
Intertac Software Architecture

Cat Kutay

School of Computer Science and Engineering

University of New South Wales

Sydney 2052 Australia

E-mail: ckutay@cse.unsw.edu.au

UNSW-CSE-TR-0318

June 13, 2003

1

Abstract

This paper describes the development of a groupware system from
the requirements developed through researching the activities of soft-
ware enginering students who were developing specification reports in
groups. The specification is designed for an imaginary, but realistic,
client. The groupware was developed to enable these groups to meet
more often in non-collocated sessions. A list of requirements that were
developed for the basic application software are presented here, to-
gether with the Architecture and Interface.

The groupware is designed as a Constructivist and Collaborative
Learning Environment (CLE) so the first aim is to provide a flexible
and unstructured learning environment in which students can construct
their own meaning. On top of this can be placed agents to provide as-
sistance and feedback to improve aspects of this learning. This paper
looks at the first part of this process, developing the environment with
a component-based architecture to which agents can readily be inte-
grated. Also brief summary of the agent support is provided, with a
plan for future verification of the final system when complete.

2

1 Introduction

The groupware, namely Intertac, is designed to draw together a group
of human minds to enable learning through interaction, using a com-
puter as the medium. The computer software provides the basic blend-
ing of students’ contributions augmented by the effects generated for
the specific learning domain by a system of agents to guide the pro-
cess of that learning. The research is based on the approach that the
computer is a medium, not an end point of the interaction.

While HCI issues are considered in developing the initial design
of the basic software the development of agents in based on Human-
Computer-Human interaction or HCH. HCH is about removing the role
of the computer as the intelligent agent and reducing its role to that
of a mixer, with the ability to insert adaptive electronic components
(or agents) that add extra effects and depth to the product of the
human-human interactions.

HCH is about ensuring that the feedback from the system assists
the students to improve their input to the group, that their contri-
bution is as harmonious or discordant as necessary, and their under-
standing of the process and their roles in that process improves over
time. The software is used to support members in adapting roles in
meetings, to enable the group members be aware of each other and
their contributions and finally to try and focus the group on the whole
problem that they are dealing with, not their individual tasks.

The users are not groups with years of skills, they are still practising
their group skills and their learning skills, as much as they are prac-
tising the skills of subject domain in which their studying is situated.
They are apprentices and their learning must be guided.1

This paper presents the process of design that was used in devel-
oping Intertac-I, the initial basic Intertac system. The next stage of
development of Intertac-II involved augmenting the software with the
design and implementation of agent support andis summarised here,
but will be presented in later papers in more detail. The design of
Intertac-I was done with the aim of presenting some standards for the
development of groupware. We first describe some unique features re-
quired for Intertac-I, which did not exist in systems available at the
time of Intertac’s development and which necessitated the development
of new software.

Then we describe the requirements which were developed using
Activity Research (as presented in Fjeld et. al. [6] and Jonassen &
Rohrer-Murphy [10]) to analyse students in groups during a software
engineering workshop course.

1These ideas are developed in the learning theory Cognitive Apprenticeship as devel-
oped by Collins et. al. [4]

3

2 Design of Constructivist Learning Envi-

ronments

Years of research of learning in these modes has suggested some guide-
lines for course development based on constructivist and collaborative
principles. To develop a design for a learning environment based on
these principles, we must in the first instance adhere to the established
guidelines for the development of such a system, which were originally
derived for the classroom. Some of these have been applied, or can
be applied, to software based courses such as when courses are part of
distance learning modules.

The key characteristics for a Constructivist learning environment
have been developed in Grabinger et. al [7], Jonassen [9] and Suthers [19]
and have been extracted to form a set of Learning Requirements as fol-
lows:

LR1 Allow student responsibility for learning and self-directed learn-
ing, identifying their own knowledge, manage their own learning
(conation).

LR2 Allow dynamic, generative learning. Knowledge is actively con-
structed by the learner, rather than being handed down. By
manipulation of the learning space with mindful activity, mean-
ingful learning is achieved (constructive).

LR3 Provide complex contexts which include the physical, organisa-
tional and socio-cultural contexts of the problem. The context
is to be described in the problem or project and may be repre-
sented in the software. This should include the context to which
the solution must fit, as well as the expectations and customs of
the other stake-holders (complex).

LR4 Provide authentic contexts by using realistic problems and ex-
amples that must be interesting, appealing and engaging (au-
thentic).2

LR5 Allow ownership of problem by the student. To allow this the
context should be changeable (motivation).

LR6 Provide collaborative opportunities that allow exposure to mul-
tiple perspectives. Students are required to reflect verbally in
their group and to examine other understandings. Develops co-
operative skills (conversation theory).

LR7 Reduce bias in the learning derived from the limited representa-
tional formats offered to students to enable them to manipulate
and converse about their knowledge (representational bias).

LR8 Allow reflection through the articulation of what has been learnt
and how. Understanding the individual learning process. Feed-
back to planning next phase of learning (action theory).

These learning requirements can be developed to some extent in
a software based course. We are suggesting the following software

2These tasks can be developed using the analysis techniques of of Activity Theory.

4

learning requirements for Intertac-I to realise the above learning re-
quirements:

SLR1 — User Interface The objects that represent the learning
content, such as documents or diagrams should be able to be
manipulated and extended or restricted to match their interests
(LR5).3

SLR2 — Constraints Reduce the constraints on the student’s rep-
resentation of their knowledge as a resource for conversation.
Provide a variety of primitive elements both textual and dia-
grammatic that the user can manipulate for different logical rep-
resentations of their knowledge (LR7).

SLR3 — Salience Increase the salience or automatic perception of
information contained in users’ representations by providing dif-
ferent types of representations that visually express different knowl-
edge relations (LR7).4

SLR4 — Planning Planning and reflection tools should be provided
and integrated into the system. Include Action Plan templates
for groups to manipulate (LR1). Enable selection of roles and
other individual approaches with support for each role (LR1).
Visual schema of progress can be made accessible to student for
review (LR8).

SLR5 — Integrated System Primary elements of the software in-
terface and the items of domain knowledge presented in the sys-
tem should be interactive and able to be linked to each other
(LR2). The tools should provide support for research through
the web (LR2), or other students’ solutions (LR6).

SLR6 — Enable Multi-user Contributions Enable changes from
different computers to be presented to each user’s interface for up-
dating the screen in a synchronous manner (LR5). Enable users
to edit and annotate others’ work (LR6). Where necessary allow
semi-synchronous updates where editing changes to the user in-
terface are updated on each screen in bulk, rather than step by
step (LR4).

SLR7 — Asynchronous Editing Also allow users to work alone in
an asynchronous mode on Intertac tools (LR4).

SLR8 — Component-based Architecture Enable users to use their
own tools in the system, possibly linking different editors through
the server to provide suitable interfaces to different users’ needs
(LR5).

SLR9 — Chat Interface Provide a tool to enable a chat channel
to be set up (LR6). Chat can be augmented with tokens to

3For example in the present learning domain being studied, the groups can change the
requirements to restrict the problem to a reasonable size, or individuals can select which
part of the report they write, or concentrate on.

4For example DFDs can be displayed as separate levels to show structure or as a single
complex level to follow data flows.

5

describe each speech act, and topics to denote the context of the
contribution (LR4).5 Contributions should be linked with any
previous contribution to which they refer (LR6).

SLR10 — Feedback Assessment should be integrated into the project
with embedded learning appraisal activities, such as checking
rules and regulations of the domain (LR8). The software should
include functionality for the instructor to develop guidelines that
are able to be adapted by the users’ software or tools (LR8).

SLR11 — Agent Support Sufficient depth to the problem must be
offered, then provide sufficient scaffolding to allow the student
to work at their own level (LR3).6 Ensure discussion is situ-
ated in the current learning context and follows optimal learning
approaches (LR8).

2.1 Review of Basic Groupware Requirements

Given the Software Learning Requirements above which are based on
learning requirements, there are additional requirements for working
in remote groups. These requirements were developed from the initial
observations of collocated meetings during the workshop course, but
address the features of the context that are either not available when
these groups presently work remotely, using the phone and existing
editors with computerised file transmission; or are now feasible given
the computer medium on which the communication is taking place.

The Groupware Requirements are divided into Functional and Non-
Functional Requirements. Functional Requirements are those which
capture the intended behaviour of the system, or what the system
does to fulfil the needs of the user, and include all the Software Re-
quirements listed above. This behaviour may be expressed as services,
tasks or functions the system is required to perform. Non-Functional
Requirements are system qualities that characterise when and how the
system fulfils user needs.

Functional Requirements :

FR1 Support multi-user actions over a visual workspace and en-
able easy natural interaction for participants. This includes
the ability to use collaborative drawing and marking tool
similar to those used in face to face meetings with pen and
paper. On top of this can be laid extra features that a com-
puter can provide, such as removing and moving structured
objects around the screen.

FR2 Support the handling of textual and graphical primitive
objects that provide concurrency7 of different users’ views

5Users can be provided with menus of topics an tokens to frame their contributions to
the discussion.

6In this course the context to which the solution must fit is the needs of the client and
communication of the group’s proposed design to the client.

7All users see the changes to the primitives that appear on the interface more or less
as they occur and in the same order.

6

and WYSIWIS8 view sharing.

FR3 Use repositories for files that are local to each user. Provide
versioning support for each user.

FR4 Enable easy analysis of the interaction. This would prefer-
ably be enabled through logging facility that would accom-
modate analysis that steps through the history of the inter-
action.

FR5 Provide natural interaction with agents that play the part
of a mentor or tutor. This can be in the form of separate
advice screens or separate tools that presents a similar in-
terface to that provided when working with peers.

FR6 Support structuring of the group processes during a meet-
ing. The format of this structure will vary with the needs of
the group.

FR7 Integrate with the present, conventional ways of doing this
work, such as the phone and other programs.

FR8 Provide possible compatibility with other applications, through
text based output files for all tools.

FR9 Provide awareness of other users logged into the session.

FR10 Support rough editing comments overlaid on the formal
diagrammatic and textual tool interfaces.

Non-Functional Requirements :

NFR1 Avoid high bandwidth use by avoiding audio links. While
having an audio link would overcome many of the difficulties
involved in communications over a distance, it would slow
down the rate of visual communication to an unacceptable
level and create problems when synchronising screens.

NFR2 Simplify communication speed and detail between users
by transmitting only text based updates to document con-
tents.9

NFR3 Provide a robust communications structure that sup-
ports persistent sessions (especially if FR3 not provided),
or at least refreshing of users’ screens with latest views of
the tools when required.

NFR4 Provide rapid response from server by minimising logging
and agent support at server, relaying more on client software
for this.

NFR5 Provide tools for software engineers that resemble the
tools with which they are familiar, and hence they find it
easier to work with.

NFR6 Analyse interactions in this domain requires dealing with
design problems that are ill-defined and unstructured.

NFR7 Develop advice agents that will have to work from data
collected in the above analysis and so face the same difficulty
of the unstructured nature of the input to the analysis.

8What You See is What I See.
9Diagrammatic objects can be described as a string for transmission.

7

NFR8 Provide technical support for multiple and distributed
processes on separate systems. Support for the software
must deal with problems with rapid turn around. In a learn-
ing environment the users do not have time to wait for a
system to be redesigned during their course.

When first reviewing these requirements to select from the existing
groupware products, the solution was to access the screen display of
an editor and broadcast it to all group users. In the most ideal ap-
plication, the individuals in the group would be able to choose their
preferred editor, and the shared document would be transferred and
then translated to each separate user interface. Similarly the input to
each editor would have to be caught and coded for the separate editors.

It has occurred to the author in this vain quest for such software
that it would be dangerous to system security to have such a system
available. Assuming these features could be attached at run time (since
the editor functions already without them, the software must use ex-
isting input and output to do this grab), and worked over the network
(since different computers would need to communicate) any user would
be able to grab any process on any computer they like and redirect the
input and output to their own computer.

2.2 Selection of Software

The initial step of this thesis was to study the existing groupware sys-
tems for compatibility with the Software Learning Requirements of
this project. There are many existing systems and they have various
distinct features however the software availabel at the start ofthis reser-
ach, in particular Habanero [8], Matchmaker [11] and Teamwave [20],
were not suitable for the users’ needs due to lack of at least one of the
following requirements:

1. Ability to plug in agents to the applications or tools to provide
scaffolding to the learning process (SLR11). This applied to all
commercial systems, unless we could get access to modify their
source code.

2. Ability to link tools through the server that have equivalent con-
tent but may differ in their interface, and open and close tools
locally to a single user as that user required (SLR1 and SLR5).
This applied to all existing groupware as the separate user tools
are too closely linked.

3. Ability to edit text files in a synchronous or semi-synchronous
mode (SLR6). Many groupware systems do not supply a text ed-
itor due to the difficulty in providing synchronous communication
of rapid edits across a long network.

4. Ability to plug in new applications as they become available, that
resemble the editor and other tools commonly used by students in
stand-alone mode (SLR8 and FR5). Again commercial groupware
does not allow access to the code to enable this, although Group

8

Kit and Habanero do enable this and provide detailed information
on how to do it.

5. Use event based messages to synchronise simple content changes
through the server with local replication (NFR2). Event based
messaging is used in most recent systems, however the link be-
tween applications is usually too strong, as in Habanero which
transmits the entire document framework.

6. Ability to augment editor and diagrammatic tools to include dif-
ferent representational primitives to reduce representational bias
(SLR2 and SLR3). Editors and diagrammatic tools were limited,
and hence new tools had to be added whatever software was se-
lected.

7. Server designed as a synchronous broadcast process and no more,
with all interface storage and error logging done at the client end
if required (NFR4). The closest to providing this was the Match-
maker server but this system runs extensive logging of events at
the server.

8. Save files in individual local repositories for each user (SLR6
and NFR3). Again many recent systems use local repository
but maintain logging and agents support at the server.

9. Provide reliable user support for the software system (NFR8).
This was not possible for Habanero or Matchmaker.

We could not find a system to satisfy these requirements, so a new
system named Intertac-I was developed. The process of developing
this software provides a basis for the development of extension tools
and agents for future groupware, so is summarised here. Also the basic
process matches the type of process that we are trying to teach in the
Software Engineering Workshops so should be implemented here also.

We did however re-use some software, both the Matchmaker [11]
server10 and the Java Swing classes, and developed Intertac-I from
these.

3 Process for the Design of Intertac-I

In order to provide complete requirements for Intertac-I the future
users of the system had to be studied in their present learning con-
text to analyse what they needed from the system. Software design
for human users must be studied in the social matrix in which the
software will be used [21]. This is difficult to achieve, as the present
collocated context is quite different in many respects to the final con-
text of learning through groupware. Hence part of the analysis is to
establish changes in the learning that will result from the change to
distance mode.

Software design requires an analytical framework that includes group
aspects and a conceptual underpinning. In this thesis Activity Theory

10Synchronous systems is the most difficult aspect of the programming, so it was decided
to re-use software for this.

9

formed the theoretical basis. Guidelines for the design of the software
in this thesis were developed as a Four Step Model based on the work
by Soloway et. al. [17] where features of the design are listed as: con-
text (for the software); tasks (that the software will perform); tools
(required for each task); and interface (to tools).

Also the work by Markus and Keil [12] covers issues of process
change within the organisation to enable the introduction of a com-
puter system (task change). Suchman [18] looks at issues of repre-
sentation in design and how these both become part of the final work
practices and are often different from the viewpoint of different users.
Nardi [15] gives an example whereby looking at activities and actions
as distinct entities in design, the designers approach to understanding
user needs was improved. This has a parallel in learning theory with
the manner in which surface learning skills can be combined to form a
deeper approach. The individual actions or skills can be automatically
selected by the deep learner for their appropriateness to each software
design situation [3, p.256]. Thus as they become an expert, they may
appear to use templates or rule-based approaches, rather than deep ap-
proaches [2]. Yet this is denying the expert’s use of intuitive decisions
and use of plans [3, p.253].

Besides the case studies mentioned above, there has been little work
in developing a design model for implementing Activity Theory in soft-
ware design. Therefore a model was developed for this research for
designing software for a learning context which involved four steps.
Recently an Eight-Step-Model was hypothesised and tested for design-
ing software using the Activity Theory model was developed in a PhD
thesis by Mwanza [14]. The Four Step Model developed from work by
Soloway et. al. [17] and used in this thesis is here divided into sub-
sections that correlated to and expanded on the alternative model by
Mwanza, to establish to links with her work.

Context :

Interface of System Describe the visual aspects as a whole.

Activity of Interest Describe the activity as whole.

Objective Describe the activity as part of a plan.

Subjects Describe the human agents of the activity.

Community Describe the larger learning plan.

Tasks :

Steps of performing Describe the tasks performed by the sub-
jects including alternative ordering of tasks.

Division of Labour Are there separate roles involved?

Co-ordination of Labour How are the separate roles linked?

Tools :

Means of Performing Describe the way the subjects perform
this activity including alternative tools.

Rules and Regulations Describe any rule or regulations for
the performance of this activity.

10

Object :

Interface Focus of task in terms of input, the visual and manual
link to system.

Outcome Focus of the task in terms of output.

Activity Change Effect of the software task on the original
activity.

This model is used as an approach to augmenting the generic Soft-
ware Learning and Groupware Requirements listed in earlier sections
with aspects relating to the domain of Intertac-I. The more detailed re-
quirements that were developed and implemented in the software were
developed by using the above model to analyse each activity of interest
that would be carried out on Intertac-I and thus extract the variations
in tasks or operations for that activity. For instance if the activity is
decision making, then we found:

Context will be the type of phenomena on which there is disagree-
ment, the significance in terms of the overall design, whether
more than two people are involved, etc;

Tasks will be such steps as adding and deleting parts of a diagram or
report, repeated comments referring to the concept or phenomena
being debated, roles taken in the debate, etc.

Tools will be pen and paper used in group edit, individual editing
work then taken to the group, any other learning that is referred
to in order to reach a decision such as diagrammatic rules, etc.

Outcome is an agreed diagram or file that is not edited for some pe-
riod. The outcome will be changed little when using the software
mainly in terms of enduring logs of discussion over the phenom-
ena, but the activity itself is changed greatly by the use of Chat
for discussion instead of speech.

These details are not dealt with here. However the specific results
of the activity research in relation to the Architecture and Interface of
Intertac-I as they are now developed, are presented.

4 Architecture

The architecture of Intertac-I was designed to handle the following
aspects:

1. Front-end:

(SLR5) Event-based messaging for maintenance of the syn-
chronous interface.

(SLR6) Updating in blocks to reduce the rate of updates.

(SLR8) Component-based design for easy upgrading to in-
corporate the tools of the learning domain, such as concept
maps, HTML editors etc.

(SLR8) Common format of tools for easy analysis of activ-
ities across tools.

11

Tool
Interface

Chat

Tool

Intertac Interface

Local Repository

Local Repository

Intertac interface

Librarian

Group repositoryConnection Server
TCP/IP

TCP/IP

TCP/IP
 Address only

Address only

TCP/IP

TCP/IP

Event messaging

Figure 1: Architecture for Intertac-I System

2. Back-end:

(SLR7) Compatibility allows for future compatibility with other
external applications, such as individual editors, by using
XML output from the Intertac-I tools.

(FR3) Local repository for individual reflection and review.

The original design of Intertac-I was to have the tool as the main
component to be manipulated. However with the need to adapt open-
source applications to the system, Intertac-I was redesigned to make
the Internal Frame the main component, as this was an easy adaptation
of the Frame format of many tools. The tool is then added to, and
manipulated through, the Internal Frame. Changes to the tools are
shared as changes to the Internal Frame contents.

Intertac-I provides both synchronous and asynchronous sharing of
files. One of the most crucial aspects of synchronous systems is the
efficiency of exchange of change events, so that the individual user will
maintain an almost continuous editing mode, while changes are added
when possible from other users. This provides users with an artefact
that they can discuss as they are being edited.

Intertac-I used a centralised server which maintained a tree struc-
ture of serialised representations of all the internal frame objects and
the text or graphical objects in the frame. At any time a user could join

12

a session on the server and receive a broadcast of the current screen
display. Changes can be tracked between different users and different
times. Also the centralised log included details about which windows
are selected by each user.11

The server originally used by Intertac-I was developed at the Uni-
versity of Duisburg [13] and maintains a tree structure of serialised
representations of all the internal frame objects and the text or graph-
ical objects in the frame.12

5 Interface

There are many existing groupware systems, with various features to
suit their context of use. The main feature of the design of Intertac-I
is its flexibility. The Intertac-I software design is based around a single
window, with a panel overlaid for scribble drawing and notes. Within
the main frame various internal frames should be able to be opened
by the user on request. The internal frames should contain the tools
for viewing text or diagrammatic files. The position of these frames
should be selectable by the user.

The Intertac-I interface is based on a Java windows class, rather
than rooms,13 as this provides an analogy with the computer as a
window onto the files being viewed and edited. This matches the
user’s concept or model of design tools used in the software engineer-
ing school. Also the use of Java as the programming language provides
cross-platform functionality for the system. While the interface may
not appear exactly the same on all computer systems, the software can
recognise the software objects on any computer systems.

The main frame interface requires the following shared features:

1. Awareness Text Line to know which users are on-line (FR9).

2. Overlay window for rough notes and sketches that can be selected
as visible or not (FR10).

3. Visible representation of the state of the Overlay On/off button
(FR10).

4. Chat single line frame that shows the last line of chat to provide
visual access to the interchange when the chat window is obscured
(SLR5).

5. Overlapping interfaces to the Tools that have been opened for
group view (FR1).14

6. Each user’s contributions to the session to be distinguished e.g.
by colour (FR9).

11This information can be stored on the client side as selecting a window (other than
Chat) to edit, locks it to other users

12This server created many processes on the host machine, and also kept a log of changes
transmitted. The resulting memory and file space used by the server caused problems. As
a result a new server was written.

13Compare to Teamwave.
14Tools can also be opened in local mode only.

13

Figure 2: Intertac Interface showing Chat window, DFD diagram, Gantt
chart, Editor and Agent feedback in Dialog Note.

7. Select on menu to start or join a group session (SLR9).

8. Select on menu for a role (FR6).

9. Separate tools available to users who selects a role (Facilita-
tor, Record Keeper and Librarian) to assist these different roles
(FR6).

Many aspects of the interface are set as variables in user files and
can be altered at run time. The data repository is local so users may
have different versions and work alone on their material. Even in group
mode, the users can close or minimise windows independently of each
other. Dialogs or feedback can be presented in single view mode, or
group mode on all windows.

Aspects of the interface which can be altered by the user are:

1. Role selected by user e.g. extra tools are available for a facilitator,
record keeper and librarian

2. Applications or files that are open e.g. files can be selected to
open at start up, if these are the ones being worked on

3. Format of diagrammatical objects e.g. The number of text lines
to be included as descriptors in planning or DFDs and their de-
scription can be altered

The requirements for the applications themselves were based on
generic models rather than being designed for a specific domain. They

14

can however be extended with features adaptable to the domain of
learning.15

6 Supporting Agent Development

The interaction and learning processes that were selected for study
during experimentation on Intertac-I were:

1. increasing depth of learning;

2. group processes;

3. efficiency in document production; and

4. efficiency of learning.

Given the broad scope of interactions that fall under these headings,
it was necessary to restrict the review to particular aspects that con-
cerned the lecturers in these courses. The results of the experiements
are published in later papers, however we describe here the softwrae
included in Intertac-I to provide the data needed for analysis.

6.1 Translating Actions

In order for the work of students using Intertac-I to be analysed for
suitable interventions by agents, a separate form of Outcome is created
for the software. This attribute is reduced after the experiments, but
it provided the text data needed to analyse the state of the students
as they learnt.

From the initial design of Intertac-I it can be seen that the tools
can provide data to the agents that enables the following:

1. Analysis of common threads running between the tools.

2. Checking the timing of document production or content of inter-
changes according to the stages as specified in the planner.

3. Comparing student documents and diagrams to a template where
appropriate.16

4. Analysing documents for adherence to rules of the domain, such
as graphical rules or limits on length and layout of text docu-
ments.

5. Analysing interactions in detail from the Chat tool and also
across all tools.

6. Feedback comments to a common Notepad window, as a contri-
bution to Chat, or as a Dialog Window that locks the interface
until answered.

15For instance the original concept diagram application was extend to draw Data Flow
Diagrams.

16A course planner can be maintained in unedited form as a guideline for fixed dates
in the project. Similarly a document template can be retained to provide guidance on
document layout and type of content.

15

Three aspects of learning as described by Dillenbourg and Self [5]
can be supported by the agents using the above data in the manner
described here:

Verbalising strategic decisions Observing conflict between action
requiring explanation and feedback through dialog windows when
additions and deletion patterns suggests conflicting actions.

Acquiring reflective skills Creating conflict between individual knowl-
edge and experience requiring resolution by proposing new ap-
proaches to concepts through the common note window when
groups or users reach a certain level.

Acquiring a better model of learning Observing conflict between
different individuals’ knowledge requiring resolution and feedback
through dialog windows when conversation patterns suggest con-
flict.

While the students make various keypad and mouse actions during
their interactions with the computer (or with their peers who are also
on-line), the log of these actions can be quite meaningless unless the
actions can be described in context.

For instance, an arrow linking two objects (a and b) is not just an
arrow from point a to point b. It is a link between these two objects and
whatever information they contain. In other cases the interpretation of
the actions will be dependent upon the context. Some text in a circle
may just be a way of highlighting text, or in the case of DFDs, it is a
process and its name, by convention.

6.2 Translator

For all the tools there had to be a common output of data required for
analysis. This data should include enough detail for the computer to
verify various rules and patterns. This process was originally carried
out by a translator in Intertac-I which provides data to a human agent
to review. In Intertac-II this process was implemented in the basic
agent structure to enable agents to verify their own rules. This division
is made as the translator necessarily will be dependent in some aspects
on the domain of learning that the software is being used for.

There are various ways that actions can be combined to form co-
herent acts of learning or acts of constructing meaning.

Construction Combining a sequence of actions (whether coincidental
in time or not) to form a more conceptual description of an act.

Completion Updating acts to include previous related actions that
now can be combined and understood as one act.

Alteration Updating previous acts as changes are made.

In fact it is not entirely appropriate to use the term completion
for general updates in this context, as there is no completion until the
final reports are handed in. The work of relating acts to each other
(for instance a student may construct a process in a DFD then link
this to another two processes, and thus form a level in the diagram)

16

is the part of translation or domain-dependent analysis that is left as
part of future work.

6.3 The functionality of the translator

This work is based on the formalism developed by Akhras & Self [1]
but takes a different approach. The design is for a specific domain,
but since the domain-dependent components are separated from the
Intertac-I design, it is assumed the system can be augmented to other
domains.

The translator keeps a record of every action of the group members,
including deletions. At any time an action is taken, this must be
compared to other actions in terms of:

Proximity For example, start and end of an arrow, or position of
inserted text.

Duration Length of time for each act from this group of actions.

Conceptual Re-occurrence of important concepts in the course.

Opposition As in deleting and replacing with different structures.

Completion Actions that are complete in themselves such as chat
comments with keyword descriptors.

Absence Absence of an expected part of an action.

It is important that the translator does not ‘over translate’ and re-
move too much information that may be domain-dependent, or which
may vary over time as the students’ conflicts develop and resolve. Oth-
erwise the job of analysing the data, while shorter, will be weakened.
Also some actions may be considered as part of more than one act.
They are assigned to acts in the order listed above and thus while no
conflict occurs, some information may be lost.

7 Intertac-II

The modular structure of the Intertac-I architecture allows the devel-
opers to plug in intelligent agent components. The design of the next
stage of the software involved the development of rule-based agents
that are initiated by each tool and the interface of Intertac-I. These
agents were developed from experimental use of Intertac-I where stu-
dents carried out their project work, with the translator functionality
being used to summarise their activities.

The patterns that were extracted from the group interactions and
learning, were used to develop an Implementation Pattern Language,
which is discussed in later papers. Agents providing diagnosis and feed-
back can be developed for different learning domains from the pattern
method developed.

The architecture was augmented to the following:
The next step in developing the software involves providing co-

ordination of the agents to prevent conflict and enable combined feed-
back; and a more thorough analysis of the history of student activity

17

Tool
Interface

Tool AgentChat

Tool

Intertac Interface

Local Repository

Local Repository

Intertac interface

Librarian

Group repositoryConnection ServerAgent

IntertacTCP/IP

TCP/IP

TCP/IP
 Address only

Address only

TCP/IP

TCP/IP

Event messaging

Figure 3: Architecture for Intertac-II System with no User Model

to provide the basis on which agents can analyse students’ depth of
learning approach. This work invovled the development of a User or
Group Model.

8 Verification Testing

As in the development of any software for general use, it is important
that it be used by other people than just the developers, who are not
typical users. Thus much of the fieldwork described in the next chapter
involved analysing how students used the software, and how this could
be improved.

Once the computer supported co-operative work (CSCW) system
is developed, there are different approaches that can be taken to ver-
ify the effectiveness of the software. A controlled experiment can be
conducted to analyse the effectiveness of meetings held through the
software interface, as compared to collocated groups. In fact some of
this work had been done by Rein and Ellis [16], with the main findings
being:

1. The option of group or individual messages enabled the quiet
members to influence the direction of the meeting by posting
their comments and questions while the general discussion was
going on.

2. The BlackBoard system tended to increase group focus and atten-
tion on completing the task. The increased group focus resulted
in some improved capture and organisation of ideas and more
effective and efficient meetings

18

When Intertac was developed, it was envisaged that some form of
controlled test could be conducted; however various factors mitigated
against this. Firstly the assistance being developed was heavily inter-
related between types of advice. Rather than select some aspect of the
advice and switch other aspects off, and compare this across all types
of advice, it was felt the system should be verified as a whole.

Secondly the tools developed were originally quite primitive, as
the assistance was the focus of the work. In the meantime these have
been improved, partially through the use of open-source software,17 yet
there is still resistance to the use of new applications amongst software
engineers. It would be hard to filter out this resistance to achieve a
valid picture of the assistance developed within these applications.

The verification of Intertac-II including its agent support, should
consider the aspects of Constructive Learning Environments that were
adopted as the goals of this work:

Scaffolding By developing User (or Group) Models that enable the
tracking of students overt response to advice and the actions that
follow any advice [?] some analysis of the scaffolding effect can be
examined. While students will have responses to the immediate
use of such agents, it is important that the patterns used by the
agents to provide feedback be re-analysed to verify the effect of
the feedback, if any, on the patterns observed.

Alternatives Another important aspect to verify is the search agents.
This will involve running the agents on documents produced by
students to verify that the Design Patterns extracted in searches
are valid comparisons or alternatives.

Feedback A study should be made of the feedback that is received
during the course of a workshop and how these relate to the
resultant document and design produced by the group. This will
be to verify if design problems are missed in the feedback or
feedback is made that is not helpful.

Reflection During the workshops the students can be interviewed
about their approach to learning software design, their approach
to working in groups remotely and their conceptions of the key
aspects of the course. These can be related back to the agents
that are designed to deal with these learning patterns and verify
that the agents have either identified or responded in some way
to these approaches.

9 Conclusion

The project has made some headway in developing the groundwork,
providing some data to assist developing models of students’ learning
depth based on their learning processes. However, the main function-
ality of the system, that of the scaffolding, has still to be implemented

17The ability to plug in any Java Frame based application is the major advantage of
the design of Intertac.

19

based on data from students’ learning actions. Then there remains the
non-trivial task of analysing the educational acts as part of a particular
learning model.

20

10 Glossary

Agent — a program which is running in the background and com-
municating with the system software. The agent uses the input
from the keypad and mouse to receive information and enters re-
sponses into the windows on the screen (compare human agent).

Action — the conscious steps of an activity.

Activity — from activity theory, is a name for the collection of steps
taken or content of the activity, plus the context and conscious-
ness of the human agent.

Application — a stand-alone program, that may be added to group-
ware to be used in a single activity of the group process, such as a
Chat application, an Editor application for text files, or a Graph-
ical Editor. Such programs are based on stand-alone applications
for single mode work (see also Tool).

Awareness — in groupware awareness is reserved as a word to de-
scribe any tool used to enable users to be aware of who else is
linked to the same session or common, shared interface.

Chat Channel — a tool either in a groupware system, or stand-
alone, that enables rapid transmission of text messages that are
displayed as separate lines in the form of a sequence of contri-
butions to the ’chat’, which may be out of order in terms of
providing side-by-side display of question/answer pairs.

Client — person who has requested the production or design of a
piece of software. Not used in the client/server sense.

Collocated Group — group that is working face to face with access
to visual cues, etc.

Completion — The end of an Activity.

Constructivism — theory of learning that states that the learning
takes place inside a student, through their own construction of
their knowledge, with or without outside influence.

Correctness — conforming to requirements, used as property of course
or software.

CVS — Concurrent Versioning System.

Decision Making — User in various groupware to describe processes
to support groups coming to a conclusion. It may just invovle
voting, or in the case of this work, may include the various steps
of proposal and counter-proposal.

Depth — the approach to learning taken by a learner towards a course
or project, or the level of learning approach assumed in a learner
when forming advice to the learner.

Framework Constituents — background concepts of a course that
are important to the understanding what it means and what it
takes to learn the course material, but are not thematised, or ex-
pressly explained, in the instruction (see Technical Constituents).

21

Grab — term used to describe the action by software to intercept
input or output form a program to redirect to another format or
device.

Human Agent — as distinct from a software agent, a person who
communicates with other humans through the software. The hu-
man agent uses the mouse and keypad to enter information into
the tools, and the screen to receive (see also Agent).

Intertac-I — Software developed to provide an unstructured flexi-
ble medium for distance group communication, file sharing and
synchronous editing.

Intertac-II — Augmentatin of Intertac-I with agents to suport vari-
ous aspcts of learning in the software engineering domain.

Level — can refer to the level or depth of learning in a student’s
approach to a course, or the level of a diagram within the tree
structure of a Data Flow Diagram.

Local Files — refers to the file system on the computer the user is
logged into (see also server)

Needs of the Client — The initial expression of the requirements
for software by the people or organisation who will be buying it.

Outcome — An activity has an outcome that is the result of the
activity. In developing software that is designed to support this
activity, the outcome is also an aspect of the activity that the
software may change.

Server — software running independantly of groupware tools, usually
on a different computer, which handles communication isses to
maintain synchronous views by all users (see also Synchronous).

Session — used in reference to groupware to describe the communi-
cation between users during the period in which they are linked
by the network.

Synchronous — refers to the functionality of software that takes a
continual stream of changes from many users’ keypads and mouse
inputs and provides a list of changes to each user’s interface that
maintain concurrency, or match the order in which the changes
were received by the server. Changes may arrive faster than the
server can re-transmit them, but it must retain the information
from all back-logged changes.

System — a computer program that stands alone but involves many
parts. For example the separate tools or applications of group-
ware together form a groupware system.

Technical Constituents — Technical aspects of the course that are
assumed knowledge, or explained in the course (see Framework
Constitutents).

Tool — an application that is not stand-alone. For example agents
in most systems, and the applications in Intertac-I (see also Ap-
plication).

22

Versioning — as files are edited and changed, the computer system
can save a record of the changes form one version to the next.
These changes can be in the form of commands to edit from one
version to the next. If the user wishes to access previous changes
to undo them, or repeat them on a different version of the file
that lacks these changes, the computer can support this process
automatically.

Workshop or Course — refers in this thesis to the software engi-
neering design workshops for which Intertac-I was developed and
in which it was trialed.

WYSWIS — Pronounced ’wizzywis’. What You See is What I See.
Concurrent views of a window between multiply users.

23

References

[1] F.N. Akhras and J. Self, System Intelligence in Constructivist
Learning. International Journal of Artificial Intelligence in Edu-
cation, 11 4, 2000, 344–376.

[2] J.R. Anderson, P. Pirolli and R. Farrell, Learning to program re-
cursive functions, in M.T.H. Chi, R. Glaser and M.J. Farr, editors,
The nature of expertise, Hillsdale, NJ: Lawrence Erlbaum.

[3] Booth, S. (1992). Learning to Program: A phenomenographical
perspective. Gőteborg Studies in Educational Sciences,89, Acta
Universitatis Gothoburgensis.

[4] Collins A. Brown J.S. and Newman S.E., Cognitive apprentice-
ship: Teaching the crafts of reading, writing, and mathematics,
in L.B. Resnick, editor, Knowing, learning, and instruction: Es-
says in honour of Robert Glaser, Hillsdale, NJ: Lawrence Erlbaum
Associates, 453–494.

[5] P. Dillenbourg and J. Self, Designing human-computer collab-
orative learning, AAI/AI-ED Technical Report No. 91, in C.
O’Malley, editor, Computer-Supported Collaborative Learning,
1994, Berlin, Springer-Verlag, 245–264.

[6] Fjeld M., Lauche K., Bichsel M., Voorhorst F., Krueger H. and
Rauterberg M. (in press): Physical and virtual tools: activity
theory applied to the design of groupware. B. A. Nardi and D. F.
Redmiles, editors, A Special Issue of Computer Supported Col-
laborative Work (CSCW): Activity Theory and the Practice of
Design.

[7] Grabinger S., Dunlap J. and Duffield J. (1997). Rich environments
for active learning in action: problem-based learning. Association
for Learning Technology Journal, 5, 2.

[8] Habanero. Retrieved Janurary 10, 2001 from
http://havefun.ncsa.uiuc.edu/habanero.

[9] Jonassen D.(1998). Designing Constructivist Learning Environ-
ments. In C.M. Reigluth, editor, Instructional theories and mod-
els, 2nd Ed. Mahweh, NJ, Lawrence.

[10] Jonassen D. and Rohrer-Murphy L (1999). Activity Theory as
a framework for designing Constructivist learning environments,
Educational Technology, Research and Development, textbf47, 1,
61–79.

[11] Matchmaker University of Duisburg. Retrieved Au-
gust 10, 2000 from http://collide.informatik.uni-
duisburg.de/Software/Docs/JavaMatchMaker.

[12] M.L. Markus, M. Lynne, and M. Keil, If we build it, they will
come: Designing information systems people want to use, Sloan
Management Review, 35, 4, 1994, 11–25.

[13] M. Műlenbrock, F. Tewissen and U. Hoppe, A framework system
for intelligent support in open distributed learning environments.

24

In B. du Boulay and R. Mizoguchi, editors, Artificial intelligence
in education: Knowledge and media in learning systems, 191–198.
1997, Amsterdam, The Netherlands: IOS Press.

[14] D. Mwanza, Towards an Activity-Orientated Design
Method fro HCI reserach and Practise, PhD Thesis, 2002,
The Open University, UK. Retrieved November 8, 2002
http://kmi.open.ac.uk/people/mwanza/phd-thesis.

[15] Nardi, B. A. (1996) Some reflectionson the application of Activity
Theory in Bonnie A. Nardi, editor, Contexts and Consciousness:
Activity Theory and Human-Computer Interaction, MIT Press,
Cambridge, Mass. 69–102.

[16] G.L. Rein and C.A. Ellis, The Nick Experiment reinterpreted: Im-
plications for developers and evaluators of groupware, in Office:
Technology and People, 5, 1, 1989, 47–75.

[17] Soloway, E., Jackson S.L., Klein J., Quintana C., Reed J., Spit-
ulnik J., Stratford S.J., Studer S., Jul S., Eng J. and Scala N.,
Learning Theory in Practise: Case Studies of Learner-Centred
Design. Proceedings of CHI 96, Vancouver, BC Canada April 13–
18, 1996, 189–196.

[18] L. Suchman, Making work visible, Communications of the ACM,
38, 9, 1995, 56–64.

[19] D. Suthers, Analyzing learner discourse effecs of representational
bias. Workshop at AI-Ed ’99 9th International Conference on Ar-
tificial Intelligence in Education — Analysing Educational Di-
alogue Interaction: Towards Models that Support Learning, Le
Mans, France 18th-19th July, 1999.

[20] Teamwave. Retrieved June 29, 2001 from http://teamwave.com.

[21] T. Winograd and F. Flores, Understanding Computers and Cog-
nition: A new foundation for design, 1987,NJ: Ablex.

25

