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Abstract

The structural join is considered a core operation in processing and optimizing XML queries.
Various techniques have been proposed for efficiently finding structural relationships between a list
of potential ancestors and a list of potential descendants. This paper presents a novel algorithm
for efficiently processing structural joins. Moreover, previous work which performs well usually
relies on external index structures such as a B-tree, which increases both the storage and memory
overheads. Our proposal in this paper does not require any such data structures, and hence can be
easily implemented and incorporated in any existing system. Experiments show that our method
significantly outperforms previous algorithms.



1 Introduction

In recent years XML [3] has emerged as the standard for information representation and exchange
on the Internet. However, finding efficient methods of managing and querying large XML documents
is still problematic and poses many interesting challenges to the database research community.

XML documents can essentially be modeled as ordered trees, where nodes in the ordered tree
represent the individual elements, attributes and other components of an XML document. The pre-order
traversal upon the tree gives the document ordering of the XML document. Recently proposed XML
query languages such as XPath [17] and XQuery [18], which have been widely adopted by both research
and commercial communities for querying XML documents, heavily rely upon regular path expressions
for querying XML data. For example, consider the MEDLINE [14] database as an example XML
document. The regular path expression //Dat eCr eat ed//Mont h returns all <Mont h> elements
that are contained by <Dat eCr eat ed>. Without any indexes to the document, the typical approach
to evaluating //Dat eCr eat ed //Mont h would require a full scan of the entire XML database, which
can be very costly if the document is large.

Recently, the structural join, which involves finding structural relationships between a list of po-
tential ancestor nodes and a list of potential descendant nodes, has been proposed. Structural joins are
now considered a core operation in processing and optimizing XML queries. Various techniques have
been proposed recently for efficiently finding the structural relationships between a list of potential
ancestors and a list of potential descendants. Most of these proposals rely on some kind of database
index structures such as BT Tree. These index structures will increase their resources requirement (e.g.,
memory consumption) and maintenance overhead (e.g., for updates). Furthermore, most of them count
on numbering schemes such that they incur significant relabeling costs during data updates.

Instead of improving the performance of the state of the art structural join based on external index
structures, this paper proposes simple and yet effective ways of skipping unmatched nodes during the
structure join processing. The key contributions of this paper are summarized as follows:

1. We propose an improvement to the current state of the art stack based structural joins [1] * based
on various skipping strategies. In contrast to other work, our proposed extension does not require
any external indexes such as B-trees, and hence imposes less overhead on the underlying database
system.

2. Our proposed method does not employ any indexes such as B*Tree and its entire operation cost
is linearly proportional to size of the query output. Hence it can be extended to support XML
stream data.

3. We present extensive experimental results on the performance of our proposed algorithms, using
both real-world and synthetic XML databases.

4. We show experimentally that our approach can outperform the stack-based structural join algo-
rithms by several orders of magnitude.

5. We discuss how updates can affect structural join processing and how our approach can reduce
the negative side-effects of updates on XML databases.

6. Finally, we discuss the differences between the preorder/postorder and start/end approaches to
maintaining ancestor-descendant information in XML databases.

The rest of this paper is organized as follows. Section 2 gives an overview of the background to
the problem and some existing related work. We present our improvements to existing structural join

1The algorithm of [1] will be referred to as the STJ-D algorithm hereafter.



algorithms in Section 3. In Section 4, we describe the setup of our experiments and we also compare
our results with some existing schemes for structural joins. In Section 5, we discuss the labeling scheme
that we used for our structural joins. Finally, Section 6 concludes the paper.

2 Background and Related Work

XML data is generally modelled as a tree structure where elements, attributes and data are repre-
sented as nodes of the tree. Within this tree, parent-child and ancestor-descendant relationships repre-
sent the nesting of elements within the corresponding XML document. Querying XML data frequently
involves the determination of the containment relationship between data nodes; for example, during the
evaluation of a path expression a structural join may be used to determine whether an element A is the
ancestor node of an element B. Thus, in order for structural join algorithms to operate efficiently, the
database should be represented in a way which allows the structural relationship of nodes to be deter-
mined in close to constant time. This section describes different approaches for efficiently determining
the ancestor-descendant relationship between two nodes. We also review related work on structural
joins that make use of these schemes.

2.1 Structural Joins

Recently, several new algorithms, structural join algorithms, have been proposed for finding sets of
document nodes that satisfy the ancestor-descendant relationship with another set of document nodes.
Various approaches have been proposed using traditional relational database systems [10,19] and on
XML query engines such as proposed in [13].

The current state of the art structural joins on XML data is described in [1]. It takes as input two
lists of elements, both sorted with respect to document order, representing the list of ancestors (AList?)
and the list of descendants (DList). The basic idea of the algorithm is to do a merge of the two lists to
produce the output, by iterating through them in document order. While it is iterating through the two
lists, it determines the ancestor-descendant relationship between the current top of a stack, which is
maintained during the iteration, and the next node in the merge. Based on this and the manipulation of
the stack, it produces the correct output. The cost of this approach is O(| A List|+ | D List| + |Output]).

More recent work extended this approach for better speed performance. For example, the XML
Region Tree (XR-Tree) approach to index document structure on disk [11], uses a variant of B™Tree
with different index key entry and lists to maintain the ancestor-descendant relationship between nodes.
It then uses the stack-tree based join algorithm to carry out structural joins. The amortized 1/O cost for
inserting and deleting nodes for XR-Tree is O(logr N + Cpp), where N is the number of elements
indexed, F is the fanout of the XR-tree, C'pp is the cost of one displacement of a stabbed element.
Although this approach can support structural joins of XML data by using the stack-tree based join,
determing ancestor-descendant relationship between the two nodes is not constant. Therefore, for large
ancestor and descendant node sets it may not be as efficient as the original STJ-D algorithm. Also,
any large set of random updates requires frequent updates of large parts of the XR-tree. Therefore,
maintaining the index for a large, changing XML database can be costly.

In [4], the stack-tree join algorithm was extended to match more general selection patterns on XML
data tree. The work done by [1,4, 5] are very related to this paper. For instance, the B Talgorithm pro-
posed in [5] speeds up the stack-tree based join algorithm by using a combination of pre-built indexes
such as BTTree and R-Tree. It utilizes BT Tree indexes built on the element start-tag positions.

2Ancestor node list and AL ist are interchangeable hereafter.
3Descendant node list and DList are interchangeable hereafter.



Hence it can use B T'ree range queries to skip descendants that do not match during the structural
join. However, these approaches are not effective in skipping ancestor nodes, as stated in [11]

2.2 Numbering Schemes

Apart from the index based schemes that were mentioned above, numerous work has been done
on using numbering schemes to support queries on ancestor-descendant relationships. The following
discusses them in more detail.

Dietz and Sleator worked on maintaining order in a linked list [8]. They proposed algorithms
which permitted constant time queries on the relative order of nodes in a list, with only a constant
time overhead on insertions and deletions in the list. This supported earlier work done on solving the
ancestor query problem by comparing the relative preorder and postorder of two nodes [7].

More recently, a more elegant approach has been proposed [2], which obtains the same perfor-
mance as Dietz and Sleator’s algorithm. The maintenance of both the preorder and postorder on an
XML document corresponds to the order maintenance problem, and hence this result gives the best
possible theoretical bounds on our problem. Additionally, there is an upper bound on the size of the
database for which the results hold and [2] estimates it to be at approximately 430, 000 elements for a
particular parameter selection. Therefore, this algorithm is only an incomplete answer to the question
of document ordering in large databases, where the number of nodes can easily run into the millions.
However, the paper did not focus on ancestor query problem. Furthermore, the order maintenance prob-
lem forcus on maintaining the order between two nodes. It is not directly related to skipping unmatched
nodes in structural joins.

Extensive research has been done on inverted indices [15] for Information Retrieval (IR) systems.
A recent work [19] showed that we can use an inverted index to solve the containment queries of XML
data nodes. The inverted index data structure maps text words of XML documents in a T-index and
elements in an E-index such that elements are mapped to inverted lists. Occurrences of a word or an ele-
ment are recorded in inverted lists, with each occurrence indexed by its (DocI D, Start : End, Level),
where DoclD is the document number, Sart is the position of the word #, End is the position where this
word ends; and Level is the depth of the data node. This information is sufficient to compute ancestor-
descendant relationships. In practice however, there are always frequent, randomly distributed inserts,
deletes and updates of XML data. Any changes to the database will require the majority of the inverted
index to be re-calculated. Therefore, this approach can be costly for maintaining an inverted index for
a non-static XML database.

3 Skip-Joins

This section presents our algorithms to skip unmatched nodes for structural joins. It also describes
various strategies that can be used for skipping, which lead to different performance outcomes. In order
to present our algorithms in a meaningful way, we first classify all structural joins into three classes.
Each class of structural joins has different applications for query optimization, and are sufficiently
different that they should be optimized separately.

1. Descendant Join (D-Join): the first type of structural join filters a set of descendant
nodes by selecting only those nodes that have an ancestor within the set of potential an-
cestors. For example, the query a//b should return a node set Rp = {d € Rp |Ja €
A such that d is a descendant of a}.

“Word and element will be used interchangeably hereafter



2. Ancestor Join (A-Join): this type of structural join filters a set of ancestor nodes by selecting
only those nodes that have a descendant within the set of potential descendants. For example, the
query a//b should return a node set R4 = {a € R4 |3d € D such that a is an ancestor of d}.

3. Ancestor-Descendant Join (AD-Jaoin): the third type of structural join returns the set of
ancestor-descendant node pairs. For example, the query a[ .//b=.//c] may be evaluated by
performing a structural join on the the sub-expression .//b=.//c, which would then make use of
the set R 4p = {(a,d)|Va € A,Vd € D such that a is an ancestor of d}.

b;J:SIZip
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O is ancestor of ©

Figure 1: Possible skipping strategies during a structural join

The BT algorithm proposed in [5] suggested that the-state-of-the-art STJ-D algorithm proposed
in [1] has the disadvantage of having to scan through the entire ancestor list for the join operation, and
hence in some cases unnecessarily scans through ancestor nodes that do not contain any nodes in the
descendant list. A similar phenomenon can occur during the scanning of the descendant list. Their
solution to this was to use a B+ Tree, which requires a prebuilt index system for the database. In this
section, we introduce some extensions to the STJ-D algorithm by introducing a skipping mechanism to
skip ancestor and descendant nodes that do not match the structural pattern, and hence which may be
safely ignored during the structural join.

Figure 1 represents a particular instance of a structural join. Depending on the type of query, we
can utilize different skipping mechanisms to optimize the join. The circled regions denote the ancestor-
descendant relationship between nodes. For example, {dg,d1,d2} is the set of descendants of ag. For
AD-Joins, the optimal scenario is if we can determine R = {(a,d)| a ¢ {a1...a5,a9...a12},d ¢
{ds...ds,d12}} while scanning .A and D. The a-skip arrow and d-skip arrow in the figure show the
nodes which are not included in the result set of an AD-Join; hence, the structural join algorithm should
try to minimize traversal of those nodes if possible. For A-Joins (respectively D-Joins), in the optimal
case we should further skip all the matched descendants {d, dz, dg, d10,d11} (respectively ancestors
{a7,as}). For example, as soon as we can determine that dy is a descendant of ag, we do not need to
traverse d; and ds, because they only match with ag. Similarly, for D-Joins, the traversal of a7 and
ag should be avoided since ag is their common ancestor, and so descendants of a; and ag are also
descendants of ag, thus skipping a7 and ag will not affect the result.

Of course, in order to skip nodes we must make the assumption that we can perform these skips
in constant time. We note that this assumption is not necessary for previous work such as that of
[1]. However, we believe that very frequently the node sets being joined will be stored in array-like
structures in memory or on disk. This is because even for relatively large data sets such as DBLP [6],
the node sets remain only a few megabytes in size, and hence are easily manipulated as arrays.

The pseudo-code for the STJ-D algorithm is shown in Algorithm 1; this algorithm is used later as
the control for our experiments. However, we have modified the algorithm from its original presenta-
tion such that it uses a preorder and postorder labelling scheme to determine ancestor and descendant
relationships between nodes. We use this labelling scheme for data update maintainence instead of
using the traditional (StartPos : EndPos, Level) approach. This is further discussed in section 5.



Algorithm 1 Slightly modified Stack-tree based structural join (STJ-D) proposed in [1]. (NB: All al-
gorithms in this paper are simplified for ease of presentation, e.g. boundary cases are omitted and all boolean operations
returns false if a particular required element does not exist or out of range.)

STACK- TREE- DESC( A, D)
1 a<+0,d«0, R« 0 Stack < 0
2 while d<|D| A a<|A| V |Stack| >0 do

3 if FOLLOW NG(TOP(Stack), Ala]) A
4 FOLLOW NG(TOP(Stack), D[d]) then
5 POP(stack)
6  dif PREORDER(A[a]) < PRECRDER(D[d]) then
7 PUSH(Ala], stack)
8 a+a+1
9 dse
10 APPEND((s, D[d]), R), Vs € Stack
11 d<d+1
12 endif
13 end while

FOLLOW NG n, f)

/! Returns true iff f belongs to follow ng axis of n.
1 return PREORDER(f) > PREORDER(n) A
2 POSTORDER(f) > POSTORDER(n)

ANCESTOR( d, a)

/'l Returns true iff a belongs to ancestor axis of d.
1 return PREORDER(d) > PREORDER(a) A
2 POSTORDER(d) < POSTORDER(a)

e
Stack / ~_
d-skip

d
(b)

Figure 2: Skipping scenarios of AD-Join

3.1 Skip-Join for Ancestor-Descendant Join

Here, we propose an alternative stack-tree based structural join algorithm on two input lists AList
and DList (both sorted in document order). Our approach is to make the assumption that we can skip
quickly (as discussed previously), and then to use this assumption by utilizing a skipping mechanism
during the traversal of A and D. The basic idea is that during the structural join, whenever we advance
the cursor of A we call the A-SKIP function to search for the next node a’ € A, such that it a’ is either
an ancestor of the current descendant node d, or follows d in document order. Similarly, whenever we
advance the cursor of D, we call the D-SKIP function to search for the next node d’ € D, such that d’
is either a descendant of the current ancestor node a, or follows a in document order.

In Figure 2(a), which uses the original STD-J algorithm, all nodes under the dashed arrow need
to be traversed by pushing them onto the stack and immediately popping them in the next iteration.
By using an A-SKIP function, we try to minimize the number of lookups of these unnecessary nodes
during list traversal and reducing the number of nodes pushed and popped from the stack. However,
node a’ may not necessarily be an ancestor of node d, as it may follow d in document order. Similarly,
in Figure 2(b), by using the original STD-J algorithm, we again need to traverse all nodes above the
dashed arrow. Hence, function D-SKIP is used to try to minimize the traversal of the descendant list.



Algorithm 2 Structural joins that return ancestor-descendant node pairs (AD-Join).

SKI P- JO N- AD( A, D)
1 a<+0,d«0, R« 0 Stack < 0
2 while d<|D| A a<|A| V |Stack|>0 do
3  if FOLLOW NG(TOP(Stack), Ala]) A

4 FOLLOW NG(TOP(Stack), D[d]) then
5 POP(stack)
6  elif PREORDER(AJa]) < PRECRDER(D[d]) then
7 PUSH(AJa], stack)
8 a < A- SKI P(a, D[d], A)
9 dse

10 APPEND((s, D[d]), R), Vs € Stack

11 if |Stack|>0 then

12 d+d+1

13 else

14 d + D- SKI P(d, Ala], D)

15 end if

16  endif

17 end while

The algorithm is listed in Algorithm 2.

We will also, at times, need to use two additional skipping functions, BA-SKIP and BD-SKIP.
Thesse functions are used when we can skip nested ancesetors or descendants, a situation which oc-
curs as described previously during A-Joins and D-Joins. The definitions of the functions A-SKIP,
D-SKIP, BA-SKIP and BD-SKIP have not yet been given, because they can vary according to the
skipping strategy chosen. We will discuss several possible strategies later in this paper.

It should be pointed out that although it is possible to skip nodes in D even when the stack is not
empty, the performance gain may not cover the penalty of the overhead. This is because, in practice,
real world XML trees have very shallow depth, and hence the number of skippable nodes within nested
regions are generally small.

3.2 Skip-Join for Ancestor Structural Join

Many XML queries require the efficient filtering of ancestor nodes. For example, the query
a//b[ .//c] returns a set of b nodes which all have an ancestor a and a descendant c. If we use
the STJ-D algorithm to process this query, we have to first join a//b, then b//c and finally merge the
two joins together. However, if we have an ancestor filtering algorithm, it can return a smaller set of b
nodes that are ancestors of c. We then feed this smaller b set as the new D for joining with a nodes.
Then, we can take advantage of our previously described skip-join algorithm for descendant filtering,
where it will perform better with smaller descendant sets.

To further improve the performance of skip-joins on ancestor structural joins, we can take advantage
of knowing that only ancestor nodes are wanted, and hence when the stack is not empty, we can skip
all matched descendant nodes using BD-SKIP, because these nodes are not needed to increase the size
of the result set. The detailed steps are described in Algorithm 3.

3.3 Skip-Join for Descendant Structural Join

For descendant structural joins, we do not need to keep the stack of ancestor nodes, as keeping only
the top most ancestor will yield the same result set. As soon as we push any nodes onto the stack, we
can immediately use BA-SKIP to skip all nodes in A until o’ follows the node in the stack in document



Algorithm 3 Structural joins that return only matched ancestor nodes (A-Join).

SKI P-JO N-A( A, D)
1a+0,d«0 R+ 0 Stack <+ 0
2 whiled<|D| A a<|A| V |Stack| >0 do
if FOLLOW NG(TOP(Stack), Ala]) A
4 FOLLOW NG(TOP(Stack), D[d]) then
5 POP(stack)
6  elif PREORDER(AJa]) < PRECRDER(D[d]) then
7
8

w

PUSH(AJa], stack)
a  A- SKI P(a, D[d], A)

9 ese
10 APPEND(s, R), Vs € Stack
11 d < D SKI P(d, Ala], D)
11 if |Stack|>0 then
11 d + BD- SKI P(d, TOP(Stack), D)
13 ese
12 d+d+1
13 end if
12 end if
13 end while

order. Algorithm 4 shows the pseudo-code for this approach. We expect this type of structural join to
perform well regardless of the size of AList and DList.

3.4 Skipping Strategies

Algorithm 5 describes the semantics of each skipping function. The goal of all these functions is to
skip as many of the unmatched nodes as possible. However, for each of these skipping functions, differ-
ent skipping strategies can be applied, each of which will result in different performance for the overall
algorithm. For instance, one may find that it is more effective to skip nodes using a binary search when
using A-SKIP, but better to skip nodes using an exponential technique when using BD-SKIP. We
will investigate this in the experimental section of this paper. In this section, we propose and describe
different skipping strategies in detail. All examples below assume we are discussing skipping strategies
for the A-SKIP function, but each of them can be similarly applied to other skipping functions.

3.4.1 Binary Skipping

Here we propose a skipping strategy which uses a simple binary search, as described in Algorithm
6. As is illustrated in Figure 3, the function hops through AList trying to find a node a such that
a is an ancestor of both the current top node in the stack s and the current descendant node d and
PREORDER(a) does not match the appropriate structural pattern. 1f no node is found, it returns the
empty set and the join function stops scanning through the DList. We believe this approach can be
efficient for processing queries such as //Mont h[ t ext () =" 03"] ; in this case, even if there exists
a large set of Mont h elements, there may only be a small subset of them that matches the predicate.
This yields a large ancestor to descendant node ratio and in most cases, large sections of the ancestor
node list need not be visited at all.

3.4.2 Exponential Skipping

Since binary skipping uses a binary search approach, in the worst case it can take logn skips to
locate the next AList node that matches the structural pattern. Thus, the worst case of the binary
skipping strategy is if most nodes in the ancestor node list are matched. In this case, then every call to



Algorithm 4 Structural joins that return only matched descendant nodes (D-Join).

SKI P-JAO N- I A, D)
1a+0,d«0,R+0 s+ ¢

2 whiled<|D| A a<|A| V s#¢ do
3  if FOLLOW NG(s, Ala]) A

4 FOLLOW NG(s, D[d]) then
5 s+ ¢
6 elif PREORDER(A[a]) < PREORDER(DI[d]) then
7 if s# ¢ then
8 a < BA- SKI P(a, s, A)
9 ese
10 s < Ala]
11 end if
12 a + A- SKI P(a, D[d], A)
13 ese
14 APPEND(D[d], R)
15 if s#¢ then
16 d+—d+1
17 ese
18 d < D SKI P(d, Ala], D)
19 end if
20 end if
21 end while

Algorithm 5 Properties (and hence the algorithm) for each of the skipping strategies: A-SKIP,
D-SKIP BA-SKIP and BD-SKIP

A- SKI P( a,d, A)

1 returnM N({a' € Ala’ > a, ANCESTOR(d,a’) V FOLLOW NG(d,a’)})
D- SKI P(d,a,D), BD-SKI P(d,a,D)

1 returnM N({d’ € D|d’ > d, ANCESTOR(d’, a) V FOLLOW NG(a, &')})
BA- SKI P(a, 5, .A)

1 returnM N({a' € Ala’ > a, FOLLON NG(s,a’)})
BD- SKI P(d, s, D)

1 return M N({d' € D|d’ > d, ~ANCESTOR(d’, 5)})

the skipping function would require approximately log n skips to find the next node. Here, we propose
an exponential skipping strategy, which tries to avoid this worst case scenario. The exponential skipping
strategy first skips through the ancestor list using exponentially increasing gaps, for example, 1, 2, 4,
8, 16, etc. When it over-shoots the target node, we then switch to binary search with the high and low
boundaries of the search set to the current and previous hop position. The pseudo-code is described in
Algorithm 7.

Figure 4 illustrates how the exponential skipping strategy augments the binary skipping by using
slow start to increase the gap size exponentially until it over-skips past the next ancestor node. Since
the next gap size is based on the past observed number of skipped nodes, the number of over-skipped

Figure 3: Binary skipping strategy of A-SKIP.
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Algorithm 6 Binary skipping of ancestor nodes

A- Bl NARY- SKI P( min ., maz4,d, A)
1 whilemina < maxa do
2 i(_LminA;mazé_]
3 if POSTORDER(.A[Z]) > POSTORDER(d) then

4 if POSTORDER(A[Z — 1]) < POSTORDER(d) then
9 return

10 ese

11 maxras <— T —1

12 end if

13 ese

14 if PREORDER(.A[Z]) > PREORDER(d) then

15 mara < T —1

16 ese

17 ming T+ 1

18 end if

19 end if

20 end while

21 return |A|

Algorithm 7 Skipping at increasing interval

A- EXPONENTI AL- SKI P( a,d, A)
1 ming < a+1 maza < |A—1,8 1, T < mina
2 whilez < |A] do

3 if POSTORDER(.A[Z]) < POSTORDER(d) then
4 mingA < T, T+ T+09,0 < 26

5 ese

6 maxras < T

7 break

8 end if

9 end while

10 return A- Bl NARY- SKI P(min.a, maz ., d, A)

nodes will be at at most equal to the size of the gap. Therefore, no matter how many nodes we have to
skip, the slow start nature of this type of skipping strategy guarantees that in the worst case only one
extra traversal is executed, and that this worst case happens when the number of nodes we must skip is
either one or three.

3.5 Skipping For Streaming Data

Chien et al [5] mention that it is not possible for any pre-built indexes to perform faster than
sequential scan based structural join algorithms for streaming data. This is simply because they cannot
send any feedback to the producer modules. As we have shown, our algorithms do not use any pre-

e
NV

AList

DList

Figure 4: Exponential skipping strategy of A-SKIP.
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Table 1: Experimental data set

Name | # of Elements | Size(MB) | Depth |

DBLP 3,803,281 160 6
MEDLINE 2,768,743 130 7
XMark 2,921,323 204 12

Table 2: Notations for algorithms

Notation | Algorithm |
STJD-Join Stack-Tree-Join-Desc [1]
AD-Joine | Skip-Join-AD with exponential skipping strategy
A-Join, Skip-Join-A with exponential skipping strategy
D-Join, Skip-Join-D with exponential skipping strategy

AD-Joiny Skip-Join-AD with binary skipping strategy
A-Joing Skip-Join-A with binary skipping strategy
D-Join, Skip-Join-D with binary skipping strategy

built indexes for node skipping. Therefore, we can easily adapted our techniques to suit the on the fly
join strategies needed for streaming data, Of based on the assumption that the incoming streams are in
document order. For processing streaming data, we set a fixed buffer size for the stream input, and page
size proportional to the buffer size, thus simulating the same environment we would normally have for
skip-joins. In the event the current position is under the high boundary, we just load in more pages from
the buffer pool, until it passes the buffer size. Then, we set the current position to the buffer size and
do a sanity check on whether we have skipped pass the desired ancestor or descendant node. If not, we
flush the buffer and load in more data from the stream.

4 Experimental Results

In this section, we present our experimental results on the performance of structural join algorithms
on both real-world and synthetic XML data sets. We compare the performance of all join algorithms
proposed in this paper with the original Stack-Tree-Desc (STJ-D) described in [1]. We will then discuss
the impact of updating data on our approach in the next section.

4.1 Experimental Setup

The experiments were carried out on a machine with dual Intel Itanium 800MHz processors, 1 GB
of RAM, and a 40 GB SCSI hard-drive. The machine ran the Debian GNU Linux operating system
with the 2.4.20 SMP kernel.

The data set for our experiments consisted of the data sets from DBLP [6] and MEDLINE [14], and
a data set randomly generated by XMark [16]. The statistics of the data sets used for the experiments
are detailed in Table 1. Table 2 summarizes the join algorithms to be compared in our experiments and
their shorthand notations, which are referred to in this section.

We implemented the join algorithm using the XPath processor from the SODA XML database
engine (available from htt p: // www. sodat ech. com). For the purpose of maintaining control
over the experiment, we disabled all database indexing and we implemented our join algorithm and

12



Table 3: Document and query expression used for experiments

Query# | Database | Query QOutput Size
(# of nodes)

Al DBLP /1 dbl p 1
A2 DBLP [larticle 128,533
A3 DBLP /1'i nproceedi ngs 240,685
A4 DBLP [*1*]* 3,424,646
A5 MEDLINE | // Medl ineCitation 30,000
A6 XMark [/1listitem 106,508
A7 XMark / | keywor d 122,924
A8 XMark //bold 125,958
D1 DBLP /ltitle[.="The Asilomar Report 1

on Dat abase Research."]

D2 DBLP [lauthor[.="Jeffrey D. Ul man"] 227
D3 DBLP /I aut hor 820,037
D4 DBLP [*]* 375,225
D5 DBLP /Il sup 1,155
D6 DBLP [*[*]*]*[sup 50
D7 MEDLINE | // Year 92,624
D8 MEDLINE | // Year[.="2000"] 5,426
D9 XMark I[/listitem 106,508
D10 XMark / | keywor d 122,924
D11 XMark //bold 125,958

the STD-J algorithm using exactly the same code base in C. For each of the experiments, we scanned
the database to filter out all elements which do not fit the required element name before the structural
join. Both the AList and the DList along with their ordering information were stored in memory and
no swapping to disk was performed throughout the experiment. We only measured the time spent on
the structural join algorithm itself.

We defined a set of XPath expressions that capture various access patterns, which are listed
in Table 3, along with the number of nodes that satisfy each XPath expression. Our experiments
joined pairs of the result sets listed in this table together using a structural join. For example, we
used the expression A1//D1 (as defined in the table) to compute the result of the path expression
/[1dblp//title[.="The Asilonmar Report on Database Research."].

4.2 Resultsand Observations

In this section, we compare the performance of different types of structural joins using our proposed
skip-join algorithms against the existing STJ-D join algorithm. Each join query is performed on the
AL.ist and DList nodes using an STJ-D algorithm and our proposed skip-join algorithms (i.e., AD-Join,
A-Join and D-Join). The full results are presented in Table 4. Columns |.A| and |D| give the size of the
two lists, AList and DL.ist, being joined. Column R gives the size of the output of join operations.

As we have mentioned earlier in the paper, there are three different types of structural joins for XML
data: AD-Join returns ancestor-descendant node pairs, A-Join returns matching ancestor nodes only and
D-Join returns matching descendant nodes only. For example in Q1, column A-Join. gives the time it
took to execute the query article[.//title[.="The Asilomar Report on Dat abase
Resear ch. "] ] using the exponential skip strategy on an ancestor only structural join. Column D-
Join, gives the time it took to execute / /article//title[.="The Asil omar Report on
Dat abase Research. "], but this time returning only descendant nodes. Column AD-Join, again
gives the time of a join on the same query using an exponential skip strategy, but this time for a
descendant only join.
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Table 4: Runtime for different structural joins on different queries

| | (# of nodes) | (u8) |

[ [ AT D A [ 1P T IRl | STID | AD-Joine | A-Joine | D-Join. | AD-Join, | A-Join, | D-Join, |
Ql | A2 | DI 128,533 1 1 66,518 131 139 145 117 122 118
Q2 | A3 | D2 240,685 227 116 119,747 1,197 1,224 1,186 2,359 2,434 2,301
Q3 | A3 | D3 240,685 | 820037 | 557,868 450,257 470990 | 357,005 | 313501 815,160 | 1528636 | 1485116
Q4 | AL | D4 1 | 375225 | 375225 197,807 200,628 224 | 169,168 205,983 235 167,333
Q5 | A4 | D5 | 3424646 1,155 1,155 | 1,754,825 14,374 14,501 13,984 28,833 29,855 29,504
Q6 | A4 | D6 | 3424646 50 50 | 1,742,093 2,79 2,943 2,806 3,237 3,246 3,231
Q12 | D1 | A2 1 | 128533 0 44,349 331 351 348 309 380 381
Q7 | A5 | D7 30,000 92,624 92,624 72,243 75,152 76,683 48,895 114,355 152,286 147,618
Q8 | A5 | D8 30,000 5,426 5,426 21,567 8,137 7,776 6,823 20,762 26,058 25,253
Q | A6 | D9 106,508 | 106,508 39,244 77,193 85,852 84,167 63,065 180,529 187,655 109,155
Q10 | A8 | D10 125958 | 122,924 6,636 117,640 103,772 | 102,221 98,883 337,705 342,628 219,683
Q11 | A7 | pu1 122,924 | 125958 7,485 116,578 103,638 | 101,965 99,464 342,435 338,975 218,537

For queries Q1, Q2, Q5, Q6 and Q8, the reason for the superior performance of the skip-join
variants over the STJ-D join is because of their ability to skip through the ancestor node list quickly to
filter out unmatched ancestor nodes. There is a close correlation in the performance speedup of skip
joins with the %‘1 ratio. Q12 is a special case where the result of a structural join is empty — in this
case, the STJ-D algorithm is outperformed by our skip-join algorithms by two orders of magnitudes.
This is again due to the effect of skipping descendant nodes.

However, for the rest of the queries listed in Table 4, the performance of skip-joins are only compa-
rable to STJ-D join algorithm; this is due to the fact that the number of unmatched nodes is small. In the
majority of cases, however, our skip-joins still outperform the STJ-D join algorithm. This comparable
behavior can be attributed to two factors:

1. The input lists (both the ancestor and descendant lists) for these queries have approximately
equal cardinalty, and the number of nodes in the result set is large. This means that the number
of mismatched nodes is low, and hence the chance to have a large region that can be skipped is
also small.

2. When there are large numbers of common nodes between A and D, that is, the two iterators
walk in parallel rather than the “optimal” (for the skip strategies) zig-zag iteration pattern (i.e.,
one iterator is fixed as a pivot whilst the other iterator does a large skip).

In the case of Q3 and Q4, the AD skip join is outperformed by the STJ-D join by a small percentage
of approximately 4%. The Q3 query evaluates / / i npr oceedi ngs// aut hor on DBLP; in DBLP,
both “inproceedings” and “author” are very frequent, and within every “inproceeding” element, there
is always a minimum of one “author” element. Therefore, skipping through ancestor or descendant
lists is useless for this query. As a result, the skipping algorithms reduce to the behavior of STJ-D. The
extra in time taken is due to a number of small redundant skips. Q4 evaluates / / dbl p/ / * , which has
an extremely small ancestor list of only one element, and an extremely large descendant list (the entire
database). Again, in this scenario, skipping is not useful and the extra operations become an overhead
that STJ-D does not have. However, as can be seen from the results, the overhead is only 4%, which is
still quite acceptable given the gains on other queries. We also note that both the A-Join and D-Join are
actually faster than STJ-D, mainly because the results are only single nodes, and hence there is reduced
usage of the stack (depending on the number of input ancestor nodes). Similar results hold for Q7.

The queries Q9, Q10 and Q11 are performed on random data sets created by XMark. The data set
is highly nested, with the practically rare and unnatural property that two distinct element names in-
terleave each other multiple times on a single path (e.g. / / keywor d/ / bol d/ / keywor d/ / bol d).
Note the ratio of % on Q9 is two, which means that, on average, mismatched descendant nodes and
matched nodes interleave each other. This pattern makes skipping difficult and hence the algorithms
yield similar performance to that of an STJ-D join. It is interesting to see that D-Join does perform
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slightly better on random and highly nested data, because the D-Join algorithm does not interact with
the stack.

So far, all exponential skip-joins have similar performance on all queries with the exception of
Q4. However, the A-Join outperforms the other two skip join techniques by a significant margin. This
is because for Q4, all DList nodes are matched under the same ancestor node, therefore almost all
descendant nodes are skipped using BD-SKIP.

We can also see from our experiments that stack manipulation does add notable overheads to the
stack-based structural joins. For example, in Table 4, in queries where the STJ-D join outperforms both
the AD-Join and A-Join, and a D-Join outperforms all other types of skip-joins. This is due to the fact
that the stack is not maintained in D-Join, because only matching descendants are returned, whereas a
stack has to be maintained in both AD-Join and A-Join.

Let A, and A, are the sets of nodes in A that will and will not be included in the result set, and
similarly let D, and D, be the corresponding subsets of D. If we use an AD-Join as an example, on
the basis that the skipping strategy of all skipping functions are perfect, i.e., there are no unnecessary
skips, then the minimum bound of the runtime cost is O(|A,| + |D,| + |R]|), which, if no skipping
occurs, becomes O(|.A| + |D| + |R|) as in that case A, = A and D, = D. In other words, the worst
case performance of our proposed skip-joins is the same as that for STJ-D algorithm.

In Table 4, the last three columns show the performance time of AD-Join, A-Join, D-Join using the
binary skipping strategy instead of the exponential skipping strategy. From the results, the performance
for Q1, Q2, Q5, Q6, Q8 and Q12 matches exponential skipping. However, with the exception of Q1, all
binary skip joins are slower than exponential skip joins. This is because of the log n nature of binary
search; that is, even for AList or DList that have small gaps between matching nodes, it will still cost
log n skips to search for the next node. However for Q1, the binary skipping strategy permits larger
jumps through the AList, and hence has better performance than exponential skip.

43 Summary

To summarise our experimental results, our proposed skip join algorithm performed very well for
Q1, Q2, Q5, Q6, Q8 and Q12, where the returning result node sets are small in size and there are
large differences in size between AList and DList. Compared to the STJ-D algorithm, we were able
to achieve up to three orders of magnitude in performance for the above queries. In general, the times
for A-Join and D-Join are always faster than for the STJ-D algorithm, and in most cases faster than
AD-Join. Therefore, we recommend the query optimizer should utilize A-Join and D-Join more for
structural joins. However, the AD-Join still performns very closely to STJ-D Join for most queries
where large result sets are returned. In the case of Q1, Q2, Q5, Q6, Q8 and Q12, an AD-Join was still
able to outperform an STJ-D join by several orders of magnitudes. The experimental results also show
that the exponential skipping strategy outperforms the binary skipping strategy, and that therefore we
should adopt exponential skipping strategy as a default for future implementation.

5 Label Maintenance for Changing Data

All skipping strategies proposed in this paper rely on a fast method of determining ancestor-
descendant relationships. We have not as yet discussed ways of providing these methods, whilst ef-
ficiently handling updates. Our previous work [9] examined the issue of efficiently handling document
ordering in the presence of updates, and briefly showed how this work could be applied to the ancestor-
descendant problem.

There are two strategies which have been mentioned in the literature previously that can handle
updates efficiently. In the first strategy, we maintain both pre-order and post-order identifiers for each
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node in the database. As described in Dietz’s work [7], the ancestor-descendant relationship between
two nodes can then be determined by comparing these. For example, a node z is an ancestor of a node
y if and only if pre(z) < pre(y) and post(x) > post(y). In the second strategy, each node is assigned
a start and end identifier, such that node z is an ancestor of node y if and only if start(z) < start(y)
and end(z) > end(y).

Updates in either strategy can be reduced to the order maintenance problem we studied in [9].
For the pre-order/post-order approach, we maintain two distinct lists of size n, where n is the number
of nodes in the database. For the start/end approach, we maintain one distinct list of size 2n. We
showed in our previous work that the constant time solutions to the order maintenance problem can be
outperformed by the O(log n) solutions in heavy read situations. Hence, it is likely that the logarithmic
solution will be used in practice.

As the O(log n) solution is likely to be used, it appears that the start/end approach is at a disadvan-
tage to the pre-order/post-order approach, due to the fact that it is maintaining a larger list. That is, the
cost of maintaining the start/end list will be 2C log 2n for some constant, but for the pre-order/post-
order lists will be 2C'log n. However, one possible disadvantage of the pre-order/post-order approach
is that it is not clear that whether the updates in the pre-order list will overlap with the updates in the
post-order list. To be more precise, it is not clear whether the set of pages loaded in for the pre-order
relabelling will overlap with the set of pages loaded in for the post-order relabelling.

We now provide an informal justification as to why performing pre-order and post-order traversals
at the same time will generally have less than twice the swapping penalty of performing one of the
traversals. We will give our argument in terms of complete, uniform trees, which are of depth d, where
each non-leaf node has exactly & children, and where each level is completely filled with nodes. Such
trees, where k is much larger than d, model real-world XML documents quite closely.

361 4e2 503 765 86 97 1169 12e1013e11

Figure 5: A complete tree (k = 3,d = 3). The numbers to the left of each vertex are the pre-order
numbers; to the right are the post-order numbers.

Figure 5 gives an example of such a tree, including the two numeric identifiers attached to each
node that are of interest to us, pre(x) the pre-order identifier, and post(z), the post-order identifier.
We now give some properties of such trees, useful in our justification.

Lemmal pre(z) — post(x) isan invariant for all x on the same level of the tree.

Proof: Let z be any node on the same level (except the last node of the level), and y be its successor.
In pre-order traversal, all the nodes of z’s sub-tree lie between z and y. In post-order traversal, all the
nodes of y’s sub-tree lie between z and y. Because the tree is complete, these quantities are equal.
Hence, pre(y) = pre(z) + « and post(y) = post(z) + a, S0 pre(y) — post(y) = pre(z) — post(x).

kd—H—l_l

Lemma 2 For the m*™ node on the ;™" level, we have pre(z) = i + (m — 1) 55—

Proof: The first node in each level must be the i** node in pre-order traversal. Moreover, we
saw in the proof of Lemma 1 that the increment for pre(x) and post(x) between nodes on the same
level is fixed. Hence, we have pre(z) = i + (m — 1)a, which z is the m** node on level 5. It is

clear that « is equal to the number of nodes in a subtree of depth d — a4+ 1 = ’“d_k% Hence,
. kd—a+1_1
pre(z) =i+ (m —1)*——=—
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Table 5: Values of E(|pre — post|)

k d | E(|pre — post|)
2 2 1.33
2 10 12.26
10 10 16.20
100 2 1.98
1000 5 7.99
100,000 | 2 2.00

Lemma 3 For the m'™ node on the i*" level, we have post(z) = m A 141,

Proof: The first node on the level comes after all nodes in its subtree. Hence:

kd*’iJrl -1
post(z) = 1 + (m— 1)
kde-l -1 k.dfi—i—l -1
- - (2
o1 T D)
kd*’i—l—l -1
- "TE o
Lemma4 For theith level, pre — post = i — kd_kijifl.
Proof: Let z be any node on the 5" level, say the m!. Then:
pre —post = pre(xz) — post(z) by Lemma 1
Ei—itl _q Ed—k+1 _ 1
= -1 _
i+ (m—1) P M=
by Lemmas 2 and 3
' k.d*i-l-l -1
=i

We now consider the average absolute distance between the pre- and post-order identifiers,

E _ i d ki—l(k_1) . gdoitlog . . .
(lpre —post|) = > i_ 1 =z (li — =F=—1). We tabulate the values of this quantity for various
values of k and d in Figure 5.

Of greatest interest in Table 5 are those values for which k is large and d is very small, because
these correspond to the topology of typical real-world XML documents such as DBLP. As can be seen
in these cases the difference is very small.

We are now in a position to give an informal justification for the original claim, that simultaneously
updating the pre-order and post-order lists will not be twice as expensive as updating one of them.
Let us consider the situation where we are inserting into a node into an XML document, and this
insert requires relabeling n,,. surrounding nodes in the pre-order list, and n,,; surrounding nodes
in the post-order list. While n,.. and n,,s; Will be very different, it is a property of many ordering
algorithms, such as those of Bender et al [2], that the expected number of relabellings is bounded in
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the amortized worst case, with the bound depending on the variant employed. Hence, we can expect
that on average np,. & np0st, and we assume below that they are equal (and hence refer to the quantity
simply as n).

We can then restate our claim as follows: if we access a contiguous sub-list of n nodes in the pre-
order traversal, how many of these would also lie in the contiguous sub-list of n nodes in the post-order
traversal, starting from the same node? If the proportion is high, then we would expect that doing the
traversals together would involve strictly less than twice the number of disk accesses that would be
required if the proportion is low. We now argue that the proportion is, on average, quite high.

We have shown above that for complete trees with fanout k£ and degree d, the quantity E(|pre(z) —
post(z)|) is generally small in the cases we are interested in. In fact, although it is omitted from this
paper, a similar result also holds for complete trees with where the fanout is fixed on each level, e.g.,
the first level has fanout &1, the second level has fanout k5. These kinds of trees very closely model real
world XML repositories such as DBLP and MEDLINE. Hence, if a node lies in position pre(z) in the
pre-order traversal of the database, we expect the node will have a position somewhere near pre(z) in
the post-order traversal. Thus, we conclude that it is likely that a large proportion of the nodes accessed
during a pre-order traversal will also be accessed during a post-order traversal. It is also intuitively
obvious that as the number of nodes n being relabeled increases, the proportion also increases.

It is important to emphasize at this point that when we refer to pre(z) and post(z), we are not
talking about the numeric tag assigned by the document ordering algorithm. While such tags are
indeed ordered consistently, gaps of arbitrary size may lie between adjacent tags, and hence the results
above do not apply. Instead, pre(x) refers to the absolute position of the node in pre-order traversal,
when taking a snapshot of the (possibly dynamic) database in time, and likewise for post(x). As long
as this static snapshot can be reasonably approximated by a complete tree of small depth, which we
assert happens frequently in practice, then our result should hold quite closely. Thus, our informal
justification applies to any ordering scheme which uses a range relabeling strategy.

To summarize, we have shown that the disk accesses required for updating the pre-order and post-
order lists are shared between the updates for both lists, and this reduces the cost of the total update cost
for this ancestor-descendant scheme. This reduction, coupled with the extra update expense required for
the start/end scheme when using an O(log n) update algorithm, strongly suggests that a pre-order/post-
order scheme is the better strategy for use in large XML databases.

6 Conclusions

This paper has focused on improving the algorithms for structural join, a core operation for XML
query processing. We presented a simple, yet efficient, improvement to the work of Al-Khalifa et
al [1], which skips unnecessary nodes in the ancestor and descendant lists. In constrast to from [5], our
method does not require any auxiliary index structure and hence is significantly easier and cheaper to
maintain. It can also be implemented in non-database applications such as an XSL processor, which
does not normally have a built-in B-Tree index, as well as into a streaming XML data processor.

Furthermore, informal justifications of the effect of updates on the structural join problem have
been presented. Since the ordering scheme we used in this paper is based on the use of preorder and
postorder identifiers, the update cost is identical to those analyses and experiments performed in [2]
and our other work [9]. By employing the use of gaps in a theoretically sound fashion, the amortized
update cost is much lower than the update cost in other tree-based labeling schemes such as [11].

Finally, extensive experiments on both real-world data and synthetic data have shown that our
extension has improved the performance of the state-of-the-art structural join algorithm [1] by orders
of magnitude at the best.

We believe that there is still a wide range of interesting research problems in this area. In particular,
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we are currently investigating the extension of our work to produce a query optimization framework in
the presence of ordering. Similar work in this area includes [4, 12].
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