform type transformations
and maintain counters to regulate the buffering of data. The next section describes the
synthesis procedure.

3.2 Interface Synthesis Algorithm

Consider two protocols P1 = (Q1,Σ1,∆1, V1,A1,−→, r0, rf) and P2 = (Q2,Σ2,∆2, V2,A2,−→
, t0, tf) which are mismatched. In order to synthesise an interface, a specification f : ∆1 →
∆2 relating their data channels must be provided. The specification will indicate the in-
tended interconnections between data channels. We assume that each data channel will
only be connected to one other. If there is a data type mismatch between any such pair
of channels d, f(d), a type transformer T : d.T → f(d).T may be specified.

The interface I = (Q,Σ,∆, V,A,−→, q0, qf) is a FSM constructed by Algorithm 1
where

• Q ⊆ {〈QR, QT 〉|QR ⊆ Q1, QT ⊆ Q2}. Each control state of I corresponds to a set of
states of P1 and a set of states from P2. This is necessitated by the weak determinism
in P1 and P2.

• ΣI = ΣO
1
∪ ΣO

2
, ΣO = ΣI

1
∪ ΣI

2
. I will receive input from the output channels of P1

and P2 and will write to the input channels of P1 and P2.

12

• ∆I = ∆O
1
∪ ∆O

2
, ∆O = ∆I

1
∪ ∆I

2
.

• V is a set of data buffers such that there is one buffer yi for each pair of data channels
di, f(di).

• A is a set containing one action complementary to each of the actions in A1 and A2.

• −→ relates the different states in Q as per the algorithm.

• q0 = 〈{r0}, {t0}〉 is the initial control state and qf = 〈{rf}, {tf}〉 is the final state.

In addition, I will have a set of counters X = {xi} with one counter for each pair
of data channels. I will communicate by exchanging messages with P1 and P2. Each
counter in X corresponds to a pair of related data channels and is incremented when data
is received on one and decremented when it is written out on the other. I can use the
value of a counter to determine if a buffer contains data that has not been written out.

The transition relation −→ is derived from the transition relations of P1 and P2 as can
be seen in Algorithm 1. For every reachable pair of sets of states of P1 and P2, the interface
should be able to detect and respond to any action performed by the two protocols. If
a data channel say di is read from, the data is stored in buffer yi and the counter xi

will be incremented as required. When data has to be written to the channel f(di) that
corresponds to di, the specified transformation T is applied to yi, the type transformed
data is written to f(di) and xi is decremented. Using the counters, the interface determines
the validity of data being written to a bus. A complete description of the control state
of the interface and its counters in that state is written as [〈R, T 〉, X] where R is a set of
states from P1, T a set of states from P2 and X is the status of the counters.

Algorithm 1 formalises these intuitive ideas. Given a set of states of P1 and P2 the
body of the for loop computes all possible actions which can be performed by the interface
using the predicate valid(S,X) defined in Algorithm 4. valid(S,X) is true if, for every
data write operation in a candidate action S, all required data has been read or will be
read in S. The states that will be reached by performing valid actions are computed using
Algorithm 2 and the counters are updated as shown in Algorithm 3. The definition of
valid(S,X) can be augmented with any resource constraints that are to be imposed on
the interface such as bounds on buffer sizes.

Algorithm 1 algorithmic Q = ∅ Q is the state space of I pendingStates= {[{r0}, {t0}, X]}
Let [R, T,X] be some state in the set pendingStates pendingState 6= ∅ r ∈ R,S1 :

r
S1−→, t ∈ T, S2 : t

S2−→ S′
1

:= ComputeComplement(S1) S2 := ComputeComplement(S ′
2
)

valid(S′
1
∪ S′

2
, X) R′ := ComputeTarget(R,S1) T ′ := ComputeTarget(T, S2) X ′ :=

ModifyCounters(X,S ′
1
∪ S′

2
) AddTransition : [R, T,X]

S′

1
∪S′

2−→ [R′, T ′, X ′] [R′, T ′, X ′] /∈
Q∪ pendingStates Add [R′, T ′, X ′] to pendingStates Add [R, T,X] to Q and remove
from pendingStates Prune()

InterfaceSynthesis(P1, P2)

Algorithm 2 algorithmic Target = ∅ q ∈ Source Target := Target ∪ {q ′|q S−→ q′}
return Target

13

ComputeTarget(Source,S)

Algorithm 3 algorithmic di?y, dj ! ∈ S incr(xi), decr(xj) return X

ModifyCounters(X,S)

The interface that is generated may contain bad or dead states. The algorithm only
ensures that the actions performed by the interface are valid. On the other hand, actions
that the interface should perform in a certain state might not be present because they
may not be valid in that state. Such states are eliminated by the second for loop of the
pruning procedure in Algorithm 5. The pruning procedure also analyses the loops in the
interface and removes loops in which a counter value increases, as such behaviour will lead
to interfaces which require unbounded buffers. This operation is performed by the first
for loop in Algorithm 5. If the pruning procedure produces an interface that contains no
states, we can infer that no interface exists for that pair of protocols.

Algorithm 4 algorithmic di?y /∈ S for any di ∀dj!S : xi ≥ 1 return true Sw =
{di?y|di?y ∈ S} X ′ := ModifyCounters(X,S) return valid(S,X ′)

valid(S,X)

Algorithm 5 algorithmic Loops : [R, T,X]
α

=⇒ [R1, T1, X1]
S−→ [R, T,X ′] xi ∈ X and

x′
i ∈ X ′ : x′

i > xi remove transition :[R1, T1, X1]
S−→ [R, T,X ′] [R, T,X] ∈ Q (r ∈ R

and ¬blocking(r) and r
S−→ and[R, T,X]

S
9)

or (t ∈ T and ¬blocking(t) and t
S′

−→ and [R, T,X]
S′

9) remove [R, T,X] from Q no
states are removed

Prune()

After pruning, the interface generated might still contain redundant paths. The de-
signer could eliminate some of these paths depending on the optimisation to be performed.

For example, the interfaces in Figures 6(a) and 5(b) can both be obtained from the
result of the algorithm when applied to the mismatched protocol pair Pipeline and Hand-
shake with the specification RData → Data, if their data buses have the same width. The
interface in Figure 6(a) differs from Figure 5(b) by sending the ENABLE signal to Hand-
shake in state 2 instead of in state 1. As a result, when data is read from RData it is
written to Data simultaneously as can be seen in the transitions from state 3 to states 4
and 5. In such a situation, a buffer will not be required for the channel pair RData,Data.
Though pipelined operation is supported in the transitions from state 3 to 4 to 2, it has a
greater latency as a request cannot be sent to Handshake in the same transition in which
a pipelined request is received. So, while the interface in Figure 5(b) has a lower latency
for each transfer, Figure 6(a) does not require a buffer for data.

Figure 6(b) is an interface synthesised when RData is twice as wide as Data. The
operation of converting one packet from RData to two in Data has been abstracted out. It
can be seen that for all cycles within the interface RData is read from only once and Data

is written to twice as required. Data is written to Pipeline in the outgoing transitions

14

SEL!Address?
Req? :

ADDR!

Ack!

:Req#
RData?
Data!

Req? :
Address?

Ack!SEL!
ADDR! Rdy!

ENABLE!

SEL!Address?
Req? :

ADDR! READ!

READ!

READ!

RData?
Data!

0 1

2

34

5

(a) Matching data widths

Req?
Address?
SEL!ADDR!

READ!

ENABLE!
Ack!

Data!
Req#

RDATA?
Rdy!

Address?Req?

Address?

Req?
Data!

Data!
Req#

ADDR!
READ!
SEL!Data!
Address?
Req?

:

:

:

:

:

:

Rdy!

Ack!

0

1

2

3

45

6

7

8

(b) RData twice as wide as Data

ADDR!SEL!
READ!

ADDR!SEL!
READ!

:Req#

RDATA?

ENABLE!
Ack!

ENABLE!
Rdy!

:Req?
Address?

ADDR!SEL!
READ!

:Req?
Address?

ADDR!SEL!
READ!

:Req?
Address?

Data!

Data!

0

1

2

3

4

5

6

(c) Data twice as wide as RData

Figure 6: Automatically synthesised Interfaces for Handshake and Pipeline

15

from states 3 and 7. Both these states have two outgoing transitions each as a pipelined
transfer might be requested. Note that a request is sent to Handshake only in response
to the second pipelined request in the transition from state 7 to 1. In the first pipelined
request in the transition from state 3 to 5 there is no interaction with Handshake as all
the required data has already been obtained.

Figure 6(c) illustrates an interface for the situation when Data is twice as wide as
RData. Once again, the conversion of two packets of data from RData to one packet has
been abstracted out. It can also be seen that in every transaction run, a read from RData

will occur twice as often as a write to Data. In contrast to Figure 6(b), only state 5 has
more than one outgoing transition as the interface drives Pipeline to a state in which a
pipelined request can be made only once during each transfer. In the transition from state
5 to state 1 the interface receives a pipelined request from Pipeline and sends a request to
Handshake, which does not affect the latency of pipelined requests.

All these interfaces were constructed from the same algorithm. Note that the states of
Figure 6(b) and 6(c) are extended states which include the counter values.

3.3 Multiple clock speeds

We illustrate with an example how the interface synthesis algorithm can be extended to
protocols which operate on different clocks. Suppose Pipeline runs at clk1 and Handshake
at clk2 and clk2 is twice as fast as clk1. First we construct a clock FSM as shown
in Figure 7(a). Note that clk2 appears twice as often as clk1. The clock FSM and
Pipeline can be run synchronously and this behaviour can be modelled as a new FSM
shown in Figure 7(b). Note that the new machine has τ transitions which correspond to
the transitions in the clock FSM in which clk1 does not occur. This technique, which is
quite standard in the synchronous language literature[7], is called oversampling.

Similarly, using the same clock FSM, a modified FSM for Handshake is constructed.
Now, we can apply the algorithm to these modified FSMs and obtain a new interface
shown in Figure 7(c)

Further, it is not required that the two clock speeds be multiples of each other as in
the example because the relative speeds of any two clocks with respect to each other can
always be expressed using the clock FSM. Figure 7(d) describes the FSM Clock when the
clock speeds of Pipeline and Handshake have the ratio 2:3.

3.4 Correctness of Algorithm

As mentioned in Section 3, the purpose of constructing an interface for a pair of mis-
matched protocols P1 and P2 is to modify one of them, say P2, to P ′

2
so that P1 and P ′

2

are a matched protocol pair.
The operation of modifying a protocol with an interface can be modelled using the syn-

chronous parallel composition operator ||. Figure 8 is the result of the parallel composition
of the interface in Figure 8 with Handshake. This composition performs a synchronous
product of the two FSMs and hides all communication between the two FSMs and is
performed using a parallel composition operator ||, the details of which are provided in

16

clk2!
clk1!
clk2!

0

1

(a)
FSM:Clock

Address!
Req!

τ

τ

Data?

Address!
Req!

Req!
Address!
Data?

τ

τ

ττ

τ

τ

0

3

2

5 1

4

67

8

9

10

11

12

13

:

Rdy? :Rdy?:

:Ack?

Ack#

(b) Combined FSM of Clock and
Pipeline

SEL!
READ!

:Req#

ENABLE!
Ack!

Rdy!

τ

1 2

3

4

56

7

0

Data!x

τ

Data!x

RDATA?x

:Req?

:Req?
Address?y

Address?y

ADDR!y

(c) Interface with clock clk2

clk3!
clk2!
clk1!

clk2!
clk3!

clk3!
clk1!clk2!

clk3! clk3!

clk3!

0 1

2

34

5

(d) Clock for
ratio 2:3

Figure 7: Clock FSM and Interface

17

0

Req?

1

Ack!

2

Rdy?

3

Req?

Data!x

Data!x
Req#

:

:

:

:

Address?y

Address?y

Figure 8: Composition of Interface and Handshake

Definition 8. It can be observed that Pipeline and (Interface || Handshake) are a matched
protocol pair.

Definition 8 The result of a parallel composition P1||P2 of two protocols P1 and P2 with
a shared set of channels C = (Σ1 ∩ Σ2) ∪ (∆1 ∩ ∆2) is a FSM defined by

• QP1||P2
= Q1 × Q2

• ΣI
P1||P2

= (ΣI
1
∪ ΣI

2
)\C , ΣO

P1||P2
= (ΣO

1
∪ ΣO

2
)\C

• ∆P1||P2
= (∆1 ∪ ∆2)\C

• AP1||P2
= (A1 ∪A2)\AC

• 〈r0, s0〉 is the initial state and 〈rf , sf 〉 is the final state

• −→P1||P2
: given r

S−→ r′ and s
S′

−→ s′ and Sc = (S ∪ S′)\AC the following rule defines
−→P1||P2

r
S1−→ r′ ∧ t

S2−→ t′ ∧ S = (S1 ∪ S2)\AC

〈r, t〉 S−→ 〈r′, t′〉

Theorem 1 states that the algorithm to construct I is correct.

Theorem 1 Given two mismatched protocols P1 and P2, Algorithm 1 will generate an
interface I with the property that P1, (I||P2) are a matched protocol pair.

One could equivalently state that (P1||I) and P2 match.
Proof Sketch: We first consider the product I||P2. The following observations will be
utilised in the proof.

18

Protocol Pipelining Errors Burst Abort

Advanced System Bus
√

Processor Local Bus
√ √

Advanced High-performance Bus
√ √ √

Open Core Protocol
√ √ √ √

Table 1: Features of Protocols Considered

1. For all states [〈R, T 〉, t] in the product machine, t ∈ T .

2. If the property permit(S1, S2) holds, a blocking operation in S1 will have a non-
blocking complementary operation in S2 and vice versa.

3. If P1 and P2 are weakly deterministic, then in every state 〈R, T 〉 of the interface,
either

∧
r∈R blocking(r) or

∧
r∈R ¬blocking(r) is true.

Construct the relation 〈r, [〈R, T 〉, t]〉 ∈ R if r ∈ R. It remains to show that R is a
transaction relation. Consider the following cases:

1. blocking(r) : We have that ¬blocking([〈R, T 〉, t](Observation 2,3). An outgoing
transition is guaranteed to exist as: if blocking(t) then [〈R, T 〉, t] will have at least
one outgoing transition as complete monomials are considered. If ¬blocking(t) then
〈R, T 〉 will have all the required outgoing transitions because all states which are
otherwise were eliminated in the pruning step. So, at least one outgoing transition is
guaranteed to exist. As transitions from blocking states are labelled with complete
monomials, there will be an outgoing transition from r which this will match.

2. ¬blocking(r) : We have that blocking([〈R, T 〉, t])(Observation 2,3). As a result of
pruning, we know that if a state exists with r ∈ R then the conditions required by
the transaction relation will be met.

3. Finally if r
S−→ r′ there exists a transition [〈R, T 〉, t] S′

−→ [〈R′, T ′〉, t′] for which
it holds that r′ ∈ R′ and permit(S, S ′) as a result of Algorithm 1. We have
〈r′, [〈R′, T ′〉, t′]〉 ∈ R as required.

4 Experimental Results

The algorithms developed have been implemented in a tool which was used to synthe-
sise interfaces for common bus protocols. In particular, we have considered the AMBA
Advanced High-performance Bus, AMBA Advanced System Bus, IBM CoreConnect Pro-
cessor Local Bus and the OCPIP Open Core Protocol. To illustrate versatility of the
algorithm, we have considered the protocols with different features as shown in Table 1.
The protocols modelled have a maximum of 10 control states each. We have focused on
read behaviours and have assumed that there are no zero latency transfers involved. The
results of interface synthesis are presented in Table 2.

19

Master Slave Clock Ratios Bus Width Ratios I States I Transitions

AHB PLB 1:1 1:1 7 12

OCP AHB 1:1 1:1 8 18

OCP ASB 1:1 1:1 11 24

OCP PLB 1:1 1:1 8 12

AHB PLB 1:2 1:1 12 15

OCP AHB 1:1 1:2 21 74

OCP ASB 1:1 2:1 16 65

OCP PLB 1:1 3:1 17 32

Table 2: Interfaces Synthesised

0

1

2

SlwrDAck!1
M_wrDBus?d1
PLB_ABus?a1
PLB_PAValid?1

Sl_wrComp!1
SlwrDAck!1

PLB_SAValid?1
PLB_wrPrim?1

PLB_SAValid?0
PLB_wrPrim?0

M_wrDBus?d1

(a) Processor Local Bus

LREADYh?1
LA!a1
LBEh!be
LWRITE!0
LBLASTh!1

LADSh!0
LA!a1
LBEh!be
LWRITE!0

LADSh!0

LBEh!be
LA!a1

LWRITE!1
LD!data

LD?data
LBLASTh!0
LREADYh?0

LREADYh?1
LA!a1
LBEh!be
LWRITE!0
LBLASTh!0

LREADYh?0
LBLASTh!0

LD!data

LD!data

LREADYh?0
LBLASTh!1
LBEh!be
LD!data

0

1 2

(b) Local Bus

Figure 9: Processor Local Bus and Local Bus

20

PLB_SAValid!0
PLB_wrPrim!0
LREADYh!0
LBLASTh?0

Sl_wrComp?1 LREADYh!1
LD?data M_wrDBus!data
LBLASTh?0
Sl_wrDAck?1

Sl_wrComp?1 LREADYh!1
LD?data M_wrDBus!data

Sl_wrDAck?1
LBLASTh?1

0

1

LADSh?0
LA?a1 PLB_ABus!a1

PLB_PAValid!1

LD?data M_wrDBus!data
LWRITE?1
SlwrDAck?1

2

PLB_SAValid!1
PLB_wrPrim!1
LREADYh!0

3

Figure 10: Interface for Processor Local Bus and Local Bus

4.1 Case Study

Along with the experimental results, we present a case study performed on a pair of
protocols obtained directly from industry.

Figures 9(a) and 9(b) show state machines describing partial behaviour of the local
bus from Alpha Data and the Processor Local Bus which forms a part of the CoreConnect
bus architecture from IBM.

The Alpha Data Local Bus supports multiplexed address and data as well as pipelined
operation, as shown in Figure 9(b) with all the signals involved in transactions. Signals
which were suffixed by a # in the timing diagrams have been suffixed with h in the FSM. In
states 1 and 2 there would also be transitions to state 0 labelled with the action LBTERMh?0
indicating that the transaction may be terminated in which case a transition is made back
to the initial state. These transitions are identical and hence have not been drawn to
prevent cluttering. The part of the state machine containing only states 0 and 2 describe
a write operation and the part containing states 0 and 1 describes a read operation. The
two self loops in state 2 correspond to a wait cycle (LREADYh?1) and a pipelined read
(LBLASTh!0). This FSM describes the protocol in detail.

In comparison, the Processor Local Bus(PLB) is a much more complex bus protocol
but we consider only the small part of its functionality which is of interest. Figure 9(a)
illustrates the PLB which allows a single cycle and pipelined writes. No other features are
presented here as these features will not be required when interfacing with the Local Bus.

One possible interface between these two protocols is shown in Figure 10. The interface
has four states. In constructing this interface, it has been assumed that the data and
address buses of both protocols have equal width. Hence, the contents of the byte enable
signal (LBE) have not been used in any transfers. The part of the interface involving
transitions between states 0,1 and 3 allows for interoperability between non pipelined
operation in both buses. The transitions between states 1 and 2 use the pipelined feature
of the PLB only when the Local Bus requests a pipelined transfer.

The interface describes a method of ensuring correct transfers from one protocol to the
other. There are many possible optimisations or implementations which can be made. For

21

example, it can be inferred from the interface state machine that the signal PLB PAValid

is a negation of LADSh. The signal LBLASTh can be latched and the output of the latch
connected to PLB wrPrim as the value of this signal in a cycle corresponds to that of
LBLASTh in the previous cycle.

This FSM can be used to generate an RTL of the interface. In generating the RTL,
the FSM component of the HDL code can be obtained by transcribing Figure 10. As the
PLB has many signals, the designer should ensure that their values are maintained such
that the described transfers can take place.

5 Conclusion

In this report, we have presented a general framework for modelling a range of hardware
protocols and for addressing the problem of protocol mismatch. Specifically, the framework
allows for detailed modelling of data buses, generation of provably correct interfaces and
a novel technique for checking whether a pair of protocols match. The experimental
results demonstrate that our framework is both easily adaptable to existing specification
techniques and highly applicable to practical instances of the protocol mismatch problem.
We extend the existing work in this area of research by addressing the issues of data
type and bus width mismatches, transactions with multiple transfers, pipelined operation,
complex branching structure in the protocols, differing clock speeds and provide solutions
for the same.

Acknowledgements

This research was partially supported by a UNSW URSP grant (2002) and the Nicta
Formal Methods group located at UNSW, where the third author was Visiting Professor
from May to August 2003. We would like to thank Sri Parameswaran and his group
for discussions and feedback and Partha Roop for alerting us to the interface synthesis
problem.

References

[1] Virtual Socket Interface Alliance. http://www.vsi.org.

[2] ARM. Amba specification. http://www.arm.com/armtech/AMBA spec.

[3] R. A. Bergamaschi and W. R. Lee. Designing systems-on-chip using cores. Proceedings
of the 37th Design Automation Conference, June 2000.

[4] G. Borriello and R. H. Katz. Synthesis and optimization of interface transducer logic.
Proceedings of the International Conference of Computer Aided Design, November
1987.

22

[5] G. Borriello, L. Lavagno, and R. B. Ortega. Interface synthesis: a vertical slice from
digital logic to software components. Proceedings of the International Conference on
Computer-Aided Design, November 1998.

[6] K. L. Calvert and S. S. Lam. Formal methods for protocol conversion. IEEE Journal
on Selected Areas in Communications, January 1990.

[7] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer International
Series in Engineering and Computer Science, 1994.

[8] IBM. 32-bit processor local bus, architecture specifications. http://www-
3.ibm.com/chips/products/coreconnect/, Version 2.9.

[9] Open Core Protocol International Partnership Association Inc.
http://www.ocpip.org.

[10] S. Narayan and D. D. Gajski. Interfacing incompatible protocols using interface
process generation. Proceedings of the 32nd Design Automation Conference, June
1995.

[11] K. Okumura. A formal protocol conversion method. Proceedings of the ACM SIG-
COMM, 1986.

[12] R. Passerone, L. de Alfaro, T. A. Henzinger, and A. L. Sangiovanni-Vincentelli. Con-
vertibility verification and converter synthesis: Two faces of the same coin. Proceed-
ings of the International Conference on Computer-Aided Design, November 2002.

[13] R. Passerone, J. A. Rowson, and A. Sangiovanni-Vincentelli. Automatic synthesis of
interfaces between incompatible protocols. Proceedings of the 35th Design Automation
Conference, June 1998.

[14] A. Rajawat, M. Balakrishnan, and A. Kumar. Interface synthesis: Issues and ap-
proaches. Proceedings of the 13th International Conference on VLSI Design, January
2000.

[15] D. Shin and D. D. Gajski. Interface synthesis from protocol specification. CECS
Technical Report 02-13, April 2002.

[16] J. Smith and G. De Micheli. Automated composition of hardware components. Pro-
ceedings of the 35th Design Automation Conference, June 1998.

[17] Z. Tao, G. v. Bochmann, and R. Dssouli. A formal method for synthesizing optimized
protocol converters and its application to mobile data networks. Mobile Networks and
Applications, 1997.

23

